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It is well known that the grade of a finite module over a noetherian local

ring is equal to or less than the Krull dimension of the module. The main purpose

of this note is to generalize this inequality to the case where the ring is not neces-

sarily noetherian.

The notion of polynomial grades, which generalizes the classical one of

grades, was introduced by Northcott [9]. On the other hand, in order to develop

the Krull dimension theory in polynomial rings, the concept of valuative dimen-

sions was initiated by Jafford [7]. We shall first define the polynomial height

of a prime ideal and study some basic properties. We shall also show a relation

between the polynomial grade and the valuative dimension of a finite module.

We can see that the valuative dimension of a ring A coincides with the supremum

of the polynomial heights of prime ideals in A (Theorem 1). The main result

is Theorem 2: The polynomial grade of a finite module is equal to or less than

the valuative dimension of the module.

Throughout this paper all rings are assumed to be commutative with identity

and all modules are assumed to be unitary. If A is such a ring and m is a positive

integer, then A^m) will stand for the polynomial ring A[XU..., Xm] in m inde-

terminates over A, and y4(0) will do for A. If α is an ideal of A, then α ( m ) will

denote the ideal o[Xu..., Xm] of A^ and ct<°> the ideal α. Moreover if M

is an ^4-module, then M(l") will denote the ^4(m)-module M®AA^m) and M ( 0 )

will be understood similarly. We shall also denote by V(a) the set of prime ideals

of A which contain α and denote by Ann (M) the set of annihilators of M. We

shall write ht (p) for the height of the prime ideal p of A.

Since the sequence {ht(p(m>)} (m = 0, 1,...) is an increasing one, we can

consider its limit.

DEFINITION. Let p be a prime ideal of a ring A. We shall denote by

Ht (p) the limit of the sequence {ht(p<m))} (m = 0, 1,...) and call it the polynomial

height of p.

First we shall give a number of elementary properties of the polynomial

height of p.
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PROPOSITION 1. For a prime ideal p of a ring A, we have the following

statements:

(1) ht(p)ZHt(p).

(2) If m is a non-negative integer, then Ht(p) = Ht(p ( m )).

(3) If q is a prime ideal of A such that q^p, then Ht(q)ZHt(p).

(4) If a is an ideal of A such that a^p, then Ht (p)XHt (p/α).

(5) L e t S be a multiplicative subset of A . If p f ] S = φ , then H t ( p ) =

H t ( V A s ) .

( 6 ) If m is a non-negative integer, then Ht(p) = Ht(p(m)y4(wi)

t,(m)).

(7) If A is a noetherian ring, then ht(p) = Ht(p).

(8) ht (p) = 0 if and only if Ht(p) = 0.

(9) Let f be an element of p. If f is not contained in any minimal prime

ideal of A, then Ht(p/(/) )ZHt(p)- l .

PROOF. The assertions (1), (2), (3) and (4) are immediate consequences of

the definition and (5) follows from the fact that ht(p<π>) = ht((p,45)(π)) for a

non-negative integer n. The assertion (6) follows from (2) and (5). Now the

assertion (7) is well known (cf. (14.A) of [8]). Next, if p is a minimal prime ideal

of A, then p ( w ) is a minimal prime ideal of A(n) and conversely if ^ is a minimal

prime ideal of AM, then φ = p("> where p is a minimal prime ideal of A (cf.

(30.3) of [4]). The assertion (8) follows from these facts. We also see that if

an element / of p is not contained in any minimal prime ideal of A, then / is not

contained in any minimal prime ideal of A(n). Hence ht((p/(/)) ( w ))=ht(p ( w )/

/A(w))Zht(p<Λ>)-l, which implies H t ( p / ( / ) ) Z H t ( p ) - l . This proves (9).

q. e. d.

If A is an integral domain, then the valuative dimension of A, denoted by

dimvA, is defined to be Sup {dim F |Fi s a valuation overring of A}, and generally

the valuative dimension of a ring A is defined to be Sup p e S p e c ( y l ) {dim,, 04/p)}

(see [7]). In order to show the following Proposition 2 and Theorem 1, we need

some of the previous results on the height and the valuative dimension that can

be summarized as follows:

(a) [3, Theorem 1] If fy is a prime ideal of A^n) with S$nA = -p, then

(b) [2, Cor. 2.10] If A is a finite dimensional ring and if {ma}aeΓ is the set

of maximal ideals of A, then dim A(n) = Sup {dim Am[n)} = n + Sup {ht (m(

a

n))}.

(c) [1, Theorem 6] If A is an integral domain, then dim,, A = n if and only

(d) [1, Theorem 6] If A is an integral domain and if dimvA = n, then

dim AW = k+n for fc\n-l.

LEMMA 1. Let p be a prime ideal of A and m be a non-negative integer.
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7/ht (p ( m )) Z m, then there exists an integer k such that ht(p ( f c )) = fc and OZfc

PROOF. We use induction on m. If m = 0, then the assertion is clear.

