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1. Introduction

Let us consider the Cauchy problem for a hyperbolic system
WD) 0 = Spdin ) F(x ) O=IST, -0 <x, <),
J

(12) u(xs 0) = UO(X), uO(x) ELZs

where u(x, f) and uy(x) are N-vectors and Aj(x, t) (j=1,2,...,n) are NxN
matrices, and assume that this problem is well posed. For the numerical solu-
tion of this problem we consider the following difference scheme:

(1.3) o(x, t+ k)= Sy(t, Wo(x, 1) (O=t<T, — o0 <x; <),
(1.4) v(x, 0) = uy(x), k=4h 1>0),

where Sy(¢, u) is a sum of products of operators of the form Y ,c.(x,t, p)T%
(u=0), a is a multi-index, c,(x, t, ) is an N x N matrix, T, is the translation
operator and h is a space mesh width.

In our previous paper [5] we treated the case where A)(x, t) (j=1, 2,..., n)
are independent of ¢, and obtained sufficient conditions for L,-stability of the
scheme (1.3). In this paper we extend the results to the system (1.1) that satisfies
the following conditions: Eigenvalues of A(x, t, &)= X 7= A;(x, ©)¢;/|¢] (£+#0)
are all real and their multiplicities are independent of x, ¢t and ¢; elementary di-
visors of A(x, t, &) are all linear; there exists a positive constant é such that

M‘i(x, t’ 5) - lj(xs ta é)l g 5 (l 7&]’ l’] = 19 2’-'-’ S),

where 1(x, t, &) (i=1, 2,..., s) are all the distinct eigenvalues of A(x, ¢, ).

Our proof of stability is based on the following result: The scheme (1.3)
is stable if S,(¢, h) and S,(t, 0) are the families of bounded linear operators in L,
and if there exist positive constants c; (j=0, 1, 2) and a norm || ||, which de-
pends on ¢ and is equivalent to the L,-norm such that

(1.5) Nullere = (4 + coB) llufl, ¢+ k=T),
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(1.6) 1Su(t, Oulle = (1 + cyh) flull,
(1.7 I(SK(t, h) — Su(t, u|l < c,hljul| forall uelL,, te[0, T], h > 0.

The lemmas and theorems stated without proofs can be shown by the argu-
ments similar to those of the corresponding ones in [5].

2. Notations and preliminaries

2.1. Notations

Let C be the field of complex numbers and let a* stand for the conjugate
transpose of a matrix a. We denote by |a|, |z| and p(a) the spectral norm of an
N x N matrix a, the Euclidean norm of an N-vector z and the spectral radius of a
respectively. For any hermitian matrices a and b we use the notation a=b
if a— b is positive semidefinite.

We denote by R” the real n-space and write it as RZ, R2, R%, etc. to specify
its space variables. Unless otherwise stated, we denote by u(x), ¢(x), etc. the
N-vector functions defined on R*. We put J=[0, T] and I, =[O0, ).

The space L, (p=1) consists of all measurable functions u(x) in R" such that

|lu(x)|? is integrable, i.e. S|u(x)|de<oo. The scalar product and the norm in
L, are denoted by ( , ) and | - || respectively.
We denote by p(x, t, @) (x € R*) the Fourier transform of p(x, t, @) with re-

spect to x.

Let & be the space of all C* functions on R? which, together with all their
derivatives, decrease faster than any negative power of |x| as |x|»>o0. Then, for
each ¢(x) in &, ¢(x) can be written as follows:

.1) o) = ng_ix'l(p(x)dx forall ¢e,
where
(2.2 k=Qn)™"2 x-x=Xl1%X

For simplicity we make use of the notations
_ 0 _ 0 _ 0 .
0, = ot D;= ox;’ 0;= b, (Gj=1,2,..,n).

We denote by 51;1% u(x, t, ) and supu(x, t, ®) the supremum of u(x, t, ) on
[} ¢z

R — {0} for each fixed (x, f) and that on R? —Z respectively, where Z is a subset
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of R:.

We say that I(x, t, w) is absolutely continuous with respect to w, if it is so on
any finite closed interval for each fixed x, t and w; (j=1, 2,..., n; j#k), and that
I(x, t, ) is absolutely continuous with respect to ¢ if it is so on J for each fixed y
and w. We say that a scalar function c(x, t, w) satisfies the condition imposed
on matrix functions, if c¢(x, t, w)I does.

2.2. The difference approximations

We consider a mesh imposed on (x, t)-space with a spacing of h in each x;-
direction (j=1, 2,..., n) and a spacing of k in the t-direction. The ratio A=
k/h is to be kept constant as h varies. We approximate (1.1) and (1.2) by the differ-
ence scheme of the form:

2.3) v(x, t + k) = S,(t, h)v(x, 1) (t,t+keld)
2.4) o(x, 0) = up(x),
where

(2.5 Su(t, 1) = Zmn};l ij(x9 t,u, T,), m=(my, my,...,m),
(2.6) ij(xs tu Tp) = ZacaMJ(xa t, )T, o= (0, %y ),
2.7 TG =TT Tk, Tiu(x) = u(xy,.., Xjo1, X+ hy Xjiq,000y X,),

m; (m;20; j=0, 1,...,v) and «a;(j=1, 2,...,n) are integers, pel, and
Cam (X5 1, )’s are N x N matrices.

We approximate the partial differential operator hD; (1= j<n) by the differ-
ence operator 4, of the form

(2.8) 4;, = Xb(T}, — T;H/2,

where the summation is over a finite set of I (1=0) and b,’s are real constants. We
put

2.9) sj(w) = X;b;sin lw; (j=1,2,..,n),
(2.10) s(w) = (5,(w), s;(w),..., s,(®)),
and assume that, for some positive integer r, s;(w) can be written as follows:
@.11) s(@) = @; + 0™ (o] < ).
For example the following difference operators are well known:

(2.12) Fy(t) = Cy + APy(1),
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(2.13) M) = I 4 AP(1)C,, + 2{(Py(1)* + hQy(D)}/2,
where
(2.14)  Pyt) = T Afx, D4y, Cy=Um)Tiy (T + T;D/2,
Q) = Zj1 QA% DAy, Ajy = (T = T5)2 (=1, 2,0, m).

The schemes (2.3) with operators (2.12) and (2.13) are called Friedrichs’ scheme
and the modified Lax-Wendroff scheme respectively.

