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Introduction

In the classical classification theory of Riemann surfaces, the basic relations
involving classes of harmonic functions are given by

(€] O6 E Opp £ Onp & Opp = Opps

(see, e.g., [11] for notation and detailed account of the classical classification
theory). The same relations have been shown to hold for the class H of solutions
of the equation of the form

) du=Pu (P=0)

on, in general, Riemannian manifolds Q; furthermore, for the solutions of (2),
additional relations

(3) OHD = OHE = OHBE

hold, where E indicates the finiteness of the energy integral
4) San ul?dx + SnPuzdx (dx: the volume element)

(see, e.g., [9], [5D).

Here, we note that (2) is the Euler equation of the variational integral (4).
Thus we may generalize the above situation as follows. For simplicity, consider
the case where Q is a domain in the euclidean space R¢. Suppose the ‘‘Dirichlet
integral” of a function f is given in the form

®) DL = | wex, Pf()dx

with a function Y(x, 7): @ x R>R which is non-negative and convex in 7, and
the “‘energy” of fis given by

©) E[f] = DIf1+ | I(x, f()d
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with another non-negative function I'(x, f): @xR—R. The Euler equation
for the variational integral (6) is formally written as

@) —div P Y(x, Pu(x)) + Ti(x, u(x)) = 0,

which is an elliptic quasi-linear equation.

Let H be the class of all ‘‘weak solutions” of (7) on Q. Then, we may con-
sider classes HP, HB, HD, HE, etc. as in the classical case, where P means the
positivity, B the boundedness, D (resp. E) the finiteness of D[u] (resp. E[u])
which is given by (5) (resp. (6)). Also, Og may be replaced by Ogyp, where SH
means the class of ‘‘supersolutions” of (7). In this way, we can pose a problem
to find relations among null classes appearing in (1) and (3) in our general situa-
tion.

The same type of problem may be considered also for infinite networks; cf.
[13] in which the class Og; is discussed for a non-linear case. Thus, we shall try
to construct a theory on general locally compact spaces 2. Given Q, we fix a
positive measure ¢ on 2 and instead of i as described above we abstractly consider
a convex mapping ¥ of a subspace X of L{.(Q; &) into Li .(Q; &) such that
Y(f)=0 for all fe X, ¥(c)=0 for constants ¢ and ¥ has local property. Given
I': 2 xR-R as above, we obtain a configuration $={Q, ¢, X, ¥, I'}. Such a
configuration may be regarded as a non-linear functional space (cf. [7]), which is
of local type.

In order to obtain a satisfactory theory, we shall place several conditions
under which (weak) solutions of the Euler equation corresponding to the varia-
tional integral

{ wnae+ (e, na

behave like classical harmonic functions, or, at least satisfy some of the properties
which are assumed in the theory of (non-linear) harmonic spaces (cf. [1]). Thus
we shall call § a functional-harmonic space, or simply an FH-space.

We shall see that the relation Ogzz<=Oyp cannot be expected for a general
class of FH-spaces; in fact we shall see (in § 6 and §7) that there are no inclusion
relations between Ogp and Ogp. In §4 and §5, we give restricted classes of FH-
spaces for which (1) and (3) are valid. Essential condition for an FH-space to
belong to this class is the so called Orlicz’ (4,)-condition: ¥Y(2f)<C¥(f) (C:
const.).

As special cases, we treat infinite networks in §6 and the case where Q is a
differentiable manifold in §7.
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§1. Functional spaces

Let Q2 be a locally compact Hausdorff space which is connected, o-compact
and non-compact. We consider a positive Radon measure £ on Q whose support
is the whole space Q.

All functions considered in this paper are real-valued ¢-measurable functions
on Q and two functions which are equal £-a.e. are identified. Thus, for a &-
measurable set 4 in Q, “f=g on A” (resp. “f=g on A”’) means that f(x)=g(x)
(resp. f(x)=g(x)) for almost all x e 4 with respect to £&. For a function f on £,
let Suppf denote the support of the measure fdé. We denote by L3, () 1=p
< ) the ordinary Lebesgue classes with respect to £&.

We consider a space X of functions on Q satisfying:

(X.1) X is a linear subspace of L{ (Q) containing all constant functions;
(X.2) X is closed under max. and min. operations.

Next, we introduce a mapping ¥: X—L},.(Q) satisfying the following con-
ditions:

(?.1) ¥(c)=0 for all constant functions c;

(P.2) Y(—f)=Y(f) for all feX;

(?.3) (Local property) Y(f)=¥(g) on the set {x e Q|f(x)=g(x)};
(?4) WYisconvexonlX,i.e.,

Yf+ (1 —ng) =1t¥(f) + (1 — O¥(9)

for te[0, 1], f, g € X; the equality holds for some (and hence for all) 0<t<1
only when f=g +const.;
(P.5) For any f, geX, there is F P(f; g) € L},.(2) such that

(1.1) lim Y’(f+tgt) — ¥ _ FY(f; g9) a.e. on Q.

t=0

REMARK. By convexity of ¥, V P(f; g) is uniquely determined by f and g,
and Lebesgue’s convergence theorem implies that the limit (1.1) can be taken in
the topology of L1, ().

Finally, we consider a mapping I': 2 x R—»R (R: the real numbers) satisfy-
ing:
(r.1) r(x,6z0,r(x,0=0and I'(x, —t)=I'(x, t) for all xeQ, teR;
(I'2) For each xe Q, I'(x, t) is convex and continuously differentiable in teR;
aa—l;(x, 1) will be denoted by I"(x, f);
(r'.3) ForeachteR, I'(-, t)eLL(Q).
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We call 9={Q, &, X, ¥, I'} a functional space if X, ¥, I satisfy the above
conditions. By (I'.3), we see that I''(-, f) e LL,.(Q) for any fe X, where

re,NeE =rx,f(x).

Given a ¢-measurable set A in Q, ue X is said to be totally $H-harmonic (resp.
totally $H-superharmonic) on A if

(1.2) Sn P W(u; g)de + gn (-, u)gdé =0 (tesp. = 0)

for any g € X such that Suppg is compact, g=0 on Qand g=0on Q\ A. In case
A= Q, we shall omit the word ‘‘totally”. The equality (1.2) gives the Euler equa-
tion for the variational integral

footnaz = (wenag + (re., naz.
Here
Bolf) = V() + I, f)

belongs to Li,.(@Q) for any fe X by virtue of (I'.3) and the equality I'(x, t)=
S I''(x, s)ds.
(V]

Lemma 1.1. (a) P(f)=0 for all feX.

(b) Y(f)=0 if and only if f=const.

(¢) t—-Y(tf) is monotone non-decreasing for t=0.

d) Y(f+c)=Y(f) for fe X and constants c.

) g—V¥(f; g) is linear.

() P¥(f; f—9)2¥(f)—¥(9); in particular VY(f; )= ¥(f).

(@ VY(f; f—g)=F¥(g; f—g); the equality holds only when f=g+ const.

(h) FP¥(c; 9)=V¥(f; c)=0 for f, g€ X and constants c.

(i) FYP(f; g)=0 on the set {x € 2|g(x)=0}.

() PY(fi; 9=V¥(f2;9) on the set {xeQ|fi(x)=f(x)+c} for any
constant c.

Proor. (a), (b) and (c) are easy consequences of (¥.1), (¥.2) and (¥.4);
and (e), (f) and (g) follow from well-known properties of convex functions (cf.
[4, Chap. 1, §5]). By (?.1) and (¥Y.4), Y(f+o)Zt¥P(@~1f) for O<t<l. For
any relatively compact £-measurable set A, sn—»X Y (sf)dé& is a convex function on

A
R, and hence it is continuous. Hence, letting t—1, we obtain P(f+c)=< Y(f).
Then (d) follows immediately. (h), (i) and (j) are consequences of (d) and (7.3).

The next lemma is an immediate consequence of (I'.1) and (I".2):
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LeEMMA 1.2. For each xe€Q, I''(x, t) is monotone non-decreasing in teR,
I''(x, )20 for t=0 and I''(x, )<0 for t<0.

