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Introduction

The principal oriented bordism module Q,(G) of a group G is defined to be
the module of all equivariant bordism classes of closed principal oriented (smooth)
G-manifolds. Q4(G) is a module over the oriented bordism ring Q,, and this
module Q,(G) and the unoriented one N,(G) are studied by several authors.

The purpose of this paper is to determine the Q,-module structure of Q.(H,),
m=2, where H,, is the generalized quaternion group generated by two elements
x and y with two relations

x2"'=y2 and xyx =y,

that is, the subgroup of the unit sphere S3 in the quaternion field H generated by
x=exp(wi/2"" 1) and y=j.

The group H,, acts freely on the unit sphere S*"*3 in the quaternion (n+ 1)-
space H"+*! by the diagonal action o,(q, (4o,---» 9u))=(440,---» 94,) (4, q; € H),
and we obtain the principal oriented H,-manifold

0.1 (%, S*"73)  (n 20).

Also, the element x =exp (wi/2™~!) generates the cyclic subgroup Z,.. of order 2™,
and this group acts on the unit sphere S2*! in the complex (n+1)-space C"*!
by the diagonal action x(z,..., z,)=(xzg,-..., X2z,) (z;€ C). We denote this
Z,~-manifold by (T,,, S?2"*1). Hence we obtain the extension

0.2) in(Ty S*771) (0 2 0),

by the inclusion i,,: Z,m< H,,, which is the disjoint union Z, x S##*1 with the H,-
action given by

x(e, z) = (&, x%2), y(&, 2z) = (—¢, €2) (e = +1, zeS4nt1),

Let 7 be the set of partitions w=(ay,..., a,) with unequal parts a;, none of
which is a power of 2. By the consideration of K. Kawakubo [6], there is a
Z,-manifold
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(T, N(w)) for wen

such that N(w) represents Wall’s generator g(w) of the oriented bordism ring Q.
and N(w) admits an orientation reversing involution T (cf. §5). By using this
manifold and S2"*1, we can consider the principal oriented H,-manifold

(0.3) Bu(n, @) = (B, S21xS21x N(@))  (n 20, wen),
whose action B, of H,, is given by
Bulxs (2, 2’y w) = (xz, x712', w), By, (2, 2/, w)) = (=2, z, Tu),

for z, z’ € S2"*! and u € N(w). (This definition is suggested by K. Shibata.)

For any H,-manifold M, we denote by yM the manifold M with the new
H,-action x«m=ym, yxm=xm (m € M), and we can consider its extension k,,yM
by the inclusion k,:H,<H,, k(x)=x2""2, k,(y)=y. Therefore, we obtain
the principal oriented H,-manifolds

(04) kmin(Tb S4n+1) (n g 0)5
0.5) kwyBo(n, @) (n 20, wen),

from the H,-manifolds of (0.2) and (0.3).
Finally, we consider the extension

(0.6) IE4"t3W(w) (n=20,wen)

of the bordism class E4"*3W(w) e 3,(Z,), due to K. Shibata [7], by the inclusion
i:Z,cH,, i(—1)=x2"""=y2
Then, we have the following

THEOREM 7.5. The principal oriented bordism module Q.(H,) of the
generalized quaternion group H, (m=2) is the direct sum

L,09,609,00,,

where 2, Q,,, Q. and I,, are the Q,-submodules of Q.(H,) generated by the
bordism classes (represented by the H,-manifolds) of (0.1), (0.2-3), (0.4-5)
and (0.6), for n=0 and w € 7, respectively.

Furthermore, we study the relations among the generators in these Q.-
submodules and obtain the Q,-module structure of Q,(H,,) in Theorem 8.12.

We prepare in § 1 some results for the homology of H,,. In §2, we study the
unoriented bordism module N.(H,,) by using the isomorphism

Nu(H,) = Re®@H(H,; Z5) (cf. [3, (19.3)]),
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and determine the free N,-module structure of N, (H,) (Theorem 2.13). Also,
we study the module N,(NS?!) of the normalizer NSt of S! in S3 (Proposition
2.19).

We recall in §3 the results of [5] for the oriented bordism module Q,(Z,.).
By using these results and the isomorphism

g*(Hm) = Zp+q=nﬁp(Hm; ‘Qq) (Cf [3’ Th. 142]),

we study in §4 the Q,-submodules £,, and M, in Theorem 7.5 and the submodules
3., and J,, generated by the bordism classes of (0.2) and (0.4), respectively. We
define the Z,-manifold (T, N(w)) in §5 and the H,-manifold B,(n, ) of (0.3)
in §6, and prove our main results in §§7-8.

The author wishes to express his gratitude to Professors M. Sugawara and
T. Kobayashi for their valuable suggestions and reading this manuscript carefully,
and also to Dr. K. Shibata for his useful suggestions.

§1. The homology of H,,

The generalized quaternion group H,, (m=2), generated by
x =exp(zmi/2"~1) and y =],

acts freely on the infinite dimensional sphere S*=\/,5*"*3 by the action of (0.1),
and an H,-equivariant CW-decomposition of S® is given in [4, §2] as follows:

S® = {qe*'*s, qe}'*'s =0,3;t=1,2;¢=1,2;qeH,},
Oet*' =3 ep,qe*' ™,
aeﬂltl+l — (x_l)ettl, ae%l+1 — (y___l)e4l,
(ll) ae‘}H-Z = 22‘.:6‘—1xie?l+1_(y+1)egl+1,
0e3!t2 = (xy+ ettt +(x—1)ed! 1,
ae4l+3 — (x_ l)e‘;H-Z _(xy__ 1)€gl+2.
This induces a CW-decomposition of the classifying space S°/H,, of H,,:
S®/H,, = {ep!*s, etlts =0,3;t=1,2;¢e= 1,2},
(1.2) Oep! = 2mtletl=1  Qetltl = gedht1 =0,
Jetlh2 = 2m~lefltl —2ed!t1l,  Qedli2=2e}Htl, 0dei!*3 =0.

Therefore, we have
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Lemma 1.3. ([2, Ch. XII, §7], [4, §2]) The homology groups of the
generalized quaternion group H,, are given by

Z, (et 1@ Z,[ed!it for k=4l+1,

H(H,;Z) ={ Zym+1[e4*3] for k=41+3,
0 otherwise,
Z,[ek] for k=4I, 4143,
H(H,; Z,) =

Z,[ek 1DZ,[ek ] for k=41+1,41+2,

where Z,[e] means the cyclic group of order t generated by the homology class
of the cell e.

Now, consider the cyclic subgroup Z,.. generated by the element x. Then,
(1.1) induces the CW-decomposition

S®|Z,m = {e41ts, yetlts etltt|s =0,3;t=1,2;¢e=1, 2}

with the boundary formulae obtained by setting x=1 in those of (1.1). There-
fore, we see easily that the generators of the homology groups

(1.4) Hy41(Zym; Z) = Zym[ 231441, H(Z3m; Z,) = Z,[ 2]
are given by
zg=e*, zgyrr =€t zgu, =1 +p)et™?, z4.3 = (1+y)et3,
and that the extension and the transfer homomorphisms
(1.5) iyt H(Zym; A) —> H(H,3 A), 1 5 H(H,3 A) — H(Zym; A)
(A=Z or Z,), induced by the inclusion
(1.6) ipm: Zym — H,, Imi,, = Z,.[x],
have the following properties for the generators in Lemma 1.3 and (1.4).
Lemma 1.7. (i) For k=4l and A=2Z,, i, is isomorphic and t; , is trivial.
(1) ipa(zares) = €505 1u(ed ) = 0, 1, u(e85h1) = 271z, .
(iii) For k=4142 and A=2Z,, i, is trivial and
tix(etin?) = za12 1, 4(e3'3?) = 0.