We say that the difference scheme (2.3) approximates (1.1) with accuracy of
order r [4, 6] if all smooth solutions u of (1.1) satisfy

(2.15) lu(x, t + k) — S(t, Wu(x, )] = O(h™*1)  (h—0)

for each (x, ).
The difference scheme is said to be stable in L, if there exists a constant M
such that

(2.16) ISk(vk, BSK(v — Dk, h)-+-S)(0, hul| < M]lu]

for all ueL, and for all h>0 and integers v=0 such that (v+1)k<T. Since
Sy(t, h) is a family of bounded linear operators in L, depending on h and ¢, we have
to study the boundedness of products of the form L,(vk)L,((v—1)k)---L,(0) of
such families of operators L,(t).

Let 57, be the set of all families of bounded linear operators H,(f) in L, such
that

2.17) |Hy(Oull £ c(h) ||ul forall uelL,,teJ, h>0,

where c(u) is a continuous function on I,.
For Ay(t), B,(t)e o, and aeC let A,(t)+ By(t), A ()B,() and ad,(t) be
defined by

(Ai(®) + By())u = Ay()u + By(tu,
(4, (O)By(O)u = A (D) (By(u), (2A,O)u = a(A(H)u).

Then s#, forms an algebra over C with unit element I,. Since the adjoint A¥(¢)
of a family A4,(f) also belongs to 5#,, the operation # is an involution in s, and
o, is an algebra with involution [2].

For At), B(t)es#, we use the notation A,(t)=B,(t) if there exists a
constant ¢ such that

(2.18) (4, — B,®)u| £ chllu| forall uelL,, teJ, h>0.
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Then we have the following

THEOREM 2.1. Let L,(t)€ 5#, and suppose there exist a norm ||-||, (teJ)
and positive constants d; (j=1, 2, 3) and c, such that

(2.19) dy|ull £ llull, = d|lul,
(2.20) Mulllere = (1 +dsk) lull,  (t+kel),
2.21) IL,®ull £ A + coh) lull, forall ueL, teJ and h>0.
Then there exists a constant M such that
(2.22) ILAVE)Ly((v — DK)-+-L,(O)u| = M{ull
for all ue L, and for all h>0 and integers v=0 such that (v+1)k<T.
Proor. Making use of (2.20) and (2.21), we have
Ly (v)Ly((v — 1K)--- LyQ)ue[ll i
< (1 + coM) 1LY — Dk)---LyO)ul
= (1 + coh) (1 + d3k) IL((v — D)+~ Ly(O)ull (o - 155
- ZS (1 + coh)* (1 + dsk)*||ull,  forall ueL,, h>0,
and by (2.19)
d,||L,(vk)L,((v — D)k)---L,(0)u] < c,d,|u] forall ueL,, h>0,
where ¢, =exp(coT/A)exp(d;T). Hence (2.22) holds with M =c,d,/d,.

COROLLARY 2.1. For any Sy(t)e s, let L,(t) be a family such that L,(t)
=S,(¢) and which satisfies the assumption of the theorem. Then there exists
a constant M such that

(2.23) ISK(vE)SK(v — DE)-+-SO)ul = M]lu]
for all ue L, and for all h>0 and integers v=0 such that (v+1)k<T.
ProoF. Since there is a constant ¢, such that
I(Ly(®) — Su(O)u] < c h]ul forall uelL,, tedJ, h>0,
by (2.19) and (2.21) we have
lISa®ulle = WL ®Bull; + NI(Sk(®) — Ly@®)ull,
< IL®ull; + c;dzh|ul
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= (4 + csh) flull,

where c3=cy+c,d,/d;. Hence (2.21) is satisfied and (2.23) follows from the
theorem.

By Theorem 2.1 and its corollary, in proving the stability of the scheme
(2.3), the problem is to find a norm || - |||, (t€J) and a family L,(¢) € #, such that
L,(t)=S,(t, h) in order to establish (2.21).

3. The subalgebra ", of £,

3.1. Definitions

Let o¢" be the set of all N x N matrix functions p(x, t, w) defined on R2xJ
x R® with the properties:
1) p(x, t, w) can be written as

p(x: L, Cl)) = Po(x, t Cl)) + poo(t’ Cl)),

where po(x, t, w) and p. (¢, w) are bounded and measurable on RZxJ x R? and
measurable on R x R? for each te J,

lim po(x,t, @) =0 for each (¢, w);
|x|—e

2) po(x, t, w) is integrable as a function of x for each (¢, w);
3) p(x t, w) is integrable as a function of y for each (¢, w) and
ess - sup |Po(x, t, @)|dy is bounded on J.

The Fourier transform p(y, t, ) of the element p(x, t, w) of ¢ can be written
as follows:

(3.1 (i t, ) = Po(x; 1, ®) + (NP1, @),
where d(y) is the delta function. We define || p(¢)|| by

(3.2) 18Ol = {ess ;sup Bo(z, 1, @)ldz + esssup lpat, ).

Then we have the following two lemmas.

LemMmA 3.1. If p, qe ot and a€C, then p+gq, pq, ap, p* € X and

S A
(3.3) Ip+4a®le = 161 + 14DIF IPaDlF < 1HON IO,

3.4 1pOle = el 1BOIe 12%O1r = 1O
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LEMMA 3.2. Let peX andue%. Then

(3.5) ”Sﬁ(é—&', L RVAENE| S 1BOIelal  forall ted, h>o,

and for each teJ and h>0

@3.6) Lim. K‘lge““‘igﬁ(é =&, t, hEHa(E)dE' dE

= K—lgeu-: p(x, t, hE)a(E)dE

for almost all x.

With each pe " we associate a family of operators P,(f) by the formula:
G Poue) = Limoe (ee(pe — & 1, nenaazae

forall ue%,teJd, h>0.

Then by (3.5) P,(¢) can be extended to the closure &=L, with preservation of
norm and the extension is unique. Denoting this extension of P,(f) again by
P,(t), we call P,(t) the family (of operators) associated with p and denote this
mapping by ¢ i.e. P (f)=¢(p). Unless otherwise stated, we denote by Q(t),
Ly(t), etc. the families associated with g, I, etc. respectively.

We note that by (3.6) P,(t)u (u € &) can be written as follows:

(3.8) Ptu() = k=1 (e 5p(x, 1, hOa(E)E
forall ue%,teld, h>0.
Let o ,=¢(x"). Then we have

LeMMA 3.3. The mapping ¢ is one-to-one.

By Lemma 3.1 ¢ forms an algebra with involution over C. For p, qe "
and « € C we have

o(p) + ¢(q) = ¢(p + q), ad(p) = $(p),
because X", cs#,. Let

d(p)d(q) = d(pq), (p)* = $(p*).

