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Introduction

In this paper, we shall give a sufficient condition that properties for a reduced
noetherian scheme X to be Cohen-Macaulay or Gorenstein can be ascended to
or can be descended from the same properties on the normalization X of X.
It is well-known that the condition of flatness plays an important role in the study
of many properties on an extension of a noetherian rings (e.g. [21]). But the
normalization of a reduced noetherian ring is an integral extension which is far
from a flat one. Therefore it seems to the author that we need a ‘‘flatness”’
condition on X, in some sense, in order to give the above sufficient condition.
Fortunately, in his famous paper [11], H. Hironaka defined the notion of normal
flatness in 1964 (see Def. 2 in this paper). From that time, many mathematicians
have studied properties on normal flatness and have obtained many results on it
(e.g. [9], [10]). Let Y be the closed subscheme of X defined by the conductor
of X in X. By the definition of normal flatness, if X is normally flat along Y,
that is, if the normal cone N of X along Yis flat over Y, then X’ x 4 Yis flat over Y
where X' is the blowing up of X along Y. On the other hand, there is a canonical
morphism from X’ to X (see Prop. 3 in this paper) and P. H. Wilson showed, in
the case where X is a hypersurface, that a necessary and sufficient condition for
this canonical morphism to be an isomorphism can be spoken by a “flatness’’
condition (cf. Theorem 2.7 in his paper [22]). The author believes that, under
the condition that X is normally flat along Y, the fibres of N along Y and hence
the fibres of X’ along Y are well parametrized. In this point of view, we shall
study the structure of N and show that if X is normally flat along Y and Y is
of pure codimension 1 in X, then

(i) X' is naturally isomorphic to X.

(ii) X is a Cohen-Macaulay scheme if and only if so is X.

(iii) X is a Gorenstein scheme if so is X.

The author would like to thank Professor Mieo Nishi, Professor Kei-ichi
Watanabe and his friend Akira Ooishi for their kind advice, and would like to
express his gratitude to Professor Masayoshi Nagata for his letter to the author
giving a construction of a hypersurface of any dimension =3 that has a unibranch
point such that the normalization of the local ring at this point is not a Cohen-
Macaulay (local) ring.



210 » Mitsuo SHINAGAWA

§1. Normal flatness (1)

In this section, we shall consider a noetherian scheme S and a closed sub-
scheme T of S. We refer scheme theoretic languages to [5], [6] and [7].

Let .# be an Og-module. For any point s of S, we denote the stalk of .#
at s by .#, and the maximal ideal of 05, by m,. We put .#(s)=.4#,/m.#, and
K(s)= Os(s)= 0 (/M as usual.

Let # be the sheaf of ideals of @5 which defines T. We denote the normal
cone of S along Tby Ny 5. Hence by the definition of normal cones,

N TS = y/ﬂvr(%;(@s»

where %, (05)=0r®(®,5F"/F"*) is the graded Or-algebra associated
with .#. For any point ¢ of T, we put

Ny s5(t) = Spec(%:,(05) (1)) = Spec (k(t) ® (D pz 1 L7/ MIY))
and Hypg(t; n)=dim,(#7/m.#7). Then we have a well-known proposition.

PROPOSITION 1. There exists the numerical polynomial P with coefficients
in the field of rational numbers such that Hy s(t; n)=P(n) for every sufficiently
large n and the dimension of Ny (1) is equal to deg (P)+1.

Proor. The assertion follows from Th. 20.5 in [15] and Th. 19 of § 7.10
in [18].

DEerINITION 1. We define the degree of Hpg(t; n) by one of the above
polynomial P.

We now give the definition of normal flatness.

DErINITION 2. For any point ¢t of 7T, we say that S is normally flat
along T at t if %:,(0s), is a flat Or,-module, that is to say, #7/#1*! is a free
Ormodule for any n. S is said to be normally flat along T if S is normally
flat along T at any point of T, in other wards, if #”/#"*! is a locally free O~
module for any n. This is equivalent to the condition that Ny g is flat over T.