ProrosITION 1.1. Let A, A’ be é-measurable sets in Q.

(@) If u is totally H-harmonic (resp. $-superharmonic) on A and v=u
on A'c A, then v is totally H-harmonic (resp. H-superharmonic) on A'.

(b) Non-negative constant functions are $H-superharmonic on Q.

(©) Ifuistotally H-superharmonic on A, then so is u+c for any non-nega-
tive constant function c.

Proor. (a) is easily seen from the definition and Lemma 1.1(j). (b) and
(c) follow from Lemma 1.1(h), (j) and Lemma 1.2,

ProrosiTION 1.2. Let A be a relatively compact £-measurable set in Q.
If u and —v are totally H-superharmonic on A and u=von Q\ A, thenu=von Q.

Proor. For simplicity, let &=®, and FO(f; g)=F¥(f; 9)+I'(-, f)g.
Take g=v—min(u, v). Then geX, g=0 on 2 and g=0 on Q\ A. Hence

S po(u; g)dé 2 0 and g P &(v; g)de < 0.
(7] (7]

On the other hand, by Lemma 1.1(g), (i), (j) and Lemma 1.2,
0 = 7 o(v; g) — P P(min(u, v); g) = FP(v; g) — P D(u; g)

on Q. Hence

0= Sn{m(v; g) — P &(min (u, v); g)}de

= g V&(v; g)dt — S P d(u; g)dt <0,
Q o2

so that F&(v; g)=rF ®&(min (u, v); g). It follows that F ¥(v; g)=F ¥(min (u,v); g).
Hence, by Lemma 1.1(g), v=min (4, v)+ ¢ (const.). Since v=min (u, v) on 2\ 4
and é(Q2\A4)>0,¢c=0. Hence, u=v on Q.

COROLLARY. Let A be as in the above proposition. If u, v are totally
$H-harmonic on A and u=v on Q\ A, then u=v.

ProPosITION 1.3. Let A, A’ be £-measurable subsets of Q such that A< A’.
If u is totally H-superharmonic on A', v is totally H-superharmonic on A, u=v
on A'\ A and u=v on A, then v is totally $H-superharmonic on A'.

ProoF. Let FP(f; g) be as in the proof -of the previous proposition. Let
g € X be such that Suppg is compact, g=0on 2, g=0on Q\4’. For each.p>0,
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put g,=min(g, p(u—v)*), where f*=max(f, 0). Then g,€X, Suppg, is com-
pact, g,20 on Q and g,=0 on 2\ A. Hence

(1.3) SDM(”; g,)d¢ 2 0.

Put A4,={xeQ|g(x)>pu—v)*(x)}. Then A,cA’,g=g, on Q\A, and g,
=p(u—v) on A,. Hence, using (1.3), Lemmas 1.1 and 1.2, we obtain

{,7o0; gz 2 | _row; gag - | row; g)de
={ rowi gae—p( row;u-va
A, Ap
2( row; e -p( row;u- v

= { rows gz - | raw; g az.
4, Ap

Since u is totally $-superharmonic on 4,, g—g,20 on Qand g—g,=00nQ2\ 4,
we have

( row gae=z( row g
A, Ap

Therefore,

[,row a2 (row:g) - row; gyae
Q A,

(  wee; ) -row gy,

A NA*

where At={xe A’ |u(x)>v(x)}. Since FP(v; g)—FV P(u; g) is {-summable on
Suppg and A,n A* | @ (p—0), the last integral tends to 0 as p—oo. Thus
SQV ®(v; g)dé =0, and hence v is totally H-superharmonic on A4'.

COROLLARY. Let A be a &é-measurable subset of Q. If u, v are totally
$-superharmonic on A, then so is min (u, v).

Proor. Put w=min(u, v) and A;,={xe A |u(x)>v(x)}. Thenw=von A4,,
so that w is totally $-superharmonic on A,. Since w=u on A\ 4; and w<uon
A, the above proposition implies that w is totally $-superharmonic on A.

§2. Functional-harmonic spaces and classification I

Let $={Q, ¢ X, P, I'} be a functional space. A relatively compact &-
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measurable set 4 in Q will be said to be resolutive (with respect to §) if for any
feX there exists g, € X such that

2.1 go=f on Q\A, and
2.2) SA B(go)dE = inf{SAqs,D(g)dg[ geX,g=f on Q\A}.

The following proposition shows that g,e X satisfying (2.1) and (2.2) is
uniquely determined by f and A4; we shall denote it by R(f; A).

ProOPOSITION 2.1. Given a relatively compact &-measurable set A in Q
and fe X, there is at most one g, € X satisfying (2.1) and (2.2). Furthermore,
go has the following properties (if it exists):

(@) g is totally H-harmonic on A;

(b) If fis totally H-superharmonic on A, then g,= f;

(c) If f is totally H-superharmonic on a E-measurable set A’ containing
A, then so is g, on A'; :

(d min(0, inff) < go < max(0, supf).
2\4 2\4

PrOOF. Let &=P, and FO(f; g)=FP¥Y(f; g)+I'(-,f)g. For any geX
such that g=0 on 2\ 4 and for any teR,

[ oo = { oo + iz,

It follows that S P d(gq; g)dE=0, or g VPd(go; g)dé=0. Hence g, is totally
A 2]

$-harmonic on A. Thus the uniqueness of g, follows from the corollary to
Proposition 1.2. Property (b) is a consequence of Proposition 1.2, and property
(c) follows from (b) and Proposition 1.3. To prove (d), put

m = min (0, inff), M = max (0, supf)
2\A 2\A4
and
g1 = max(m, min(go, M))
Then g, €X,g;=fon 2\4 andS cP(g,)d&ég &(go)dé. Hence, by the unique-
A A

ness of g,, g, =49, so that (d) is valid.

Now, we consider the following conditions for $:

(R) There is an exhaustion {Q,} of Q such that each Q, is a resolutive open set
in Q.
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Here, an exhaustion means a sequence {Q,} of relatively compact open sets such
that 8,=Q, ., for each n and U Q,=Q.

(H.1) 1If {u,} is a locally uniformly bounded, monotone non-decreasing sequence
of non-negative functions in X such that each u, is totally $-harmonic on Q,
for some exhaustion {Q,} of @, then u=Ilim,_, , u, is $-harmonic on Q and

S W(u)d¢ < lim infg W(u,)de
K n—+co K

for any compact set K in Q.

A functional space § is called a functional-harmonic space, or simply an
FH-space if it satisfies (R) and (H.1). The class of all FH-spaces will be denoted
by &#.

Given $={®, £, X, ¥, I' ¢ #, we consider the following sets of functions:
SH($) = {u e X | u is $-superharmonic on 2},
H($) = {u e X |u is $-harmonic on 2},
SHP($) = {ue SH($)|u = 0 on @},
HP($) = H(9) n SHP(H),
SHB(S) = {ue SH($)|u is bounded on £},
HB($) = H(9) n SHB(H),

D) = {ue H®)|{ Pt <},
HDP($) = HD($) nHP(),

HDB($) = HD($) n HBE(S),

HE®) = {ueHS)|| 2qwdt < o],

HEP(9) = HE(9) n HP(9),
HEB($) = HE($) n HB(9).

Let Q($) be any one of the above sets and & be a subclass of #. We denote
by 0,(9) the class of all § e such that every element of Q($) is a constant
function. The following are trivial inclusion relations:
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Osup(F) < Opp(F) < Oppp(F) < Ogpp(F)

U U 1] u
(2.3) Osp (¥) € 0y (¥) = Oyp (F) < Ogg (¥)
n n n n

Osup(F) = Ogp(F) < Oypp(F) < Ogps(F).
THEOREM 2.1. Ogup(F)=O0gyzp(F).