(iv) For k=4143, i,s(z41+3)=2e4"*3 and t; , is epimorphic.
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Also, we consider the cyclic subgroup Z, of H, generated by the element y.
Then, (1.1) for m=2 induces the CW-decomposition of S®/Z, by setting y=1,
and we see easily that the generators of (1.4) for m =2 are given by

zg=ey zgyg=edtl oz, = (L+x)ef*2, z445 = (L+x)et!3,
and that the extension and the transfer homomorphisms
(1.8)  Jax: H(Zy; A) — H(Hy; A), tj,e: H(Hy; A) — H(Zy; A)
(A=Z or Z,), induced by the inclusion
(1.9) J2:Zy — Hj, Imj, = Z,[y],
have the following properties.
Lemma 1.10. (i) For k=4l and A=2Z,, j,4 is isomorphic and t;,, is trivial.
(i) Jjos(zar) = €35Y5 ti4(eti3!) = 22441, tj,4(e3l3)) = 0.
(iii) For k=4l+2 and A=2Z,, j,4 is trivial and
ti,x(et'3?) = z44 0 = t,4(e3132).
(iv) For k=41+3, jy4(z41+3)=2e3'"3 and t;,4 is epimorphic.
Now, consider the automorphism
(1.11) yiH, — Hy,  y(x) =y, ) =x.
LeEmMA 1.12. For the isomorphism
Ve Hyppo(Hys Zy) — Hypy(Hys Z5)
induced by vy, we have
ra(etit?) = etli?,  yu(e3!f?) = efli? +esli2

Proor. Set y.(et'f?)=aet's?+be4'32. Since yoi,=j,, we have the
commutative diagram

Hyyy(Hys Zy) 22 Hypyy(Hys Zy)
tiys LXP

Hyp (243 Zy) 4 Hyyo(Zy3 Z,).

Therefore we see that a,+b,=0 by Lemmas 1.7 (iii) and 1.10 (iii), and so that
a,=b,=1 since y, is isomorphic. This result and the equality y,y.(e}'32)=e%!32
show that a, =1, b; =0, as desired. q.e.d.
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Let
(113) kl,m:Hl—_’Hm’ km=k2,m:H2_)Hm’ (Zé lém)’

a2m-=1

be the inclusions such that k; ,(x)=x » k(M) =y.
LemMma 1.14.  For the extension homomorphism
Kz : Hi(Hy; Ay — H(H,,; A) A=ZorZ,,m>2),
induced by k,, and the generators of Lemma 1.3, we have the following equalities:
kmi(e3h) = en's kux(ef'3') =0, kyu(ef's?) = efli!
Kms(e4132) = 4152, Kpu(€3157) = 0, kpy(ed13) = 27 2e81+3,

,m 9

Proor. Consider the H,-equivariant CW-decomposition (1.1) and the
H,,_,-equivariant CW-decomposition

S® = {qe'*!*s, gel4ts =0,3;t=1,2;e=1,2;qeH,_,}
of [4, §2]. Then, we see easily by the definition in [4, § 2] that
@4l = g4l 4L = (14 x)edltl, e)dltl = gdlt1,
et = odl+2 14142 = (] 4 x)ed!*2, /4143 = (14 x)e*!*3.

Therefore the extension homomorphisms ky =k, _ | pns: H(Hp-y; A)—>H(H,,; A)
are given by

ki(emls) = en!, ki(ethil) =0, ky(edinly) = e3hit,
ka(ethi2) = o2, ky(edh2) =0, ky(eflh) = 2e41+2.
These show the desired results since k,,=k,_{ o -0k, 3. q.e.d.
Finally consider the inclusion
(1.15) Jm = kmoj, = kyoyei: Z, — H,, Imj, =2Z,[y].
Then, by Lemmas 1.10 and 1.14, we see that the extension homomorphism
Ju: H(Z43 ) — H(H,; A) (4 =Z or Z,)

satisfies the following

LEMMA 1.16. (i) j4 is isomorphic for k=41 and A=2Z,, and is trivial for
k=414+2 and A=2Z,.

(ii) Jm(Zare1) = €350, Jus(Zages) = 2" Lep!t3,
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§2. The unoriented bordism modules R, (H,,) and N, (NS?)

For a given compact Lie group G, an n-dimensional principal G-manifold (G,
B")=(a, B") is a pair of a compact (smooth) n-manifold B" and a free (smooth)
action a: G x B*—B", and two closed principal G-manifolds (G, M") and (G, N")
are G-equivariantly bordant, if there is a principal G-manifold (G, B**!) with
(G, Br*1)=(G, M"U N"). Denote by the G-bordism class of (G, M") by [G,
M"], and the collection of all such classes by R,(G). N,(G) is a module with
respect to the disjoint union, and the direct sum

(2.1 NW(G) = 22, %(G) (I =dimG)
is the principal unoriented G-bordism module. For the unit group e,
9t* = 2;1.0=0 mm 9’tn = gtn(e),

is the Thom bordism ring with respect to the multiplication induced by the cartesian
product M x N, and N,(G) of (2.1) can be given a structure of (left) N -module
by

[N]ILG, M] =[G, N x M],

where G acts on N x M by g(n, m)=(n, gm) (cf. [3, §§2, 19]).

For an element [G, M] e N,(G), let f: M/G—BG be the classifying map of
the principal G-bundle M—->M/G. Put I=dimG. Then we see easily the follow-
ing result in a way similar to the case of a finite group G ([3, §19]):

(2.2) There is an isomorphism
¢ NW(G) — N(BG)

of Ny-modules of degree —1, defined by ¢[G, M]=[M|G, f], where N «(BG)
is the Ny-module in [3, §8].

The element u[G, M]=f,(M/G)e H,_(BG; Z,) is defined, where M/Ge
H,_(M|G; Z,) means the fundamental class. Using [3, (8.1)] and (2.2), we have

2.3) wu:N(G)— H,_(BG; Z,) is epimorphic.

For a base {c,;} of H,(BG; Z,), we can take C,,;;€ RN, ,(G) with uC,,,;
=c¢,; by (2.3). Then a homomorphism of M,-modules

h: Ny ®H(BG; Z,) — N,(G)
is obtained by h(1®c,;)=C,.,,, and
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(2.4) (cf. [3, (19.3)]) h is an isomorphism of Ny-modules.

Let H be a subgroup of G. For the inclusion i: H =G, consider the extension
homomorphism

2.5) it N(H) — R(G)

defined by i[H, M]=[i(H, M)], where i(H, M) is the principal G-manifold con-
sisting of the quotient manifold (G x M)/H of Gx M by (g, m)=(gh~!, hm) and
the G-action on (Gx M)/H given by g'[g, m]=[g'g, m]. Consider also the
transfer homomorphism

(26) f: inn(G) - snn(l_l)
defined by restricting the G-action on H by the inclusion i: H<=G.

Now, we study the ifl*-module structure of N,(H,,) (m=2).
We consider the principal Z,-manifolds

2.7 (a, S™) (a is the antipodal action), -
and the principal Z,.-manifolds
‘ la, S (I:Z,=2,4),
2.8)
(Tm9 SZ"+1), Tm(x’ (ZO’ Zl,..., zn)) = (XZOs lea“-’ xzn)'
For any principal H,-manifold (H,, M), denote by
(2.9) V(H,, M)

the manifold M with the new action gxm=y(g)m (g € H,, m e M), where y: H,—
H, is the automorphism (1.11).
Now we consider the principal H,-manifolds

(ot S*43) (0.1)),

il Ty S27*1) (im: Zym<=H,, of (1.6)),

(T, S2n+1) (jm: Za<H,, of (1.15)),
(2.10) i(a, S (i = ipol: ZycZym<H,),
Bu(x, (2, 2')) = (xz, x™'2'),
By, (z,2)) = (=2, 2),
kyp(Bas S27H1 x 8201y (k- H, < H,, of (1.13)).

(Bm’ Sln+1 xS 2n+1), [
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LemMA 2.11. Consider the Z,~-manifold (Z,, S?"*1 x S2»+1) with y(z, z')
=(—2z',z) for the generator yeZ,. Then u[Z,, S*"t1x S2nti]e
H,,,.,(Z,;Z,) is non-zero, where u: Wo(Z,)->H(Z,; Z,) is the homomorphism

of (2.3).