We denote the blowing up of S along T by %/ (S). Hence by the definition
of a blowing up,

B (S) = P 'e/'T(g?J((DS))

where Z,(05)=0s®(®,>, #") is the Rees Og-algebra defined by #. Then we
know that for any point ¢ of T,

B¢ 1(S) x 1 Spec(k(f)) = Proj(«(t) @ (@21 L1/ SY).



Some results on the normalization and normal flatness 211

While many results on normal flatness have been obtained, we need the fol-
lowing results in this paper.

PROPOSITION 2. Suppose that S is normally flat along T.

(i) Hrps(ty; n)=Hrpg(ty; n) for any two points t,t, of a connected
component of T. In particular,

dim (Nrs(ty)) = dim (Nr(t)).

(ii) For any point t of T, dim(Nyg(t))=codim(Z, S) where Z is any
irreducible component of T which passes t.

(iii) For any point t of T, dim(0s,)=dim (0r,) +dim(0s5,) where z
is the generic point of an irreducible component of T which passes t.

PrOOF. The assertions follow from (6.10.5) in [7] and Korollar 1.52. in [9].

COROLLARY 1. If S is normally flat along T and is connected, then T is of
pure codimension in S.

PrOOF. The assertion follows from (i), (ii) in Prop. 2.

COROLLARY 2. If S is normally flat along T and T is of pure codimension 1
in S, then &/ 1(8S) is finite over S.

PrOOF. The assertion follows from (ii) in Prop. 2 and (4.4.2) in [6].

COROLLARY 3. Suppose that S is normal and T is of pure codimension 1

in S. If S is normally flat along T, then B/ (S)=S and therefore S is an
invertible sheaf of ideals of 0.

Proor. The assertions follow from the above corollary.

§2. Normal flatness (2)

From now on, we shall consider a reduced noetherian scheme X of which
the normalization, denoted by X, is finite over X. Let © be the canonical mor-
phism from X to X. By the conductor € of X in X we mean the largest sheaf
of ideals of @y which is also a sheaf of ideals of m.(0x). Therefore ¥ =
Ay (Tx(Ox)/0x).  Since X = Fpeoy(n4(0x)), Wwe may consider ¥ as a sheaf of
ideals of 0y. We denote by Y and Y the closed subschemes of X and X defined
by & respectively. We now put shortly

N=Nyx, N=Nyy X =8/y(X), and X = B/y(X).

Then we have the following commutative diagrams.
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j LIRS AR ¢ X = x
S el
NSy, x X -,

where i and j are natural injections and the others are canonical morphisms
induced by 7.

P. H. Wilson obtained that ©’ is an isomorphism in case that X is an ir-
reducible variety (cf. Theorem 1.2 in [22]). More generally we have the fol-
lowing proposition.

PROPOSITION 3. 7 is an isomorphism.

Proor. The assertion follows the fact that (#,(0y)) . =(£,(0x)).+ and from
the construction of 2., (cf. (2.4) in [5]).

The following theorem is important in this paper.

THEOREM 1. The following conditions are equivalent.
(i) X is normally flat along Y and Y is of pure codimension 1 in X.
@) (1) Yisflat over Y.

(2) € is an invertible sheaf of ideals of Oy.

PrOOF. (i)=-(ii): By Cor. (ii) of Prop. 2 and Prop. 3, we have X'=X'=X.
Hence € is an invertible sheaf of ideals of 0y. Since Y=XxyY=X'x Y=
Pios (14(0y)) and 7 is flat by the definition of normal flatness, Y is flat over Y
by using (2.2.1) in [5].

(ii)=>(i): Since ¢ is an invertible sheaf of ideals of @y by our assumption
(2), % is an invertible one of m,(0x). For any n=1, €"/¢"* 1 =X E"® 1y 0x)Tx(0y)
and therefore we conclude that #"/¢"+! is a locally free 7,(@y)-module of rank
1. On the other hand, 7,(0y) is a locally free ¢y-module by the assumption
(1). Hence ¥"/€"*! is a locally free one for any n. In other words, X is nor-
mally flat along Y.

Let z be the generic point of an irreducible component of Y. Since X is
finite over X, there exists a point z of Y such that n(Z)=z and dim(0g ;)=
dim (0x.). From the assumption (1), it follows that

dim (0y ;)=dim (0y ,)=0 (cf. Theorem 20 in [14]).

