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Introduction

In this paper we consider the two-dimensional differential system with

deviating argument

ί *'(0 =
(A)

l/(0=/(ί, x(9(t)))
which, in the particular case where p(t)>0, is equivalent to the second order
scalar differential equation

(B)

The conditions we always assume for p, g, f are as follows:

(a) p{t) is continuous and nonnegative on [α, oo); p(ί)#0 on any infinite

subinterval of [α, oo).

(b) g(t) is continuous on [α, oo) and lim g (ί) = oo.
r-»oo

(c) /(ί, x) is continuous on [α, oo)x(-oo, oo) and |/(t, x)|^ω(ί, |x|) for

(t> x)e\_a, oo)x(—oo, oo) where ω(f, r) is continuous on [α, oo)x

[0, oo) and nondecreasing in r.

We note that g(t) is a general deviating argument, that is, it is allowed to be

retarded (g(t)£t) or advanced (g(t)^t) or otherwise. System (A) is called

superlinear or sublinear according to whether ω(ί, r)jr is nondecreasing or

nonincreasing in r for r>0.

The purpose of this paper is to study the asymptotic behavior of solutions

of system (A) which is either superlinear or sublinear. We are particularly

interested in obtaining information about the growth or decay of oscillatory

solutions as well as of nonoscillatory solutions. Hereafter the term "solution"

will be understood to mean a solution {x(t)9 y(t)} of (A) which exists on some

half-line [τ, oo), τ>α, and satisfies

sup {|x(OI + \y(t)\: t ^ τ'} > 0 for any τ' ^ τ.
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Such a solution is said to be oscillatory [resp. weakly oscillatory] if each of its
components [resp. at least one component] has arbitrarily large zeros. A solution
is said to benonoscillatory [resp. weakly nonoscillatoryjif each of its components
[resp. at least one component] is eventually of constant sign.

We distinguish the two cases

\p(t)dt = oo, \p(t)dt < oo
Ja Ja

and examine them separately in § 1 and § 2. The theorems in § 1 and § 2 are
rt roo

formulated in terms of P(ί)=\ p(s)ds and π(ί) = \ p(s)ds, respectively, and

exhibit a kind of duality. Our results include as special cases some of the main
results of the papers [1], [2], [6], [7], [8] and [9]. For other related problems
regarding systems of the form (A) we refer to [3], [4] and [10].

1. The case where \ p (t)dt = oo
Ja

We begin by considering system (A) in which p(t) satisfies the condition
roo rt
\ p(t)dt = oo. The results are formulated in terms of the function P(t) = \ p(s)ds.
Ja Ja

The following notation will be used throughout the paper:

g*(t) = max {g(t)> t}9 g*{t) = min {g(t), t}9

h*(t) = sup g*(s\ K(t) = inf g*(s).
a£s£t s^t

A) We first prove a theorem which enables us to classify all the solutions
of (A) according to the behavior as ί->oo.

THEOREM 1.1. Assume that either (A) is superlinear and

(1) Γ Pp{g(t)) ω{U c P M W d t < °° ^ r a l 1 c > 0

or (A) is sublinear and

(2) ί°°P(0*(ί))ω(ί, c)dt < oo for all c> 0.

// {x(ί), y(t)} is a solution of (A), then exactly one of the following cases holds:

( I ) limsup IffiJ = oo, limsuplKOI = oo.

(II) There exists a nonzero constant α such that
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lira - | £ f = a, limXί) = α.
J\ΐ) ί-»oo

(III) There exists a constant β such that

lim x(t) = β9 lim P(t)y(t) = 0.
f-*oo r-+oo

PROOF. Let {x(t)9 y(t)} be a solution of (A) defined on [τ, oo) and let

^ be such that Jι*(T)^τ.

