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Introduction

In the classical classification theory of Riemann surfaces, the basic relations
involving classes of harmonic functions are given by

(1) OG £ OHP £ OHB g OHD = OHDB

(see, e.g., [11] for notation and detailed account of the classical classification
theory). The same relations have been shown to hold for the class H of solutions
of the equation of the form

(2) Au =Pu (P ^ 0)

on, in general, Riemannian manifolds Ω; furthermore, for the solutions of (2),
additional relations

(3) OHDξOHE =

hold, where E indicates the finiteness of the energy integral

(4) ί \Fu\2dx + [ Pu2dx (dx: the volume element)
JΩ JΩ

(see, e.g., [9], [5]).
Here, we note that (2) is the Euler equation of the variational integral (4).

Thus we may generalize the above situation as follows. For simplicity, consider
the case where Ω is a domain in the euclidean space RA Suppose the "Dirichlet
integral" of a function / is given in the form

(5) Dm = ί <K*> Ff(x))dx
JΩ

with a function φ^x, τ): Ω x R ^ R which is non-negative and convex in τ, and
the "energy" of/is given by

(6) Ein=Din + \ Γ(xJ(x))dx
JΩ
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with another non-negative function Γ(x, t): ΩxR->R. The Euler equation

for the variational integral (6) is formally written as

(7) -divP τψ(x, Pu(x)) + Γ't(x, u(x)) = 0,

which is an elliptic quasi-linear equation.

Let H be the class of all "weak solutions" of (7) on Ω. Then, we may con-

sider classes HP, HB, HD, HE, etc. as in the classical case, where P means the

positivity, B the boundedness, D (resp. E) the finiteness of D\u] (resp. E[uJ)

which is given by (5) (resp. (6)). Also, OG may be replaced by OSHP, where SH

means the class of "supersolutions" of (7). In this way, we can pose a problem

to find relations among null classes appearing in (1) and (3) in our general situa-

tion.

The same type of problem may be considered also for infinite networks; cf.

[13] in which the class OG is discussed for a non-linear case. Thus, we shall try

to construct a theory on general locally compact spaces Ω. Given Ω, we fix a

positive measure ξ on Ω and instead of ψ as described above we abstractly consider

a convex mapping Ψ of a subspace X of Lftc(Ω; ξ) into L{OC(Ω; ξ) such that

Ψ(f)^0 for a l l/eX, Ψ(c) = 0 for constants c and Ψ has local property. Given

Γ: Ω x R ^ R as above, we obtain a configuration § = {Ω, ξ, X, Ψ, Γ}. Such a

configuration may be regarded as a non-linear functional space (cf. [7]), which is

of local type.

In order to obtain a satisfactory theory, we shall place several conditions

under which (weak) solutions of the Euler equation corresponding to the varia-

tional integral

behave like classical harmonic functions, or, at least satisfy some of the properties

which are assumed in the theory of (non-linear) harmonic spaces (cf. [1]). Thus

we shall call 9) a functional-harmonic space, or simply an FH-space.

We shall see that the relation OHBaOHD cannot be expected for a general

class of FH-spaces; in fact we shall see (in §6 and §7) that there are no inclusion

relations between OHP and OHD. In § 4 and § 5, we give restricted classes of FH-

spaces for which (1) and (3) are valid. Essential condition for an FH-space to

belong to this class is the so called Orlicz' Od2)-condition: Ψ(2f)^CΨ(f) (C:

const.).

As special cases, we treat infinite networks in § 6 and the case where Ω is a

differentiable manifold in § 7.
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§ 1. Functional spaces

Let Ω be a locally compact Hausdorff space which is connected, σ-compact

and non-compact. We consider a positive Radon measure ξ on Ω whose support

is the whole space Ω.

All functions considered in this paper are real-valued ξ-measurable functions

on Ω and two functions which are equal ζ-a.e. are identified. Thus, for a im-

measurable set A in Ω, "f^g on A" (resp. "f=g on A") means that/(x)^#(x)

(resp. f(x)=g(x)) for almost all xeA with respect to ξ. For a function/on Ω9

let Suppf denote the support of the measure fdξ. We denote by Lίoc(Ω) ( l ^ p

^ oo) the ordinary Lebesgue classes with respect to ξ.

We consider a space X of functions on Ω satisfying:

(X.I) X is a linear subspace of Lfoc(Ω) containing all constant functions;

(X.2) X is closed under max. and min. operations.

Next, we introduce a mapping Ψ: X->L}0C(Ω) satisfying the following con-

ditions:

(ΨΛ) Ψ(c) = 0 for all constant functions c;

(Ψ.2) Ψ(-f) = Ψ(f)ΐorallfeX;

(Ψ.3) (Local property) Ψ(f)=Ψ(g) on the set {xeΩ\f(x)=g(x)};

(ΨΛ) Ψ is convex on X, i.e.,

Ψ(tf+ (1 - t)g) ̂  tΨ(f) + (1 - t)Ψ(g)

for ίe[0, 1],/, geX; the equality holds for some (and hence for all) 0 < ί < l

only when / = g + const.

(Ψ.5) For any /, g e X, there is V Ψ(f; g) e L\OC(Ω) such that

(1.1) lim y ( / + * 0 ) - y ( / ) = yψ(f- g) a.e. on Ω.
*->o *

REMARK. By convexity of Ψ, FΨ(f; g) is uniquely determined by / and g9

and Lebesgue's convergence theorem implies that the limit (1.1) can be taken in

the topology of Lfoc(i2).

Finally, we consider a mapping Γ: ΩxR-*R (R: the real numbers) satisfy-

ing:

(Γ. 1) Γ(x9 t) ̂  0, Γ(x, 0)=0 and Γ(x, -1)=Γ(x, t) for all x e Ω, ί e R

(Γ.2) For each xeί2, Γ(x, ί) is convex and continuously differentiable in teR;

- ^ - ( x , t) will be denoted by Γ'(x, ί);

(Γ.3) For each te R, Γ'(., t) e L/0C(Ω).
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We call § = {Ω, ξ, X, Ψ, Γ} a functional space if X, Ψ, Γ satisfy the above
conditions. By (Γ.3), we see that Γ'( , /) e Lfoβ(Ω) for any / e X, where

Given a ^-measurable set A in Ω, ueX is said to be totally ξ)-harmonic (resp.
totally fy-superharmonic) on 4̂ if

(1.2) J β F n « ; ^ ) ^ + 5 Ω Γ'(., W )^ = 0 (resp.^0)

for any ^eX such that Suppg is compact, ̂ O o n Ω a n d ^ r = 0 o n β \ i . In case
Λ = Ω9 we shall omit the word "totally". The equality (1.2) gives the Euler equa-
tion for the variational integral

Here

belongs to L/OC(Ω) for any/eX by virtue of (Γ.3) and the equality Γ(x, t) =

Γ'(x, s)ds.

LEMMA 1.1. (a) Ψ(f)^0for allfeX.
(b) ψ(f)=0 if and only iff= const.
(c) t^Ψ(tf) is monotone non-decreasing for ί^O.
(d) Ψ(f+ c) = Ψ(f) forfeXand constants c.
(e) g*-+ΓΨ(f; g) is linear.
(f) Γ Ψ(f; f-g)£ Ψ(f)- Ψ(g) in particular ψ Ψ(f; f) ^ Ψ(f).
(g) FΪ /(/;/-flf)^FS /(^;/-0); ίΛc equality holds only when / = g + const.
(h) FΨ{c g)=FΨ(f; c)=0forf,geX and constants c.
(i) FΨ(J; g)=0 on the set {xeΩ|^(x)=0}.
(j) rΨ(f1;g)=PΨ(f2;g) on the set {xeΩ|Λ(x)=/2(x)+c} for any

constant c.

PROOF, (a), (b) and (c) are easy consequences of (ΨM), (Ψ.2) and (ΨA);
and (e), (f) and (g) follow from well-known properties of convex functions (cf.
[4, Chap. I, §5]). By (ΨΛ) and (ΨA), Ψ(f+c)^tΨ(Γ\f) for 0 < ί < l . For

any relatively compact ξ-measurable set A, s *-+ \ Ψ (sf)dξ is a convex function on
JA

R, and hence it is continuous. Hence, letting f->l, we obtain Ψ(f+c)^Ψ(f).
Then (d) follows immediately, (h), (i) and (j) are consequences of (d) and (Ψ.3).