Therefore Z is the generic point of some irreducible component of Y. By the
assumption (2), we have dim (0g;)=1 and hence dim(0y,)=1. Therefore we
conclude that Y is of pure codimension 1 in X.

COROLLARY 1. Under the equivalent conditions of the above theorem, we
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conclude that the blowing up X' of X along Y is the normalization X of X.

We have already shown the assertion in the above proof of Theorem 1.
Hence we omit the proof.

COROLLARY 2. Let X be an affine scheme. Suppose that I'(X, Oy) is local.
Then the following conditions are equivalent.
(i) X is normally flat along Y and codim (Y, X)=1.
(i) 1) I(Y, Oy) is a free ['(Y, Oy)-module.
(2) I'(X, %) is a principal ideal of I'(X, Ox) generated by a regular
element.
Proor. The assertion can be easily seen by Cor. 1 of Prop. 2 and Th. 1.

As for the dimension of the local ring of X at any point, we have the following
theorem.

THEOREM 2. Suppose that X is normally flat along Y and Y is of pure
codimension 1 in X. Let X be any point of X and let x be the point n(X) of X.
Then we have

dim (0g.5) = dim (0x.).

Proor. We may assume that X is contained in Y. By (iii) of Prop. 2 and
Th. 1, we have

dim (0 ) = dim (0g.5) + 1,
dim (04 ) = dim (0y,) + 1.

Since Y is finite and flat over Y by Th. 1, dim (0y ;)=dim (0y ,) (cf. Theorem 20
in [14]). Therefore dim (O 5) =dim (O ).

In connection with the condition (1) in Theorem 1, we give the following
proposition.

PROPOSITION 4. Y is flat over Y if and only if m(Og)|0x=7+(0y)|0y is
a flat Oy-module.

ProoF. Since the property of flatness is a local one, the assertion follows
from Chap. I, § 3, n° 5, Prop. 9 in [2].

§3. A property for schemes to be Cohen-Macaulay

We refer the definitions of depth, local cohomology, Cohen-Macaulay ring
and Cohen-Macaulay scheme to the books [8], [10] and [14].
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From now to the end of § 5 in this paper, we understand that X is always
normally flat along Y and Yis of pure codimension 1 in X. For the sake of sim-
plicity, we use the following notations.

For any fixed point y of Y, we put shortly

A=0y, A=1,0x),, C= %, m=m, k=xr(y) and K= A/mA.

Then A is the normalization of A. It follows from Th. 2 that for any maximal
ideal n of A, the dimension of A, is equal to one of 4. On the other hand,
Hi(A)=H} 3(A) for any i=0 (cf. Corollary 5.7 of Proposition 5.5 in [8]).

Since the condition that X is a Cohen-Macaulay scheme is a local property,
the above facts show the following lemma.

LEMMA. X is a Cohen-Macaulay scheme if and only if n(0x) is a Cohen-
Macaulay 0x-module.

THEOREM 3. Let y be a point of Y. Then the following conditions are
equivalent.

(1) X is Cohen-Macaulay at y.

(2) Yis Cohen-Macaulay at y.

(3) X is Cohen-Macaulay along n~(p).

(4) Yis Cohen-Macaulay along 7~1(y).

Proor. By Cor.2 of Th. 1, C is generated by a regular element of A.
Therefore the equivalence between (3) and (4) are obvious (cf. (ii)) of Theorem
30 in [14]). Since A/C is a finite and flat extension of 4/C by Cor. 2 of Th. 1,
the equivalence between (2) and (4) follows from (21.C) in [14]. Hence we
conclude that (2), (3) and (4) are equivalent.

We now show that (1) implies (2). Put C=cA and C’=cA. Then we have
C/C'~cAJcA=AJA because ¢ is an A-regular element. Hence C/C’ is a free
A/C-module by Prop. 4. Set C/C'~A/A=@®'A/C for some positive integer r
and consider the following exact sequence

0 — C/C' — A/C" —> A|C — 0.