Then ¢, forms an algebra with involution over € and the mappings ¢ and ¢!
are morphisms [1].
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3.2. Products and adjoints
We introduce the following three conditions.

ConDITIONI. 1) pex;
2) Po(x t, w) and p.(t, w) are absolutely continuous with respect to w;

(j=1,2,...,n) and 0;po(x, t, ®) and 9;p,(t, ®) (j=1, 2,..., n) are measurable
in R% x R?, for each t;

3) Sess(;suplajﬁo(x, t, w)ldy and ess - sup 10;po(t, ®)| (j=1, 2,...,n) are
bounded on J.

ConpITiON II. ge " and Sess‘-‘,sup(lxl |4o(x% t, ®)|)dy is bounded on J.

ConpITION III. 1) rex;
2) fo(x, t, w) is absolutely continuous with respect to w; (j=1, 2,..., n)
and 0;7o(x, t, w) (j=1, 2,..., n) are measurable in R} x R%, for each ¢;

3) gess“-)sup(lle 10,26(1 t, @)Dy (j=1, 2,..., n) are bounded on J.
We have

THEOREM 3.1. If p, q and r satisfy Conditions 1, II and III respectively,
then

(3.9 Py(0Q,(0) = Py(1)-Q4(1), RE(1) = R}(2).
CoroLLARY 3.1. If a(x, t), b(w, t), p(x, t, )€ A", then
(3.10) A (OP(t) = A(t)oPy(t), P(1)B,(t) = Py(t)eBy(2),

(3.11) BX(f) = Bi(f).

3.3. Construction of a new norm

We construct a norm || - ||, (¢t € J) stated in Theorem 2.1.

Let ¢ and R (R=¢) be positive numbers and let S(R, &)= {x||x|<R+e¢}.
Let {x®} (i=1, 2,..., s) be all the lattice-points (ex,, &1,,..., &1,) contained in
S(R, &) (ny=mj//n; mj=0, £1, +2,...; j=1, 2,..., n) and let

Vo = {x]|x| >R}, V;={x|]x —xP| <¢e} (i=1,2,...,5).
Then we can construct a partition of unity {a?(x)};=o,., With the properties:
1) ai(x) _Z_ 09 <xi('x)e Coo, supp ai(x) < Vl (l = 0’ 13-'-, S),

2) Ti-oxi(x) =1;
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3) ap(x) and all its derivatives are bounded uniformly with respect to R
for each e.

We introduce the following

ConpiTioN N. 1) ge ™ and Dyg(x, t, w) (j=1, 2,..., n) are bounded on
R:xJ xR and continuous on R for each (f, w); D;g(x, t, w) (j=1, 2,..., n)

s
are integrable as functions of x for each (¢, w); Djg(x, t, w) (j=1, 2,..., n) are
N
integrable as functions of y for each (¢, w) and Sess‘;sup |D;g(x, t, w)ldy (j=1, 2,
..., n) are bounded on J;

T~
2) |lapgo(DllF converges to zero uniformly on J as R—co.

Then we have the following lemma and theorem.
LemMmA 3.4. If p and q satisfy Condition N, so also do p+q, pq and p*.

THEOREM 3.2. Suppose

1) g(x, t, w) satisfies Condition N;

2) g(x,t, w)=el for some constant e>0.
Then for sufficiently small ¢ and large R there exist positive constants
d; (j=1,2) independent of u,t and h such that

(3.12) dillul* £ Xi-oRe(Gy(Dau, ou) < di|lul?
forall uelL,,tedJ, h>0.
This theorem enables us to introduce the norm
(3.13) Null, = {Zi=0 Re (Gu(Hotu, ot;u)}i/? forall ueL,, teJ, h>0,

which has the property (2.19) by (3.12). (For simplicity the dependence of
Il - ll; on h is not expressed explicitly.)
To obtain sufficient conditions for (2.20), we introduce the following

ConpITION L. 1) gex’;

2) go(x t, ) and g (t, w) are absolutely continuous with respect to t;
there exist measurable functions @y(y, ¢, ®) and ¢, (¢, @) in R} xJ x R such that
for each (y, w) and for almost all teJ

atéo(x, t (0) = (pO(Xa t, (D), atgc‘o(t, CO) = (Poo(t’ 0)),

3) There exists a constant M >0 such that for almost all te J

Sess -suploo(x, 1, w)ldy £ M, ess:sup|o,(t, 0)| = M.



796 Kenji TOMOEDA

We have

LemMMA 3.5. If g satisfies Condition L, then there exists a positive con-
stant c independent of u, t, t' and h such that

B.14)  (G,(t) — G,®)u| Ec|t’ — t||u]  forall ueL, t,t'eJ, h>0.
Proor. By Lemma 3.2 it suffices to show that for some constant ¢>0

(3.15) 1§@) — gl e —1t) forall t,t'eJ (f'=1).

From Condition L-2) it follows that for each (y, w)

¢
t

19606 15 ) = 8ot 1, @) = | 20z, 6, )

)
< S l0o(s 0, W)Ido.

Taking the essential suprema of both sides over R" and integrating them with
respect to y, we have by Condition L-3)

)
(3.16) 190(t) = do(0lr = {{ ess; suploa(z, 6, wldody
< S"Mde = M@t —1).
t

Similarly we have

(3.17) 19.o(t) = gu®)llr < M(" = 1).

Hence (3.15) holds with ¢c=2M by (3.16) and (3.17).
Combining Theorem 3.2 with Lemma 3.5, we have

THEOREM 3.3. Let g satisfy Conditions N and L and suppose g(x, t, w)=el
for some constant e>0. Then the norm ||-||, given by (3.13) satisfies (2.19)
and (2.20).

Proor. It suffices to show (2.20). By Lemma 3.5 for some constant c
independent of u, t, t' and h we have

Hllliz — Mulifl = 1250 Re(G(t) — Gu(O)tu, o]
= 2o l(GH(t) — Gu®)aue]| [l
< Zi=oclt’ — tl lau|)? = clt’ — o [Ju||?

forall uelL,, t,t'eJ, h > 0.
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The choice t'=t+k yields (2.20) with d;=c¢/d? by (2.19).

3.4. Lax-Nirenberg Theorem

We have the following analogue of Lax-Nirenberg Theorem [3] which plays
an important role in establishing (2.21).