Therefore we may suppose that m \ l and assumed that the assertion holds for

m — 1 . Suppose that h t ( p ( w ) ) Z m. The case ht (ρ ( m )) = m is trivial. Thus we

may assume ht(p< m >)Zm-l. Since ht(p(m-))Zht(p<m>), we have h t ί p ^ " 1 ) )

Z m - 1 . By the inductive hypothesis we can prove our lemma. q.e.d.

PROPOSITION 2. Let p be a prime ideal of a ring A and n be a non-negative

integer. Then Ht (p) = n if and only i/ht(p ( w ) ) = n.

PROOF. We shall proceed by induction on n. We see that when n = 0 the

assertion follows from (8) of Proposition 1. Therefore it will be suppose that

n X1 and that the assertion has been proved for all smaller values of the inductive

variable. First we assume that Ht(p) = n. Then it follows from our definition

that there exists an integer m such that ht (p ( m )) = n and m>n. Since the se-

quence {ht(p<f))} (i = 0, 1,...) is increasing, we see that ht(p ( r t ) )Zn. If ht(p ( n ) )

Z n - 1 , then it is seen that ht(p( M - 1 >)Zht(p( M ))Zn-l, thus ht ( p ^ - ^ Z n - 1 .

By Lemma 1, there exists an integer k such that OZfcZn —1 and ht(p ( k ) ) = fc.

Using the inductive hypothesis, we have Ht(ρ) = fc. This gives a contradiction.

Thus we have ht(p(n)) = n. Next we assume that ht (p ( n )) = n and we shall

show that Ht(p) = n. It will suffice to prove that ht(p ( m ) ) = n for all large

integers. Assume the contrary and we shall get a contradiction. There exists

an integer m such that m>n and h t ( p ( m ) ) > n . Hence we have a sequence

of s + 1 prime ideals of A(m) with s>n and φ s=p<m>. Replacing φ 0 by 0P o

Π^4)(m), if necessary, we may suppose that ^Po

 = Po ( m ) where p 0 is a prime ideal

of A. Put A = A/p0 and p = p/p0. Since p ( m ) is isomorphic to p ( m ) /ρ 0

( m ) , it

follows that ht(p<m>)>w. On the other hand the prime ideal p ( w ) is a homo-

morphic image of the prime ideal p<π), therefore ht(p ( w ) )Zht(p ( l I >). Accord-

ingly ht(pW)Zn. If ht(p(">)Ztt- l , we have h t C p ^ - ^ Z n - l . Then, by

Lemma 1, we can find an integer k such that ht (p( fc)) = ̂  and OZ/cZn— 1. We

can thus conclude that Ht(p) = fc by the inductive hypothesis. Since ht(p ( m ) )

ZHt(p) , this gives a contradiction. Hence we see that ht(p (π>) = n. By con-

sidering the prime ideal p of the ring A, we may assume that the ring A is an

integral domain. Put S=A — p. Then (A(i))s is isomorphic to ^4^ for a

non-negative integer ΐ. Since the height is not changed by any localization, we

see that ht(pA(

p

m))>n and ht(pA(

p

n)) = n. Thus we may assume that A is

a quasi local domain with the maximal ideal p and that ht ( p ( m ) ) > n and ht(p ( l l ) )

= n. By (b) of the previous results, dimA(n) = 2n, and hence (c) shows that
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dimvΛ = n. Therefore it follows from (d) that dim^4(m) = m + n. Put φ = p<m>

+ (AΊ,..., Xm). Then φ is a prime ideal of A™. Using (a), h t ( φ ) = ht(p<w>)

which leads to a contradiction. q.e.d.

LEMMA 2. Let p be a prime ideal of a ring A with Ht(p) = n. Then there

exists a prime ideal q such that q^p and Ht(p/q) = n.

PROOF. Assume that Ht (p) = n. By Proposition 2, we see h t ( p ( π ) ) = w.

Then we can find a prime ideal q of A such that ht(p ( π )/q ( π )) = w. Accordingly

it follows from Proposition 2 that Ht (p/q) = n. q. e. d.

THEOREM 1. Let A be a ring with άimvA<co. Then we have dimυ^4 =

Sup{Ht(p)}, where p runs over all prime ideals of A.

PROOF. First we suppose that A is a quasi local domain with the maximal

ideal rrt. Then, by (3) of Proposition 1, Sup p e S p e c ( A ) {Ht (p)} = Ht (m) and hence

it follows from Proposition 2 that Sup P 6 S p e c ( A ) {Ht(p)} = n if and only if ht(m ( w ) )

= n. By (b) of previous results, this means that dim^4(w) = 2n. Thus the asser-

tion holds in this case by virtue of (c). Next we assume that A is an integral

domain. We can readily see that d i m ^ = Sup t J e S p e c ( A ) {dim,,^}. Accordingly

we have the following equality from (5) of Proposition 1 and the first case:

dim, ,4 = SuppeSvec(A){dimvAp} = Supp e S p e β U ){Ht(pi4p)}

= Sup> e S p e c ( y l ){Ht(p)}.