By our assumption, dim (4)=depth (A4), say d, we have depth (4/C")=dim (4/C’")
=d—1. Since A is a normal ring, it follows from the Serre’s criterion for nor-
mality (cf. Theorem 39 in [14]) that 4 is a Cohen-Macaulay ring if d<2. By
the equivalence between (2) and (3), we may assume that d is greater than or equal
to 3. Let i be any positive integer which is less than or equal to d—2. Then
Hi(A/C")=0. By the above exact sequence, we have an exact sequence

Hi='(4/C") —> Him1(A/C) — Hi(C|C') — Hi(A4/C").

Hence we have
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HiT/(AC) = Hi(CIC') = @ Hi(A[C)-++ v ().

Since A is normal and dim(A4)=3, we have depth(4,)=2 for any maximal
ideal n of A by the Serre’s criterion for normality and Th.2. Therefore
depth (A4,/CA,)=depth(A4,/cA,)=1. On the other hand, depth(4,/CA4,)=
depth (4/C)+depth (4,/mA,)=depth (4/C) because A/C is a finite and flat
extension of A4/C (cf. (21. C)in [14]). Hence depth (4/C)=1, thatis, H}(A/C)=
0. Therefore we have H:(A/C)=0 by (). Hence we conclude that depth (4/C)
=d—1. On the other hand, dim(4/C)=d—1 by (iii) of Prop.2. Therefore
A/C is a Cohen-Macaulay ring. This shows (2).

Next we show that (3) implies (1). Consider the following exact sequence

00— A—A4A— A/A—0.

Let i be any non-negative integer which is less than or equal to d—1 where d=
dim (4)=dim (4). Then we have an exact sequence

H(A]4) —> Hi(A) —> HY(A)-+-ooovo (%)

where we put H;!(4/4)=0. Since 4 is a Cohen-Macaulay ring of dimension
d by our assumption, Hi(A4)=0 by the above lemma. By (%) and the equivalence
between (2) and (3), we have

Hi-(A/4) = @ Hi-'(4/C) = 0.

Therefore we have Hi(A)=0 by the above fact and (**). In other words, 4 is
a Cohen-Macaulay ring. This shows (1).

We now give easy consequences of the above theorem but we omit thier
proofs.

COROLLARY 1. X is a Cohen-Macaulay scheme if and only if so is X.
And if so, Y and Y are Cohen-Macaulay schemes.

COROLLARY 2. X satisfies the Serre’s condition (S,) (cf. (17.1) in [14]) if
and only if so does X.

COROLLARY 3. X satisfies the Serre’s condition (S,) and hence Y has no
embedded component (cf. the proof of (vi) in Theorem 2.6 in [4]). In particular,
if X is of dimension 2, then X and Y are Cohen-Macaulay schemes.

§4. Fibres of the normal cone

In this section, we shall study some properties on the structure of the fibres
N(y) of the normal cone N of X along Y at any point y of Y. Under the same
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notations as in §2 and § 3, we have 7u(%,(0x)),=grc(A), G1e(Ox),=grc(A)
and by Cor. 2 of Th. 1, gro(A)=A4/C[U] where U is an indeterminate, and
grc(A)=A/C®UA/C[U] because grc(A),=grc(A),.. Consider the following
exact sequence of A/C-modules

0 — gre(4) — gro(d) — AJA— 0.
Then we have an exact sequence
0—k®gre(d) — k@ gro(A) — k@A A — 0

because A/A is a flat A/C-module by Prop. 4. Therefore we have k®grc(4A)=
K[U] and k®grc(A)=x@UK[U].

From now on, we put H(y; n)=Hy x(y; n) and h(y)=H(y; 1) for the sake of
simplicity. Then we have the following proposition.

PROPOSITION 5. N(y) and N(y) are Cohen-Macaulay algebraic schemes
of dimension 1 defined over the field k=x(y). The multiplicity and the embedded
dimension of N(y) at the origin are same and equal to h(y). In fact, H(y; n)=
h(y) for all n=1.

ProoF. The first assertion is obvious by the above discussion. The last
two assertions follow from the facts that C"/C**'=~A/C for any n=1 and A4/C
is a free A/C-module by Cor. 2 of Th. 1.