The next lemma is an immediate consequence of (Γ.l) and (Γ.2):
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LEMMA 1.2. For each xeΩ, Γ'(x9 i) is monotone non-decreasing in ί eR,
Γ'(x, ή^Ofor ί^O and Γ'(x, ή^Ofor ί^O.

PROPOSITION 1.1. Let A, A' be ξ-measurable sets in Ω.
(a) // u is totally ξ>-harmonic (resp. fy-superharmonic) on A and v = u

on A'cA, then v is totally ^-harmonic (resp. ξ)-superharmonic) on A'.
(b) Non-negative constant functions are ξ>-superharmonic on Ω.
(c) Ifu is totally ξ)-su per harmonic on A, then so is uΛ-cfor any non-nega-

tive constant function c.

PROOF, (a) is easily seen from the definition and Lemma 1.1 (j). (b) and
(c) follow from Lemma 1.1 (h), (j) and Lemma 1.2.

PROPOSITION 1.2. Let A be a relatively compact ξ-measurable set in Ω.
//u and — v are totally ξ)-superharmonic on A and u^.von Ω\A, then u^

PROOF. For simplicity, let Φ = Φ% and VΦ(f; g)=F Ψ(f; g) + Γ( , f)g.
Take g = v — min(u, v). Then geX, g^.0 on Ω and #=0 on Ω\A. Hence

{ ΓΦ(u;g)dξ^0 and ( ΓΦ(v;g)dζ^O.
JΩ JΩ

On the other hand, by Lemma 1.1 (g), (i), (j) and Lemma 1.2,

0 ^ FΦ(v; g) - ΓΦ(min(u, v); g) = FΦ(v; g) - ΓΦ(μ; g)

on Ω. Hence

0 ύ [ {FΦ(v; g) - FΦ(min(u, v); g)}dξ
JΩ

= ( FΦ(v;g)dξ-[ FΦ(u;g)dξ^0,
JΩ JΩ

so that FΦ(v\ g) = FΦ(min(u, v); g). It follows that FΨ(v;g) = FΨ(min(u,v); g).
Hence, by Lemma 1.1 (g), t; = min(M, v) + c (const.). Since ι; = min (M, V) on Ω\A
and ξ(Ω\ A)>0, c = 0. Hence, u^v on Ω.

COROLLARY. Let A be as in the above proposition. If u, v are totally
^-harmonic on A and u = v on Ω\A, then u = v.

PROPOSITION 1.3. Let A, A' be ξ-measurable subsets of Ω such that Ac A'.
Ifu is totally ^-su per harmonic on A', v is totally ξ)-superharmonic on A, u = v
on A'\A and u*tv on A, then v is totally ξy-superharmonic on A'.

PROOF. Let FΦ(f; g) be as in the proof of the previous proposition. Let
g eX be such that Suppg is compact, g.}£Q on Ω, g = 0 on Ω\Af. For each p>0,
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put gp = mm(g, p(u — υ)+), where/ + =max(/, 0). Then gpeX, Suppgp is com-

pact, gp^0 on Ω and gp=0 on Ω\A. Hence

(1.3) jflFΦ(i>; gp)dξ ^ 0.

Put Ap={xeΩ\g(x)>p(u-v)+(x)}. Then ΛpczA',g=gp on Q\i4p and gp

=ρ(u-v) on y4p. Hence, using (1.3), Lemmas 1.1 and 1.2, we obtain

FΦ(v; g)dξ £ ( FΦ(v; g)dξ - [ FΦ(v; gp)dξ
Ω JΩ JΩ

= ( ΓΦ(v, g)dξ - p [ VΦ(υ; u - v)dξ
JA, JΛ,

^ ( FΦ(υ; g)dξ - p [ FΦ(u u - υ)dξ
JA, JA,

= f VΦ(υ;g)dξ-\ ΓΦ(u;gp)dξ.
J Λ.0 J Ap

Since u is totally $-suρerharmonic on Ap, g — gp^0 on Ω a.ndg — gp=0onΩ\Ap,

we have

ί ΓΦ(u;g)dξ^[ FΦ(u;gp)dξ.
JA, JAP

Therefore,

^[ {FΦ(v; g) - FΦ(u; g)}dξ
JAp

{FΦ(v;g)-FΦ(u;g)}dξ9
fiA*

where A+ — {xeAf \u(x)>v(x)}. Since FΦ(v; g)-FΦ(u; g) is ξ-summable on

Suppg and Ap f]A+ I 0 (p-*oo), the last integral tends to 0 as p - κ » . Thus

\ FΦ(v; g)dξ^O, and hence v is totally $-superharmonic on A'.
JΩ

COROLLARY. Let A be a ξ-measurable subset of Ω. If u, v are totally

ξ)-superharmonic on A, then so is min(ι/, v).

PROOF. Put w = min(u, v) and A1 = {xeA\u(x)>v(x)}. T h e n w = t ? o n A u

so that w is totally §-superharmonic on At. Since w = w on ̂ \ ^ i and w ^ u o n

i4 l f the above proposition implies that w is totally §-superharmonic on A.

§2. Functional-harmonic spaces and classification I

Let § = {&,£, X, Ψ, Γ} be a functional space. A relatively compact ξ-
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measurable set A in Ω will be said to be resolutive (with respect to §) if for any

fe X there exists g0 e X such that

(2.1) 0 O = / on Ω\A9 and

(2.2) ^Φ*foo)<« = inf §A

φ*(0)dξ\g eX, g = / on Q\ A} .

The following proposition shows that goεX satisfying (2.1) and (2.2) is

uniquely determined by / and A we shall denote it by R(f; A).

PROPOSITION 2.1. Given a relatively compact ξ-measurable set A in Ω

andfeX, there is at most one goeX satisfying (2.1) and (2.2). Furthermore,

g0 has the following properties (if it exists):

(a) g0 is totally ξ>-harmonic on A;

(b) /// is totally ξ>-superharmonic on A, then g0Sfl

(c) / / / is totally ^-su per harmonic on a ξ-measurable set A1 containing

A, then so is g0 on A'\

(d) min(0, inf/) <Ξ g0 ^ max(0, sup/).
flU OU"

PROOF. Let Φ = Φ$ and VΦ(f\ g) = FΨ(f; g)+Γ'( J)g. For any geX

such that g = 0 on Ω \ A and for any t e R,

Φ(go)dξ ^ ^Φ(g0 + tg)dξ.

It follows that \ FΦ(g0; g)dξ = O, or \ FΦ(g0; g)dξ = O. Hence g0 is totally

JA JΩ

S-harmonic on A. Thus the uniqueness of g0 follows from the corollary to

Proposition 1.2. Property (b) is a consequence of Proposition 1.2, and property

(c) follows from (b) and Proposition 1.3. To prove (d), put
m = min(0, inf/), M = max(0, sup/)

Ω\A Ω\A

and

gx = max(m, min(^ 0, M)).

Then g1eX,g1=f onΩ\A and \ Φ(g1)dξ^\ Φ(go)dξ. Hence, by the unique-
JA JA

ness of gOi g1 = g0, so that (d) is valid.

Now, we consider the following conditions for § :

(R) There is an exhaustion {Ωn} of Ω such that each Ωn is a resolutive open set

in Ω.
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Here, an exhaustion means a sequence {Ωn} of relatively compact open sets such
that ΩnczΩn+1 for each n and \J Ωn=Ω.

(H.I) If {un} is a locally uniformly bounded, monotone non-decreasing sequence
of non-negative functions in X such that each un is totally inharmonic on Ωn

for some exhaustion {Ωn} of Ω, then u = limπ_00 un is inharmonic on Ω and

Ψ(u)dξ ^limmf[ Ψ(un)dξ
K n-*oo JK

for any compact set K in Ω.

A functional space § is called a functional-harmonic space, or simply an
FH-space if it satisfies (R) and (H.I). The class of all FH-spaces will be denoted
by^*.

Given ξ> = {Ω, ξ, X, Ψ, Γ} e^*, we consider the following sets of functions:

SH(ξ>) = {u e XI u is S-superharmonic on Ω},

ff(§) = {MeXIM is ^-harmonic on β},

SHP(ξ>) = {MeSίΓ(δ)|M ^ 0 on ί2},

= #(S) n s//P(S),

= {ueSH(ξ>)IM is bounded on Ω},

= HD{<b) 0

HDB($) = HD{9)) n

= \uu e H(S) I J Φz(u)dξ < oo I,

HEP(ξ>) = HE{9>) n

HEB(ξ>) = HE(ξ>) n

Let β(§) be any one of the above sets and ^ be a subclass of ^ . We denote
by 0Q(&) the class of all $ e 0 such that every element of β(§) is a constant
function. The following are trivial inclusion relations:



OSHPΨ

U

OsH 0

n
W) cz

Classification Theory

U

oB(?,
n

u
> <= 0HD (&)

n

( cz 0HE

U

^ o H E
n

343

(2.3)

THEOREM 2.1. OSHP{&) = 0SHB(&).