ProoF. Suppose $HeOgup(F) and ueSHB(H). Let |[u|<M. Then
u+M e SHP(H) by Proposition 1.1(c), and hence u+M is a constant, so that
u is a constant. Hence e Ogyp(F). Conversely, suppose $ e Ogyp(F) and
ve SHP(H). If v is non-constant, then there is ¢>0 such that min (v, ¢) is non-
constant. Since min (v, c)e SHB($) by virtue of Proposition 1.1(b) and the
corollary to Proposition 1.3, this is a contradiction. Hence $ € Oggp(F).

ReMARK. The above proof shows that this theorem remains valid for the
class of functional spaces.

THEOREM 2.2. OHP(‘Q-)COHB(?)’ OHDP('?)COHDB('?) and OHEP(‘g)C
Oues(F).

Proor. Given He &, let &=, for simplicity. By condition (R) we can
choose an exhaustion {Q,} of Q such that each Q, is resolutive. Let ue HB(H);
|lu] M. Put

v, = R (max(u, 0); Q,) and w,= R (min(u, 0); Q,),

n=1,2,---. Since —max(u, 0) and min(u, 0) are $H-superharmonic on Q, —v,
and w, are totally $-harmonic on Q,, $H-superharmonic on Q,

max(u,0)<v, <M and - M =Zw, < min(u, 0)

by Proposition 2.1. It also follows from Propositions 2.1 and 1.2 that {v,} is
monotone non-decreasing and {w,} is monotone non-increasing. Hence, by
condition (H.1),

=limv, and w=limw,

n—>o0 n—>o

are H-harmonic on £, i.e., v, —we HP($). Since S d)(v,,)dégg d(max (u,
Qn Qn
0))d¢ and v,=max (u, 0) on Q\ Q,,
[, Peoae
Q2

§§ W(max (u, 0))d¢ +§ {I(-, max(u, 0)) — I'(-, v,)}dé
n Qn
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ég W(u)de
(2]
and
( @z <{_omax(u, 0)de < | o
(1] (7] (2]
Similarly, we obtain
[ oz < wrde ana | owwade s | ew
[¢] [¢] n (]

Hence by (H.1), we see that u e HDB(H) (resp HEB(9)) implies v, we HDP($)

(resp. HEP(9))
Now, suppose € Oyp(F) (resp. Oypp(F), Ogep(F)) and u e HB(H) (resp.
HDB(9), HEB(9)). Then v and w are constant functions. Since

u — w = max (4, 0) + min (¥, 0) — w = max(u, 0)

and u —w is H-superharmonic on £, it follows from Proposition 1.2 that u—w=v,
for all n, so that u—w=v. Similarly, we see that —u+v>=—w. Hence u=v+w
=const. Thus € Ogxp(F) (resp. Oy pp(F), Oxps(F)).

Combining (2.3), Theorems 2.1 and 2.2, we obtain

Osy (F) € Oy (F) < Ogp (F) < Oy (¥F)

n n n n
2.4 Ospp(F) = Ogp(F) = Oypp(F) < Ogygp(F)
I n n n

Osup(F) < Opp(F) < Oypp(F) < Oygp(F)

We shall see in § 6 and § 7 that all the above inclusion relations are strict and
that other inclusion relations cannot be expected.

§3. Auxiliary conditions and their consequences

In order to obtain a class of FH-spaces for which Oy p=0ypp and Ogg=
Opep hold as in the classical case, we consider the following auxiliary conditions
for §={Q, ¢, X, ¥, I'}:

(X.3) For any compact set K in Q and an open set w> K, there exists heX
such that Supp h is compact and contained in w, 0<h<1on Q and h=1 on K.
(D) X is an algebra and

PY(f; 9192) = PY(f; 91)9. + PY(Sf; 92)94

for all f, g,, g, €X.
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(H.2) If {u,} is a monotone non-decreasing sequence of non-negative functions
in X such that each u, is totally $-harmonic on Q, for some exhaustion {Q,} of

Q, lim,_, ,u,(x)<oco on a set of positive £-measure and {S !P(u,,)dé} is bounded
K

for any compact set K, then {u,} is locally uniformly bounded.

(4,) There is a constant C>2 such that

¥(2f) < C¥(f)
for all fe X.

Here we give some consequences of these conditions, which will be used
in the next section.

LemMmaA 3.1. If (4,) is satisfied, then

@ Y(f+g9) = CIH{Y() + ¥(9)} for f,geX;

() [PP(f; 9l = (C—2P(f) + ¥(g) for f, geX;

) PP 9l < p~(C—2)P(f) + Cp?~1¥(g) for f,geX, any function
p21 and any integer p such that C<2°.

Proor. (a) follows immediately from the convexity of ¥ and condition
(4,). By Lemma 1.1 (f), we see that FY(f;)SYQ2f)—¥Y(f). Hence, by
(4,) and Lemma 1.1 (f) again, we obtain (b). To show (c), first suppose p=1
is a constant. If 27~1<p <27 (n: integer), then by (4,)

Y(pf) = ¥(2"f) = C*¥(f) = CpP¥().
Hence, by (b),
pIP¥(f; 9l = IPP(f; pg)l < (C —¥(f) + Cp?¥(9).
Then, we see easily that this inequality holds for any function p=1.

ProPOSITION 3.1. Assume (D) and (4,). If there is an increasing se-
quence {f,} of non-negative functions in X such that Suppf, is compact for each

n, lim, , . f,(x)= 0 a.c. on @ and {S ( f,,)dé} is bounded, then § € 0y p(F).
0
Proor. Let u e HD($) and put
u,, = max (— m, min (u, m)) (m > 0).

Then u,,€X, |u,| <m and F¥(u; u,)=0 for each m by Lemma 1.1. By (D),
u,f,€X. Since Supp(u,f,) is compact,

[rees unfaag + {rc., wunpde =o.
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Since I''(-, u)u,, =0, the second integral is non-negative. Thus, using (D) and
the above lemma, we have

[, 7e@s uafde s - 7o
< m 1P¥; )l
smic-2 wwae+ | v,

Since f,, 1t o a.e. and {g P( f,,)dé} is bounded, it follows that F¥(u; u,)=0 on
Q2

Q, so that P¥(u; u)=0 on the set {xeQ||u| <m}. Since m is arbitrary, this
means that F¥(u; u)=0, so that Y(u)=0. Hence u=const. by Lemma 1.1
(b). Therefore $ € Oy p(F).

LeEMMA 3.2. Assume (4,). Let A be a &-measurable set and f,, geX,
n=1,2,---. If

S W(g)de < o and limS W(f,)dE = 0,
A n—-o JA
then
lim S PO(f,; 9)dé = 0.
n—o JA
Proor. By Lemma 3.1 (b),
[PY(fu; 9l £ t71(C = 2)¥(f,) + 7' ¥(tg)
for each t>0. Hence
timsup { 179(f,; 9ldt < 11 w(g)a

for any t>0. Since t7!¥(tg)<¥(g9) for 0<t<1 and 1 1¥(tg)-»0 as t—O0,
Lebesgue’s convergence theorem implies that t"’S Y(tg)dé—0 (t—0). Hence
A
we obtain the lemma.
LemMA 3.3. Assume (X.3), (D) and (4,) and let w be an open set in Q.

If {u,} is a monotone non-increasing sequence of non-negative functions in X
such that each u, is totally $-harmonic on w and lim,_, ,u,=const., then

lim Sx P(u,)dE = 0
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for any compact set K in .

Proor. Let c¢=lim,, u, Choose heX as in condition (X.3) for the
above w and a given Kcw. Let p be an integer such that C<2?. Then (u,
—c)h? e X by (D) and (u,—c)h?=00n Q\ w. Hence, u, being totally H-harmonic
on w,

S PW(u,; (u, — YhP)dE +S (-, u) (u, — YhPdE = 0

for each n. Since u,—c=0 and u,=0, I''(-, u,)(u,—c)=0. Hence, using (D),
we have

S V¥(u,; u)hrdé < — pS P ¥(u,; h)(u, — c)hP-1d¢.
Therefore,

G.1) gw W(u,)h?dE < Sm” W(u,; u,)hede

< B, 17 P 1)1y — he-1de,
where A,={x € w|h(x)>0}. For xeA4,, put
Pa(x) = max {1, 2(C — 2)p(u,(x) — c)h(x)~'}.
By Lemma 3.1(c),
17 ¥ (un; W) (%) = pa(x)™H(C — 2)¥(u,) (x) + Cp(x)P~ ¥ (h) (x)
for xe A,. Thus, by (3.1), we have

(3.2) gw‘l’(un)h”dé = ZPCSA pa~ W(h) (u, — c)h?~1d¢.