First we assume that (A) is superlinear and (1) holds. We note that (1)

implies that the functions

ω{t9 cP(g(t)))> ίP(t)IP(g(tmω(t9 cP{g{t)))> P(t)ω(t9 c)

are integrable at oo for all o O . Suppose lim sup \x(t)\IP(t) = ao. Then it holds
i-+oo

necessarily that lim sup \y(t)\ = co9 since otherwise from the relation
f-κ»

(3) x(t) = x(T) + ^τp(s)y(s)ds, t ^ T,

we would have lim sup \x(t)\IP(t) < oo, a contradiction. Suppose lim sup \x(t)\IP(t)

< oo, that is, x(ί) = O(P(0) as ί-^oo. Then it is clear that/(ί, x(g(ή)) e L^T, oo),

and so from the equation

(4)

we obtain

(5) yit) = α - J " / ( 5 f x(g(s)J)ds9 t ^ T9

where

« = AT) + \™f(s9 x(g(s)))ds.
JT

As a result we have limj;(ί)=α. Using this fact in (3) we easily see that
ί-»oo

lim x(i)IP(t) = (x. Thus Case (II) holds if α^O. Supposing that α = 0, we show
ί-+oo

that Case (III) occurs. Choose a 7\ ^ Tsuch that

To = fc (Γi) ^ Γ, |x(fif(O)| ^ P(flf(O) for t ^ Tl9

and

^ -i, ̂  p g g ) } ω(5, P(̂ (s)))d5 ̂  -i.
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Combining (3) and (5) (with α=0) yields

WOI S \x(T)\ + £i>(s)ω(s, \x(g(s))\)ds

(6)

+ P(t)^ω(s,\x(g(s))\)ds9 t^

whence it follows that

I γ(fi I k 1

(7)
^ φ, \x(g(s))\)ds, t>Tu

where fe is a positive constant. We now define

W tiT°-
Observing that the right-hand side of (7) is decreasing in t and using the inequality

(8) ω(s, mri) ̂  mω(s9 ri)9 0 < m g 1, n > 0,

which is a consequence of the superlinearity of (A), we can derive the following
inequality from (7):

P(t)u(t) ^k+[ u(g(s))P(s)ω(s9 P(g(s)))ds

(9)

J " u(g(s))ω(s, P(g(s)))ds, t ^ Tt.

For each t^Tx we let /„ /, denote the sets

(10) /, = {se \TU co): g(s) g ί}, Λ - {«e [T^ oo): g(s) > t}.

We then have

P(Φ))u(g(s)) g sup [P(σ)«(σ)] for se/ (,

tt(g(s)) £ u(t) for

In view of this fact, the right-hand side of (9) is bounded from above by

k+ sup ίP(s)u(s)-]-\ fW ω(s,P(g(s)))ds

+ u(t)\ P(s)φ, P(g(s)))ds
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+ P(t) sup [P(ί)κ(ί)] ( ptlf.\\ ω(s> P(9(s)))ds
To£s£t Jit^ίttoo) rygys))

+ P(t)u(t)^^oQω(s,P(g(s)))ds

4 sup
3 Γ ^

for t^ Tl9 where fex = fe+ - j sup [P(s)w(s)]. It follows that

P(t)u(t) ^ -y f ci + ~y S U P [P(s)w(5)]» ^ ̂  τu

which implies

(11) |x(ί)| ύ sup [P(S)M(S)] ^ 3fc1? t ^ Γx

From (5) (with α=0) and (11) we obtain

(12) Γ p(s)\y(s)\ds ^ Γ P(S)ω(5, 3/CiMs,

and

(13) PWMOI ^ J " P(s)ω(s, 3kt)ds.

Since p(ί)XO e LίLτ> °°) bY (12)» rewriting (3) as

x(t) = x(T) + \"p(s)y(s)ds - Γ p(s)y(s)ds,
JT Jt

we see that

limx(ί) = β = x(T) + [" p(s)y(s)ds.
t->oo JT

That limP(0K0 = 0 follows from (13).
t-*oo

Next we assume that (A) is sublinear and (2) holds. It is clear that (2)

implies the integrability at oo of the functions
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P(t)ω(t,c), P(g(t))ω(t,c\ ω(t, cP(g(t)))

for all c>0. Of course, Case (I) may occur. Let x(t) = O(P(i)) as ί->oo. Then,
f(t, x(g(t))) e L^T, oo), so that (5) holds. If α#0, then we have Case (II). It
remains to examine the case where α = 0. We show that x(f) is bounded on
[Γ, oo) in this case. Suppose the contrary. We are able to choose Tl9 T2 and
T3 so that

and

sup |x(s)| = sup |x(s)| for t ^ Γ2,

P(s)ω(s, ί)ds £±, Γ P(g(s)Ms, ί)ds £ ±,
T2 ^ JT2 ^

) \x(g(s))\)ds ί i -

Let us define

v(t) = sup \x(s)\, t ^ To.