PROOF. Suppose § e O S H P ( ^ ) and ueSHB(ξ>). Let | M | ^ M . Then

u + MeSHP(ξ>) by Proposition 1.1 (c), and hence w + M is a constant, so that

u is a constant. Hence ξ>^0SHB(^). Conversely, suppose §eOS i f B(«^*) and

veSHP(ξ>). If z; is non-constant, then there is c > 0 such that min(ι;, c) is non-

constant. Since min (υ, c) e SHB(ξ>) by virtue of Proposition 1.1 (b) and the

corollary to Proposition 1.3, this is a contradiction. Hence

REMARK. The above proof shows that this theorem remains valid for the

class of functional spaces.

THEOREM 2.2. OHP(^)czOHB(^), 0HDP(&)cz0HDB(&) and OHEP(&)cz

PROOF. Given § e ^ , let Φ = ΦΦ for simplicity. By condition (R) we can

choose an exhaustion {Ωn} of Ω such that each Ωn is resolutive. Let u e HB(ξj);

\u\£M. Put

vn = R (max (M, 0) Ωn) and wn = R (min (u, 0) Ωn),

n = l, 2, . Since — max(w, 0) and min(w, 0) are S-superharmonic on Ω, —vn

and wn are totally §-harmonic on Ωn, §-suρerharmonic on Ω9

max(w, 0) ^ vn ^ M and - M ^ wΛ ^ min(M, 0)

by Proposition 2.1. It also follows from Propositions 2.1 and 1.2 that {vn} is

monotone non-decreasing and {wj is monotone non-increasing. Hence, by

condition (H.I),

and w = lim wn

are inharmonic on Ω, i.e., v, —weiίP(§) . Since \ Φ(υn)dξ^\ Φ(max(u,
JΩn JΩn

ϋ))dξ and ι?M = max(w, 0) on Ω \ Ωn,

\ψ(vn)dξ

^ { f(max (w, O))dξ + [ {Γ( , max (u, 0)) ~ Γ( , t;n
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\ Ψ{u)dξ
JΩ

and

(n)ξ^[ Φ(max(u, O))dξ ^ [ Φ(u)dξ.
Ω JΩ JΩ

Similarly, we obtain

( Ψ(wn)dζ ^ [ Ψ(u)dξ and ( Φ(wn)dξ ^ [ Φ(u)dξ.
JΩ JΩ JΩ JΩ

Hence by (H.I), we see that ueHDB(ξ>) (resp HEB(ξ>)) implies v, weHDP($)

(resp. HEP(ξ>))

Now, suppose § e OHP{^) (resp. OHDP{^r\ OΆEP{^^) and u e HB(ξ>) (resp.

HDB(ξ>), HEB(ξ>)). Then v and w are constant functions. Since

u — w = max(u, 0) -h min(w, 0) — w ̂  max(w, 0)

and u — w is S-superharmonic on Ω, it follows from Proposition 1.2 that w — w^.υn

for all n, so that u — w ̂  υ. Similarly, we see that — u + v ̂  — w. Hence M = v+w

=const. Thus § e < W ^ ) (resp. OHjDJB(^), OHEB(&)).

Combining (2.3), Theorems 2.1 and 2.2, we obtain

n n n n
(2.4) O S f l P (^) cz OHP(&) cz OH

II n n n

We shall see in § 6 and § 7 that all the above inclusion relations are strict and

that other inclusion relations cannot be expected.

§ 3. Auxiliary conditions and their consequences

In order to obtain a class of FH-spaces for which OHD = OHDP and OHE =

OHEB hold as in the classical case, we consider the following auxiliary conditions

forS = {Ω, ξ,X, Ψ,Γ}:

(X.3) For any compact set K in Ω and an open set ω=>K, there exists heX

such that Supp h is compact and contained in ω, 0 ̂  h ̂  1 on Ω and h = 1 on K.

(D) X is an algebra and

; 02)01

for all/, 0i, 02 eX.
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(H.2) If {un} is a monotone non-decreasing sequence of non-negative functions

in X such that each un is totally inharmonic on Ωn for some exhaustion {Ωn} of

Ω, limn_>0Ouw(x)<oo on a set of positive ξ-measure and<\ Ψ(un)dξ> is bounded

for any compact set K9 then {un} is locally uniformly bounded.

(A2) There is a constant C>2 such that

Ψ(2f) S CΨ(J)

for all/eX.

Here we give some consequences of these conditions, which will be used

in the next section.

LEMMA 3.1. If(A2) is satisfied, then

(a) Ψ(f +g)^ (C/2){Ψ(f) + Ψ(g)} forf9geX;

(b) IVΨ(f; g)\ S (C - 2)Ψ(f) + Ψ(g) forfgeX;

(c) \FΨ(f; g)\ ^ p"KC - 2)Ψ(f) + Cp^Ψ(g) for f9geX9 any function

p^l and any integer p such that C^2P.

PROOF, (a) follows immediately from the convexity of Ψ and condition

). By Lemma 1.1 (/), we see that FΨ(f;f)SΨ(2f)-Ψ(f). Hence, by

(A2) and Lemma 1.1 (/) again, we obtain (b). To show (c), first suppose p ^ l

is a constant. If 2n~ί ̂  p < 2n (n: integer), then by (A2)

Ψ(pf) ^ Ψ(2»f) ̂  C»ΨU) ύ Cppψ(f).

Hence, by (b),

Pirn/; g)\ = \VΨ<J\ pg)\ ^ (c - 2)ψ(f) + Cp*ψ(g).

Then, we see easily that this inequality holds for any function p ^ l .

PROPOSITION 3.1. Assume (D) and (A2). If there is an increasing se-

quence {/„} of non-negative functions in X such that Suppfn is compact for each

n, limn_00/π(x)=oo a.e. on Ω and <\ Ψ(fn)dξ\ is bounded, then

PROOF. Let u e HD(ξ>) and put

um = max(— m, min(w, m)) (m > 0).

Then umeX, \um\ ̂ m and FΨ(u; um)*t0 for each m by Lemma 1.1. By (D),

umfneX. Since Supp(umfn) is compact,

u,umfn)dξ + [r'(.,u)umfndξ = 0.



346 Fumi-Yuki MAEDA

Since Γ'( , w)wm^O, the second integral is non-negative. Thus, using (D) and

the above lemma, we have

\ FΨ(u; um)fndξ ^ - \ FΨ(u;fn)umdξ
JΩ JΩ

\PΨ(u;fn)\dξ

C- 2) J β Ψ(u)dξ + J β Ψ(fn)dξ\ .

Since /„ T oo a.e. and If Ψ(fn)dξl is bounded, it follows that FΨ(u; M J = 0 on

Ω, so that FΨ(u; u) = 0 on the set {xeΩ\\u\^m}. Since m is arbitrary, this

means that FΨ(u;u)=0, so that Ψ(u)=0. Hence u = const, by Lemma 1.1

(b). Therefore

LEMMA 3.2. Assume (A2) Let A be a ^-measurable set and fn,geX,

n = l , 2, . If

[ψ(g)dξ< oo and lim ί Ψ(fΛ)dξ = 0,

then

( FΨ(fn;g)dξ = O.

PROOF. By Lemma 3.1 (b),

\FΨ(fn; g)\ ̂  Γ\C - 2)Ψ(fn)

for each ί>0. Hence

limsup [ \FΨ(fn; g)\dζ ^ rλ Ψ(tg)dξ
n~+oo JA JA

for any ί>0. Since ΓιΨ(tg)^Ψ(g) for 0 < ί < l and rιΨ(tg)-+0 as *-•(),

Lebesgue's convergence theorem implies that t~ι\ Ψ(tg)dξ~-*O (ί-*0). Hence
JA

we obtain the lemma.

LEMMA 3.3. Assume (X.3), (D) and (A2) and let ω be an open set in Ω.