It is easy to see that {pZ~1¥(h)(u,—c)h?~1} is uniformly bounded on A4,, which
is relatively compact. Hence Lebesgue’s convergence theorem implies that the
right-hand side of (3.2) tends to zero as n—oo. Thus

lim S W, hed = 0,

n-—*0

which implies the assertion of the lemma.

§4. Classification II
Now, let &, be the subclass of &# consisting of all § e & which satisfy con-
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ditions (X.3), (D), (H.2) and (4,). The relations (2.4) are valid with &, in the
place of &, since F;cF.

THEOREM 4.1. Ogpp(F,)=0gxp(#,) and Oggp(F 1)=0pe(Fy)-

ProoF. We have to show
Onpp(# 1) € Oyp(F,) and Oggp(F ) < Oge(F ).

Suppose $ € Ogpp(F 1) (resp. € Oypp(F 1)) and HE Oy p(F,) (resp. & Oyp(F ).
Choose u € HD($) (resp. HE($)) which is non-constant. Let {Q,} be an exhaus-
tion of Q such that each €, is resolutive and put

v, = R(max(u, 0); 2,) and w,= R(min(u, 0); Q,).
By Proposition 2.1, these are totally $-harmonic on Q, for each n, {v,} is mono-
tone non-decreasing, {w,} is monotone non-increasing, max (u, 0) <v,, min (u, 0)
Z Wy
[, 2oz < oymax(u, 0)d
and

Sn,. Do (w,)dE < Sn"%(min (u, 0))dé.

Put f,=v,—max(u, 0). Then f,eX, f,=0, {f,} is monotone non-decreasing and
each Suppf, is compact. By Lemma 3.1 (a),

( worar s S wopa + Sn W(max (u, 0)d¢ }.
As in the proof of Theorem 2.2, we see that
[, wenae = | waae
CJR n
Hence
( woae = cf v < .

Since $ & 0y p(F), Proposition 3.1 implies that

{({xe 2] limf,(x) < co}) >0,

so that
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(({xeQ|limv,(x) < o0}) > 0.
Hence by (H.1) and (H.2), v=I1im,_, ,, v, is $-harmonic and

S P()dE < liminfS P(v,)dE.
2 n—>o 2]

It follows thatS Y(v)dé< SQW(u)dé <oo (resp. S D, (v)dé < Sn Dy(u)dé < ), so
Q Q
that ve HDP($) (resp. HEP(9)). Hence v=const. Similarly we see that w

=lim,_, , w, is a constant. Then, by the same argument as in the last part of the
proof of Theorem 2.2, we derive a contradiction that u is a constant.

THBOREM 4.2. OHEB(y1)=0HE(ﬁ1)-

ProoF. By virtue of the above theorem, it is enough to show that Ogzgg(F ;)
COuep(F ). Let 9€O0yp(F,) and ueHEP(H). Put u,=min(u, m) for
m>0. Then u,€eX, u,,20, u,, is H-superharmonic on Q and

[, 2ot < | aqwae.

Q (2]

Let {Q,} be an exhaustion of Q such that each 2, is resolutive and put
vm,n = R(um; ‘Qn) .

By Proposition 2.1, 0=v,,,<u,, each v,, is H-superharmonic on £, totally
$-harmonic on @, and {v,,}, is monotone non-increasing. By (H.1), w,=
lim,_, , v,,, is $-harmonic on Q and

[, @owade < limint { @o(v,,de

< [, @oundt = { oqwie < oo.
Obviously, 0w, Zu,<m. Hence w,, e HEB(Y), so that w, is a constant for

each m.
Since v,,, is totally $-harmonic on Q, and v,,,=u, on Q\Q,, we have

@D PO = 00 E + (| TC 00, G = 0,00 = 0
Since w,, is a constant and $-harmonic on Q,

S TI(' > wm) (um - vm.n)dé =0,
Q
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which implies
@.2) [ 7C wad o = waddg = 0.

Now, by the convexity of I'(x, t) in ¢,
0= T'(-, Opn) (U — V) S T(-, ) — T'(+, Vprn)
ST, up) ST(, u)
and

S I(-, u)dé < o
0

since u e HE($). Since I''(-, v,,,)—>I"(-, w,) on &, it follows from Lebesgue’s
convergence theorem and (4.2) that

(4'3) lim S.Orl(' ’ vm,n) (um - Um_,,)df = 0.

On the other hand, sinceg Y(u,)déEs S Y(u)dé < o0, given >0 (e<1), there
Q2 2
is a compact set K in Q such that S Y(u,)dé<e. Applying Lemma 3.1(c)
AN\K

with p=¢~1/7, we have

(. 7 ¥ wie]

(4.4) < 81/7(C — 2) Smx P (0, )dE + e-tv—n/vcgm P(u,)dE

< sw{(c - 2)S Do (u)dE + c}.
2
Since v,,, decreases to a constant w, as n—»co, Lemma 3.3 implies that
lim,,_.wg Y(Vp,n)dE =0, and hence by Lemma 3.2, we have
K

lim S 70,5 up)dE = 0.

n—o JK
Hence, in view of (4.4), we obtain

(4.5) lim Sn P ¥(0n; )dE = 0.

n—»w

By (4.1), (4.3) and (4.5), we conclude that

lim SQV""(”"'-"; v, )dE = 0,

n—>

or



Classification Theory 351

(4.6)° lim Sn ¥(0,,,)dE = 0

for each m>0.
Since u is $-harmonic on €,

[, 79 = o + | T'C, )0 — 0,00 = 0.
Noting that I''(-, u) (4,,—v,,,) 20, we have

@7 7o wae < { rows o)z

By (4.6), for sufficiently large n, Sn Y, )dE<1 (m being fixed). Applying
Lemma 3.1 (c) with p= {gnq/(u,,,,,)de}_” ”( ifg T(v,,,,,,)déaéO), we obtain
(2]

g P v, )dE
0

< {Sn W(v,,,,,,)dc}” ? {(c - 2)Sn P(u)dé + c} .
Thus, by (4.6),
tim {7®Q; 0,048 = 0,

so that by (4.7),
SQ P®(u; u,)dE = 0.

Hence F¥(u; u,)=0 on Q (note that F¥(u; u,)=0 by Lemma 1.1). Since
this is true for any m>0, it follows that 7 ¥(u, u)=0, which implies that ¥(u)
=0, i.e., u=const. Thus the theorem is proved.

Summing up, we have obtained

Osu(#,) < Ox(#y)

n
Osup(#)) f Onn(#1)
] ] < Ogp(#Fy) < Il
4.8) Osps(#F 1) n Ogpp(#1) Ope(F1)
n ]

Oup(#F,) < Opps(#F,) < Ogpep(#F1)
I
Opep(F 1)
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The special cases in § 6 and § 7 show that all inclusion relations in (4.8) are.strict,
except

Oupp(F1) < Oypp(F4).

We do not know whether this inclusion is strict or not; for the class of linear
FH-spaces we have the equality (cf. [5], [6], [9]). In the next section, we shall
consider a subclass &, of &, which contains all linear FH-spaces, and show that

OHDP('gF 2)= OHDB(y z)-

§5. Classification ITI

We consider the following condition for ¥, which is the dual of (4,):

(4%) There is a constant C*>2 such that
C*P(2f) = Y(C*f)

for all fe X.

We denote by &, the class of all § e F, satisfying (4%). Then we have

THEOREM 5.1.  Oypp(F ;) =0y p(F ).