Noting the increasing nature of the right-hand side of (6) and using the inequality

(14) ω(s, mή) ̂  mω(s, n), m ̂  1, n > 0,

which follows from the sublinearity of (A), we have from (6) that

v(t) ύ \x(T)\

Jr 2

- T υ ( ί ) + J^»to(s)>P(i>»(s, We + P(t)^v(g{s))ω(s, ί)ds,

and consequently

T ^ - ^ 7 ίr ^WWMs, ί)ds

forί^T3. Since

^ ι (ί) for se/ t,
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where lt and Jt are defined in (10), the right-hand side of (15) is bounded from
above by

ω(5, ϊ)ds + P(t) \ ω(s, l)ds)

sup -{W f-=L_ ί PWβ))P{s)φ, ί)ds

/tn[r2,ί)

sup

Π[ί,oo)

p ( 5 ) ω ( 5 ' ^

Therefore we obtain

This contradiction shows that x(t) is bounded on [T, oo). We now proceed
exactly as in the superlinear case to conclude that {x(t)9 y(t)} is subject to Case
(III). Thus the proof of Theorem 1.1 is complete.

B) On the basis of Theorem 1.1 we wish to determine the growth or decay
of all nonoscillatory solutions of (A) for which the following sign assumption is
made:

(16) xf(t, x) ^ 0 for (ί, x)e[α, oo) x ( - oo, oo).

In addition it is assumed that

(17) sup|/(ί, x)\ > 0 for any T ^ a and x Φ 0.

We remark that under assumption (16) a solution of (A) is oscillatory [resp.
nonoscillatory] if and only if it is weakly oscillatory [resp. weakly nonoscillatory].

THEOREM 1.2. Assume that (16), (17) and the hypotheses of Theorem 1.1
are satisfied. If {x(t), y(i)} is a nonoscillatory solution of (A), then either

(18) Km *g>

for some constant α^O, or else
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(19) lim x(t) = β, lim P(t)y(t) = 0

for some constant

(-•oo

PROOF. Let {x(ή, y(t)} be a solution of (A) such that x(ί)^0 and y(t)φθ
on [τ, oo). Take a T ^ τ such that h*(T)^τ. Suppose x(t)>0 for ί^τ. The
second equation of (A) then implies that y(t) is decreasing on [T, oo). If y(t0)
<0 for some to>T, then y(t)^y(t0) for tέϊt0. Taking this into account and
integrating the first equation of (A), we obtain

x(t) ^ x(t0) + y(t0) Γ p(s)ds,
Jto

which implies x(t)-+ — oo as *->oo, a contradiction. Therefore, we must have
y(0>0for t^T.

Now, from the first equation of (A) we see that x(t) is increasing, and so
x(f) is bounded away from below by a positive constant on [T, oo). Again
integrating the first equation of (A) and using the decreasing nature of y(t), we
have

x(0 ^ x(T) + y(T)\ p(s)ds, t ^ Γ.

This shows that x(t)/P(t) is bounded from above by a positive constant on [T, oo).
A similar argument holds if we assume that x(t)<0 on [Γ, oo). It follows that

lim inf \x(t) | > 0 and lim sup ^fV < oo,
ί-K» f->00 * ( • /

and hence Case (I) and Case (III) (with β = 0) are excluded from the possibilities
listed in Theorem 1.1. This completes the proof.

REMARK 1.1. When specialized to the scalar equation (B), Theorem 1.2
extends previous results of Belohorec [1, Theorem 3], Moore and Nehari [7,
Theorem IV] and Odaric and Sevelo [8, Theorem 3].

REMARK 1.2. Under the hypotheses of Theorem 1.2 system (A) actually
possesses nonoscillatory solutions of the type (18) for all α^O as well as those
of the type (19) for all βφO. This follows from the existence theory developed
by the present authors in [3] and [4].