If {un} is a monotone non-increasing sequence of non-negative functions in X

such that each un is totally ^-harmonic on ω and limw_0Owπ = const., then

limf Ψ(un)dξ = 0
n-><x>JK
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for any compact set K in ω.

PROOF. Let c = lim/I_oowπ. Choose heX as in condition (X.3) for the

above ω and a given Kaω. Let p be an integer such that C^2P. Then (un

— c)hp e X by (D) and (un — c)hp = 0 on Ω \ ω. Hence, un being totally inharmonic

on ω,

ί FΨ(uu; (ii. - c)hP)dξ + [ Γ ( , wn)(Wπ - c)ΛM« = 0

for each n. Since tιn —c^O and wn^0, Γ'( , un)(un — c)^0. Hence, using (D),

we have

ί FΨ(un; un)hPdξ ̂  - p ί ΓίP(«w; Λ)(n» -

Therefore,

ψ(un)h'dξ ^ f ry(«. ; « B ) ^ ί
Jω

where Ah={xe ω\ h(x) > 0}. For x e Ah9 put

pn{x) = max {1, 2(C - 2)p(iιII(x) - c)h(x)^

By Lemma 3.1 (c),

\FΨ(μn; h)\ (x) ̂  Pn{x)-\C - 2)Ψ(un)(x) + Cpn(X

for x e Ah. Thus, by (3.1), we have

(3.2) [ψ(un)hPdξS2Pc\ pp-iψ(h)(un-c)hP-idξ.
Jω JAh

It is easy to see that {ρp~ίΨ(h)(un — c)hp~x} is uniformly bounded on Ah, which

is relatively compact. Hence Lebesgue's convergence theorem implies that the

right-hand side of (3.2) tends to zero as n->oo. Thus

lim ί Ψ(un)hpdξ = 0,
n-+oo Jω

which implies the assertion of the lemma.

§4. Classification II

Now, let ^ Ί be the subclass of & consisting of all § e & which satisfy con-
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ditions (X.3), (D), (H.2) and (A2). The relations (2.4) are valid with β?x in the

place of J5", since ^ t c ^ .

THEOREM 4.1. 0HDP(&r

ί) = 0HD(&r

ί) and

PROOF. We have to show

and

Suppose $beOHDP{&γ) (resp.eO^pC^)) and S ^ O H D C ^ I ) (resp.
Choose u 6 HD(§) (resp. HE(ξy)) which is non-constant. Let {ί2rt} be an exhaus-
tion of Ω such that each Ωn is resolutive and put

vn = R (max (M, 0) Ωn) and wn = R (min (M, 0) Ow).

By Proposition 2.1, these are totally §-harmonic on Ωn for each n, {t;Λ} is mono-

tone non-decreasing, {wj is monotone non-increasing, max(w, 0)^υn9 min(M, 0)

Φ ( ( W , O))dξ
Ωn

and

Put fn=vn—max (M, 0). Then /„ e X, /„ ^ 0, {/„} is monotone non-decreasing and

each Suppfn is compact. By Lemma 3.1 (a),

As in the proof of Theorem 2.2, we see that

ί SΌO^ g ί ψ(u)dξ.
JΩ JΩ

Hence

( \ Ψ(u)dξ <OO.
Jβ Jβ

Since §<£ ORΏ(&\ Proposition 3.1 implies that

ξ({xeΩ\)imfn(x)<ao})>0,
n-*oo

so that
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ξ({x e Ω I lim vn(x) < oo}) > 0.
n-*oo

Hence by (H.I) and (H.2), t; = limrt_00 vn is §-harmonic and

ί Ψ(v)dξ^limmf[ Ψ(vn)dξ.
JΩ n-*oo JΩ

It follows thatί Ψ(v)dξ^[ Ψ(u)dξ<oo (resp. [ ΦJv)dξ^{ ΦJu)dξ<ao)9 so
JΩ JΩ JΩ V JΩ V

that υeHDP(ξ)) (resp. HEP(ξ>)). Hence υ = const. Similarly we see that w

=lim n _ 0 0 wn is a constant. Then, by the same argument as in the last part of the

proof of Theorem 2.2, we derive a contradiction that u is a constant.

THEOREM 4.2. O H £ B (^ ' 1 ) = O H £ ( ^ 1 ) .

PROOF. By virtue of the above theorem, it is enough to show that OHEB(&\)

^OHEP^^. Let θ e O ^ β ί ^ Ί ) and ueHEP($?>). Put wm = min(u, m) for

m > 0 . Then um e X, wm^0, um is £>-superharmonic on Ω and

Let {Ωn} be an exhaustion of Ω such that each ί2M is resolutive and put

vmtn = R(um;Ωn).

By Proposition 2.1, 0^υmn^um9 each ι?mn is §>-superharmonic on Ω, totally

δ-harmonic on Ωn and {υmtn}n is monotone non-increasing. By (H.I), w w =

limn_oot;Wjlt is δ-harmonic on Ω and

( Φ^wjdξ ^liminίi Φ^vmtn)dξ
JΩ w-κ» JΩ

oo.

Obviously, 0^wm^um^m. Hence wmeHEB(ξ>), so that wm is a constant for

each m.

Since t?WfΠ is totally δ-harmonic on Ωn and vmn=um on Ω\ΩΛ, we have

(4.1) \/Ψ(υm,n; um - υmjdξ + J f lΓ'(., O ( « - ~ V»)^ = 0.

Since wm is a constant and ̂ -harmonic on Ω,
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which implies

(4.2) { Γ'( , wj(um - wjdξ = 0.

Now, by the convexity of Γ(x, t) in t,

0 £ Γ( , O (μm - O g Γ(., u J - Γ( •, O

and

\ Γ( , u)dξ < co
JΩ

since ueHE(ξ>). Since Γ'( , vmtn)->Γf( 9 wm) on Ω, it follows from Lebesgue's
convergence theorem and (4.2) that

(4.3) i m ί ΓX ,vmtn)(um-vmtn)dξ = O.
-*oo JΩ

lim

On the other hand, since \ Ψ(um)dξ ^ \ Ψ(u)dξ < oo, given ε > 0 (ε < 1), there

is a compact set K in Ω such that \ Ψ(um)dξ<ε. Applying Lemma 3.1 (c)
JΩ\K

with p = ε " 1 ^ , we have

- 2) J β χ Ψ(vm,n)dξ(4.4)

Since i;m(l decreases to a constant wm as n-»oo, Lemma 3.3 implies that

Ψ(vmH)dξ=0, and hence by Lemma 3.2, we have

lim ( rΨ(vm,H; ujdξ = 0.
n->oo JK

Hence, in view of (4.4), we obtain

(4.5) lim ί FΨ(vmtn; um)dξ = 0.
w-^oo JΩ

By (4.1), (4.3) and (4.5), we conclude that

l i m ί FΨ(vmtn;vmtn)dξ = 09
n-+oo JΩ

or
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lim \ Ψivm>n)dξ = (

n-*oo JΩ
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for each m>0.
Since u is ^-harmonic on β,

V Ψ(u um - υmtn)dξ + j f l Γ'( -, u) («„ - vmtn)dξ = 0.

Noting that Γ'( , w)(κw-ι;m ι Λ)^0, we have

(4.7)

By (4.6), for sufficiently large n, \ Ψ(vm n)dξ ̂  1 (m being fixed). Applying
JΩ *

Lemma 3.1(c) with p = ̂ Ψ(vm,n)dξY'P(iϊ^Ψ(vm,n)dξΦ0), we obtain

f PΨ(u; vmjdξ
Jo

- Woyi°-^di}1/'{(c-2)L ψ w d ξ + c }
Thus, by (4.6),

limf FΨ(u;υmJdξ = 0,
n-*ao JΩ

so that by (4.7),

ΓΨ(u;uJdξ

Hence FΨ(u; M J = 0 on Ω (note that FΨ(M; W J ^ O by Lemma 1.1). Since
this is true for any m>0, it follows that FΨ(u, w) = 0, which implies that Ψ(u)
=0, i.e., u = const. Thus the theorem is proved.

Summing up, we have obtained

(4.8)
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The special cases in § 6 and § 7 show that all inclusion relations in (4.8) are.strict,

except

We do not know whether this inclusion is strict or not; for the class of linear

FH-spaces we have the equality (cf. [5], [6], [9]). In the next section, we shall

consider a subclass &2 °f &u which contains all linear FH-spaces, and show that

§5. Classification III

We consider the following condition for Ψ9 which is the dual of (A2):

There is a constant C*>2 such that

C*ψ(2f) ̂  Ψ(C*f)

for all/eX.