We now give a sufficient condition for N and N to be Cohen-Macaulay
schemes.

THEOREM 4. If X is a Cohen-Macaulay scheme, then so are N and N.

Proor. Since 7 and 7 are flat, the assertion follows from Cor. 1 of Th. 3,
the above Prop. 5 and (21. C) in [14].

We refer the definition of seminormality and one of glueings to [4], [20]
and [23]. Then we have the following theorem.

THEOREM 5. For any point y of Y, N(¥);.a is a seminormal curve with
an isolated singularity and its normalization is N(y);eq.

ProoF. By the beginning of this section, we know that k®@gr-(4A)ck®
grc(A). Hence we have (k®grc(4))iea < (k®grc(4))req- On the other hand,
the last ring is K[U] where K=K,,,=A4/J(4) and J(A) is the Jacobson radical
of A. Therefore (k®grc(4)),ea=x@®UK[U]. Since K is a finite product of
fields, K[U] is a normal ring. Hence the last assertion is obvious by the above
discussion. On the other hand, the conductor of k@ UK[U] in K[U] is UK[U].
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Therefore it is a radical ideal of K[U] and is the homogeneous maximal ideal of
k@UK[U]. Hence the first assertion follows from Corollary 2.7 of Theorem
2.6 in [4].

COROLLARY 1. If X is an algebraic scheme defined over an algebraically
closed field k and y is any closed point of Y, then N(y),.q is a disjoint union of
affine lines and N(p);.q is the curve which is obtained by glueing the origins of
the above lines.

Proor. Under the same notations as in the proof of the above theorem,
K is the s times product of k for some positive integer s because K is a reduced
artinian ring which is finite over k and « is algebraically closed field by our as-
sumption. Therefore the first assertion is trivial. Since k@ UK[U] is isomorphic
to k[ Uy,..., U/(U;U;|i* j) where U,,..., U, are indeterminates (cf. Corollary 3
of Theorem 1 in [3]), we can prove the second assertion.

We now give a result on the number of branch points of X at any closed point
y of Y under suitable conditions.

COROLLARY 2. Under the same assumptions as the above corollary, if
X is unramified over X, then N(y) is a seminormal curve and its normalization
is N(y). Moreover the number of branch points of X at y is equal to h(y) and

h(y,)=h(y,) for any two points y,, y, if they are contained in a same con-
nected component of Y.

Proor. Under the same notations as in the beginning of this section, K=
K,.; because X is unramified over X. Hence we conclude that N(y)=
Spec (K[U]) is reduced. Therefore N(y)=N(y),.q- Hence the former assertion
follows from the above corollary. The latter one follows from the fact that

= 1(y) = Proj (77)x(0x) (¥)) by Prop. 3, Cor. 1 of Th. 1 and from (i) of Prop. 2,
Prop. 5 and Cor. 1 of Th. 5.

§5. A property for schemes to be Gorenstein

For any noetherian scheme S, we define the following condition for any
non-negative integer n.
(G,): Let s be any point of S. If dim (05, =<n, then 05, is a Gorenstein
ring.
We shall show the following:

PROPOSITION 6. Let y be the generic point of an irreducible component of
Y. If X satisfies the condition (G,), then the multiplicity of X at y is equal to
2 and h(y)=2.



218 Mitsuo SHINAGAWA

ProoF. Under the same notations as in § 3, A/C is flat over A/C by Th. 1.
Let e be the multiplicity of A. Then

e = dim(K) = dim(x®4/C) = rank ,,c(4/C),
length ;,(A/C) = rank 4,c(4/C)length 4,c(4/C).

Since Y is of pure codimension 1 in X, 4 is a Gorenstein ring of dimension 1
by our assumption. Hence length,,(4/C)=2length,,c(A/C) (cf. Korollar 3.5
von Satz 3.3 in [10]). Therefore rank,,-(A4/C)=2. Hence e=2. On the other
hand, h(y)=H(y; 1)=dim(x®C/C?) and C/C>*=A/C by Th. 1. Therefore
h(y)=e=2.