Proor. By using the Z,-equivariant CW-decomposition S27*1x §2n+1
={ek xeL}, we see easily that u[Z,, S?"*1xS2**1] is non-zero in
H i s(\JW(S2"H 1 X S2MN)[Z 45 Z5)=H 4 (245 Z2). q.e.d.

For the homomorphism
w:R%(H,) — H,(H,;Z,) (mz2)

of (2.3) and the bordism classes of the manifolds in (2.10), we have the following
lemma, where e’s are the generators in Lemma 1.3.

LemMA 2.12. (i) plo,, S*r+3]=ednt3,

(i) pin[T,, S*"71] = etin?,

(i) pjnlTs, S4"H1] = esint,

(iv) pila, S*"] = e,

(V) ”[ﬂm’ SZn+1 xs2n+1] = e%::':z,

() gl s7vetxsewny = | CH T Jorm= 2
V1) UK YLPa, ST XS4 =

efnt+2 for m > 2.

Proor. We have (i) from (1.2). Since p is natural for maps, (ii), (iii) and
(iv) follow from Lemmas 1.7, 1.16 and [S, Prop. 1.7 (i)]. (vi) follows from (v),
Lemmas 1.12 and 1.14. Therefore, it is sufficient to prove (v).

(v) Consider the commutative diagram (cf. [3, §20])

Nopi2(Zy) 2 Rypir(Hy) —2 Rypia(Zom)

lu lu lu
tim» im*
Hyni2(Zgs Z2) &% Hypoz(Hys Z3) 275 Hypis(Zom; Z).
Then we see that

B = ulBm S x 82" 1] %0 in Hypso(Hus Z3),

since t;, «(f) = u[Z,, S?"*1 x S2"*1]x 0 by the above lemma. On the other
hand, we see that ¢t; .(f)=0 since t; (B,, S?"*1 x S2*1) is the boundary of (Z,m,
D2n+2 % §2n+1) - where D?"*2 is the disk bounded by S27*! and Z,. acts on
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D2n+2x §2nt1 by x(z, z')=(xz, x"'z’). Therefore, we see f=e4"+2 by Lemma

1.7 (iii). q.e.d.
By (2.4) and Lemmas 1.3 and 2.12, we have immediately

THEOREM 2.13. RN(H,) (m=2) is a free RN,-module with basis
{[ami S4n+3]’ im[Tm’ S4n+1], jm[TZ’ S4n+1], i[a’ S4n]’ [Bm’ SZn+1 XSZn+1],
kwy[Ba, S?m+1 x S2m+1]In20}.

Lemma 2.14. (i) By the extension homomorphism k;,: N (H)—N(H,)
(2=1=m) induced by k,,: H—H,, of (1.13), the free N,-submodule

N {{kpy[Ba, S2*1 x S2v1], ji[ Ty, S*"*1]ln = 0}} = Ny(H)
is mapped isomorphically onto the free N, -submodule
N {{kny[Bz, S2t1 x S2041], j, [Ty, S**¥1]In 2 0}} = Nu(H,,).

(ii) By the transfer homomorphism t, : R.(H,)>R(H)), the free Ny-
submodule

Ny {{[Bm S x 827417, 0, [T, S*"* 1 ]In 2 0}} = RNW(H,,)
is mapped isomorphically onto the free Ny-submodule
N {{LB, S2m1 x S22, i)[ T, S*** 1 ]In 2 0} = Ny (H)).

ProoF. By Theorem 2.13, (i) is clear and (ii) follows immediately from
the facts that k,,ok;=k,, k;noji=jn and t, [B,, S *1 x §2n+1]=[p,, S2*1 x
S2n*t1]and ¢, i,[T,, S*"t1]1=0i[T;, S4*1]. qg.e.d.

For the transfer homomorphism ¢; : N,(H,)—N.«(Z,) induced by the inclu-
sion j,,: Z,<H,, of (1.15), we have

Lemma 2.15.  t; [B,, S2"H x S2"* 1] = [[a, S*"*2] + X.22,b I[a, S21],
for some b,e Ny, where l: Z,<Z,.

Proor. Since put; [B,, S?"*!xS2*"1]x0 by Lemma 2.11, we can write
tjm[ﬁma S2”+1 X S2"+l]
= I[a, $*"*2]+ X 320b,lla, S*]+ X320y [T, S74*'],

by [5, Prop. 1.7, Th. 1.22]. Consider the transfer homomorphism ¢;: N.(Z,)
>N(Z,). Then, 1ut; [P, S?"*1xS2*1]=0 and tl[a, S?7]=2[a, S?1]=0
(g=0). Therefore, >22,y,[a, S?97']1=0 in N(Z,). By [3, Th.23.2], y,=0
(g=0)in N,. Hence, we have the desired result. g.e.d.
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Let NS! be the normalizer of S! in S3. For the rest of this section, we study
the free M,-module structure of N (NS!). Consider the fiber bundle

RP(2) — BNS! — BS3,

where RP(2)=S3/NS' is the real projective plane. Consider the homology
spectral sequence {E} ,} for this bundle. Then

E} , = H,(BS*; A®H/(RP(2); A) (A=2ZorZ,)),
and so this spectral sequence is trivial. Hence, we have immediately

PropPoSITION 2.16. The homology groups of the classifying space BNS!
of NS! are given by

Z, for kx3 (4),
for k=3 4).

H(BNS'; Z,) =

Now, we consider the principal S!-manifolds

(Sl, S2n+1)’ C(ZO,"', Zn)=(CZO’-~’ CZ") (CE Sl),

and the principal NS!-manifolds

(o, S*"*3), a(q, (4os---> 4n) = (9905---» 99,) (9€NS),
B(c, (z, 2)) = (cz, c7'2") (ceS'),
B(j, (z, 2) = (=2, 2),

i(St, S2n*1)  (i: S = NSY).

(2.17) (B, S2n+1 x S2n+1),

Then we have easily by definition the following
LEMMA 2.18. For the transfer homomorphism
t: N(NSY) — N (H,)
induced by the inclusion H,, = NS', we have
(i) f[a, S4m+3] = [a,, S4n*37], t[B, S2n+1 x §20+1] = [B,, S2"+1 x S2n+1],

(i) 4[S?, S4r+1]=i,[T,, S4r+1].

ProrosITION 2.19. N (NS') is a free Ny-module with basis {[a, S#"*+3],
i[S1, S4+17, [B, S2n+1 % §2n+1]|n >0},

Proor. We have the desired result from (2.4), Theorem 2.13, Proposition
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2.16 and Lemma 2.18. q.e.d.
Also, by Lemma 2.18, Theorem 2.13 and Proposition 2.19, we have

LeMMA 2.20. The transfer homomorphism t in Lemma 2.18 is mono-
morphic.

§3. Preliminaries to the oriented bordism module 2,(G)

The principal oriented G-bordism module and the oriented bordism ring
Qu(G) = Z02(G) and Q= Qu(e) = XL,

are defined in the same way as M,(G) and R, in §2, provided that manifolds are
oriented and G-actions preserve the orientations (cf. [3, §§2, 19]). Q.(G) is a
module over €., and there are homomorphisms

3.1 r: 24(G) — N(G), r:Q, — Ny,
obtained by ignoring the orientations. Also, the augmentation homomorphism
(3.2) Ex: Qu(G) — Q, &[G, M] = [M/G],
defines the direct sum decomposition of Q,-modules:
Q4(G) = CUG)®Qy, O4(G) = Kerey.
It is known that
(3.3) (Rohlin’s Theorem, cf. [3, Th. 16.2]) There are exact sequences
2(G) =% Q,(G) - R(G), 2,5, >N,

Let H be a subgroup of G. For the inclusion i: H =G, the extension homo-
morphism
(3.4) i: QH)— Q,G)
and the transfer homomorphism
(3.5) 12 Q,(G) — Q,(H)

are defined in the same way as (2.5) and (2.6) (cf. [3, §20]).