We denote by &2 the class of all § e ^ Ί satisfying (A^). Then we have

THEOREM 5.1. OHDB(&2) = OHD(&2).

PROOF. It is enough to show that

C OHDP(άF2)

by virtue of Theorem 4.1. Suppose ξ)εOHDB(
<F2) and ueHDP(ξ>). Let um

{Ωn}, υmtΆ and wm be as in the proof of Theorem 4.2. Then

(5.1) ( V Ψ(vmtn; vmtn - ujdξ + \ Γ'( , vmtn)(vmtn - um)dξ = 0
JΩ Ja

and

(5.2) J f l Γ Ψ(u um - υmtn)dξ + ^Γ'( •, u) (um - vm>n)dξ = 0.

Since ( FΨ(u; uJdξ^O and
JΩ

Γ'( , u)(um - vm>n) k Γ'( , vm_n)(um - vmj,

it follows from (5.1) and (5.2) that

(5.3) ί ?Ψ(vm,n; vmtU)dξ g f {PΨ(vmy, uj + ΓΨ(u; vm<n)}dξ.
JΩ JΩ
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Applying Lemma 3.1 (c) with ρ-4C, we have

(5.4)
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Ψ(ujdξ

Ψ(vm>n)dξ + V-ι& \ Ψ(u)dξ.
Ω JΩ

Note that ( Ψ(vm<n)dξ«x>, since ( ψ(ujdξg[ Ψ(u)dξ<oo and vmtU=um on
JΩ JΩ JΩ

Ω \ Ωn. Lemma 3.1 (b) and condition (Jf) imply

so that

(5.5)

\PΨ(u; vmj = 2-*

£ 2-iC*{(C - 2)Ψ(u)

^ 2-iC*(C - 2)Ψ(u) +

\PΨ(u;vmJdξ

^ 2-1C*(C -

From (5.3), (5.4) and (5.5), it follows that l ( Ψ(vmn)dξ\ is bounded. Hence
UΩ ' )n,m

by (H.I),

\ Ψ(wm)dξ ί liminf ( Ψ(.vm,n)dξ < oo,
JΩ ιι->oo JΩ

so that wmeHDB(5)\ which implies wm = const.

Given ε > 0 (ε<l), choose a positive integer / such that \ Ψ^^dξ^
r JΩ

for all m, n. Since \ Ψ(u)dζ<oo, there is a compact set K in Ω such that
JΩ

Ψ(u)dξ ^ 2'- 1

By Lemma 3.1 (b) and the repeated use of condition (Δf) (cf. the computation

above yielding (5.5)) we obtain

(5.6) \\ΩJΨ(u;vmtn)dξ
2 + 2
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On the other hand, by Lemma 3.3, lim,,.^ \ Ψ(vmn)dξ = 0. Applying Lemma

3.1 (c) with P=(\ Ψ(vmn)dξJ for large «, we have

(5.7)

0 (π -»• oo).

From (5.6) and (5.7) it follows that

limimί rΨ(
-+oo JΩ

Hence, by (5.2),

0 S \ rψ(u; ujdξ ^ \ FΨ(u; vm,n)dξ -»0 (n -> oo),
JΩ JΩ

so that FΨ(u; um) = 0 on Ω for each m. It then follows that u is a constant.

REMARK 5.1. The above proof shows that the equality OHDB=OHD can be
proved without using Royden boundary or Green potentials in the linear case
(cf. [6], [9]).

By (4.8) and Theorem 5.1, we obtain

/ Ί (GBΓ \ i— /*) (<Z2? \

Π

π
(5.8)

All inclusion relations (5.8) are known to be strict in the linear case (cf. the next
two sections).

REMARK 5.2. If we consider the class

^"i = | § e ^ t j { Γ(x, t)dζ(x) < oo for every t e R | ,

then, in almost the same way as in the proof of Theorem 4.2, we see that
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Thus, in view of (4.8), we have

n n

(5.9) ° » ' W _ Λ

§ 6. Quasi-linear networks

In this section, we consider a special class of FH-spaces, namely, the class of
quasi-linear networks.

Let X and 7be countable (infinite) sets and let K b e a function on XxY
satisfying the following conditions:

(K.I) The range of K is {-1, 0, 1}
(K.2) For each ye 7, e(y) = {xeX\ K(x9 y)^0} consists of exactly two points
xi and x2 and K(xi9 y)K(x29 y)= - 1
(K.3) For each xeX, Y(x) = {y e Y | K(x, y) Φ 0} is a non-empty finite set
(K.4) For each x, x'eX, there are xl9—, xkeX and y!, , yk+ίeY such that

eCV/) = {x/-i> XJ },; = 1, , fc+1, with xo = ̂  and x f c + 1=x'.

Then G={X, 7, K} is called a (connected, locally finite) infinite graph (cf. [13]).
For each y e 7, we consider a set Sy and a bijection j y of Sy onto the open

unit interval (0, 1) and let

Q = Ω{XtY} = X U \J S
yeY

be a disjoint union. A topology is introduced on Ω as follows: cocjQ is open
if (and only iί)jy(ω n Sy) is open in (0, 1) for each y, jy(ω n Sy) contains an interval
of the form (0, β) (ε>0) in case xeω and K(x, y)= — 1 and it contains an interval
of the form (1-ε', 1) (ε'>0) in case x e ω and K(x9 y) = l. Then Ω is a con-
nected, non-compact, σ-compact, locally compact Hausdorff space. For each
yeY, j y is extended to be a homeomorphism of Sy=Sy\J e(y) onto [0, 1],

Let μy be the measure on Sy induced by j y from the Lebesgue measure on
(0, 1) and let v be the counting measure on X. We define ξ = ξG by

which is a positive Radon measure on Ω whose support is the whole space Ω.
Let
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ί / i s continuous on Ω, fijy1 is ϊ

I Lipschitz continuous on (0, 1) for each y ί

It is easy to see that this X satisfies conditions (X.I) and (X.2) in § 1, and also

(X.3) in §3. If feX, then (foj-1)' exists a.e. on (0, 1). For simplicity, we

write/'(z) for (f°j;l)'Uy(z)) in case zeSr

Next, we consider two functions φ: YxR-*R and y: I x R - > R satisfying

the following conditions:

(φΛ) φ(y, t) = - φ(y9 - 0 for all y e Y and t e R

(φ.2) For each yeY, φ(y, i) is continuous and strictly increasing in t\

(y.l) y(x, 0 = -y(*> -0 for all x eX and teR;

(y.2) For each x e l , y(x, t) is continuous and monotone non-decreasing in t.

φ(y9 s)ds9o

0, if zeX

ιKy,f'(z))9 if zeSy

for /e X and

* ft

if z =

if

for z e Ω, t e R.

We see that !F(/) is defined ξ-a.e. on Ω and Ψ(f)eL\0C(Ω) for any /eX.

It is easy to verify that this Ψ satisfies conditions (ΨΛ)~(Ψ.5) in § 1 and

fO, if zeX

[φ(y,f'(z))gχz)9 if zeSr

From this, we see that condition (D) in § 3 is also valid. Obviously, Γ defined

above satisfies (Γ.1)~(Γ.3) in § 1 with

fy(x, t\ if z = xeX
Γ'(z9 t) =

[0, if z&X.

Thus ξ> = {Ω{XιY), ξG, XG, Ψ, Γ} is a functional space, which we shall call

a quasi-linear network. It will be often denoted by § = [G, φ, y]. We denote

by ^Γ the class of all quasi-linear networks.

For an open set ω c β , let

X(ω) = {xeX()ω\Syczω for all yeY(x)}.
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An open set ω will be said to be regular if X{ώ) — X Π ω. Obviously, Ω is regular.

We shall say that a function/on Ω is linear on Sy Ίϊfoj'1 is linear on (0, 1).

LEMMA 6.1. Let 9) = [G, φ, y] e Jf.

(a) If ω is a regular open set and ueX is totally ξ>-harmonic on ω, then

u is linear on Syfor every ye Ysuch that Syczω and

(6.1) Σ K(x, y)φ(y, Σ K(x'9 y)u(x')) + y(x, u(x)) = 0
yeY(x) x'eX

for all xeX Π ω.
(b) If ueX is linear on every Syi yeY9 and satisfies (6.1) for all xeX,

then u is ^-harmonic on Ω.