EXAMPLE 1.1. Consider the sublinear system

χ>(t) = l+coS(t + πl4)
J 2 - sm t

(20)
'(f) - - 2[1 +cos( f+π/4)] e-2,χl/3(3t)
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Here we can take P(t) = e2t

9 g(t)=g*(t) = 3ί, and

ω ( ί r ) __ 2 [ l + c o s ( / + π/4)] 2 t ί / 3

As easily verified, condition (2) is violated and system (20) has a nonoscillatory

solution

= e'( >/2 + cos 0, y(t) = V2 e~\ j ϊ - sin ί)

which has the properties:

limx(ί) = oo, lim P(t)y(t) = oo.
t-+oo f-*oo

This example shows that violation of the integral condition of Theorem 1.2 may

give rise to nonoscillatory solutions with asymptotic nature different from (18)

and (19). For a related result concerning (B) we refer to the paper [5].

C) We now turn to investigating the behavior of oscillatory solutions of

system (A). No sign condition is placed on f(t9 x) but the following conditions

on g(i) are needed.

Condition (G*): There exists a sequence { ί j ^ i such that ίn->oo

as n -> oo and h*(tn) = tn for it = 1,2,....

Condition (G*): There exists a sequence {tn}™=1 such that ίn->oo

as n -> oo and h#(tn) = tn for n = 1, 2,

We observe that condition (G*) [resp. (G*)] is satisfied if g(ί)^t [resp. g(t)^t].

As an example of functions satisfying both (G*) and (G*) [resp. neither (G*) nor

(G*)] we give

g(t) = t Γl + ~ sin (log ί)Ί [resp. g(t) = t + 2π sin ί] .

THEOREM 1.3. (i) Assume that (A) is superlinear and condition (G*) is

satisfied. If (1) holds, then every oscillatory solution {x(t)9 y(i)} of (A) has the

property

(21) i i m s u p l | ^ J - = oo, limsup |j;(OI = oo.

(ϋ) Assume that (A) is sublinear and condition (G*) is satisfied. If (2)
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holds, then every oscillatory solution {x(ή, y(t)} of (A) has the property

(22) lim x(t) = 0, lim P(t)y(t) = 0.
t-*oo t-*oo

PROOF. Let {x(ή, y(t)} be an oscillatory solution of (A) defined on [τ, oo).

Choose a T ^ τ such that h*(T)^τ. Since the solution is oscillatory by hypothesis,

Case (II) and Case (III) (with βΦQ) of Theorem 1.1 can never occur, so that it

must satisfy either (21) or (22).

(i) Consider the case where (A) is superlinear and (G*) holds. Suppose

(22) is true. From the proof of Theorem 1.1 we then have

p(s)y(s)ds, y(t) = - £°/(s, x(g(s)))ds,

and combining these we get

(23) \x(t)\^^P(s)ω(s9 \x(g(s))\)ds9 t^T.

Let us put u(0 = sup|x(s)| and choose Tx and T2 such that T<TX<T29
s*t

for ϊ£ Tx and h*(T2)^ Tv With the aid of (8) we derive from (23)

u(t) ^ J " P(s)u(g(s))ω(s9 l)ds ̂  u(h*(t)) j " P(s)ω(s9 l)ds

for t*z Γ2, which implies

( 2 4 ) u(h%) ^\p(sMs,l)ds, t}>T2.

But this is a contradiction, because the right-hand side of (24) tends to zero as

ί-»oo, while the left-hand side equals 1 along a sequence diverging to infinity by

condition (G*). It follows that (21) is the only possibility.

(ii) Consider the case where (A) is sublinear and (G*) holds. Let (21) hold.

We can select Tu T2 and Γ3 in the following manner:

T<Tt<T2< Γ3, To = h^Tt) ̂  T, |x(T0)| ^ P(T0),

SUp J |(ί iL β sup Igί l i f o r/>Γ 2,
Tύ^t P(S) T*& P(S)

We define



Differential Systems with Deviating Argument 315

m = sup

Using v(t) and (14) in the inequality

\y(T)\ + £ a ω(s, \x(g(s))\)ds

[

which follows from (3) and (4), we find

[' φ, \x(g(s))\)ds, t^ T2,

ω(s, P(g(s)))ds, t ^ T3,
T2

and hence

Because of (G*) this is a contradiction, and so the solution {x(t), y(t)} has to
satisfy (22). This completes the proof of Theorem 1.3.

REMARK 1.3. The second part of Theorem 1.3 includes recent results of
[2, Theorem 2] for the retarded sublinear system (A) and of [6, First half of
Theorem 5] for the retarded sublinear equation (B).