Wall’s results on Q, can be stated as follows: Let n denote the set of parti-
tions w=(ay,..., a,) with unequal parts a;, none of which is a power of 2, and set
lo]=r. Let wnw’, wOw’ and w;er for w, o’ en be the intersection, the sym-
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metric difference and the partition obtained from w=(ay,..., a,) by omitting a;,
respectively. Then

THEOREM 3.6. (C.T.C. Wall [9]) The oriented bordism ring Q, is the
quotient ring of the integral polynomial ring

Zlhy, g(w)lk =20, wen]
by the ideal generated by the elements
29(w), 2j9@apg(@) (ol 23),
g(w)g(0’)— 2 jh(w; n w)g(a;)g(w;00"),
where h(w)=hy, N4, for ©=(ay,..., a,).

We study in [5] the principal oriented Z,.-bordism module Qu(Z,«) (k>1).
Consider the following elements in Q4(Z,.):

[T, S2m+1] (in (2.8)),
3.7
IE2" 1 W () (1:Z, < Z),

the second of which is the extension of E2"*1W(w) e Q,(Z,) defined by K. Shibata
[6, §§3, 41,

Ap(@) = 2 j9(a)IE> W(w)y) (o] 22),
(3.8) B, (0, 0) = 3 ;iw; N @)g(a)IE>"" ! W(w;0w')
—g(@)IE?"* 1 W(w"),
for w, @’ €, where g(w)IE2"* 1 W(¢)=0.

THEOREM 3.9. ([5, Th. 2.18]) The principal oriented Z,i-bordism module
Q.(Z,) (k>1) is the direct sum

CuZ2) = 5 ® G,
where the submodule $, is the quotient module of the free Q,-module
Q{{[ T, S?"*1]In 2 0}}

by the submodule generated by the elements 2*[T,, S?"*1] (n20), and ®, is the
quotient module of the free Q,-module

Q, {{IE2"* ' W(w)ln 2 0, wen}}

by the submodule generated by the elements 2IE?"*'W(w) and A, (@) (jo|=2),
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B, (0, ®), (n20, o, ' emn), of (3.8).

By [5, Th. 2.22], Rohlin’s Theorem (3.3) and the above theorem, we see the
following proposition for the homomorphism r: Qu(Z,:)—»NW(Z,) of (3.1).

ProposITION 3.10. (i) rlE2**1W(w) = rg(w)(X1thay;l[a, S3n—2i+2]),

where a,; is defined by ay=1 and >."_qa,;,[RPQm—2j)]1=0 in N, for any m=1.
(i) The submodule ®, of Q.(Z,.) in the above theorem is mapped by r
monomorphically into M(Z ).

§4. Some £,-submodules in 2, (H,,)

Now, we begin to study the principal oriented bordism module Q.(H,,) of

the generalized quaternion group H,, (m=2).
For our purpose, we use the following theorem which follows immediately

from [3, Th. 14.2] and Lemma 1.3.
THEOREM 4.1. The canonical homomorphism
0: Qy(Hy) — Tyl (Hu3 Q) (m22)
of [3, §14] is isomorphic.

We see easily that the canonical homomorphisms 6 are natural by the proof
of [3, pp. 39-41], and so we have the commutative diagram

R(Z3m) < — G,(Zyw) — H,L, @ H,3,® H,0, ® H,2,

o[ ] -]

(42) 9}n([Im) (__'_ Qn(Hm)—o) Hr},mC‘BHi?,m@Hr?,mG‘)Hrzl,m

~

ij fmI ij

N,(Z,) «— 0,(Z) —— H, ,®H,}, @ H,% ® H,2,,

where r’s are the orientation ignoring homomorphisms of (3.1) and i,,: Z,..<H,,
Jm: Z4< H,, are the inclusions of (1.6) and (1.15), and

rlsz = Zqﬁ4q+£(zl"; Qn-4q—e)3
H:,l = Zqﬁ4q+e(Hl; Qn-—4q—e)’ (k9 l Z 23 &= 09 13 2a 3)'

LemMmA 4.3. In Q.(H,) (m=2), we have the following relations.
(i) The elements [a,, S*"*3], i,,[T,, S*"*1] and j,[T,, S***1] of (2.10)
are of order 2"*1, 2 and 2, respectively.

(ii) x[ot,,, S4+3]=0 if and only if xe2m*t1Q,,
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Xiy[ T S4**11=0 if and only if xe2Q,,
Xjul Ty, S4"*11=0 if and only if xe2Q,,

for x € Q.

Proor. Consider the natural homomorphisms

(4.4) u:Q,(G) — H,(G; Z)

defined for finite groups G in the same way as u of (2.3). Then, we see easily that
.u[“m’ S4n+3] — e$n+3,

(%) Win[ Ty S4771] = ipup[T,,, S*"1] = efrit,
Wiml T2y S4" 1] = jpuul Ty, S*"41] = 4721,

by (1.2), the proof of [5, Lemma 2.13 (i)] and Lemmas 1.7 and 1.16.
(i) We see that the order of [a,,, S*"*3] is 2m*1 by the first equality of (%),
Lemma 1.3 and Theorem 4.1.

Since O([Ty, S*"* 1D eHyL,; @HS 1, by [5, Prop. 2.14 (ii)], we have
e(im[Tm’ S4”+1]), G(jm[TZ’ S4n+1]) € Hin+1,m

by the commutativity of the diagram (4.2) and Lemmas 1.7 and 1.16. These and
the last two equalities of (*) and Lemma 1.3 show the rest of (i).

(i) By (i), it is sufficient to prove the necessity. Since the bordism spectral
sequence of BH,, is trivial (cf. [3, Th. 15.2]), there is a commutative diagram

Q®Q,e1(H,) —5— J3p41,1S Q554141 (Hp)

o |

Q®H,,41(H,; Z) %> Hy, i (H,; Q)

by [3, §71, where k’s are the homomorphisms defined by the multiplication and
1 is the one in (4.4), and the lower x is monomorphic. Therefore, we have the
desired results by using (), Lemma 1.3 and the structure of Q,. q.e.d.

LEMMA 4.5. By the composition roi,, in (4.2), the submodule in Q.(Z,m)
generated by the elements IE*"*3W(w) (n=0, wen) in (3.7) is mapped mono-
morphically into N (H,,), and

ripEr S W(@) = E I W(@) = rg(@) (2325%az,ila, S+ D-21]),

where i=iy°l: Z,cZ,mn<H,, and the coefficients a,; are the ones in Proposition
3.10.
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Proor. The equality follows from Proposition 3.10 (i). Then, we have
the desired results from Proposition 3.10, [5, Prop. 1.7 (i)], Theorem 2.13 and the
facts that i,,or=roi, and ag=1. qg.e.d.

Let
(46) 4: Qn(Hm) — Qn—4(Hm)5 a4: 9tn(I:Im) — “nn—4(Hm)

be the Smith homomorphisms defined as follows (cf. [3, §26 and (34.7)]): For
a principal (oriented) H,-manifold (H,, M"), we can take a differentiable equi-
variant map ¢: (H,, M")—(a,, S*N*3) which is transverse regular on S4N¥~1,
since S#Nt3/a,, is the (4N + 3)-skeleton of BH,, where (o, S*¥*3) is the one in
(2.10) and 4N +3>n. Then,

A[H,, M"] = [H,, ¢~ '(§*N"1)].

It is easy to see that 4 is a homomorphism of Q,- (9t,-) modules, and

Lemma 4.7. (i) A[a,,, S*"+3]=[a,, S*~1],
(ii) Al"‘[Tm’ S4"+1]=im[Tm, S4”_3]s
(iif) Aju[Ty, S4+1]=ju[ T, S4n31.