Proor. It is enough to show that

Oups(#2) = Oupp(F2)

by virtue of Theorem 4.1. Suppose $e€Oyps(#,) and ue HDP($H). Let u,,
{Q,}, v, and w,, be as in the proof of Theorem 4.2. Then

G (7 P = 4adE + [ T 00, O — w)E = 0
and

.2) SQV‘I’(u; Uy — Oy )E + Snr'(., ) (4, — O )dE = O.
Since SQV W(u; u,)dE20 and

F’(' ’ u) (um - vm,n) g rl(" vm,n) (um - vm.n)9

it follows from (5.1) and (5.2) that

G PV Ons 0ndE S {7V ) + 725 0, )}E.



Classification Theory 353

Applying Lemma 3.1 (c) with p=4C, we have
[ 17 003 walae
Q2
(5.4) < 4-1C-Y(C — 2)g W (0, )dE + 4v-lc»g W(u,)dé
2 Q2
< 4-IS P (0 )dE + 4v~1cvg P(u)de.
Q2 Q2

Note that g W(0,,,)dE < oo, since S W(u,)dE< S Yw)dE<w and v,,=u, on
Q2 Q Q
Q\Q,. Lemma 3.1(b) and condition (4%) imply

[P P(U; V) = 271C*|FP(u; 2C* 10, )|
< 271C*{(C - 2)%(u) + P(2C*1v,, )}
< 271CH(C — )P (1) + 27 1P (D, 0) s
so that
(17w vt

.5)
< 2-1C¥C — Z)Sn‘ll(u)dé + 21 an'(v,,,,,.)dc.

From (5.3), (5.4) and (5.5), it follows that {S ‘I’(v,,,',,)df} is bounded. Hence
Q n,m
by (H.1),

S W(w,)dE < lim infS W (o, )dE < oo,
o] n—»o0 2

so that w, € HDB($), which implies w,,=const.
Given €>0 (e<1), choose a positive integer ! such that S V(0 )dE Se2!1
2
for all m, n. Since Sn Y(u)dé < o0, there is a compact set K in Q such that

S P(u)dé < 2-1C*1(C — 2)te.
2K

By Lemma 3.1(b) and the repeated use of condition (4%) (cf. the computation
above yielding (5.5)) we obtain

(5.6) Y R

£
22
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On the other hand, by Lemma 3.3, lim,_, Sx YV, n)dE=0. Applying Lemma
3.1(c) with p=(SK Y’(v,,,_,,)df)ﬂlp for large n, we have

{79 e |

(5.7 < {SKY’(vm...)dé}" "{(c - 2)59 P(u)dé + C}

-0 (n—> ).

From (5.6) and (5.7) it follows that

lim S P (u; v,,)dE = 0.
(7]

n=+o0

Hence, by (5.2),
0= v uddz < { Pews o,)dE-0 (1o ),
(2] 0

so that P ¥(u; u,,)=0 on Q for each m. It then follows that u is a constant.

ReEMARK 5.1. The above proof shows that the equality Oyps=0gp can be
proved without using Royden boundary or Green potentials in the linear case

(cf. [6], [9D.
By (4.8) and Theorem 5.1, we obtain

Osp(F,) < 0x(F,y)

n n Oup(ZF2) One(F,)
(5.8) Ospp(F2) I Il
' ] S Opp(F3) < Opp(F3) < (Oppp(F2) )<\ Oppp(F2)
Osup(F2) Il 1

Opps(#2))  \Oups(#).

All inclusion relations (5.8) are known to be strict in the linear case (cf. the next
two sections).

REMARK 5.2. If we consider the class
Fi= {ﬁeﬂ‘lls I'(x, H)dé(x) < oo for every teR},
2

then, in almost the same way as in the proof of Theorem 4.2, we see that

Oupp(F1) < Oypp(F1).-
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Thus, in view of (4.8), we have

Osy(F1) < Ox(FY)
n n Opp(F1) = Oye(F1)
(5.9) OSHP('?'I) I ]

I < Ogp(F1) < Ogp(F1) < ( Oppp(F1)=0gpp(F1)
Osup(#1) I I
OHDB('afll) =0HEB(5;'1) .

§6. Quasi-linear networks

In this section, we consider a special class of FH-spaces, namely, the class of
quasi-linear networks.

Let X and Y be countable (infinite) sets and let K be a function on X x Y
satisfying the following conditions:

(K.1) The range of Kis {—1, 0, 1};

(K.2) For each yeY, e(y)={xe X | K(x, y)#0} consists of exactly two points
x, and x, and K(x;, y)K(x,, y)=—1;

(K.3) ForeachxeX, Y(x)={ye Y| K(x, y)#0} is a non-empty finite set;

(K.4) For each x, x’ € X, there are xy,--, x,€ X and y,,-:*, y;+1 € Y such that
e(yp)=1{x;-1, x;}, j=1,--, k+1, with xo=x and x;,;=x".

Then G={X, Y, K} is called a (connected, locally finite) infinite graph (cf. [13]).
For each yeY, we consider a set S, and a bijection j, of S, onto the open
unit interval (0, 1) and let

Q=Qyyn=XUUS,
yeY

be a disjoint union. A topology is introduced on Q as follows: wcQ is open
if (and only if) j(w n S,) is open in (0, 1) for each y, j(w n S,) contains an interval
of the form (0, &) (¢>0) in case x € w and K(x, y)= —1 and it contains an interval
of the form (1—¢’, 1) (¢'>0) in case xew and K(x, y)=1. Then Q is a con-
nected, non-compact, g-compact, locally compact Hausdorff space. For each
yeY, j, is extended to be a homeomorphism of S,=S, U e(y) onto [0, 1].

Let u, be the measure on S, induced by j, from the Lebesgue measure on
(0, 1) and let v be the counting measure on X. We define £=¢&; by

E=v+ 2 u,
yeY

which is a positive Radon measure on 2 whose support is the whole space €.
Let
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f is continuous on @, foj;! is }

X=XG={f:Q—>R . . .
Lipschitz continuous on (0, 1) for each y

It is easy to see that this X satisfies conditions (X.1) and (X.2) in §1, and also
(X.3) in §3. If feX, then (foj;!) exists a.e. on (0,1). For simplicity, we
write f'(z) for (foj;1)'(j,(2)) in case z€ S,.

Next, we consider two functions ¢: Y xR—R and y: X x RoR satisfying
the following conditions:

(@.1) ¢y, )=—¢(y, —1t) for all ye Yand teR;

(¢.2) For each yeY, ¢(y, t) is continuous and strictly increasing in ¢;

(9.1) y(x, )=—7y(x, —t) for all xe X and teR;

(y.2) For each xe X, y(x, t) is continuous and monotone non-decreasing in t.

Put Y0y, 9={ 600, 5)ds,

if zeX

b

Y(f)(2) = [ ,
¥(», f'@), if zeS,

for fe X and
I'(z, ) = { S"V(X, sds, if z=xeX
> )= 0

0, if ze&X

forzeQ, teR.
We see that ¥(f) is defined £-a.e. on Q and ¥P(f)e LL, () for any feX.
It is easy to verify that this ¥ satisfies conditions (¥.1)~(¥.5) in §1 and

0, if zeX
¢(ya fl(z))g'(z)s if ze Sy-

From this, we see that condition (D) in §3 is also valid. Obviously, I" defined
above satisfies (I".1)~(I'.3) in § 1 with

P¥(f; 9)(2) = [

y(x, 1), if z=xeX
I''(z,t) =
Os if z $ X.
Thus H={Qx,y}, &> Xg, ¥, I'} is a functional space, which we shall call
a quasi-linear network. It will be often denoted by $=[G, ¢, y]. We denote
by & the class of all quasi-linear networks.
For an open set w =@, let

X()={xeXnNw|S,cw forall yeY(x)}.
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An open set o will be said to be regular if X(w)=X nw. Obviously, R is regular.
We shall say that a function f on Q is linear on S, if foj;! is linear on (0, 1).