EXAMPLE 1.2. Consider the superlinear system

(25)

= --4rexp

where gr(ί) = arccos(sin 1/3ί) with branches taken as follows:

(n + l)π ^ g(t) < (n + 2)π if nπ - -y ^ t < nπ + -y, n = 0, 1, 2,....

Since g(t)>t, condition (G*) is satisfied and clearly the integral condition (1) holds.
By the first part of Theorem 1.3 every oscillatory solution of (25) enjoys the
property (21). One such solution is

x(t) = exp (JJt) cos ί, y(t) = 2 exp ( - y y ) cos (t + ̂ - ) .

As a corollary of Theorem 1.3 we have the following nonoscillation result
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for almost linear systems of the form (A).

THEOREM 1.4. Assume that

(26) |/(ί, x)\ ^ q(t)\x\ for (ί, x) e [a, oo) x ( - oo, oo),

where q(f) is continuous and nonnegative on [α, oo). Assume moreover that

conditions (G*) and (G*) hold. If

(27)

then all solutions of (A) are weakly nonoscillatory.

PROOF. Suppose to the contrary that there exists an oscillatory solution

{x(t)9 y(t)} of (A). Since by (26) system (A) is both superlinear and sublinear,

and since (27) is equivalent to (1) or (2), we can apply Theorem 1.3 to conclude

that {x(t), y(t)} satisfies both (21) and (22). But this is impossible, and so (A)

has no oscillatory solutions.

REMARK 1.4. Let {x(ή, y(t)} be a solution of (A). If x(t) has arbitrarily

large zeros, then so does y(t), since otherwise the first equation of (A) would

imply that x(t) is a monotone function, a contradiction. It follows that the first

component of a weakly nonoscillatory solution is always eventually positive or

negative.

EXAMPLE 1.3. Consider the linear system of ordinary differential equations

(28)

Since the hypotheses of Theorem 1.4 are satisfied, every nontrivial solution of (28)

is weakly nonoscillatory (in fact, it is nonoscillatory). This can be seen directly,

as the general solution of (28) is given explicitly by

+ cos/)]

where cx and c2 are arbitrary constants.
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foo

2. The case where \ p(t)dt<oo
Ja

Let us now consider the system (A) in which p{t) is subject to the condition

\ p(t)dt <oo. We are able to obtain results which are parallel to the theorems
Ja

proved in §1. Use is made of the function π(t)= \ p(s)ds.

A) A classification of solutions according to the behavior as ί-+oo is de-

scribed in the following theorem.

THEOREM 2.1. Assume that either (A) is superlinear and

(29) \°° π(g*(t))ω(t, c)dt < oo for all c> 0

or (A) is sublinear and

(30) \ f *λxx o)(t9 cπ(g(i)))dt < oo for all c > 0.

V W0> yifί) ϊ S a solution of (A), then exactly one of the following cases holds:

( I ) lim sup |x(ί)| = oo, lim sup \y(t)\ = oo.
f-fOO ί-*00

(II) There exists a nonzero constant α such that

lim x(ί) = α, lim π(t) y(t) = 0.
t-*oo t~+<X>

(III) There exists a constant β such that

PROOF. Let {x(t), y(t)} be a solution of (A) defined on [τ, oo) and let

T ^ τ be such that ft*(Γ)^τ.

Suppose (A) is superlinear and (29) holds. Because of (29)

π(t)ω(t,c), π(g(t))ω(t, c\ ω(t, cπ(g(t)))

are integrable at oo for all c>0. If limsup |x(ί)| = oo, then lim sup \y(t)\ =^co9

ί-*oo f-κjo

since otherwise a contradiction follows from (3). Let lim sup |x(ί)|<oo. Then
f-»00

p(t)y(t) e L^T, oo), because from (3) and (4) we have

Γ P(s)\y(s)\ds ^ π(T)\y(T)\ + (°°π(s)ω(s, \x(g(s))\)ds
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and (3) can be written as

(31) x(t) = α - £p(s)y(s)ds

for t^T, where

α = x(T)