PROOF. Obviously, u is totally ^-harmonic on Sy if and only if φ(y, u'(z))

= const, on Sy, that is, w'(z) = const, on Sy9 or equivalently, u is linear on Sr

For xeX, let U(x) = {x} U \Jyeγ(X)Sr Suppose ueX is linear on each Sy9

y e Y(x). Then we see that u is totally ^-harmonic on U(x) if and only if

Σ K(x, y)φ(y, u'(zy)) + y(x, u(x)) = 0,
yeY(χ)

where zy is any point on Sr Since u'(zy)=ΣX'eχK(x'-> y)u(χf)> t ^ s equality is
nothing but (6.1). Hence our lemma follows.

PROPOSITION 6.1. J ^ c ^ " , i.e., every quasi-linear network is an FH-

space; each ξ>eJ^ satisfies conditions (X.3), (D) and (H.2).

PROOF. We have already seen that each § e JΓ is a functional space and

satisfies (X.3) and (D).

Since there is an exhaustion of Ω consisting of regular open sets, to show (H.I)

and (H.2) we may assume that each Ωn is regular. Then (H.I) is easily seen from

Lemma 6.1. Let {un} be a sequence as described in condition (H.2). Then

there is xoeX such that {un(x0)} is bounded. For each xeX9 we find by (K.4)

xu—,xkeX and yu—9 yk+ί e Y such that e{yJ) = {xj^u XJ}J=19~; fe+1 with

xk+ί=zXm Let F=\J*j±{Syj. Then F is a compact set in Ω and

F
Ψ{un)dξ =

Since \ \ Ψ(un)dξ \ is bounded and ψ(y9 ί)-> oo as 11\ -+ oo for each t, it follows that

{un(x)} is bounded. Hence {un} is locally uniformly bounded on Ω. Thus (H.2)

is satisfied.

Finally, we shall verify (R). Let ω be a relatively compact regular open

set in Ω and le t/e X. Then M = max2e5i |/(z) | is finite. Let
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D = {geX\g =/on Ω\ω}

- i n
is linear on each Sv

and \g\ ^ M o n ω

For each g e D, we can find g* e D* such that

#*(x) = max(- Λf, mi

for all x e X Π ω. It is easy to see that

\ Φs(9*)dξ ύ \
Jω Jω

Hence,

), M))

α = inf inf D* } .
Since X n co is a finite set and { # ( x ) | # e D * } is bounded for each xeX Oω, we

can find a sequence { # n } c D * such that {gn(x)} is convergent for every xeX f]ω

and

lim \ Φz(gn)dξ = α.

Then ^ 0=lim n_> 0 0^ n exists and belongs to D*. We see easily that go=R(f; ω).
Hence (R) is satisfied.

By virtue of this proposition, inclusion relations (2.4) hold with JV in the
place of &. Furthermore, if we put

and

jr2 = j\r n

satisfies (A2)}

{§ ejr \ § satisfies (J 2) and (JJ)},

then inclusion relations (4.8) hold withΛ^ in the place of βr

1 and (5.8) hold with
JΓ2 in the place of ^"2. Note that conditions (A2) and (A^) for £ e^Γ may be
written as follows:

(J2λr There is a constant c > 1 such that

φ(y9 It) S cφ(y, t) for all yeY9 t^ 0.

: There is a constant c* > 1 such that
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2φ(y, t) ̂  φ(y9 c*t) for all yeY9 t^ 0.

Note that the network considered in [13] belongs to JΓ2 (φ(y9 t) = r(y)\t\p~2t,

r(y)>09 l<p<co and y(x, 0 = 0).

Now, we shall show by special quasi-linear networks that inclusion relations

in (2.4) and (5.8) are all strict.

PROPOSITION 6.2. OH(jr2) <£ OSHP(jr2).

PROOF. Let X = {x0, *i, }, Y={yu J^ }, K(xn9 yn) = l and K(xn_l9 yn)
= - 1 , n = l, 2, , K(xn, ym)=0ifmΦn + l9 n. Then G = {X, Y9 K} is an infinite
graph. Let

Φ ( y n , t ) = n2t, n = 1, 2 , . , ί e R

and y = 0. Then § = [G, φ, y] belongs to ^ 2 Since ueH(ξj) if and only if u
is linear on each Syn and

0 = <£()>!, u(x0) - w(xx)) = ••• = 0(3;π, uix^ύ - M(XΠ)) = •••,

/f(£) consists only of constant functions, i.e., ξ> e OH(*V2)' On the other hand,
if we define ϋ to be linear on each Syn and

2 - Σ f c - 2 , n = l , 2 , . . ,

then t; ε SHP(ξ>). Hence

COROLLARY. OSH(^r2) ̂  O H ( ^ 2 ) and OSHP(jr2) φ OHP{JV2).

PROPOSITION 6.3. OHD(^r2)ςίOHB(^Γ2).

PROOF. Let X = Xt U Zi with

Z 1 = { x Λ | n e Z } and Z; = {*'„ | n e Z } ,

where Z is the set of all integers, and let 7 = Yx U Y[ U 72 with

Yi^{yn\neZ}9Y
/

1 = {yt

n\neZ} and 72 = {zn | n = 0, I , - } .

We define K(x9 y) on Xx 7as follows:

X(xn, Λ ) = K(x'n, y'n) = 1, K(xn_lf Λ ) = X(χ; . l f /„) = - 1 (« ε Z),

X(xn, zn) = 1, K{x'n9 zn) = - 1 (n = 0, I , - ) and

X(x, .y) = 0 for any other pair (x, y)eX x Y.

Then G = {X, y, K} is an infinite graph. Let
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φ(yn, t) = φ(y'n9 t) = 2»t9 n = l , 2 , . . ,

φ(y-n, t) = φ(yLn9 t) = φ(zn9 t) = t, n = 0, 1,

and γ = 0. Then £ = [G, φ9 i\eJf2. If u eHJ3(§) U # £ ( § ) , then u(x_π) = w(

and u(xLn) = u(xr

0) for all π = l, 2, . If we put an = u(xn)-u(x'n)9 n = 0, 1, ,

then

(6.2) 2«(fln - a , . , ) - 2»+Kan+i ~ O + 2an = 0 (n = 0, I , - ) .

Hence

(6.3) a π + 1 = an + 2~n ± ak9 n = 0, 1 , - .
fc=0

Any sequence {an} satisfying (6.3) is bounded. Since

u(xn) = -j {u(x0) + u(xf

0) 4- an} and u(x'n) = —• {u(x0) + u(x'o) - an},

n = 0, 1, , we see that HB(ξ>) contains non-constant functions, i.e.,

On the other hand, if aoΦ0, then | α M | ^ | α o | for all n = l, 2, , so that

Ψ(μ)dξ ^ Σ Ψ(z» u(xn) - u(x;» = \ Σ «2 = oo.
Ω n=0 £ n=0

Hence ueHD($r>) implies ao = 0, i.e., u = const. Therefore

COROLLARY. O H ( ^ Γ ) # O H D ( ^ * ) , 0 H P ( ^ Γ 1 ) # 0 H I ) p ( ^ 1 ) and

PROPOSITION 6.4. OHE(J^2) φ OHDB(jr2).

PROOF. Let G be as in the proof of Proposition 6.2 and let φ(yn, t) — 2n~ιt9

n = l, 2, and y(xn, t) = t9 w = 0, 1, . Then S = [G, φ, y ]e^T 2 . For weH(§),

put Λ _ 1 = 0 and αM = w(xn), n = 0 , 1, . Then {an} satisfies (6.2) and hence (6.3)

in the proof of the previous proposition. Thus, any ueH(ξj) is bounded. Fur-

thermore,

ί Ψ(u)dξ = f 2»-\an - an-tY = Σ 2-"("±lak)
2

JΩ n=l π=l \fc=0 /

^ (sup \an\
2) f 2-»«2 < oo.

n n = l

Hence H(ξ>) = HDB(ξ>)9 which contains non-constant functions. Therefore
ξ>£0HDB(jr2).

On the other hand, if ao^09 then \an\ ̂ \ao\ for all n, so that
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\ Γ( , u)dξ = -^ Σ ««2 = °°
JΩ 2- n=o

Hence HE(ξ>) = {0}, so that § e OHE(jr2).

COROLLARY. OHD(jr) φ OHE(jr\ OHDP(jr) Φ OHEP(JT) and

PROPOSITION 6.5. OSHP(jr2)(£OH{jr2) and OHB(jV2)qLOHP(jr2).