This settles the case where A is an integral domain.

Finally we proceed to the general case. The above argument, combining

(4) of Proposition 1 and Lemma 2 with the definition of the valuative dimension,

shows that

= Sup q e S p e c ( y l ) {Sup p / q e S p e c U / q ) {Ht (p/q)}}

= Sup, e S p e c ( > 0 {Ht(p)}.

This completes the proof.

Let a be an ideal of A and M an yl-module. Then the upper bound of lengths

of all M-sequences in α will be called the classical grade of α on M and denoted

by grA{a; M}. The polynomial grade of a in M, denoted by GτA{a; M}, is

defined to be Iimgr/4(n){α<w); M<n>} (see [9]).
π-*oo

DEFINITION. Let A be a ring and M a non-zero y4-module. Then the

valuative dimension of M is meant the valuative dimension of y4/Ann(M) and it
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is denoted by dimv M.

We see that, by (7) of Proposition 1 and Theorem 1, if A is a noetherian

ring, then d i m y M = d i m M .

LEMMA 3. // α and b are proper ideals of a ring A such that V(α) =V(b),

then di

PROOF. The assertion follows easily from the definition of valuative dimen-

sion, q. e. d.

Finally we shall show the main result of this paper, which suggests that the

valuative dimension dimyM of a module M could be called the polynomial di-

mension and denoted by Dim M.

THEOREM 2. Let A be a quasi local ring with the maximal ideal m and

M a non-zero finite A-module. Then GrA {m; M}Zdim υ M.

PROOF. If dimυ M is infinite, then there is nothing to prove. Therefore

we may assume that dim υM is finite. We use induction on dim^M. Put α

= Ann(M), A — A\a and m = m/α. Now suppose that d i m y M = 0 . Then d i m ^

= 0. Hence, by Theorem 1, Ht(m) = 0, therefore ht(m) = 0. Thus the ideal m

is a minimal prime ideal over α. It follows from Exercise 4 of Chapter 6 in [9]

that Gr^{m: M}=0. Accordingly the assertion follows in this case. Next we

assume that d i m ^ M ^ l and the inequality has been established for all non-

negative integers smaller than dim vM. If Gr^ {m; M}=0, the assertion is clear.

Thus we may suppose that QτA {m; M} XI. By Theorem 8 of Chapter 5 in [9],

there exists an M(1)-regular element / in m ( 1 ) . Hence we obtain the following

exact sequence of A^1 ^modules

(*) 0 • MM -J-+ M<!> > Mt > 0

where the m a p / i s defined by f(x) = fx. We shall calculate the dim^ (M

Since M(1> and Mt are finite y4(1)-modules and Ann(M ( 1 ) ) = α(1 ), we have

n Supp (Ai»l(f))

n (

Thus V((Ann(M1))m(1)) = V((α(1) + (/))m(i)). Therefore it follows from Lemma 3

that dimr(^LVi)/(Ann(M1))m(1,) = dimt,(^L1()i)/(α(1) + (/))m(i,). Accordingly, since

Ann((M1)m(i)) = (Ann(M1))m(i), we see that
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A#1)«<.) = dim,(4V.)/Ann((Aί1).<ι,))

where/is the homomorphic image of/in Jϊ(1). On the other hand, since / is

an M ( 1 ̂ regular element in m(1), we see from Exercise 4 of Chapter 6 in [9]

that/is not contained in any minimal prime ideal of α ( 1 ), and hence//I is also

not contained in any minimal prime ideal of A$». By (6) and (9) of Proposition

1 and Theorem 1,

= H t ( m ) - 1 = dimυA- 1

= dimυM - 1.

Consequently we can conclude that άϊmΌ(M1)mw£dϊmvM — 1. Thus it

follows from the inductive hypothesis applied to the ^i^D-module (M1)m (i ) that
Gr^iί()i){τn(1)^mVi); (M1)m(i)}Zdimt;(M1)m(i). By localizing the exact sequence

(*) at τn(1), we have an exact sequence

0 _ (M<D)m(1) -U (MίD U ) — > (MO.ci) > 0.

Accordingly, by Theorem 15 of Chapter 5 in [9] and the fact that the polynomial

grade does not change by any faithfully flat extension (cf. [4], Cor. 1 to Prop. 2,

§ 1 and [6], § 3), we have

= GrΛ{m;M} - 1.

Substituting this for the above inequality, we see

GτA {m; M } - 1 Z dim, (M1) t n (i ) Z dim^M - 1.

Therefore Gr^ {m; M}ZdimυM. This completes the proof.

We can derive the following well known
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COROLLARY. Let A be a noetherian local ring with the maximal ideal m.
Let M be a non-zero finite Λ-module. Then depth MZdimM.

PROOF. Since A is a noetherian ring, we have depth M = grA{m; M}
= GτΛ{m; M} and dimM=άimvM. Thus the proof of our corollary follows
from the theorem.
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