Consequently, limx(ί) = α. On the other hand, we have
f

π(t)\y(t)\ ̂  π(t)\y(T)\ + π ( ί ) ^ c φ , k)ds

^ π(t)\y(T)\ + π(θ(Γlω(5, k)ds + Γ π(s)ω(5,

where fe is a constant such that \x(t)\^k for ί^τ. From this we see that π(t)\y(t)\
can be made arbitrarily small by taking 7\ sufficiently large and then letting t
increase without bound. Thus, \imπ(t)y(t) = 0, and we arrive at Case (II) if

f->oo

α#0. Now we suppose that α = 0. Let Tt ̂  Γbe such that

To = Λ,(7i) ^ T, 1x^(0)1 ^ 1 for ί ̂  Tu

Γ π(S)ω(5, 1)Λ ̂  4 ' Γ "toWWs, 1)

From (4) and (31) (with α=0) we get

WOI ^ <t)\y(T)\ + π(ί)Γ ω(s, \x(g(s))\)ds
JT(32)

+ J"π(s)ω(s, \x(g(s))\)ds, t Z T.

Putting u(ί)=sup \x(s)\ and using the decreasing nature of the right-hand side of

(32), we obtain"

u(t) g k0 + [* φ, u(g(s)))ds
JT\π(t)

(33)

^ J°°(s)ω(s, u(g(s)))ds, t ^ Tu

where k0 is a positive constant. Since

z sup ϋ $ 4 for
~ Tsiz π(σ)
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u(g(s)) ̂  u(t) for s e Jt9

where It and Jt are as in (10), taking (8) into account, we find

^ k0 + sup , ( \ π(g(s))ω(s, l)ds
To£s£t 7t\S) \J/tn[Tj,ί)

W)i n[ί oo π ( ^ ( y ) ) π ( y ) ω ( y» ί ) ^ )

ω(.y, l)d^ + \ π(s)ω(s, l)ds)
JtWTut) Jjtn[ί,oo) /

g A:o + sup i ί £ I Γ π(g(s))ω(s, l)ds + - f^-Γ «(*)«(*, l)ds
ToSgt π(s) Jn π(ί) Jr

<ko+ 1

and consequently

where kt is a positive constant. It follows that

£ sup -^4<2fe1forί>T1,

that is, x(t) = O(π(ί)) as ί-> oo. Now, this fact implies that/(f, x(g(t))) e Lι\T, oo),
and so from (4) we have

(34) y(t) = - j? -

for ί^T, where

Therefore, lim J ; ( 0 = -]5. Coupling (31) (with α=0) and (34) yields
ί-*oo

x(ί) = βπ(t) + J " [π(ί) - π(s)]/(5, x(^(5)))ds, ί ̂  T,

from which we easily see that limx(ί)/π(0 = j?. Thus we are led to Case (III)

when α = 0.

Next suppose (A) is sublinear and (30) holds. Notice that
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ί, cπ{g{t))\ ω(t, cπ{g(t)% <t)ω(t, c)

are integrable at oo for all c>0. It suffices to discuss the case where lim sup |x(ί)|
ί-t oo

<oo and (31) holds with α = 0. We shall show that limsup |x(ί)|/π(ί)<oo.
ί->oo

Suppose the contrary. Then it is possible to select Tl9 T2 and T3 in such a way

that

T<Tί<T2<T3, Γo = ΛΛΓi) ^ T, |x(T0)|

for t>T2,

and

We rewrite (32) as follows:

= sup J 4 4
π(s) τ2*&t π(s)

OT ω ( j ' π(β(s)))ds " T ' 5r ω ( ^ π (^ ( i y ) ) )^ = "I

s, \x(g(s))\)ds ^ ±

(35) J
^ J " s, t ̂  T2

Define

for

Noting that the right-hand side of (35) is an increasing function of t and using

the sublinearity (14), we obtain

v{t) g -j- v(t) + \ v(g(s))ω(s9 π(g(s)))ds

Φ, π(g(s)))ds

or

-~r π(f)v(i) ^ π(t) \ v(g(s))ω(s9 π(g(s)))ds
4 Jτ2

(36)
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for ϊ§: Γ3. Using the inequalities

v(g(s))^v(t) for selt,

π(g(s))v(g(s)) ^ sup [π{σ)υ(σ)~\ for seJt,

we see from (36) that for t ̂  T3

π(5)ω(5,

sup [π(s)φ)] (π(/) \ wfn\

ί "(*> ω(s, π(g(s)

g π(ί)t<ί) Γ ω(s,

^ 4" "('MO + T sup [π(s)ϋ(s)].