PROOF. Let X = {xn\neZ}, Y={yn\neZ}, K(xn9 yn) = 1 and K(xn.l9 yn)
= - 1 for w e Z and K(xn, ym) = 0ifmΦn+l, n. Then G = {X, Y, K} is an infinite
graph. Let φ(yn9 t) = cnt (cn>0),neZ, and γ = 0. Then § = [G, ψ, y]
We easily see that

( i ) ξ)£
(ii) § e OSHP(JV2) as well as § e ^ H P C ^ ) if and only if

00 00

n=l M = - i

(iii) § e 0HB(jr2) if and only if Σ£=-oo c"1 = oo.
Then the assertions of the proposition immediately follow.

COROLLARY. OSH{jr2)φθSHP{jr2) and 0H(jr2)φ0HP(jr2).

REMARK. The quasi-linear networks given in the proofs of Propositions
6.2, 6.3, 6.5 all belong to ^\ (see, Remark 5.2), and hence provide examples to
show that all inclusion relations in (5.9) are strict.

PROPOSITION 6.6. 0SHP{Jf)φ0HE{JιΓ}.

PROOF. Let G be as in the proof of the previous proposition and let φ(yni i)
= \t\n2t, neZ, 7 = 0. Then § = [G, φ, y\eJf (but SζέΛ^). Let veSHP(ξ>)
and put

K = \v(xn) - φe l l_ 1)| a{ι<*JI) - KxM-!)}, n eZ.

Then ί?π_fcn+1 for all neZ. It follows that υ cannot be non-negative unless bn

are all zero. Hence §e^SHP( ^ ) On the other hand, if u(xn) = n for all neZ
and M is linear on each Syn, then u e HD(ξ>) = HE(ξ>). Hence §<£ 0HE(Jf).

COROLLARY. O f l D(^Γ)^OH D P(^) and OH£(^r) ̂  0HEP(jr).

PROPOSITION 6.7. 0HB(jr) φ OHEP(JV).

PROOF. Let G be as in the proof of Proposition 6.5 (and Proposition 6.6),
let
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Ϋ2U teR, n = 0, 1, 2,
Φ(yn,t) ,

n2t, teR9 n = - 1 , -2 ,

and γ = 0. Then $ = [G, φ9y]eJT (§ ^^ΓJ . If u e if(£), then

= m 2 { w ( x j - t φ c ^ ) }

for all n = l, 2, and m = - l , - 2 , . If ueHB(ξ>), then M(XO)-M(X. 1) = O,

and hence u = const. Therefore §eOHB(jV). On the other hand, if we define

«oby

n = - l , 0 , l , .

n = - 2 , - 3 , . . ,

then M0 e HDP($) = HEP($). Hence § <£ OHEP(J^).

COROLLARY. O H I ) p(^)^O f f Z > i B (^) <md O H £ P ( ^ ) ^ O H £ β ( ^ ) .

§ 7. FH-spaces on differentiable manifolds

In this section, we are concerned with FH-spaces defined on C^manifolds.

Let β be a connected, σ-compact (or, equivalently, para-compact), non-

compact C^-manifold of dimension d (^1) and let {(Vλ9 χλ)}λeΛ be a locally finite

system of coordinate neighborhoods such that each Vλ is relatively compact and

VχcUχ for some coordinate neighborhood (Uλ9 χλ) such that χλ\Vλ = χλ. Letξ

be a positive Radon measure on Ω such that dξ = hλdμλ on Uλ for each λeΛ

with a positive C1-function hλ on Uλ9 where μλ is the measure on Uλ induced by

χλ from the Lebesgue measure on Rd. Next, we consider a system {ψλ}λeΛ of

functions ψλ: χλ(Vλ) x Rd->R satisfying the following conditions:

(ψ.O) If Vλ n Fλ, ̂  φ, then for each z e F λ n Vλ. and τ e Rd,

where JJ'(z) is the Jacobian matrix of the transformation χλ°χj^ at χλ>(z). (This

means that {ψλ}λeΛ defines a real function on the cotangent bundle over Ω.)

(ψΛ) ψλ(x9 τ ) ^ 0 , ψλ(x, 0) = 0 and ψλ(x, τ) = ψλ(x, - τ ) for all λ e Λ, x e χλ(Vλ),

τeRd.

(ψ.2) For each λeΛ and xeχλ(Vλ), ψλ(x, τ) is strictly convex and continuously

differentiable in τ e Rd.

(ψ.3>) For each λeΛ and τ e R d

9 Γτιj/λ( , τ) is measurable on χχ{Vj).

(ψ.4) With some p > l , the following holds: for each λeΛ there are constants
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, βλ>0 and functions 0 A eί/ ' (χ A (F A )) , bλeLP"(χλ(Vλ)) with

max (</,/?)/(/?- 1) ύpΦd t d/p + ε' if p ^ d (ε'> 0)

P" =
i f ( [ 1 if

such that

(Fτψλ(x, τ), τ> £ /?A|τ|' - ftA(x)

for all λ e Λ, x e χA(FA) and τeRd, where < , > denotes the ordinary inner

product in Rd.

(ψ.5) For each λeΛ and for any positive numbers δ, p such that 0<<5<l<p,

there are r = r(λ, <5, p ) > l and η = η(λ, δ, p)>0 such that if δ^max(|τ |, | τ ' | )^p

then

(Γ t Wx, τ) - ΓA(x, τ'), τ - τ'> ^ ιj|τ - τ ?

forallxeχA(7 λ).

Finally, let Γ: Ω x R-»R satisfy (Γ.1)~(Γ.3) in § 1 and

(Γ.4) With jp>l and pw given in (\j/A)9 for each λeΛ there is eλ6Lp"(χλ(Vλ))

such that

for all Λ e yd, x e χλ(Vλ) and ί e R.

With p > 1 given in (φΛ)9 let X = WfcS(O) n Lfoc(Ω), i.e.,

X = {feLgβ(O) I IΓί/oχl1)! e ^ ( Z Λ ( ^ I ) ) for every λeΛ}.

By (ψ.0)~(^.4), w e s e e ^ a t

(7.1) Ψ(f)(z) = ^(χ A (z ) , FC/o/I1) (χλ(z))) for z e KA

defines a function belonging to Lfoc(Ω) for each/e X.

The class of ξ> = {Ω, ξ, X, Ψ, Γ} defined as above will be denoted by

Then we have

PROPOSITION 7.1. i^cz^, i.e., each ξyei^ is an FH-space. Furthermore,

each §e-T satisfies (X.3), (D) and (H.2) in %3.

PROOF. Conditions (X.I) and (X.3) for X are obviously satisfied. Con-

ditions (ΨΛ) and (Ψ.2) for Ψ are immediate consequences of (φ.l) and (7.1);

and (ΨΛ) follows from (^.2). Since Γ(/oχj1) = 0 a.e. on the set {x € FA|/(x) = 0}
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if feX (cf., e.g., [3, Theoreme 3.2]), (Ψ.3) and (X.2) are seen to be valid. By
virtue of (ψ.3) and (^.4), we see that (Ψ.5) is satisfied with

(7.2) vψ(f; g)CO = <rτφλ(χλ(z)9 Fί/ozi1)(&(*))), rfrn1)(&(*))>

for z G Vλ. From the definition of X and (7.2), condition (D) is easily verified.
By applying the standard variational method (see, e.g., [8, Chap. 5, Theorem

2.1]), we can show that any relatively compact open set is resolutive. Thus
condition (R) is satisfied. Condition (H.2) follows from [12, Theorems 5, 6 and
9] in view of (ψA) and (Γ.4).

Thus, what remains to show is the verification of (H.I), which will be given
in the Appendix.

Conditions (A2) and (JJ) for §eΊΓ may be written as follows:

(A2)φ There is C>2 such that

ψλ(x9 2τ) ^ Cψλ(x, τ)

for all λ e Λ, x e χλ(Vλ) and τ e Rd.
(A f)φ There is C* > 2 such that

for all λ e Λ, x e χλ(Vλ) and τ

Thus if we put

irχ = {§ e ^ I § satisfies

and

^ 2 = {$> e ^ i IS satisfies ,

then ^ 1 = y /*n^' 1 and y1 = ψ%ς\^1 by virtue of Proposition 7.1. Hence,
inclusion relations (2.4), (4.8) and (5.8) are valid with y , y t and ^ 2 i n the place
of ^*, ^ Ί and ^*2> respectively.