THEOREM 3.4. Suppose pe€ X satisfies the conditions:

1) 0;0(x, t, w) and 0;p,(t, ®) (j=1, 2,..., n) are continuous on R}, for each
(x, t) and absolutely continuous with respect to w, (k=1, 2,..., n);

2) 00;P0(x> t, ®) and 0,0;p,(t, w) (j, k=1,2,...,n) are measurable in
R:xRp  for each t; Sess‘;suplakajﬁo(x, t, w)ldy and ess‘-osuplékajpm(t, )|
(j, k=1, 2,..., n) are bounded on J;

3) gess(;)sup (xl?po(x, t, w)))dy is bounded on J;

4) p(x,t, w) = 0.

Then there exists a positive constant ¢ independent of u, t and h such that

(3.18) Re(Py(u, u) = — ch|ul|>  forall ueL, tel, h>0.

4. Products of families of operators

4.1. The family of operators 4,

In this section s(w) denotes a real-valued vector function with the properties:

1) sf(w), 0;s(w) and 8,0;5(w) (j, k, =1, 2,..., n) are bounded and con-
tinuous on R

2) Zeros of |s(w)| are isolated points.

It is readily seen that |s(w)|l satisfies Condition I. Let Z={w]||s(w)|=0} and
A, be the family associated with |s(w)]I. Then by Corollary 3.1 we have 4,
=Af=A}.
Let p(x, t, w) be an element of & such that p(x, , w)/|s(w)| is bounded on

Rt xJx(Rr—2Z). For any constant « let

p(x, t, w)/ls(w)]  for weR} - Z,
4.1 4ox, t, ©) =

ol for weZ,

and suppose q,(x, t, w)eX". Then, since Z is a set of measure zero, we have for
each t

(4.2) 0o DU(®) = Op(Du(®) a.e.

for all ue ¥, where Q,,(f) and Qg (t) are the families associated with g, and g,
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(B#a) respectively. In the following we identify gq,(x, t, w) with gu(x, t, @)
and denote them by p(x, t, w)/|s(w)]. Then we have P,(t)=P,,(t)A,, where
P,,(t) is the family associated with p/|s|.

When e(w) is a scalar function with isolated zeros such that e(w)l € X",
p(x, t, w)/e(w) can be defined similarly by replacing |s(w)| by e(w).

Now we introduce the following conditions.

ConpITION I'. 1) pex’;

2) Po(x t, ) is bounded on R%x J x (R%—Z);

3) 9;lo(x, t, ) and 9,l.(t, w) (=1, 2,..., n) are bounded on RjxJx
(R —Z) and continuous on R% — Z for each (y, t), where l(x, t, @)= pols|, 1,(t, w)
=Polsl;

4) Sessa-,sup [0;lo(x, t, w)ldx (j=1, 2,..., n) are bounded on J.

ConprTioN IIT'. 1), 2) the same as I'-1), I'-2) respectively;
3) 0;lo(x, t, w) (j=1, 2,..., n) are bounded on R%xJx(R%—Z) and con-
tinuous on R” —Z for each (y, t);

4) SCSS‘;SUP(IXA [0;lo(x, t, @)dy (j=1, 2,..., n) are bounded on J.

ConpiTioN IV. pe st and Sess‘;sup (x1?1po(x> t, ®)|)dy is bounded on J.

ConpITION V. 1) p satisfies Condition I’;

2) Oumjo(x, t, ®) and 9,m;,(t, ®) (j, k=1, 2,..., n) are bounded on RjxJ
X (R%—Z) and continuous on R}, —Z for each (y, 1), where m;o(x, t, @)=(9,lo)[sl,
Mjo(t, @)=(0;lx) 5], lo=Polsl, lo=Puolsl;

3) Sess;’suplakmjo(x, t, w)ldy (j, k=1, 2,..., n) are bounded on J.

We have the following lemmas.

LemMmA 4.1. (i) If p satisfies Condition I', then p|s| satisfies Condition 1.
(ii) If p satisfies Condition II', then p|s| satisfies Condition 111.

LemMMA 4.2. (i) If p satisfies Condition ' and q satisfies Condition II,
then

(4.3) P (0,4, = Py(1)oQy(t)o Ay
(ii) If p satisfies Condition III', then
4.4 (Py(O4)* = Pi(t)oA,.

LemmA 4.3. If p satisfies Conditions IV and V, then p(x, t, w)|s(w)|?
satisfies conditions 1), 2) and 3) of Theorem 3.4.
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4.2. Subalgebras .# and .# of X~

Let .# be the set of all elements of o that satisfy Conditions I’, IT and III’
and let the set % consist of all elements of .# that satisfy Conditions IV and V.
For instance |s(w)|I and (s (w)/|s(@))I (j=1, 2,..., n) belong to .# and Z.

LemMA 44. (i) If p and q satisfy Condition 11, so also do p+q, pq and
*
a (ii) If p,qe 4, then p+q, pq, p*e 4.
(iii) Ifp, qe &, then p+q, pq, p*€ £L.
LeEMMA 4.5. Let g(x, t, w) satisfy Conditions I’ and 11, and let
4.5) I(x, t, ) = (@) + q(x, t, w)|s(w)|,
where q(x, t, w) € 4 and c(w) is a scalar function satisfying Condition I. Then
(4.6) LG (OLy(1) = Li(1)°Gy(1)-Ly(2) .
COROLLARY 4.1. Under the assumption of Lemma 4.5 let
4.7 g(x, t, ) = w¥(x, t, o)w(x, t, ®),

where w, wleX". Then

(4.8) Gy(t) — LEDG,(OL,(1) = Gy(f) — Li1)Gy(f)oLy(f)
= Wity — Li@oL ) Wy(0),
4.9) g — I*gl = w*(I — T*yw, 1=wiw1,

4.3. Integrability of Fourier transforms
We introduce

ConpiTioN VI. 1) p(x, t, ) can be written as
p(x, t, ®) = po(x, t, ®) + Po(t, ®),

where po(x, t, w) and p.(t, ®) are bounded and measurable on R”xJ x R% and
measurable on R? x R? for each ¢,

Il}m Po(x, t, w) =0 for each (1, w);

2) Dppy(x, t, w) (I=1,2,...,n; m=0, 1,..., n+3) are continuous on R?xJ
x(R%—Z) and continuous on RZxJ for each weZ; sup |D7py(x, t, )| and

sup |D7po(x, t, w)ldx (I=1, 2,..., n; m=0, 1,..., n+3) are bounded on RZxJ
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and on J respectively;