LemMMA 6.1. Let $=[G, ¢, y]le A"
(@) If w is a regular open set and u € X is totally $H-harmonic on w, then
u is linear on S, for every y e Y such that S,cw and

6.1) 3 K )90, T K, pu) + 3(x, u(0) = 0

forall xe X N w.

(b) If ueX is linear on every S,, yeY, and satisfies (6.1) for all xe X,
then u is H-harmonic on Q.

ProoF. Obviously, u is totally H-harmonic on S, if and only if ¢(y, u'(z))
=const. on S, that is, u’(z)=const. on S,, or equivalently, u is linear on S,.

For xe X, let U(X)={x} U \U,ey)S,. Suppose ueX is linear on each S,
ye Y(x). Then we see that u is totally $-harmonic on U(x) if and only if

T K6 9, w'@p) + (e u(0) =0,

where z, is any point on S,. Since u'(z,)=3 . xK(x', y)u(x’), this equality is
nothing but (6.1). Hence our lemma follows.

PrROPOSITION 6.1. A =&, i.e., every quasi-linear network is an FH-
space; each $ € 4" satisfies conditions (X.3), (D) and (H.2).

Proor. We have already seen that each $ e .4 is a functional space and
satisfies (X.3) and (D).

Since there is an exhaustion of Q consisting of regular open sets, to show (H.1)
and (H.2) we may assume that each Q, is regular. Then (H.1) is easily seen from
Lemma 6.1. Let {u,} be a sequence as described in condition (H.2). Then
there is x, € X such that {u,(x,)} is bounded. For each x e X, we find by (K.4)
X1, X € X and yq,+++, Y4q € Y such that e(y)={x;_,, x;}, j=1,---, k+1 with
Xep1=x. Let F—-U"“S Then F is a compact set in Q and

[, ¥z =" w0 mx) = ey

Since {S 'I’(u,,)dé} is bounded and Y(y, f)— o as |t|— oo for each ¢, it follows that
{u,(x)} is bounded. Hence {u,} is locally uniformly bounded on 2. Thus (H 2)
is satisfied.

Finally, we shall verify (R). Let w be a relatively compact regular open
set in Q and let fe X. Then M =max,|f(z) is finite. Let
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D= {geX|g=/fon Q\w}
and

g is linear on each S,c w }

D*= { geD
and |g| =Mon w

For each g € D, we can find g* e D* such that
g*(x) = max(— M, min (g(x), M))

for all xe X Nw. It is easy to see that
[ 2otz < [ ooz
Hence,
o= inf{gmdi@(g)dé‘g eD} = inf{gwcb@(g)dé‘ ge D*} .

Since X nw is a finite set and {g(x)|g € D*} is bounded for each xe X n w, we
can find a sequence {g,} = D* such that {g,(x)} is convergent for every xe X N w
and

tim { @o(g)de = a.

Then g,=lim,_, , g, exists and belongs to D*. We see easily that go=R(f; w).
Hence (R) is satisfied.

By virtue of this proposition, inclusion relations (2.4) hold with " in the
place of &#. Furthermore, if we put

N i =H4NF = {Den|H satisfies (4,)}
and
Ny=NNF,={HeN |9 satisfies (4,) and (4%)},

then inclusion relations (4.8) hold with .4, in the place of #, and (5.8) hold with
A", in the place of &#,. Note that conditions (4,) and (4%) for $ € & may be
written as follows:

(4,),: There is a constant ¢>1 such that
&, 2t) S ch(y, 1) forall yeY, t=0.

(4%),: There is a constant ¢*>1 such that
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20(y, 1) = ¢(y, c*f)  forall yeY, t=0.

Note that the network considered in [13] belongs to A", (¢(y, H)=r(y)|t|p~2t,
r(y)>0, 1<p<oo and y(x, £)=0).

Now, we shall show by special quasi-linear networks that inclusion relations
in (2.4) and (5.8) are all strict.

PROPOSITION 6.2. Ox(N ) ZOgyp(AN5).

ProoOF. Let X={x0, xl,"'}a Y={y1’ y21"'}9 K(xm yn)=1 and K(xn—-h yn)
=—1,n=1,2,-, K(x,, ym)=0if m#n+1, n. Then G={X, Y, K} is an infinite
graph. Let

¢Gm ) =n%, n=12.-1teR

and y=0. Then $=[G, ¢, y] belongs to #°,. Since ue H(H) if and only if u
is linear on each S, and

0 = ¢(yy, u(xo) — u(xy)) == ¢(yp, tlx,-1) — u(x,)) ="+,

H($) consists only of constant functions, i.e., § € Oz(4",). On the other hand,
if we define v to be linear on each S, and

v(xn) =2- ki k—Z’ n= 1’ 2""1
=1

then ve SHP($). Hence H& Ogyp(A5).
COROLLARY. Ogy(AN3)#O0x(A ;) and Ogyp( N ,)# Ogp(AN5,).
PROPOSITION 6.3. Oyp(A ) ZOgg(AN,).
Proor. Let X=X, U X} with
X, ={x,|neZ} and X|={x,|neZ},
where Z is the set of all integers, and let Y=Y, U Y; U Y, with
Yi={y.|neZ}, Yi={y,IneZ} and Y,={z,|n=0,1,}.
We define K(x, y) on X x Y as follows:
K(tw ¥2) = K(x 92) = 1, KGpo1, y) = KXoy, ¥i) = =1 (n€2),
K(x,, z,) =1, K(x,,, z,) = —1 (n=0,1,---) and
K(x, y) = 0 for any other pair (x, y)e X x Y.
Then G={X, Y, K} is an infinite graph. Let
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¢(yn’ t) = ¢(y:1’ t) = 2nt’ n= 19 2,""
¢(y-m t) = ¢(y,—m t) = ¢(Zm t) =1, n=0,1,.-
and y=0. Then =[G, ¢, yle #",. If ue HB(H) U HD(D), then u(x_,)=u(xy)

and u(x_,)=u(xy) for all n=1,2,---. If we put a,=u(x,)—u(x,), n=0,1,---,
then
(6.2) 2"(ay = a,—y) = 2" ay4y — ay) + 24,=0  (n=0,1,--).
Hence
(6.3) Gy =0, + 2" % @,  n=0,1,-
k=0

Any sequence {a,} satisfying (6.3) is bounded. Since
u(x,) = -+ {ulxo) + u(xe) + ) and  u(xy) = & {u(xo) + u(xo) = @y},

n=0, 1,---, we see that HB($) contains non-constant functions, i.e., & Ogg(AH"2).
On the other hand, if ay#0, then |a,| = |a,| for all n=1, 2,---, so that

Ms

a2 = 0.

[ wards 2 § vz utx) — ute) = &
n=0

n=0

Hence u e HD($) implies a,=0, i.e., u=const. Therefore € Ogyp(AN",).

COROLLARY. Oy(A")#Opp(A), Oyp(AN 1) #Oypp(#y) and  Ogp(N'y)#
OHDB(‘MI)'

PROPOSITION 6.4. Ogpp(AN3)ZOxpp(A2).

ProoF. Let G be as in the proof of Proposition 6.2 and let ¢(y,, £)=2""1t,
n=1, 2,--- and y(x,, t)=t, n=0, 1,---. Then =[G, ¢, y]e #,. For ue H(H),
put a_,; =0 and a,=u(x,), n=0, 1,-.-. Then {a,} satisfies (6.2) and hence (6.3)
in the proof of the previous proposition. Thus, any u € H(®) is bounded. Fur-
thermore,

) 0 n—1 2
f wwae = % 272@, - 0,7 = ¥ 2(E &)
2 n=1 n=1 k=0
< (supla,?) 3 272 < oo
n n=1
Hence H($)=HDB($), which contains non-constant functions. Therefore

H&Ogpp(SH2).
On the other hand, if aq#0, then |a,|=|a,| for all n, so that
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00

gﬂr(., wydé = X

2
- a,” = 0.
2 0"

Hence HE($)={0}, so that $ € Ogg(N",).

COROLLARY. Ogp(AN)#Oye(AN"), Oypp(N) # Oggp(A7) and Ogpg(AN 1) #
Oges(S1).