PROPOSITION 7. If X satisfies the condition (G,), then N(y) is a Gorenstein
affine plane curve defined over the field k(y) for any point y of Y and the mul-
tiplicity at the origin is equal to 2. Moreover N(y) is a complete intersection
in the affine plane over Spec (k(y)).

ProOF. Since h(y)=2 by (i) of Prop. 2 and the above proposition, we have
k(y)®grc(A)=«k(y)[U,, U,]/(f) where U, and U, are indeterminates and f
is a form of degree 2. Therefore the assertions are obvious.

COROLLARY 1. Let X is an algebraic scheme defined over an algebraically
closed field. If X satisfies the condition (G,) and X is unramified over X, then
the number of branch points of X at any closed point of Y is equal to 2.

The assertion is obvious and we omit the proof.

COROLLARY 2. If X satisfies the condition (G,), then m4(0x)/0x is a locally
free Oy-module of rank 1.

ProorF. Since the rank of 7,(0y) at any point y of Y is equal to h(y) by
Cor. 2 of Th. 1, it is equal to 2 by the proof of the above proposition. Therefore
the assertion follows from Prop. 4 and from the following exact sequence of @y-
modules

0 — Oy — Tx(Oy) — 74 (0x)/Ox — 0.
In connection with canonical modules, we shall study the @,-module

74(0%)/0x. Now for any coherent ¢y-module .#, we denote the dual module
Homo (M, Ox) of # by .#*. Then we have the following proposition.

PROPOSITION 8. There exist canonical isomorphisms from my(Ox) to €*
and from m.(Ox)|0x to €=t} (ix(Oy), Ox) where i is the canonical injection
from Yto X.

Proor. Consider the following exact sequence of ¢x-modules
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0— & — Oy — iW(0y) — 0.
Then we have an exact sequence
0 — 0F —> €% — 6205, (i4(0y), Ox) — 0-+-(%)

because i4(0y)*=0 and &e=s} (Oy, Ox)=0. Since 0x=0%, we consider Oy
as an Ox-submodule of ¥* by means of scalar multiplications. On the other
hand, ¢ is also a sheaf of ideals of 7,(0x), we may naturally consider 7,(0x)
as an Ox-submodule of ¥* by the same method. We now show that 7,(0x),=
#7% for any point y of X. We may assume that y is a point of Y. Under the same
notations as in § 3, €} =Hom ,(C, A)=4A: ,C where Q is the full ring of quotients
of A (cf. Lemma 2.1 in [10]). By Cor. 2 of Th. 1, we may put C=cA4 for some
A-regular element ¢ of C. Then we have A:,C=A:,cA=1/c(A: 4A) in Q.
Since A: A=A because A has the unity, we have A:,A=A: ,A=C by the
definition of the conductor. Therefore A:,C=1/c(C)=1/c(cA)=A. Hence
we prove the first assertion. The second one follows from the first one and from
the exact sequence (*).

From now on we put Q=¢&=¢,, (i,(0y), Ox). Then we have the following
corollary.

CorOLLARY. If X satisfies the condition (G,), then Q is a locally free
Oy-module of rank 1.

ProOOF. The assertion follows from Cor. 2 of Prop. 7 and the above pro-
position.

PROPOSITION 9.  Suppose that X satisfies the condition (G,). Then N
satisfies the condition (G,) if and only if so does Y.

Proor. Since 7 is flat and surjective, the assertion follows from Prop. 7
and Theorem 1’ in [21].

For any coherent @y-module .#, we have the natural isomorphism
o}fomi*(ay)(%, 1,,,(0,,)*) ~ A*.
Hence we have a spectral sequence of ¢x-modules
Eatlyoy) (M, Eat§, (ix(Oy), Ox)) == E=t5T4( M, Ox)--(%).
Then we have the following proposition.
PrOPOSITION 10. If X is a Gorenstein scheme, then we have

é’w/’i)‘(gy)(.ﬂ, Q) = é’z/Z;l(/, @X)
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for any coherent Oy-module # .