3) {(Dfo;po(x; t, w))Is(w)]} and {(9;p.(t, ) Is(@)I} (J, I=1, 2,..., n; =0,
1,..., n+2) are bounded and continuous on RZxJ x(R"—Z);

4) Ssup(IDfajpo(x, t, 0)||s(w))dx (j, I=1,2,...,n; q=0, 1,..., n+2) are

wéz
bounded on J;

5) {(D10ud;po(x, 1, w))s(w)|?} and {(0:0;p (1, w))Is(@)I?} (j; k, =1, 2,...,
n; r=0, 1,..., n+1) are bounded and continuous on R x J x (R —Z);

6) {sup(D12,2,po(x, 1, @)lIs@)Ddx (J, ks I=1, 20 13 T =0, Loy 1)

¢z
are bounded on J;
7 §| | sup |Dipo(x, ¢, w)|dx (I=1, 2,...,n; r=0, 1,..., n+1) converge to
x|ZR o
zero uniformly on J as R—0;

8) 0,po(x, t, w) and J,p,(t, w) are bounded on R”x J x R%; Did,po(x, t, w)
(I=1, 2,..., n; r=0, 1,..., n+1) are continuous on RXxJx(R:—Z) and
continuous on RixJ for each weZ; sup|Did,po(x, t, )] and
Ssup ID}0,po(x, t, w)|dx (I=1, 2,..., n; r=0, 1,..., n+1) are bounded on RZxJ
and on J respectively.

We have

LeMMA 4.6. (i) If p satisfies Conditions VI-1) and VI-2), then p satisfies
Conditions 11 and 1V.

(ii) If p satisfies Conditions VI-1)-VI-4), then pe A .

(iii) If p satisfies Conditions VI-1)-VI-6), then pe &L.

COROLLARY 4.2. Let a(x, t) be an N x N matrix such that
(410) a(xa t) = aO(x’ t) + aoo(t)s
where ay(x, t) and a(t) are bounded on R:x J and hfn ay(x, t)=0 for each t.

Suppose DFay(x, t) (I=1, 2,...,n; m=0, 1,...,n+1+p; p=0, 1, 2) are bounded

and continuous on RxJ and ng'{'ao(x, t)ldx are bounded on J. Then
Slxll’lao(x, Hldy (p=0, 1, 2) are bounded on J.

LemMA 4.7. (i) If g satisfies Conditions VI-1), VI-2) and VI-7), then
it satisfies Condition N.

(ii) If g satisfies Conditions VI-1), VI-2) and VI-8), then it satisfies Con-
dition L.

Proor. We have only to prove (ii). By Lemma 4.6 ge ¢, and g satisfies
Condition L-1).
By Condition VI-8) we have for any fixed (3, ®)
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4.11) e~ ixxgo(x, t', w) — e7* xg(x, t, w)
- S' e 19.go(x, 0, 0)d0  forall 1,1 el.
t
Integrating both sides of (4.11) with respect to x, we have
t T
Golx, V', @) — Go(x, t, @) = g 0:90(x> 0, w)d0  forall 1, t'el.
t

Hence §o(y, t, @) is absolutely continuous with respect to ¢, so that for each (x, w)
and for almost all teJ

n T~
4.12) 0do(1 t, ®) = 0,go(1> 1, ).

Since gg?(x, t, w) is measurable on R} xJ X Rp, go(x, t, w) satisfies Con-
dition L-2) with ¢u(x, t, ®) =§,g\o(x, t, ) by (4.12). Similarly g, satisfies
Condition L-2) with ¢ (t, ®)=0,9,(t, ®).

By the argument similar to that of Lemma 4.6 in [5] it can be shown that
Condition L-3) is satisfied.

4.4. Products of families of operators

To prove the boundedness of L,(vk)L,((v—1)k)---L,(0), in view of Theorem
2.1, it suffices to show that L,(¢) satisfies (2.21). We have

THEOREM 4.1. Let g(x, t, w) € A satisfy conditions of Theorem 3.3 and let
(4.13) I(x, t, @) = (W) + q(x, t, w)|s(w)|,
(4.14) g(x, t, w) — I*(x, t, w)g(x, t, w)(x, t, »)
= a(x, t, w) |s(w)]? + b(x, t, w)|e(w)|?,

where qe . # and c(w) and e(w) are scalar functions satisfying Condition 1.
Suppose

1) ae¥ and a(x,t, w)=0;

2) b(x, t, w) satisfies Conditions I and N;;

3) b(x,t, w)=pI for some [>0.
Then for some ¢,=0

(4.15) NLuli? < (1 + coh) llull}  for all ueL, tel, h>0,
where ||| - ||l is the norm given by (3.13).

ProOF. Let {a?(x)};=0,1,. s be the partition of unity given in 3.3 and let
o=@l (i=0, 1,..., ). Then a(x)u(x)=(au)(x) (i=0, 1,...,s) and by Theo-
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rem 3.2 there exist positive constants dj, &; (j=1, 2), ¢ and R such that

(4.16) d}llul? £ Xi-oRe(Gy(Doyu, ou) < difull?,
4.17) efllul? = Xi-oRe(Bi(Dau, au) < e3[ul®.
By Lemma 4.5

L¥()G,()Ly(t) = Li(H)-Gu(H)-Ly(1) ,
and for some ¢, =0
(4.18) I(LE®OGH(OL,(1) — Li(H)Gy(O)oLy(®)u, u)l < cihlul?
forall ueL,, teJ, h>0.

Since a(x) (i=0, 1,..., s) satisfy Condition II, by Theorem 3.1 we have L,(f)o;
=o;L,(¢) (i=0, 1,..., s). Hence for some ¢, =0

(4.19)  [(Gy(OxLy(Du, o;Ly(B)u) — (G()Ly(Doru, Ly(t)ou)|
S h|ull2@(@=0,1,..,5s) forall ueL,,ted, h>0.
Since by definition
ILy(ull? = X5-0 Re(Gu(D)o;Ly(t)u, a;Ly(D)u),
by (4.18) and (4.19) we have
(4.20)  ILyull} = Xi-0 Re(Gy(Ly(O)ou, Ly(ou) + cshlul?
S Yi-oRe((LE®Gy(t)oLy(t)oiu, aut) + cahllul?,
where c3=(s+1)c,, c4,=c¢,;+c3. Hence
4.21)  lull? — NLOull?
2 Xi=oRe((G(1) — Li(®)°Gy(DeLy(D)ius, ou) — c4hlull?.
The condition (4.14) yields
(4.22) Gy(t) — Li(D)°Gy(O)oLy(t) = Ax(t)oA} + By(t)°EjE,,

where E,=¢(el). By Lemma 4.3 and Theorem 3.4 from condition 1) it follows
that for some ¢5=>0

(4.23) Re((4,(®)AP)u, u) = — cshlu|? forall ueL,,ted, h>0.