PROPOSITION 6.5. Ogyp(AN ) ZOy(AN";) and Ogxg(A 2)Z O yp(A°5).

Proor. Let X={x,|neZ}, Y={y,|neZ}, K(x,, y,)=1 and K(x,-;, ¥»)
=—1forneZand K(x,, y,)=0if m#n+1, n. Then G={X, Y, K} is an infinite
graph. Let ¢(y,, )=c,t (c,>0), neZ, and y=0. Then $H=[G, ¢, y]e #,.
We easily see that

(i) H&0u(A2);

(ii) HeOgup(AN,) as well as H € Ogp(A7,) if and only if

-
Gl= 3 ¢t = oo;
1 n=-—1

Ms

n

(iii) $ e Ogp(H,) if and only if ¥ 2 _,, ;1= 0c0.
Then the assertions of the proposition immediately follow.

COROLLARY. Ogy(AN3)# Osup(N ;) and Og(AN ) # Oyp(N2).

RemARk. The quasi-linear networks given in the proofs of Propositions
6.2, 6.3, 6.5 all belong to & (see, Remark 5.2), and hence provide examples to
show that all inclusion relations in (5.9) are strict.

PROPOSITION 6.6. O ggp(AN)Z Ogg(A).

Proor. Let G be as in the proof of the previous proposition and let ¢(y,, ?)
=|t|"*t, neZ, y=0. Then $=[G, ¢, y]e N (but H&A",). Let ve SHP(H)
and put

bn = |U(X,,) - U(xn—l)lnz{u(xn) - U(X”_l)}, neZ.

Then b,=b,., for all neZ. It follows that v cannot be non-negative unless b,
are all zero. Hence € Ogyp(#7). On the other hand, if u(x,)=n for all neZ
and u is linear on each S, , then u e HD(H)=HE(H). Hence H& Oyp(AN).

COROLLARY. Ogyp(AN)#Ogpp(A?) and Oyxp(N)#Oygp(A).
PROPOSITION 6.7. Ogxg(A)Z Ogxpp(AN).

PrROOF. Let G be as in the proof of Proposition 6.5 (and Proposition 6.6),
let
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1", teR, n=0,1,2,
¢(ym t) =
nt, teR, n=—1, =2,---
and y=0. Then $=[G, ¢, yYle N (H&A")). If ue H(H), then
Iu(xn) - u(xn—l)lnz{u(xn) - u(x,.- 1)} = u(xo) - u(x_l)
= m*{u(x,) — u(xp_4)}

for all n=1,2,.-- and m=-1, —2,---. If ue HB(H), then u(x,)—u(x_,;)=0,
and hence u=const. Therefore e Ogg(#7). On the other hand, if we define
uo by

3+, n=-10,1,--

uO(xn) = In+1]
2% k2, n=—2 =3,

k=1

then u, € HDP(H)=HEP($). Hence H& Oypp(N).

COROLLARY. Opgpp(A)#Ogps(N) and Oypp(N)# Ogpg(A).

§7. FH-spaces on differentiable manifolds

In this section, we are concerned with FH-spaces defined on C!-manifolds.

Let Q be a connected, g-compact (or, equivalently, para-compact), non-
compact C!-manifold of dimension d (=1) and let {(V}, )}« be a locally finite
system of coordinate neighborhoods such that each V, is relatively compact and
V,c U, for some coordinate neighborhood (U,, 7,) such that 7,|V,=yx,. Let¢
be a positive Radon measure on Q such that dé=h,du, on U, for each 1e A
with a positive C!-function h; on U,, where u, is the measure on U, induced by
%, from the Lebesgue measure on R4. Next, we consider a system {Y;};,., of
functions ¥, x,(V;) x R¥>R satisfying the following conditions:

W.0) IfV,nV,#¢, then for each ze ¥V, n V,. and 1€ R4,
¥a(a(2), ©) = Y (na(2), I3 (2)7),

where J4'(z) is the Jacobian matrix of the transformation yoxz* at x;(z). (This
means that {y,},., defines a real function on the cotangent bundle over Q.)

W.1) Yu(x, )20, ¥,(x, 0)=0 and y¥,(x, )=y ,(x, —7) for all Le A4, x €y, (V)),
teR4.

(¥.2) For each Ae A and x € x,;(V,), ¥.(x, 1) is strictly convex and continuously
differentiable in 7 € R4,

(y.3) Foreach Ae A and teRY, P ,(-, t) is measurable on y,(V,).

(Y.4) With some p>1, the following holds: for each 1€ A there are constants
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a,>0, B,>0 and functions a, € L?’(x,(V3)), b, € L?"()x(V;)) with

max(d, p)/(p—1) ifp#d dlp+¢ if pgd(e >0

’

di(d —1)+¢ ifp=d(8>0); i 1 if p>d,
such that

17 alx, DI < alt]P™! + ay(x),

P Yalx, 1), T 2 Biltl? — by(x)

for all Aed, xex,(V:) and teR9, where ( , > denotes the ordinary inner
product in R4,

(¥.5) For each A€ A and for any positive numbers , p such that 0<d<l<p,
there are r=r(4, 6, p)>1 and n=n(4, 6, p)>0 such that if §<max(|z], |T')=Zp
then

<Vt!pl(x’ T) - Vt!pl(x’ T'), T— T’> ;_ '1|1 - t,I'
for all x € (V).
Finally, let I': 2 x R—>R satisfy (I".1)~(I".3) in § 1 and

(I'4) With p>1 and p” given in (.4), for each 1€ A there is e; e LP"(x(V3))
such that

"), O] £ ex(x) (1P~ + 1)
for all Ae A, xe x,(V;) and teR.
With p>1 given in (y.4), let X=Wk2(Q) n LE(Q), i.e.,
X = {feLis ()| IF(foxz) € LP(x,(V,)) for every AeA}.
By (y.0) ~(.4), we see that
a.n P()(2) = ¥i(xx(2), P(foxz) (1x(2)))  for zeV;

defines a function belonging to Li,.(2) for each fe X.
The class of $={Q, &, X, ¥, I'} defined as above will be denoted by ¥ .
Then we have

ProPOSITION 7.1. ¥ &, i.e., each He ¥ is an FH-space. Furthermore,
each H e v satisfies (X.3), (D) and (H.2) in §3.

Proor. Conditions (X.1) and (X.3) for X are obviously satisfied. Con-
ditions (¥.1) and (¥.2) for ¥ are immediate consequences of (y.1) and (7.1);
and (¥ .4) follows from (.2). Since F(fox;!)=0 a.e. on the set {x e V,|f(x)=0}
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if fe X (cf., e.g., [3, Théoréeme 3.2]), (¥.3) and (X.2) are seen to be valid. By
virtue of (.3) and (.4), we see that (¥.5) is satisfied with

(7.2) V(S 9)(2) = P a(xa(2), P (foxz") (a(2)), 7 (goxa ) (xa(2))>

for ze V,. From the definition of X and (7.2), condition (D) is easily verified.
By applying the standard variational method (see, e.g., [8, Chap. 5, Theorem
2.1]), we can show that any relatively compact open set is resolutive. Thus
condition (R) is satisfied. Condition (H.2) follows from [12, Theorems 5, 6 and
9] in view of (¥.4) and (I".4).
Thus, what remains to show is the verification of (H.1), which will be given
in the Appendix.

Conditions (4,) and (4%) for $ € ¥* may be written as follows:

(4;)y There is C>2 such that
'I’A(x’ 21) é Clpl(x) 1")

for all Ae A, xe x,(V,) and Te R“.
(4%), There is C*>2 such that

C*Y,(x, 27) £ Y,(x, C*7)
for all Ae A4, xe x,(V,) and 7€ R4
Thus if we put
v ={9e? | satisfies (4,),}
and
¥, ={De? |9 satisfies (43),},
then ¥ y=¥"n%, and v ,=%" n&F, by virtue of Proposition 7.1. Hence,

inclusion relations (2.4), (4.8) and (5.8) are valid with ¥~, #°, and ¥", in the place
of #, #,; and & ,, respectively.