Proor. (i) is clear.
(ii) Consider the composition

f: meS4n+1 xS H, x S4n+3 Axfa H, x S4rt3 __&m_, G4n+3
where fi(zgse s Z20)= (0, Zgs--vs Z20)s f2(Z0s-+0s Zan+1) = (20> 271505 Zom Z2041)-

Then, it is easy to see that f(q, z)=f(qx~!, xz), and so f induces an H,-equivariant
differentiable map

f: im(Tm’ S4n+1) —_ (am’ S4n+3)’

which is transverse regular on S*"~1, Therefore, we have (ii).
(iii) In the same way, we have the desired result by considering the composi-

tion
1xS 1 m
Fi H,x S4r+1 2200, pr o gants Axfs H, x S4nt3 —m_, gént3
where f3(x09 Yos X15 Yiseeos X2 Vam X204+ 15 y2n+1)=(x0’ X15 Yos Viseros Xops Xop+15
Yans y2n+1)' qed

Now, we have the following

THEOREM 4.8. (i) The Qu-submodule &, generated by {[a,, S*"*3]|n=0}
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in (2.10) is the quotient module of the free Q.-module
Qi {{lot, S**3]In =z 0}}

by the submodule generated by the elements 2"*[w,,, S4"*3] (n=0).

(ii) The Qy-submodules 3, and 3, generated by {i,[T,, S*"*1]ln=0}
and {j,[T,, S***1]|n=0} in (2.10), respectively, are the quotient modules of the
free Qu-modules

. Qu{{in[T,, S4*11In20}}  and  Q{{ju[T;, S*"*'1In 2 O}}

by the submodules generated by the twices of the generators.
(iii) Consider the extension

iE4"3W(w) = i, [E*"t3W(w), for n=0, wen,

of the class of (3.7) by i,,: Z,m<H,,. Then the Q.-submodule 13,, generated by
these elements is the quotient module of the free Qq-module

QUUE* 3 W(w)|n = 0, o en}}

by the submodule generated by the elements 2iE*"*3W(w), i,Azp+ 1,m(®) (|| 22)
and i,By, 41 m(@, @), (n=0, w, ®' €7), which are the extensions of (3.8).

Proor. (i) Assume that
Z?=Oxl[am’ S4l+3:| =0 (XIEQ*).

Then, the image of the left hand side of this equality by A"= A4o---04 (n-times)
of (4.6) is equal to x,[a,, S®] by Lemma 4.7 (i). And so, we have x,e2""1Q,
by Lemma 4.3 (ii). Therefore, we have (i).
(ii) We have the desired results in the same way as (i) by Lemmas 4.7 and
4.3 (ii).
(iii)) By Lemma 4.5 and Theorem 3.9, this result follows immediately.
q.e.d.

Denote by *A the order of a group A.

ProPOSITION 4.9. (i) The submodule £,+3,,+S,+W,, in Qu(H,) is the
direct sum

Qm@sm@sm@%m'

(i) %2, 0 GH,) = *H3 o #(S, 0 G(H,)) = (3,0 Q,(H,)) = (FH} )1/
and #(mm n ﬁn(Hm))=#Hr?,m'
(iii) By the isomorphism 0 in (4.2), 28, n G,(H,,) is mapped isomorphically
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onto 2kH3 , (k=1).
(iv) For the transfer homomorphism t: Q(H,.,)—Q,(H,) induced by
kpm+1: HycH,, .y of (1.13), we have the exact sequence

0—2mtt g  — 8 582 —0.
ProoF. (i) Assume that
Zxp[at, S4" 3142y, i [T S4" 1 1422, ju[ T2, S*"* 1 ]+w = 0,

where w=2Zw,iE4"3W(w)eMW,. We consider the image of this equality by
r: Q,H,)-»N,(H,). Then, by Theorem 2.13 and the equality of Lemma 4.5,
we see that rx,=ry,=rz,=0 in N, for any n and rw=0. The last equality and
Lemma 4.5 show w=0. Also, we have y,, z,€2Q, by (3.3) and so y,i,,[T,.
S4ntl =z j [T,, S***1]=0 by Lemma 4.3.

(i) There is a group homomorphism

¢: H} ,®H} , — (2,03,03,) n3,(H,),

defined by ¢(ep' 3 ®@x)=x[a,, S*'*3], p(e}'t!'®@x)=xi,[T,, S#'*1] and @(e}'}!
®X)=Xj[T,, S*'*1] (x € Q). By Theorem 4.8 (i) and (ii), it is clear that ¢ is
isomorphic. Therefore, we have the first two equalities.

Now, ,, n G,(H,)~r(W,, n 3,(H,)) by Lemma 4.5. Furthermore, by using
Theorem 2.13 and the equality riE4'~!W(w)=rg(w) (X 3La,;i[a, S*'727]) (ag=1)
of Lemma 4.5, we see easily that r(2B, n 3,(H,)) corresponds bijectively to
> r(TorQ,_ )~ X (Hy(H,, 2,-4))=HP,, by sending r(¥,3 X, ,iE*~1W(w))
er(MW,, N Q,(H,)) to 3,3 ,r(x 9(w)) e X1 (Tor Q,_ ).

(iii) By Theorems 4.8 (i), 4.1 and Lemma 1.3, we have immediately the
desired result.

(iv) Since t[o,, 41, S*" T3] =[0a,,, S*"*3], we have (iv) by Theorem 4.8 (i).

q.e.d.

§5. Some Z,-manifolds
Let CP(n) be the complex projective n-space, and P(2m+1, n) be the Dold
manifold obtained from S2?™*! x CP(n) by the identification
(Zgseeos Zs Nosevs M) = (—Zgseevs = Zyws Ns--+s 1) (z;, n;€0C).

Then, we have the Z,-manifold (z, P(2m+1, n)) where 7 is the involution given
by t[Zos-e> Zm—1s Zms Nos--+> Tnd =[Z0s-+ > Zm=15 Zms Nos---» Nx). Furthermore, we
set

02m+1, n) = (S' x P2m+1, n))/(ax1).
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By C. T. C. Wall [9], the subalgebra M, of N,, consisting of all classes of
manifolds whose first Stiefel-Whitney classes w, are integral, is given as follows:

(5.1 My = Z[ X1y Xg1-15 (X20)?|1 % 2%],

Whel'e X2'(2$+1)—1 = [P(z'_l, 2’8)], X2r(2s+1) = [Q(z'—l, 2’5)] and ij =
[RP(27)], the real projective 2/-space. Also, there is a homomorphism

(5.2) M, — Q,

obtained by sending the class of M to the class of the submanifold N of M dual to
w;(M), and the homomorphism

(5.3) & = rod: My, — M,

is a derivation such that ' X ,,=X,,_,, #X,,_, =0 and '(X,,)?=0.
Put X(w)=X,,,-*X,,, for w=(ay,...,a,)en. Then

(5.4) g(w) = 0X(w) forany wem,

where g(w) is the element in Theorem 3.6.

By the consideration of K. Kawakubo [6], we can define the orientable mani-
fold N(w), which represents g(w) and admits an orientation reversing involution,
as follows: Define an orientation reversing involution T on P(2m+1, 2n) by

T[Zos Z1seees Zms Noseros N2nd = [Z05 Z1se+> Zms Ngs-++> N2nl -

Set Njrzs+1)=Q(2"" ! —1, 2r*15) which admits an involution T induced by 1x T.
Furthermore, for any w=(ay,..., a,)en, a;<a,<:--<a,, we can consider the
involution T=Tx1x--x1 on N, x--xN,. Also, the map p: N, x---xN,
—S1 is defined by p([ty, uy],..., [t,, u,])=1t3---12, and it is easy to see that p is
transverse regular on 1€ S! and realizes wy(N,, x--- x N, ). Therefore, the sub-
manifold N(w)=p~'(1) of N, x---xN, represents g(w) of Theorem 3.6 by
(5.4). (This construction is due to Anderson [1] and Stong [8].) Now, we
obtain a Z,-manifold

(5.5) (T, N)), T=T|N(w),

where the involution T reverses the orientation on N(w). It is easy to see that
(5.6) (T, N(w)) = (T, P(2** —1, 2r*15))

if |w|=1 and w=(2"(2s+1)).