By Theorem 3.1 and its corollary we have E,o;=o,E, (i=0, 1,..., s) and
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B,(f)°Ej°E, = (Ef°By(1))-E, = (Ej°B,(1)E,
= Ei{B,(Y)E, = E}B,(t)E,,
so that
(4.24) oF(By(1)oE}oE,); = (E,0)*By (1) (Eyty)
= (;E,)*B,(t) (4E,) .
By (4.17) and (4.24) we have for some c5=0

(4.25) 5_o Re (B,(t)-Ef-E,)a;u, o;u)
= > 5-o{Re(By();Equ, o;Eu) — coh|ul?}
2 e}l Epu)? — cqhlull?,
where ¢, =(s+1)cs. Hence by (4.21)-(4.23) and (4.25)
Null? — WLu(Oull? 2 el Ejul®>— cghllull> 2 — cghllul?,

where cg=c,+c¢5s+c;. Thus (4.15) holds by (4.16) with c,=cg/d?.

5. Two algebras of difference operators

5.1. Algebra &,

Let o/, be the set of all N x N matrix functions a(x, ) defined on R”xJ
with the properties:
1) a(x, t) can be written as

a(x, t) = ag(x, t) + a,(1),

where ay(x, t) and a(f) are bounded and measurable on R2xJ and lim ag(x, )
=0 for each ¢; =l
2) ay(x, t) is integrable as a function of x for each ¢;

3) Slxlplao(x, Nldy (p=0, 1, 2) are bounded on J.

We denote by o an n-tuple («,, «5,..., &,) of integers, i.e. a=(ay, ay,..., &,).
Let o be the set of all matrices a(x, t, @) such that a(x, t, w)=3Y,a,(x, t)ei*"®,
where a,e o/, and the summation is over a finite set of a. It is clear that
a(x, t, w) satisfies Conditions I, IT and III. Let

(5'1) a(x’ ta 0)) = Zaaa(xa t)eiu-w’ b(xs ta CU) = Zﬁbﬁ(xs t)eiﬁ.w°
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Then

(5.2 a(x, t, ®) + b(x, t, ®) = X, (a,(x, 1) + by(x, )eir"2,
(5.3) a(x, t, 0)b(x, t, ©) = X, (Zatp=ydalX, Dbs(x, H)ei?*®,
.49 a*(x, t, ) = Y.aX(x, t)é-ia-w.

Hence & is a subalgebra of o¢° with involution.
Since for a(x, t) e &,

la(x, OT5u(x)| < (suplax, ) [lull  forall uelL, tel, h>0,
X,t

the family a(x, {)T§ belongs to s#,. We define a mapping  from & into 5,
by
(5.5) Y(X ax, e @) = 3 a,(x, )T,
and let o, =y/().

For Y ,a,x,tel*?eor let A,=@(X,a,x, )e'*®). Then for each
ues and teJ

ng""g > L a.(x, OTu(x)dx
i ’ i ’ ’ ’ i
= Szaaao(é =&, e a(ENAl + X oaan(De* *0(E)

= (S.ade - &, ere oz = A ace,

so that for u € ¥ we have in L,
(5.6) 2. a4(%, DTju(x) = Ay(u(x).

It is clear that (5.6) holds for all u € L,, so that 3 ,a,(x, )T¢ and A,(f) can be
identified. Hence  is the restriction of ¢ to & and is a one-to-one mapping from
& onto «7,. We call 3 ,a,(x, t) e'*® the symbol of X, a,(x, H)T¢.

Let A,(1), B,(t) € &} and let
(5-7) Ah(t) = Zaaa(x’ t)sz Bh(t) = Zﬁ bp(x’ t)Tg'

Then their symbols a(x, ¢, w) and b(x, t, w) are given by (5.1). Since &, =X,
the families A,(f)+ B,(t), A,(t)B,(t) and Aj(t) can be defined in o¢°,. By (5.2)-
(5.4) we have

(5.8 A1) + By(1) = X, (a,(x, 1) + by(x, )T},



Stability of Difference Schemes for Nonsymmetric Linear Hyperbolic Systems 805

(5.9 Ay(0)°By() = 2y (Zarp=y (%, Dby(x, DT},
(5.10) Al = Zaaz(x, DT 3"

Hence &, is a subalgebra of ¢, with involution and it follows that ¢ and {1
are morphisms.

LemMA 5.1, Let Fy(f)e o, (j=1, 2,..., k) and let
(5.11) Fy(t) = F 1 (OF 2,()- - Fi(t),  Ly(t) = F (1()oF 34(t)o---oF (1) .
Then F,(t)=L,(t) and F¥({t)=Li).

Let &, be the subalgebra of s#, generated by «#,. Then F,(t)e &, can be
expressed as

(5.12) Fy(t) = Z,FROFRO-FRO  FRDeLy.

Corresponding to this we put

(5.13) Ly(t) = X, FR()FF(t)o---oF iR (1),
(514) l(x’ t, (D) = Z’f(lr)fgr),..far)’

where f{”(x, t, ) is the symbol of F@)(#). Then Ly(f)€ o}, Fy(f)=Ly(f) and
I(x, t, w) is the symbol of L,(f). In the following we call I(x, t, ®) a symbol be-
longing to F,(t).

5.2. Algebra g,

Let &, be the set of all N x N matrix functions b(x, t, ) defined on R2xJ
x I, with the properties:

1) b(x,t,0)ey;

2) b(x, t, p) can be written as

b(x’ t ”) = bO(x, t /") + boo(t, ﬂ),

where by(x, t, 1) and b (t, u) are bounded and measurable on R”x J for each p
and

lim by(x, t, u) =0 for each (¢, p);
|x| =0
3) For each (t, u) bo(x, t, p) is integrable as a function of x;

4) bo(y, t, p) is integrable as a function of y for each (z, p);
S) There exists a constant ¢=0 such that

f16oct 1.0 = ot 1, Ol e
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|bo(t, 1) — by(t, 0)] < cu forall teJ, un=0.

For instance 4;,a(x, t)(j=1, 2,..., n) belong to &, for a(x, t) € .
We have

LEmMMA 5.2. Let b(x, t, u)e B, and let B,(t) be the family associated
with b(x, t, 0)e'*"®, Then b(x, t, h)T¢ e ¢, and

(5.15) b(x, t, )TE = By(2).