ReMARK. If Q is a Riemannian manifold with Riemannian metric
(9:)), & is the corresponding volume element, X=W{;2(Q) N L{(Q), Y(x, 1)=
Zgii(x)r;r; on ¥V, and I(x, f)=P(x)t> with PeL{,(Q) (¢>df2, q=1), P20,
then $={Q, ¢, X, ¥, '} e v ,, where ¥ is defined by (7.1) from the above
{¥:}1ea- In this case, H(H) is the space of weak solutions of Au=Pu (4: the
Laplace-Beltrami operator), and thus the classification theory given in [5], [9]
as well as the classical classification theory of Riemann surfaces are included in
the classification theory for ¥~,. In particular, non-inclusion relations

(17.3) Oup(¥"2) & Oug(¥"2),
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7.4) One(?"2) & Ogps(¥"2),
(1.5) Osup(V"2) & Oy(¥2),
(7.6) Oup(?"2) & Ogp(7"2)

are known; in fact, (7.3), (7.5) and (7.6) are classical (see [11, Chap. III, 4H]
for (7.3), [11, Chap. IV, 3C] and [11, Appendix 3A] for (7.6); also see [10]) and
(7.4) is shown in [10].

As for ¥, modifying the proofs of Propositions 6.6 and 6.7, we obtain
PROPOSITION 7.2. Ogup(¥)ZO0ue(?") and Oyg(? )L Ogee(¥").
Proor. Let =R, ¢ be the Lebesgue measure on R,

X={f: R->R|locally absolutely continuous and f’ e L},.(R)},
I'(x, H)=0,

(2 + x?¥)~Yg|2+>?, if 7111, xeR
‘//O(X, T) = .
27472 + 2 + x3)"t =271, if |t]>1, xeR
and
VYolx, 1), if x=20,7eR
Yilx, 7) = .
2711 + x?) |23, if x<0, teR.

Then, {Q,& X, Vo, I'}€05yp(¥)\Oye(¥») and {Q, & X, ¥y, I'}eO0pyp(¥)\
Ouep(?"), where Yo(f)=yo(-, f) and ¥, (f)=v,(-, f'). Note that these spaces
satisfy (.4) and (.5) with p=r=2.

AprpenDIX. In order to verify (H.1) for $e ¥, it is enough to prove the
following theorem.

THEOREM A. Let Q be a bounded open set in R* and ¢ be the Lebesgue
measure on R4 Suppose : QxRI-R satisfies conditions (Y.1)~(p.5) with
{V:liea={Y} (V,=R, y,=the identity mapping) and I':QxR-R satisfies
r1)~T.4). Let 9={Q, ¢, X, ¥V, I'}, where X=W}2Q)NLE(Q) with
p>1 given in (Y.4) and Y(f)=yY(-, P f) for feX. If {u,} is a uniformly
bounded convergent sequence of $-harmonic functions on Q, then u=lim,_, . u,
is H-harmonic on Q andSK Y(u)dé<liminf,_, Sx Y(u,)dé for any compact set
K in Q.

A similar result is obtained in B. Calvert [2]. But our assumptions, and

hence proofs, are slightly different from those in [2]. We prove Theorem A in
four steps.
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IPROOF OoF THEOREM A:
0] {XKIV u,,(x)|pdx} is bounded for any compact set K in Q.

This can be proved in the same way as [2, Lemma 2], and we omit the proof.
(II) For any compact set K in Q,

[ PC P = P, P, Pty = Pup>dz—0  (n,m o).

Proor. Let ¢ be a C'-function with compact support in € such that ¢=0
and ¢=1on K. Then,

[ P, ), P, — udgDdx
+ Snr'(-, ) (u, — u,)pdx = 0
for any k, n, m. Thus

Ly

§n<7,w<-, Pu) = P, Puy), Puy, — Pupddx

- Sn<71‘p(" Vun) - Vr‘ﬁ(', V“m)’ V¢>("n - “m)dx

= [ o w) = TG b, - udpdx.
The last integral is non-negative. Hence, by (.4) (a=a;, a=a,),
L S o { (7,1 4+ 17Uyl 17 9], = upldx

+2 Snaqubl lu, — u,|dx

1/p
S oy + I {{ 1717, — upledx |
+2{_alpgllu, - upldx,

1/p*
where K'=Supp¢ and J"={Sx' qu,,Ide} » , p*=p/(p—1). Hence, by (I)
and Lebesgue’s convergence theorem, we conclude that I, ,,—0 (n, m—oc0), from

which (II) follows immediately.
(IIT) For any compact set K in Q,

S \Pu, — Pu,ldx—0 (n, m -» ).
K



Classification Theory 367
Proor. Let0<d<1<p. Fix nand m for the time being and put
Ey = {xeK||[Fu,(x)| £ 6, [Fu,(x)| < 6},
E, = {xeK||Fu,(x)| > p}, E} = {xeK|[|Pu,(x)| > p},
E,=K\(E, U E; U EY).

Obviously,

(A.1) S \Pu, — Pu,ldx < 26&K).
Eo
By (I), there is M >0 such thatS |Pu,pdx <M for all k. Then,
K

PUE) < | 1Puldx < MUR(E,) P,
Ey
so that £(E,)<p~PM. Similarly, ((E})<p~?M. Hence

\Pu, — Pu,ldx < g Puldx + S Puyldx
UVE; E\VE,

Ey 1

(A.2) { SE;UE;
< 2MYP{L(E,) + E(ED}PT < 4AMptTe.

By (¥.5),

S \Pu, — Pu,|dx
E,

§ n_llrgE <Vf¢(’ Vun) - thp(" Vum)’ Vun - Vum>1/'dx

S 1K), ),

where
L= { P, P1) = 79, Pug), Pty = Pu>ds.
Hence, together with (A.1) and (A.2), we have
{17, = Pupldx < 265(K) + 4Mp1=2 4+ o H17E(R)e DI, )1
for any n, m. Since I, ,,—0 (n, m—o0) by (II),
lim sup SK \Pu, — Pu,|dx < 26&K) + 2Mpt-».

n,m-o

Letting 6—0 and p— oo, we obtain (ITI).
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(IV) By (I) and pointwise convergence of {u,}, we see that ue W{;2(Q)
NL{.(2). By (III), we can choose a subsequence {u,} such that Fu, —»Fu
a.e.on 2. Then

V(x, Pu, (x)) = 7 P(x, Pu(x)) ae. on Q

by (¥.2). On the other hand, by (I) and (.4), {F Y(-, Fu,)}; is bounded in
(LP*(w))? for any relatively compact open set w such that @=Q. Hence, there
is another subsequence {u,,} of {u,} such that P .y(-, Fu,)|w—> FY(-, Fu)lw
weakly in (L?*(w))? for any w as above. Hence

(A3) S9<Vt‘/j(" Vum,)s Vg>dx_)Sﬂ<V‘l//(’ Vu); Vg>dx
for any g € W1-»(Q) with compact support in 2. On the other hand,
(A4 Sﬂl"’(- , Up)gdx — S Ir'(-, ugdx

Q

for any g e L®(Q) with compact support in 2 by Lebesgue’s convergence theorem.
Since

(. cra, ru, pgyax +{ ', ugax =0
for any g € X with compact support in , it follows from (A.3) and (A.4) that
Sn<71¢(" Vu)s Vg>dx + SDF’(" u)gdx =0

for any g € X as above, i.e., u is H-harmonic on Q.
Furthermore, given a compact set K, we could choose {u, } to satisfy

fim SK W(u, )dé = lim inf SK P (u,)dE.

J=o

Since ¥(u,,) (x)=y(x, Fu,(x)) = ¥(x, Fu(x))=¥(u)(x) a.e. on 2, Fatou’s lemma
implies

S P(u)dE < IiminfS P(u,)de.
K n—c K

Added in proof: 1t is possible to prove Theorem A in the appendix without
condition (. 5), so that this condition is not necessary for the discussions in §7.
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