REMARK. If Ω is a Riemannian manifold with Riemannian metric
(gij), ξ is the corresponding volume element, X=Wl'ol(Ω) f)L£c(Ω), φλ(x9 τ) =
ZgUtoxfij on Fλ and Γ(x, 0 = P(x)*2 with PeLfoc(Ω) (^f>d/2, ^^1), P^O,
then S = {0, {, X, !P, Γ } e ^ 2 , where Ψ is defined by (7.1) from the above
{ΨλϊλeΛ I n ^is case, /f(§) is the space of weak solutions of Au=Pu (A: the
Laplace-Beltrami operator), and thus the classification theory given in [5], [9]
as well as the classical classification theory of Riemann surfaces are included in
the classification theory for Ψ*2. In particular, non-inclusion relations

(7.3)
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(7.4)

(7.5)

(7.6)

are known; in fact, (7.3), (7.5) and (7.6) are classical (see [11, Chap. Ill, 4H]

for (7.3), [11, Chap. IV, 3C] and [11, Appendix 3A] for (7.6); also see [10]) and

(7.4) is shown in [10].

As for y , modifying the proofs of Propositions 6.6 and 6.7, we obtain

PROPOSITION 7.2. OSHP(r)φ OHE{r) and OHB{r)φ OHEP{r).

PROOF. Let Ω = R, ξ be the Lebesgue measure on R,

X = {/: R->R I locally absolutely continuous and/' eL2

o c(R)},

Γ(x, ί) = 0,

f (2 + x2)-1^2**2, if | τ | £ l , x e R

Ψo(x, τ) = I
[ 2"1 |τ|2 + (2 + x2)"1 - 2"1, if |τ| > 1, x e R

and

ίι/Ό(x, τ), if x ^ O , τ e R
Ψi(x, τ) =

l2"1(l + x2)|τ|2, if x < 0 , τeR.
Then, {Ω,ξ9X9Ψ09Γ}eOSHP(r)\OHE(r) and {Ω, ξ, X, ψl9 Γ} eOHB(^)\

OHEP(^X where Ψ0(f) = ψo( , /') and Ψ^f) = ψt( , /'). Note that these spaces

satisfy (\j/A) and (ι^.5) with p = r = 2.
APPENDIX. In order to verify (H.I) for δ e ^ , it is enough to prove the

following theorem.

THEOREM A. Let Ω be a bounded open set in Rd and ξ be the Lebesgue

measure on Rd. Suppose ψ: ΩxRd-^R satisfies conditions (^.1)^(^.5) with

{ΨλϊλeΛ^ίΨ} (Kλ=^> Xx = t n e identity mapping) and Γ:ΩxR-*R satisfies

(Γ.1)-(Γ.4). Let ξ> = {Ω, ξ, X, Ψ9 Γ}, where X = Wl&Ω) n Lfoβ(Q) with

p>\ given in (ι/r.4) and Ψ(f) = ψ(-, Pf) for feX. If {un} is a uniformly

bounded convergent sequence of ^-harmonic functions on Ω9 then u = limπ_>0Oun

is ξ)-harmonic on Ω and\ ^(Myί^liminf,,^^ \ Ψ(un)dξ for any compact set
J K J K

K in Ω.

A similar result is obtained in B. Calvert [2]. But our assumptions, and

hence proofs, are slightly different from those in [2]. We prove Theorem A in

four steps.
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PROOF OF THEOREM A:

(I) \\ \Fun(x)\Pdx> is bounded for any compact set K in Ω.

This can be proved in the same way as [2, Lemma 2], and we omit the proof.

(II) For any compact set K in Ω,

, ΓuJ, Fun - Fum}dx -*0 (n, m -> oo).

PROOF. Let φ be a C^function with compact support in Ω such that φ^

and φ = 1 on K. Then,

f <VM-,Vuk\ Fl(un-u
JΩ

+ { Γ'(-,uk)(ua-um)φdx = 0
JΩ

for any k, n, m. Thus

= - ( < r χ , F«J - Fτ<K , F«J, Γ^>(«. - ujdx
JΩ

- f {Γ'( , un) - Γ'( , «„)}(«„ - nJtfΛc.

The last integral is non-negative. Hence, by (ι^.4) (α— αλ, α = αλ),

/ „ ^ α J f l(|m.|*-1 + IΓiiJ'-^lΓφl In. - ujdx

+ 2\ a\Fφ\\uu-um\dx

JΩ

£ Ψn + Jm) {\κ, \rΦ\P\Un -

+ 2^a\Pφ\\um-uM\dx9

where K' = Suppφ and Λ = {( J Γ M J ^ X I 1 ^ * , Jp*=jp/(p-l). Hence, by (I)

and Lebesgue's convergence theorem, we conclude that /ΛίW->0 (n, m->oo), from

which (II) follows immediately.

(Ill) For any compact set K in Ω,

[ \Fun - Fujdx -• 0 (n, m -> oo).
JK
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PROOF. Let 0<<5< 1 <p. Fix n and m for the time being and put

Eo = {xeK I \Vun{x)\ S δ, \Fum(x)\ ί δ},

E, = {x e K11 Fun(x)\ > p}, E\ = {x e K11 ΓMm(x)| > p},

E2 = K\(E0 U £ , U £1).

Obviously,

(A.I) ί \Γun-Fum\dx^2δξ(K).
JEo

By (I), there is M > 0 such that \ \Fuk\Pdx<>M for all /c. Then,
JK

pξiEJ g ί \Vun\dx g M'/ 'p !) ' " ' ,

so that ξ(E{)^ρ-'M. Similarly, ζ{E\)^p-PM. Hence

ί ( . \Vua - Fujdx £ [ \Fun\dx + [ ,\Fum\dx

ί ύ TMU'ttiEd + ξ(£i)}1/p* ^ 4MP1"".

By (^.5),

( |FMB - Fujdx
E2

\ <FM •, Γ H J - FM •, Fum), Fun - Γumy*dx
E2

where

h,m = ( < ^ ( - . FuB) - Γτψ( , FaJ, Fun - Fujdx.
J K

Hence, together with (A.I) and (A.2), we have

f \Vun - Fujdx ^ 2δξ(K) + AMpi-P + r 1 /

JK

for any n, m. Since /M>m^0 (n, m->oo) by (II),

limsup ί \Fun - Fujdx ^ 25ξ(K) +
n,m-»oo J K

Letting <5-*0 and p-^oo, we obtain (III).
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(IV) By (I) and pointwise convergence of {un}9 we see that u e W\^(Ω)

f\L™oc(Ω). By (III), we can choose a subsequence {unj} such that Funj->Fu

a.e. on Ω. Then

Fτψ(*> Fun.(x)) -> Γxψ(x> ?Φ)) a e o n Ω

by (ψ.2). On the other hand, by (I) and (ψΛ), {Γt^( , Funj)}j is bounded in

(Lp*(ω))d for any relatively compact open set ω such that ω c β , Hence, there

is another subsequence {umj} of {wΠy} such that Fτψ( 9 Fumj)\ω-> Γτ^( , Fu)\ω

weakly in (Lp*(ω))d for any ω as above. Hence

(A.3) ί <FtiK , Fiιm,), F<7>rfx-»f <Fτφ(', Fw), F^>dx

for any g e WltP(Ω) with compact support in Ω. On the other hand,

(A.4) [ Γ'( , iijflfdx -> ( F ( . , ύ)gdx
JΩ JΩ

for any g e L°°(Ω) with compact support in Ω by Lebesgue's convergence theorem.

Since

f (VM-, Pun), Vgydx + [ Γ'(.,ujgdx = 0
JΩ JΩ

for any g e X with compact support in ί2, it follows from (A.3) and (A.4) that

f <F tiK-, Fii), Fg>dx + [ Γ\ ,u)gdx = 0
JΩ JΩ

for any g e X as above, i.e., w is ^-harmonic on Ω.
Furthermore, given a compact set K, we could choose {unj} to satisfy

limf n % ) ^ = liminf( Ψ(un)dξ.

Since Ψ(unj)(x) = ιl/(x, Funj(x)) -+ φ(x9 Fu(x))=Ψ(u)(x) a.e. on Ω9 Fatou's lemma

implies

ί ?P(wyξ ^ l i m i n f (
JK π-^oo J

Added in proof: It is possible to prove Theorem A in the appendix without

condition (ψ. 5), so that this condition is not necessary for the discussions in §7.
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