LeMMA 5.7. There is an oriented differentiable manifold W with an
orientation reversing involution T' such that
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(T, W) = AT, N(w)).

Proor. The desired result follows in the same way as the proof that 2[ N(w)]
=2g(w)=0 in Q, (cf. [9, Lemma 1]). q.e.d.

§6. Some new H _-manifolds

Let G be a group, and (G, M,) be a given closed (not necessarily principal)
G-manifold. Then for any principal G-manifold (G, M), the product M x M,
is a principal G-manifold by the action g(m, n)=(gm, gn) for ge G, me M, ne
M,. This G-manifold (G, M x M,) is denoted by

(6.1) (G, M)x (G, M,).
Then the following lemma is clear.
LEMMA 6.2. For a given closed G-manifold (G, M),
N(G) — N(G), [G, M]— [(G, M)x(G, My)],
is a homomorphism of N,-modules.

Now, for the Z,-manifold (T, N(w)) of (5.5), we define the H,-manifold
N(w) by the action

x-u=u; y-u=Tu for the generators x, ye H,,

which - is again denoted by (7, N(w)). By taking the products (6.1) of
this H,-manifold and (B,, S?2"*! x S27+1) in (2.10), we define the principal
oriented H,-manifolds

ﬁm(n’ w) — (ﬁm’ S2nt1 5y §2n+1 5 N(a)))

(6.3)
= (B ST x S2"* 1) x (T, N(w)),

due to K. Shibata. By using y of (2.9), we consider also
(6.4) k,yBa2(n, o) (k,: H, = H,, of (1.13)).

LeEMMA 6.5. The bordism classes [B.(n, w)] and k,y[B,(n, w)] of the
above manifolds are contained in Q,(H,,).

Proor. Since H, is the normal subgroup of H,,,, there is a principal
Z,-bundle

Z, — S2n+1 5 §2n+1 XN(w)/Bm — 5 S2n+1 y G2n+1 XN(w)/Bm+1-
So, [S2"*1x82m*1 x N(w)/B,]=2[S*"*! x §2"*! x N(@)/B,+1] in Q4 by [3,
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(19.4)]. Furthermore, since S27+! x §27*+1 x N(w)/B,+, is odd-dimensional, its
class belongs to Tor Q, by Theorem 3.6. Therefore, we have ey [B,(n, ®)]=0
by 2TorQ2,=0. Also,

exkny[Ba(n, )] = e4[Ba(n, @)] =0
by (i). g.e.d.
In the commutative diagram
Q4 (H,) L Q(Z,) —t Qu(H3)

©6) d d |
Nu(H,) —2ms NW(Zy) 12— Ny(H,)

of the transfer homomorphisms and the orientation ignoring homomorphisms,
we have

Lemma 6.7. (i) rt; im[ Ty S4"F1]=0.
(ii) rt; [Bn S2"H1x S20+ L x N(w)] = rt;,y[B,, S2"H1 x S27+1 x N(w)]
= rg(w)t; [P, S2"+1 x S2ntl],
(iii) r[B,, S2nTL x S2* 1 x N(w)] = rg(w) [B,, S2"*1 x S2n+1]
+ X1 0Viiml Ty S41*1], for some y e Ny

Proor. (i) It is clear that rt; i,[T,, S*"*!]=I[a, S*"*!], which is zero by
[5, Prop. 1.7 (ii)].

(ii) The first equality is clear by the definitions (6.3) and (6.4). By applying
the homomorphism of Lemma 6.2 for (G, My)=(T, N(w)) to the equality of
Lemma 2.15, we have

rt, B S?"H1 x 8211 x N(w)] = X328 b,[I(a, S29) x (T, N(@))], (ban+1=1).
On the other hand, there is a Z,-equivariant difffomorphism
@: l(a, $24) x (T, N(w)) — l(a, $?%9) x N(w)

defined by o([1, s], u)=([1, s1, u), ([y, s1, u)y=([y, s], Tu). Thus the last
sum is equal to

rIN(@)](Z 225 b,I[a, S29]) = rg(w)t; [Bm S2™1 x S27+1]

by Lemma 2.15 and the definition of N(w).
(iii)  First, we consider the principal NS!-manifolds
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(6.8) (B, S+ x §2m* 1 x N(w)) = (B, S>"+! x §2"* 1) x (T, N(w)),

where (T, N(w)) is the NS!'-manifold N(w) with the action c-u=u, j-u="Tu.
Then it is clear that r[B,, S?"*1x S27+1 x N(w)]=t[B, S2"+1 x S2n*1 x N(w)],
where t: N, (NSY)->N,(H,) is the transfer homomorphism. Hence,

r[ﬁm’ S2n+1 X 52n+1 XN(C())] — le[ﬁm’ S21+1 X S21+1]+Z‘ylim [Tm’ S4l+l]
+Zzl[am’ S4l+3],

by Proposition 2.19 and Lemma 2.18. The image of this equality by ¢;_is equal
to rg(w)t;, [Bm S2"1 x Szn+1]=2xltjm[ﬁm, S21+1 ¢ §21+ 1]+Zzltjm[am’ §41+37 by
(i) and (ii). Since ut; [o,, S*'*3]=put; [0, S4*3]=t;,4pulaz, S**3]%0 in
H,43(Z4; Z,) by Lemmas 2.12 (i) and 1.10 (iv) and pt; [B,, S?'*1 xS2H*1]x0
by Lemma 2.11, we have x,=rg(w), x,=0 (I=xn) and z,=0 by (2.4). q.e.d.

LemMA 6.9. (i) [B,, S2"+1 x 8271 x N(w)] € B,(H,,) is of order 2.
(ii) x[B S2"+1 x §27+1 x N(w)]=0 if and only if x €2Q,, for x € Q.

Proor. (i) follows from Lemmas 5.7 and 6.7 (iii), Theorem 2.13 and the
fact that rg(w)=0 in N,.

(ii) By Lemma 6.7 (i), rt; x[B,, S2"*1 x S2*1 x N(w)] = rxrg(w)t;, [Bm
S2n+l % §2nt17 e N(Z,). Therefore, if x[B,(n, ®)]=0, we have rxrg(w)=0
by Lemma 2.15 and [5, Prop. 1.7 (i)], which implies rx=0 since N, is a poly-
nomial ring over Z, and rg(w)=0. Therefore, we have xe2Q, by Rohlin’s
Theorem (3.3). g.e.d.

§7. Some new £2.-submodules of 2,(H,,)
We consider the Q.-submodules
(7.1) Q, and Q, of O H,) (m=2)

generated by {[B,, S?"t1x S2"*1 x N(w)], i,y[T,» S*"*1]|n=20, wen} and
{k,y[B,, S?"*1 x §2#*1 x N(w)], ju[ T3, S*"*1]ln = 0, w e}, respectively, where
the manifolds are those in (2.10), (6.3) and (6.4).

LemMmA 7.2. For the induced isomorphism
y: Qn(HZ) _ Qn(HZ)
of vy of (1.11), we have yQ,=2Q) and yQ,=2,.

LemMma 7.3. (i) 29,=29,=0.
(ii) The orientation ignoring homomorphism r: Qu.(H,)—»>N(H,) maps
Q,, and Q,, into the free N,-submodules
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Ry {{[Bn S2"+1 x 20417, i [T, S*"*1]In = 0}}
and
N {{kny[By, S2"*1 x §2741], j, [Ty, S4"*1]in 2 0}},

respectively.

(iii) Furthermore, r is monomorphic on Q,, and Q,,.

(iv) By the extension homomorphism k,,: Q.(H,)—>Q4(H,), Q) is mapped
isomorphically onto Q,.

Proof. (i) follows from Lemmas 4.3 (i) and 6.9 and the fact that Q,
=k,yQ,.

(ii) follows from Lemma 6.7 (iii) and the naturality.

(iii) Consider the commutative diagram

ﬁ*(Hm+ 1) — gt:{ﬂ([{m-i-l)

| |

Q*(Hm)—__r_”m*(Hm) ’
where t's are the transfer homomorphisms of k,, ,,+,: H,=H,,,. Assume
rq=0 for qeQ,.