PrOOF. Since X is a Gorenstein scheme and therefore it is a Cohen-Macaulay
scheme, Y is a Cohen-Macaulay scheme of dimension dim (X)—1 by Cor. 1 of
Th. 3. Hence we have &%, (i,(0y), Ox)=0 if g+1 by the duality theorem
for Gorenstein schemes (cf. Theorem 6.3 in [8]). Therefore the above spectral
sequence (*) is degenerate. Hence we conclude the assertion.

Let y be any point of Y. Under the same notations as in § 3, put d =dim (A4)
and let I be an injective hull of k as an A-module. Then I is an injective hull
of k as an A/C-module where I=Hom,(A4/C,I). For any A-module M, we
denote Hom (M, I) by D(M). If M is an A/C-module, then we have D(M)=
Hom, (M, I). For any finitely generated A/C-module M, we know that
Hr (M) H?2(M) for any non negative integer n. If X is a Gorenstein scheme,
Q,=A/C by Cor. 2 of Prop. 7. Hence for any finitely generated A4/C-module
M, we have Ext§, (M, A/C)=Exti*1(M, A) by the above proposition. On
the other hand, D(Ext%4*Y(M, A))=H{ '"P(M)=H&;L"P(M) by the duality
theorem for Gorenstein rings. Therefore we have the following theorem.

THEOREM 6. If X is a Gorenstein scheme, then so are Y and N.

PrROOF. Under the same notations as in above discussion, A/C is a Cohen-
Macaulay ring of dimension d—1 by Cor. 1 of Th. 3. Since Hom,(Ext},c
(M, A/C), I)=D(Ext5*'(M, A))= H%;4-(M) by the above discussion, A4/C is
a canonical module of 4/C. Hence A/C is Gorenstein. This shows that Yis a
Gorenstein scheme. Hence N is a Gorenstein scheme by Prop. 9.

COROLLARY. If X satisfies the condition (G,), then Y satisfies the condition
(G,_,) and hence so does N.

Proofr. The assertion follows from Th. 3, Prop. 9 and the above theorem.

We now study the property for X to be Gorenstein. Since % is an invertible
sheaf of ideals of m.(0x), for any point y of Y, X is Gorenstein along n~1(y) if
and only if Yis so along #~!(y) (cf. Theorem 4.1 in [1] and Theorem 206 in [12]).
On the other hand, Y= Poesy(t4(Oy)) and t4(0Oy) is generated by 74(0Oy), Over
0y, which is a subsheaf of 7,(0y) of degree 1. Now we consider Y as the vertex
of N and let A be a canonical morphism from N—Y to Y. Then A is a smooth
and surjective morphism by (2.2.1) in [5]. Therefore we have the following
theorem.

THEOREM 7. If X satisfies the condition (G,), then so does X and Y satisfies
the condition (G,_ ().
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ProOF. The assertion follows from Cor. of Th. 6, Theorem 1’ in [21] and
the above discussion.

COROLLARY. If X is a Gorenstein scheme, then so are X and Y.

The assertion is obvious by the above theorem and we omit the proof.

§6. Examples

Let (R, m, x) be a reduced noetherian local ring of dimension 1 and let R be
the normalization of R. Suppose that R is not normal and R is a finite extension
of R. Then the conductor, say C, of R in R is an m-primary ideal. Since Risa
principal ideal ring, Spec (R) is normally falt along Spec (R/C) if and only if R/C
is a flat R/C-algebra by Cor.2 of Th. I. If R is a Gorenstein ring and R/C is
flat over R/C, then the multiplicity of R is equal to 2 by Prop. 6.

We refer the definition of the first neighbourhood to [13]. Then we have
the following proposition.

ProPOSITION 11. If R is a Gorenstein ring and R/C is flat over R/C, then
the first neighbourhood of R is m™1.

ProoF. The assertion follows from Theorem 12.17, Theorem 13.3 in [13]
and Prop. 6.

PROPOSITION 12. Let k be a field and let U be an indeterminate. Put
R=k[U", U221 yn yn+2p-1y With n22 and p=1. Then R/C is flat over
R/C if and only if n=2.