Thus we arrive at

0 < sup [π(5)φ)] ^ -1 sup [π(s)φ)], ί ^ T3,

a contradiction. Therefore we must have limsup |x(ί)|/π(ί)<oo, and arguing as
f-»oo

in the superlinear case, we are led to the relation (34).
This completes the proof.

B) The following theorem describes the asymptotic behavior of nonoscil-
latory solutions of (A).

THEOREM 2.2. Suppose that the conditions (16), (17) and the hypotheses
of Theorem 2.1 are satisfied. If {x(j)9 y(f)} is a nonoscillatory solution of (A),
then either

(37) lim x(ί) = α, lim π(t)y(f) = 0
t-*oo ί-κx>

for some constant α#0, or else



322 Yuichi KITAMURA and Takasi KUSANO

(38) i i m ^ I = ̂  ]ϊmy(t)=-β
r-+oo

for some constant

PROOF. Let {x(t), y(t)} be a nonoscillatory solution of (A) defined on
[τ, oo). Suppose x(ί)>0 for ί^τ. Let T ^ τ be such that h*(T)^τ. By the
second equation of (A), y(t) is decreasing for t^T. If y(t)>0 for ί^ T, then the
first equation of (A) implies that x(t) is increasing, and so from (3) we get

x(Γ) ^ x(t) ^ x(T) + π(T)y(T) for t ̂  T.

If y(t)<0 for ί^ T (> T), then again from (3)

K Φ ω ^ = x(Γ') - x(ί) g x(Γ'), ί ̂  Γ'f

which shows that p(t)y(t)eLι\T', oo). Taking this fact into account and noting
that x(t) is decreasing, we have

x(Γ') ^ x(ί) = x(Γ') + Γ p(5)j<5)ώ - Γp(s)y(s)ds
JT' Jt

^ x(Γ')

for ί ̂  T'. A parallel argument applies if we assume that x(t) <0 for t ̂ τ . There-
fore we conclude that

lim sup |x(ί)| < oo and lim inf i ^ I L > 0.

The conclusion of the theorem now follows from Theorem 2.1. This finishes
the proof.

REMARK 2.1. From the existence theorems established in [3] and [4] it
readily follows that under the hypotheses of Theorem 2.1 system (A) actually
possesses nonoscillatory solutions of the type (37) for all α^O as well as those of
the type (38) for all

EXAMPLE 2.1. Consider the superlinear system

JJ+smt
(39) {
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As easily checked, the integral condition (29) is not satisfied and system (39) has

a nonoscillatory solution

x(t) = e~\ VI + cos 0, y(t) = - yfϊeX Jl + sin t)

whose asymptotic property is different from (37) and (38).

C) Finally we establish oscillation and nonoscillation theorems correspond-

ing to Theorems 1.3 and 1.4.

THEOREM 2.3. (i) Suppose that (A) is superlinear and condition (G>) is

satisfied. If (29) holds, then every oscillatory solution {x(t), y(t)} of (A) has

the property:

(40) lim sup \x(t)\ = oo, lim sup \y(t)\ = oo.
f->oo t-*oo

(ii) Suppose that (A) is sublinear and condition (G*) is satisfied. If (30)

holds, then every oscillatory solution {x(t), y(i)} of (A) has the property:

(41) lim -^β- = 0, lim y(t) = 0.

PROOF. Let {x(t)9 y(t)} be an oscillatory solution of (A) defined on [τ, oo).

Take Γ ^ τ so that ft*(Γ)^τ. From the possibilities listed in Theorem 2.1

Case (II) and Case (III) (with βφO) are excluded, and hence {x(t), y(t)} satisfies

either (40) or (41).

(i) Let (A) be superlinear and (G*) hold. Suppose to the contrary that

(41) holds true. Then, proceeding as in the proof of the first part of Theorem

1.3, we have

JJ ω(s, \x(g(s))\)ds9 t ^ T,

from which using the function

we can derive

for all sufficiently large t. But because of (G*) this is impossible.