Let &, be the set of all finite sums of families of the form Y ,b(x, t, h)T$
(b(x, t, p) € B,) and let ¢, be the subalgebra of s, generated by #,. Itis clear
that &y B, and F,<%,.

Let Ey(t, h)e &,. Then it can be expressed as

(5.16)  Eyt, h) = T, EL)t, WER(, h)--ER h)  (ERQ, h)ed,),
where
(5.17) ER(, p) = T.efd(x, t, 9T;  (ef2(x, t, p) € By).
By the definition of &, and by Lemma 5.2
Et, 00 e #,, E\t, h)=E\(tDO0).
Thus we have
THEOREM 5.1. Let S,(t, h) be the difference operator (2.5) with
(5.18) Cam)(X, 1, 1) € By (G=1,2,..,v).
Then
Si(t, ) e%,, Sy, 0)eF,.

Let L,(t) be the family associated with a symbol belonging to S(t, 0).
Then

L(t)e s, Syt h) =S, 0) = L1).

By this theorem and Corollary 2.1, in proving the stability of the scheme
(2.3) under the condition (5.18) the problem is to establish (2.21) for L,(t).
Let

(5.19) s(x, t, ) = Xl 1}=1 e/, t, ®),
where

(5.20) Cny(Xs b, ©) = Ty Cam (X, 1, 0)€7*°?,  Cpp (X, 1, p) € B
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Then s(x, t, ®) is a symbol belonging to S,(t, 0).

ReMARK. The results obtained in Sections 2-5 are also valid when, for any
hy>0, the parameters h and p are restricted to (0, hy] and [0, hy] respectively.

6. Stability of difference schemes

6.1. Assumptions and lemmas
Let

6.1) A(x, t, ) = F ] Aj(x, Ho;

and let 4, (j=1, 2,..., n) be the difference operators such that s(w) (j=1, 2,...,
n) satisfy (2.11).

We denote by w’ a point on the unit spherical surface in R%. Suppose the
following conditions are satisfied :

ConDITION A.  A(x, t) (j=1, 2,..., n) are bounded and continuous on R
x J and can be written as

Aj(x, t) = Ajo(x, t) + Ajoo(t) (j = 1, 2,..., n),
where A;o(x, t) converges to 0 uniformly on J as |x|—co.

ConpiTiON B. 1) D7A;o(x, 1), Di0,Ajo(x, £) and 0,4;,(t) (j, I=1, 2,..., n;
m=0, 1,...,n+3; r=0, 1,..., n+1) are bounded and continuous on R*xJ;

2) SlD";AJ-O(x, t)|dx and SID;B,AjO(x, Hldx (j, I=1,2,..., n; m=0, 1,...,
n+3;r=0,1,..., n+1) are bounded on J;

3) SIJ&A,.O(x, Dldx (i, 1=1,2,..., n; r=0, 1,..., n+1) converge to zero
uniformly on J as R— 0.

ConpiTioN C. 1) Eigenvalues of A(x, t, ') are all real and their multi-

plicities are independent of x, t and w';
2) There exists a constant 6 >0 independent of x, t and @’ such that

[Ai(x, t, @) — Ai(x, t, @) 2 0 (i#ji,j=1,2,...,59),

where A,(x, t, ®) (i=1, 2,..., s) are all the distinct eigenvalues of A(x, t, ®');
3) Elementary divisors of A(x, t, @) are all linear.

By Corollary 4.2 A(x, t) (j=1, 2,..., n) belong to o/,. Let

(6.2) Py() = X1-1 Aj(x, )4,
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(6.3) p(x’ L, CO) = Z}l=l Aj(x’ t)Sj((D),
(6.4) px, t, 0) = X7y Aj(x, Dsj(w)/|s(w)],
(6.5) efx, t, w; A) = ¥i-o (idp)]j!.

Then P,(t)e o, and ip(x, t, w) is the symbol of P,(f). By Lemmas 4.6 and 4.7
p.x, t, ®) belongs to .# and satisfies Condition N.
We have the following lemmas.

LEMMA 6.1. There exists an element g(x, t, ) of &£ satisfying the condi-
tions of Theorem 3.3 such that

(6.6)  {9(x, t, W)p.(x, t, W)}* = g(x, t, W)p,(x, 1, w)  for weR} - Z.

LEMMA 6.2. There exist elements w(x, t, ) and w™i(x, t, w) of & satisfy-
ing Condition N such that

6.7) g(x, t, w) = w¥(x, t, o)W(x, t, ®).

For a e # wedenote waw~! by 4. By these lemmas j, and j are hermitian
matrices on RZxJx(R:—Z) and on RZxJxR?" respectively. By Lemma 3.4
P, satisfies Condition N and by Lemma 4.4 it belongs to £.

In the following we assume that S,(t, h)e¥, and denote by I(x, t, w; 1)
a symbol belonging to S,(t, 0). Let the difference scheme (2.3) approximate (1.1)
with accuracy of order r (r=1) and put

1 if r is odd,
(6.8) d=r+k, k=
2 if r is even.

We denote by Ag, ¢; and c, positive constants and by e(w) a scalar function such
that e(w)l € A".
Let P[1; %] be the set of all polynomials in A of the form

a(x, t, w; 1) = YnoMayx, t, ), afx,t,w)e¥ (j=0,1,.,m),

and denote by P[1; p] the set of all polynomials in A and p(x, t, ). The set
P[1; #1] is defined similarly. We use the notation

a(x, t, w)le(w) = YoAaleet” (or £, M),
if aj(x, t, w)/e(w)e A (or &, M) (j=0, 1,..., m).

6.2. Stability theorems
We have the following theorems.
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THEOREM 6.1. Friedrichs’ scheme is stable, if Ap(p.(x, t, ®))<1/\/n. The
modified Lax-Wendroff scheme is stable, if p(p(x, t, ®))<2/\/n.

THEOREM 6.2. Let I(x, t, w; A)=e,, where r=4m—1 or 4m (m=1). Then
the scheme (2.3) is stable for sufficiently small A.

THEOREM 6.3. Let I(x, t, w; )=e,— (Ap)"v(Ap)™, where r=2m (m=1) and
v(x, t, w; A)e P[A; &]. Suppose

D) Is(@)l° = c,e(w);
2) v(x,t, w; L) =v/eed;
3) u(x9 t, w; /1) ~2_ cze(cu)I for ;L é }'Oa

where 6=d—2m and u=5*+5—5*(/lﬁ)2"'5. Then the scheme (2.3) is stable for
sufficiently small A.