ProOOF. Since R is a Gorenstein ring, the “only if*” part is obvious by Prop.
6. We now show the “if”’ part. Since the conductor C of R=k[U?,
U2P*1]) g2 yap+ry is (U?, U?P*1)R and the normalization R of R is x[U]y,,
we have C=(U?")R. Therefore we have R/C=x[U?]/(U?P)x[U?] and R/C=
k[U]/(U?r)x[U]. Hence R/C=R/C@®UR/C where U is the image of U in R/C.
Our assertion follows from the above fact.

In case that the conductor C is the maximal ideal m of R, Spec (R) is trivially
normally flat along Spec (R/C). In the above proposition, this is the only one
case of p=1. But all singuralities of curves in the above proposition are cuspidal.
In connection with ordinary multifold points, we give the following proposition.

PROPOSITION 13.  Under the same notations as in § 2,

(i) if X is a seminormal curve which is not normal, then X is normally
flat along Y and Y is of pure codimension 1 in X. More generally,

(ii) if X is a seminormal scheme which is not normal and satisfies the Serre’s
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condition (S,), then Y is of pure codimension 1 in X and there exists an open
subset W of X such that Wn Y is dense in Y and W is normally flat along Wn Y.

ProOF. The assertions follow from Theorem 1 in [3], Corollary 2.7 of
Theorem 2.6 in [4] and Corollary of Theorem 1 (p. 189) in [11].

We now consider the following seminormal curve (cf. Corollary 3 of Theorem
1 in [2]).
X = Spec (k[Uy,..., U, J/(U;U;|i%j)) with n=3

where k is a field and U;’s are indeterminates. Under the same notations as
in § 2, X is normally flat along Y by the above proposition. Although X is a
regular scheme, X is not a Gorenstien scheme by Prop. 6 because the multiplicity
of X at the origin is equal to n>2. Therefore the converse of corollary of Th. 7
is false.

Appendix

In connection with the notion of normal flatness, L. Robbiano and G. Valla
defined the concept of normal torsion-freeness in their joint work [19]. Let S
be a noetherian scheme and let .# be a sheaf of ideals of ¢5. Under the same
notations as in § 1, we give the definition of normal torsion-freeness.

DEerFINITION. Let T be the closed subscheme of S defined by .#. We say that
S is normally torsion-free along T if #"|#"*1 is a torsion-free Or-module for
any natural number n.

We now give a sufficient condition that the blowing up of a normal scheme
is also normal.

PROPOSITION. Under the same notations as in § 1, let S be normal and
# be divisorial, that is to say, £ be a divisorial ideal of Og for any point s
of S. If S is normally torsion-free along T, then we have

(i) #" is divisorial for any n.

(i) 2,(0s) is a normal Og-algebra.
In particular, the blowing up of S along the center T is a normal scheme.

PrROOF. We may assume that S is a normal integral affine scheme. Put
B=I(S,0s) and I=I(S,.#). Then we have I(S, Z,(0s))=®,>oI" where
I°=B. Since I is a divisorial ideal of B, we have Assg(B/I)< Ht,(B) where Ht,(B)
is the set of prime ideals of B of height 1. On the other hand, for any element
q of Assg(I"/I"*1) there exsits an element p of Assg(B/I) such that q<p because
I*/I**1 is a torsion-free B/I-module by our assumption. Since p € Ht,(B), g=p.
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Hence we have Assg(I"/I"t')< Assg(B/I)< Ht,(B). Therefore under the no-
tations and terminologies in [16] and [17], we have (I"/I"*1)"=0 and hence
I"/[**1 is a codivisorial B-module, that is, I**! is divisorial in I". Since I is divi-
sorial, it follows from Corollary 1 of Proposition 12 in [16] that I is divisorial
by induction on n. Therefore @,>0I" is a divisorial B-module by Proposition 34
in [17]. This fact implies that @,50I" =/ ,@,50l} by (i) of Theorem 4 in [16]
and Corollary 3 of Proposition 34 in [17] where p runs over the set Ht,(B).
Since B, is a principal valuation ring for any element p of Ht,(B), @,ol} is
isomorphic to the polynomial ring of one variable over B, and hence it is normal.
Therefore @,»0I" is a normal ring. The last assertion is obvious.
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