Since tipy [Te1> S*" 1 1=iu[ T, S***1] and t[B,+1, S2"1 x §27+1 x N(w)]=
[B,» S2nt1 x S2n+1 x N(w)], there is an element ¢’ € Q,,, ; such that t¢q’=q. Then,
we see that

by (ii) and Lemma 2.14. Hence, q' €28, ,, by (3.3), Lemma 1.3, (4.2) and
Proposition 4.9 (iii). Therefore q’'e2m*t!, ., from (i) and Theorem 4.8 (i),
and so g=tq’'=0 by Proposition 4.9 (iv). . Thus we have the result for Q,,.

We have the result for Q) from the result for Q, by using the isomorphism
y, Lemma 7.2 and rey=yor. Finally, consider the commutative diagram

g*(Hz) — Q*(Hm)

| |

m*(Hz) ., m*(Hm) .

Then it is clear that Q;,=k, Q) by definition. Since r|Q’, is monomorphic by the
above proof and so is k,|r(Q%) by (ii) and Lemma 2.14 (i), we see that rok,,=k,e°r
is monomorphic on Q. Therefore, so is r on Q.

(iv) The result is shown in the above. q.e.d.
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LEMMA 7.4. The Qu-submodule 2,,+Q,,+Q,,+W,, of Q4(H,,) is the direct
sum

£, 02,02, dW,,
where 2, and W, are the ones in Theorem 4.8.
Proor. Assume that
I+9+q"+w=0 (le8,,qeQ,, g, well,).
Then by Lemmas 4.5, 7.3 (ii)) and Theorem 2.13, we have
rl=rq=rqg =rw=0 in 9. (H,).
Therefore, we get
g=0=4¢q' by Lemma 7.3 (iii),
w=20 by Lemma 4.5. q.e.d.
Now, we have the following

THEOREM 7.5. The principal oriented H,-bordism module Q. (H,)(m=2)
is the direct sum

L,00,609,0%8,
of the Qq-submodules L, W,, in Theorem 4.8 (i), (iii) and Q,,, J,, in (7.1).
Proor. By Lemma 7.4, it is sufficient to prove that
(L.©2,09,0%,) n 8,(H,) = *A,(H,).
Consider the homomorphisms
(7.6) Q(H,) —— N(H,) 182, P, pP,,

where Py =R {{[f, S?'T1 x S2H1][120}} 0 Ru(H,)s Pr=Ra{{kyy[B2r 211 %
S§2+17120}} n N,(H,,) and p; are the projections. Then,

pir[Bu(l, @)1 = rg(w)[B,,, S x §2H+1],
(7.7 p2r[Ba(l, ©)1 =0 = p,rk,y[B.(I, )],
p2rk,y[Bo(l, )] = rg(w)k,y[Ba, S?'+1 x §2n+1],

by Lemma 6.7 (iii). Also, (p; ®p,)r(£,®3,83,,®W,) n 3,(H,))=0 by Theo-
rem 2.13 and Lemma 4.5, where 3, and J,, are the ones in Theorem 4.8, and
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Y (pl @ pZ)r((Bm @ Qm @ Q;n@EIBm) n gn(Hm)) = plr(Qm n Qn(I-Im)) @ er(Q:n n
G,(H,)). Hence, using (7.7), we have

(7.8) i Qn N Gu(H) = *por(Q, 0 C(H,)) = (FHEZ )12
in a way similar to the proof of Proposition 4.9 (ii). Therefore,
*0,(H,) 2 *(2,03,03,0W,) n 3,(H,) (p,rQ@p,rQ) n 3,(H,)
= YH3 .®H; ,®Hp ,) *H}

by Proposition 4.9 (ii). Hence, we have the desired result by Theorem 4.1.
g.e.d.

LemMA 7.9. (i) %(Q, n Q,H,)) = *(Q, n G(H,) = C(H},, ® HZ )2
(i) For the homomorphism por: 3 (H,)—P, in (1.6), if p,r(q)=0 for
qeQ,n3,(H,), then g3, n 3,(H,).

Proor. (i) In the same way as the proof of Theorem 7.5, we see *(Q,, N
O(H))Z CHLD 2 - CH2) V2, 2000 B(H,) 2 CHL) 2 - (PH2,) 2 by
using Proposition 4.9 (i) and (7.8). Hence, we have the desired results from
Theorems 4.1, 7.5 and Proposition 4.9 (ii).

(i) We see that Ker(p,or|Q, n @,(H,)=3,,n8Q,(H,) from (i), (7.8) and
Proposition 4.9 (ii). qg.e.d.

§8. The main theorem

Now, we shall determine completely the Q,-submodules Q,, and Q;, of (7.1).
For the principal NS!-manifold (B, S! x St x N(w)) given by (6.8), the bor-
dism class in 9N, of the orbit manifold

S1x St x N(w)/B = S! x N(w)/(ax T)

is contained in M, of (5.1) since the orientation bundle S! x N(w)—S! x N(w)/
(ax T) is classified by the map S!' x N(w)/(ax T)— S!/a, [t, z]->[t]. Also for
the derivation ¢’ of (5.3), we see that

J'[S' x N(w)/(ax T)] = rg(w).
Since Kerd'=Im r by [9] and ¢’ X(w)=rg(w) by (5.3) and (5.4), we have
| [S'x Nw)/(axT)]—-X(w) € Imr.
Hence, we can take Y(w) € Q. (mod 2Q,,) such that

(8.1) rY(0) = [S!x N)(ax T)]-X(w) in N,



138 Yutaka KATSUBE

LEMMA 8.2. For the elements of (6.3), we have
(B S~ xS~ x N(w)] (n>0),
A[ﬁm’ S2nt+1 5 §2n+1 xN(a))] —
(n=0),

where A: Q. (H,)—>Qy_4(H,) and A: N (H,)—> Ry_4(H,) are the Smith homo-
morphisms of (4.6).

Proor. There is an H,-equivariant differentiable map

@: (ﬁm’ S2n+1 y §2n+1 XN((U)) - (am, S4n+3)

defined by @(zo,.-.; Zy Z0,..., Zpy ) = (2o/n/2, Z0/\/2 5., Z4/\/2, 24[</2) which is
transverse regular on S4*~!, Hence, we have the desired result. q.e.d.

Lemma 8.3. r[B,, S! xS! x N(w)] = rg(w)[B,,, S! x S1]
+(X(w)+rY(w))i,[T,, S'].
Proor. By Lemma 6.7 (iii), we can write
P[Bm S xS x N(@)] = rg(®) [Bps S! X S+ X 1yiim[ Ty S*+17.

Since Ar[B,, S' xS! x N(w)]=0=A4[B,, S! xS'] by Lemma 8.2, we have
y,=0(I%0) by Lemma 4.7 (ii) and Theorem 2.13, and so

r[Bm S* x S*x N()] = rg(@) [Bm, S* x S*1+ yoinl T, S*].

Consider the transfer homomorphism ¢: N (NS')—->N.(H,) induced by the
inclusion H,=NS!'. Then,

r[B. ST xSt x N(w)] = t[B, S x S! x N(w)]
by the definition of B of (6.8). Therefore, we have
[B, S' xS x N(@)] = rg(w) [B, S* x S']+ yoi[St, '],

by Lemmas 2.18 and 2.20. By applying the augmentation homomorphism
£yt MW(NS1)-> N, to this equality, we see

[S* xSt x N(w)/B] = rg() [S*]1+yo = yo.

Hence, we have y,=X(w)+rY(w) by (8.1). q.e.d.
Put
(3.4) N(n, ®) = g4[B, S*"+! x S2m*1 x N(w)] € RNy,

where ¢, is the augmentation homomorphism of (3.2).
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LemMA 8.5. For each w=(ay,...,a,)€m, |0|=2, there are elements
Kp+1,m(@) € Qy such that

K, (@)= ng(aj)Y(wj)+g(w)a
(8.6) rKon+1,m(®) = erg(wj)N(na w;)
+ 2123 [CP2n—2D1rK 514 (@) (n 2 1),
and that the following elements C, ,(w) vanish in Q*(Hm):
(87) Cn m(w) = Ejg(aj) [Bm(n’ w])] + Z?:o K21+1,m(60)l‘m[Tm, S4”_4H’1] .