THEOREM 6.4. Let
(6.9) I(x, t, w; 4) = e, — (iAp)*™*'a — (Ap)™*to(Ap)™*?,

where r22m+2 (m=0), o(x, t, w; A) € P[4; £] and a(w) is a real-valued scalar
function such that a(w)l € ¥ and (a(w)/e(w))l € H". Suppose conditions 1),
2) and 3) of Theorem 6.3 are satisfied, where c=d —2m—2,

u=0u +0+(—1)ym2al — 5*Ap)*b, b = (—1)"(ia) + Apv.
Then the scheme (2.3) is stable for sufficiently small A.

COROLLARY 6.1. Let I(x, t, w; A)=e,—(iAp) e, where r=4m+1 or dm+2
(mz1). Suppose e(w), 0;e(w) and 0,0,e(w) (j, k=1, 2,..., n) are bounded and
continuous on R and |s(w)|?=c,e(w). Then the scheme (2.3) is stable for suffi-
ciently small A.

THEOREM 6.5. Let I(x, t, w; A)=e,— A?™v, where r=2m (m=0, r=1),
v(x, t, w; A)=a+ A% (x=0),
a(x, t, w; M) e P[A; #], b(x,t, w; })eP[1; Z],
a,(x,t, w; A)=alls|*?’e &, byx,t, w; 1) =Db||s|e Z.
Suppose
1) b*+b=0;

2) Is(@)*7? £ cre(w);
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3) ay(x,t,w; ) =a,leeH, byx,t, w;1)=DbleeX;
4 ulx, t,w; ) 2 coels’I  for A=A,

where u=a" +a—22"5"5. Then the scheme (2.3) is stable for sufficiently small
A

THEOREM 6.6. Let I(x, t, w; A)=e,— A*v, where
o(x, t, w; A) = ml + APa+ A'b B,y=0),
m@; ) = Tho Mm@, yZa20,
a(x, t, w; A)e P[A; A], b(x,t, w; A)eP[A; 4],
a,(x,t, 0; A)=al|s|e 4, bi(x,t, w;1)=Db||s|e,
mi(w) (j=0, 1,..., p) are scalar functions satisfying Condition 1. Suppose
) 5 +5=0;
2) e(w) satisfies Condition 1,
3) Is(@)l? = ceX(w), |Imw) SceX(w) (j=0,1,...,1;

4) ay,(x,t, w; N)=ale2e X, by(x, t, w; A)=b|s|/e2e X and a,, b; and b,
satisfy Conditions N and 11,

S5) u(x,t,w; A) = cell  for AZ A,

where u=(m*+m)I+/lﬂ([i*+d)—/1“5*z7. Then the scheme (2.3) is stable for
sufficiently small A.

THEOREM 6.7. For a regularly hyperbolic system with real coefficients
let

(6.10) I(x, t, w; ) =1+ ilp(x, t, w) + 12q(x, t, w; 1) |s(w)|?,

where q is a polynomial in A with coefficients satisfying Condition VI. Suppose
(6.11) p((x, t,w; D) £ 1 for A = .

Then the scheme (2.3) is stable for sufficiently small A.

7. Examples of schemes

In this section Conditions A, B and C are assumed. To construct difference
schemes with accuracy of order r (r=3,4), we assume that 074;(x, f) and
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074;,(t) (=0, 1,...,r—1; j=1, 2,..., n) are bounded and continuous on RZxJ
together with their partial derivatives up to the (n+3)rd order with respect to x

and that SlD;"afAjo(x, Dldx (G, I=1, 2,..., n; m=0, 1,..., n+3; g=0, 1,..., r—1)
are bounded on J.
We introduce the following difference operators:

Ay = (Tjn — Ti)2, Az = 8Ty — T5h) — (ThH — T;)1/12,
0 = (T, + Tt — 2D)/4 (G=12,..,n),

P (t) = Xry A(x, )4, (m=12),

Kty ) = Fyt, 1) + 42 -1 4763

Koty p) = Fou(t, ) + 4201 A2 (1 — 6,4/3),

Ly(t, p) = Fp(t, p) + =1 A7A7;(1 — 46;4/3),

Ep= X143 Xi=10m/n?,  Eyp = X1-10%/n,

Ey = XJ143u2i=162n/n*  Eap = X]=165/n,

Wint, h) = M (1, h), Wy(t, h) = My(t, h) + A2Gy(t, h)/24,
where

Mou(t, B) = QD)2 + A{2Q1w(O)P (1) + Pru()Q14(1) + hRy(1)}/6,
Foit, 1) = X2k AjAmj(AxA i) + 2 i1 Af(A1juA) A (m=1,2),
Gy(t, h) = (P (0)*Q14(1) + 2P1,(DQ1x(OP14(1) + 3Q1,(0) (P14(1))?

+ h{P(OR,(®) + 3(Q14(1))? + 3R(DP,(1)} + K2V)(2),
Q) = 2J=1 QA j(%, DAy~ (m=1,2),
Ry(t) = T (FA[x, DAy Vi) = ZJ=1(FALX, D)4y

Since by Corollary 4.2 0fA/(x, HesZ, and A4,;A/(x, Ve B, (j=1,2,...,n;
q=0, 1’-“9 r— 1: m= 1’ 2)’ th(t) (m=1, 2) belong to ‘Mh and th(t’ h)’
K,.(t, h), hW,,(t, h) (m=1, 2) and L,(t, h) belong to ¢,.

We consider the following difference operators:
(7.1)  Syt) =1 — Eyy + AP(1) + 2P (P 1,(D)/2 + (AP14(1))*/6
+ A2hWy(t, h),

(7.2) Si(t, h) = I — Epy, 4+ AP (1) + (AP1,(1))%[2 + A3K (t, h)P,(1)/6
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(7.3)

(7.4

Kenji TOMOEDA

+ A2hW, (1, h),
Su(t, h) = I + E5, + AMI + AP, (D)/2 + A2Ly(t, h)/6
+ (AP4(1))3[24}P,,(1) + A2hWy(t, h),
Sy(t, ) = I + Eqy + MI + AP,(0)]2 + A2K,,(t, h)/6
+ 3K, (t, )P, ()24} P, (1) + A2hWy(t, h).

Then by Theorems 6.5 and 6.6 the schemes (2.3) with the operators (7.1)—-(7.4)
are stable for sufficiently small A.
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