(ii) Let (A) be sublinear and (G*) hold. Suppose we have (40). Then

there are Tl9 T2 and T3 such that
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T<Tι<T2<T3, Γo = MTx) ^ T,

sup |x(s)| = sup \x(s)\ for t ^ T2,

\" π(5)ω(5, l>ίs

π(5)ω(s,

4

Now defining ι?(ί) = sup \x(s)\ and arguing as in the second part of Theorem

1.3, we are able to derive a contradiction that

v(t) ^ 1 . > τ
= 2 ' = 3>

from the inequality

π(T)\y(T)\

which is a consequence of (3) and (4). It follows that {x(t), y(i)} must satisfy

(41). Thus the proof is complete.

REMARK 2.2. The second part of Theorem 2.3 extends and improves

recent results obtained in [2, Theorem 1], [6, Second half of Theorem 5] and

[9, Theorems 2 and 3].

EXAMPLE 2.2. Consider the sublinear system

(42)

where ^(ί)=arccos ( — sin3 i). The branches of g(t) is taken as follows:

(n - 2)π g 0(0 < (n - l)π if nπ - ~- ^ ί < nπ + -5-, n = 1, 2, 3,....

Since g(t)<t9 condition (G*) is satisfied. It is easy to verify that (30) is valid.

According to (ii) of Theorem 2.3 every oscillatory solution of (42) vanishes

asymptotically in the sense (41). In fact,

x(t) = exρ( - ^3Ocos t , y(t) = - 2exp( ?s=*)si
\ -v/3 /
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is an oscillatory solution of (42) having this property.

THEOREM 2.4. Suppose that (26), (G*) and (G*) hold. If

(43) ^ π(g*(t))q(t)dt < co,

then all solutions of (A) are weakly nonoscillatory.
This is an immediate consequence of Theorem 2.3.

EXAMPLE 2.3. Consider the linear system

*'(/) =

(44)

Let g(t) = t\ 1 + -jsin (log i) . All the conditions of Theorem 2.4 are satisfied,

so that system (44) has no oscillatory solutions.

Let g(t)= -y 4- -j . Although (43) holds, condition (G*) is violated. As a

result (44) possesses an oscillatory solution

x(t) = exp ( - y/Jt) sin t, y(t) = 2 exp ( - -L=^ cos ( ' + y )

References

[ 1 ] S. Belohorec, On some properties of the equation y"(x)+f(x)ya(x)=0, 0 < α < l . Mat.

Casopis 17 (1967), 10-19.
[ 2 ] Y. Kitamura and T. Kusano, Vanishing oscillations of solutions of a class of differential

systems with retarded argument, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
62 (1977), 325-334.

[ 3 ] Y. Kitamura and T. Kusano, On the oscillation of a class of nonlinear differential
systems with deviating argument, J. Math. Anal. Appl. (to appear).

[ 4 ] Y. Kitamura and T. Kusano, Oscillation and a class of nonlinear differential systems
with general deviating arguments, J. Nonlinear Analysis: Theory, Methods and Appli-
cations (to appear).

[ 5 ] T. Kusano and H. Onose, Asymptotic behavior of nonoscillatory solutions of second
order functional differential equations, Bull. Austral. Math. Soc. 13 (1975), 291-299.

[ 6 ] T. Kusano and H. Onose, Asymptotic decay of oscillatory solutions of second order
differential equations with forcing term, Proc. Amer. Math. Soc. (to appear).

[ 7 ] R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential

equations, Trans. Amer. Math. Soc. 93 (1959), 30-52.

[ 8 ] O. N. Odaric and V. N. Sevelo, Some questions concerning the asymptotic behavior of



326 Yuichi KΓΓAMURA and Takasi KUSANO

solutions of nonlinear differential equations with retarded argument, DifferenciaΓnye

Uravnenija 9 (1973), 637-646 (Russian).

[ 9 ] B. Singh, Asymptotically vanishing oscillatory trajectories in second order retarded

equations, SI AM J: Math. Anal. 7 (1976), 37-44.

[10] N. V. Vareh, A. G. Gritsai and V. N. Sevelo, On the oscillation of solutions of certain

systems of differential equations with retarded argument, Metody Kolicestvennogo i

Kacestvennogo Issledovaniya DifferenciaΓnyh i IntegraFnyh Uravnenii, pp. 20-38, Kiev,

1975 (Russian).

Department of Mathematics,

Faculty of Science,

Hiroshima University*)

*) The present address of the first named author is as follows: Department of Mathematics,

Faculty of Education, Nagasaki University.