Proor. We notice that r: 3, (H,)-»N,(H,) is monomorphic on RQ, by
Lemma 7.3 (iii). Define K, ,(w) by (8.6). Then we see Cy ,(w)=0 as follows:

rCom(®) = H(Z;9(a,) [Bu(0, )]+ (Z,9(a,) Y(@;)+ 9())in T S'1)
= 1(29(a)g(©)) [ S* x S'T+(Z rg(a)X (@)
+rg(w))i,[T,, S'] by Lemma 8.3
=0 by Theorem 3.6, (5.3) and (5.4).
Now we assume that there exist K,;, () for I<n in thi; lemma, and put
A = 3,9(a) [Bu(n, @)1+ T18K 14 1 @)i[ Ty S4=41+17.

Then 44=0 by Lemmas 4.7, 8.2 and the assumption C,_, ,(w)=0, where 4
is the Smith homomorphism of (4.6). Also, by the first equality of (7.7), Theorems

3.6 and 2.13, we see that p,r4=0 and so A€ 3J,, by Lemma 7.9 (ii). Therefore,
Ae 3, nKerd and we see that

A+ X0l T, S11=0 for some x,€eQ,

by Lemma 4.7 (i) and Theorem 4.8 (ii). Take K,,;qm(w)=x,. Then this
equality shows C, ,,(0)=0.

Consider the transfer homomorphism ¢: R (NS1)->RN(H,). The element
A" = T ;rg(a;)[B, S>"*' x S2"* 1 x N(0)]+ X124 1Koy 1,m(@)i[S?, S4n=41+1]

of N,(NS?) satisfies tA'=A by Lemma 2.18 and the definition of (6.8). There-
fore, we see that

A’ +rxyi[SY, S11=0 in MN(NS?)

because C,,(w)=0 and t is monomorphic (Lemma 2.20). Thus rK,,; .(®)
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=rxo=¢,A’ which is the equality (8.6), and the proof is complete by the induction
on n. g.e.d.

LemMma 8.8. For each w, ' €, there are the elements Py, (0, @) € Qy

such that
P w0, ©') = g(w)Y(w')— 3 jh(w; N w)g(a)Y(w;0w),
(8.9) rPyps1mle, @) = rg(@)N(n, )= X ;rh(w; N @)rg(a)N(n, ;O
+ 328 [CPRR—2D)]rPy 4wl @) (n 2 1),

and that the following elements D, ,(w, ') vanish in Q*(Hm);
510 D, (o, ®) = g(w) [Bu(n, )= X ji(w; n w)g(a;) [B.(n, w;0w’)]
+ Y0Pt 1@y @0)iy[ T,y S*u-41417,

PrOOF. Define P, ,(w, ') by (8.9). Then, we see Do ,(w, @')=0 as fol-
lows:
Do (@, ") = r(g(®) [Bu(0, @)= ;i(w; N w')g(a;) [B.0, w;0 )]
+(g(0)Y(0) = X jh(w; N o)g(a)Y(w;©0"))iu[T,, S'])
= r(g(w)g(w')— 2 jh(w; N o')g(a;)g(w;© ")) [Bn, S* x S']
+(rg(w)X (@)= 2 jrh(w; n o)rg(a)X(w;©@))i,[T,, S*]

=0
by Lemma 8.3, Theorem 3.6, (5.3), (5.4) and the fact that rh(w)=X(w)? ([9,
Lemma 14]).
The rest of the lemma can be proved in the same way as the proof of the above
lemma. q.e.d.

By the definitions of (8.7) and (8.10), we have easily the following equality.
LEmmA 8.11.
D, (0, )+ D, (o', w)+h(w n 0")C, (0Ow")
=g()[Bu(n, )]+ g(w") [Bu(n, @)1+ Zizo(h(® N ) Kyps y (0O @)
+ Py 1,m(@, @)+ Py 1 (@' @0))iy[ Ty SH~4H1].
Now, we are ready to prove our main theorem.

THEOREM 8.12. The principal oriented H,-bordism module 3, (H,) (m=2)
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is the direct sum
g*(Hm) = Qm @ mm @ Qm @ D:m

where the Q.-submodules ,, and M, are given by Theorem 4.8 (i) and (iii), and
Q,, and Q,, are given as follows:

The Q,-submodule Q,, of (7.1) is the quotient module of the free Q.-module
Qu{{[Bu(n, ®)1, in[T,, S*"*1]In 2 0, w € 1}}
by the Q,-submodule generated by the elements
2[Bu(n, @)1, 2i,[T,, S**1], Cpp(@) (lo| Z2), D,u(0, @),

(n=0, w, »' en), where C and D are the ones in (8.7) and (8.10).
The Q,-submodule Q,, of (1.1) is isomorphic to Q, by the composition

~ ~ km ~
O.(Hy) —> Qu(Hy) — Q,(H,)

of the isomorphism y induced by the automorphism y: H,—H, of (1.11) and
the extension homomorphism k,, induced by the inclusion k,,: H,=H,, of (1.13).

Proor. The first result is Theorem 7.5.
We shall determine the submodule Q,,. Consider the element

X=2,X+Y, X,=3XXolBu(n, )], Ye3,,

of Q,, such that X=0 in Q,(H,). Applying the composition p,or: @, (H,)—"—-
N.(H,)-LL P, of (7.6), we have

2 X o1 (X, 0g(@)) [Bpy 271 x §2141]) =0

by (7.7). Since {[B,, S?"t1x S2"*1]n=0} is a free M, -base of N,(H,) by
Theorem 2.13, we have r(¥ X, ,g(w))=0 in N, for each n=0. On the other
hand, ¥ ,x, ,9(w)eTor Q, by Theorem 3.6. Therefore we see that 3 ,x, ,g(w)
=0in Q4 by (3.3) and the fact 2 Tor Q,=0.

Thus, according to Theorem 3.6, we can write
2 o%n,0d(@) = 2 0245,.9(0)+ 2 ,B,, (X j9(a)g(w)))
+ 2 0.0Cn0,0(9(@)g(0) — X jh(0; N 0')g(a;)g(w;0 "))
for some A4, ,, B, o Cu 0,0 € 24, and we consider the linear combination
Xy = X 24,0 Bn(n, )1+ X B, oCom(®) + T 1,0Cr,0,0 D@, @)

of R,={2[B,(n, w)], C, ,(®), D, . (w, ®")}. Then we see that
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pirX;, = X 1%, ot 9(@) [Byy S2771 x S2m1] = pyrX,

by (7.7). Furthermore, the only two elements g(w)[B.(n, ®’)] and g(w’) [B.(n,
w)] are mapped by pior to rg(w)rg(w’)[Bm, S2"t! x S2"*+1] by the proof of
Theorem 7.5, and g(w) [B,(n, ®')]—g(w’) [B.(n, w)] is the sum of a linear com-
bination of R, and an element of J,, by Lemma 8.11. Therefore, we see that

Xn_X:l': X::+ Ym
where X/, is a linear combination of R, and Y, € 3J,. These show that
X=3,X,+Y=2,(X,+X)+(Z,Y,+7Y).

Since the elements of R, are zero in (,(H,) by Lemmas 6.9, 8.5, and 8.8, the
assumption X=0 in Q,(H,) implies that ¥,Y,+Y=0 in S, and hence that
> ,Y,+ Yis a linear combination of {2i,[T,,, S*'*1]} by Theorem 4.8 (ii). There-
fore, X is a linear combination of \U,R, and {2i,[T,, S*'*1]}, as desired.

The result for the submodule Q;, is Lemmas 7.2 and 7.3 (iv). g.e.d.
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