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In this paper we shall characterize invariant measures for a uniformly re-
current diffusion kernel T on a locally compact Hausdorff space X. Our main
result is summarized as follows: Denote by H(T) the cone generated by non-
negative T-invariant measures and put ^0 = cl(Wμe/ϊ(Γ)supp(μ)). Then there
exists a strictly positive diffusion kernel W on X09 uniquely determined except for
the equivalence of diffusion kernels, such that TW=W and H(T) coincides with

W-potentials.
In sections 2 and 3, we shall discuss when H(T) is one dimensional and when

the cone formed by non-negative invariant functions with respect to the transposed
kernel of Tis one dimensional.

We remark in section 4 that similar results are valid for uniformly recurrent
continuous diffusion semi-groups on X.

A typical example of a uniformly recurrent diffusion kernels is an idempotent
kernel on X. Applying our theorem to the idempotent kernels and using results
in M. Itό [10], we see that a weakly regular diffusion kernel on X may be consider-
ed as a weakly regular Hunt diffusion kernel on some quotient space of X.

In section 6, applying our theorem to diffusion kernels of convolution type
on homogeneous spaces, we represent explicitly the above diffusion kernel W.
In this direction, for a locally compact abelian group G and non-negative adapted
Radon measure σ on G, G. Choquet and J. Deny [4] showed that all extreme
rays of the convex cone H(σ) formed by non-negative σ-invariant measures are
generated by exponentials on G. In a non-abelian case, H. Furstenberg [6]
pointed out that the extreme rays of H(σ) are generated by multiplier functions on
a certain Lie group G and some particular measure σ; however a caracterization
of the extreme rays is not known in the general case. But if σ is recurrent, our
theorem shows that H(σ) is generated by at most one exponential on G even if G
is not commutative (see also [7]). Using our theorem, we can characterize non-
negative finite order measures on locally compact Hausdorff groups, particularly,
we see that non-negative idempotent measures are the normalized Haar measures
(cf. [9] and [13]).

The author would like to express his sincere gratitude to Professor M. Itό
for his constant encouragement and helpful suggestions.
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§ 1. Basic notation and preliminaries

Let X be a locally compact Hausdorff space with a countable base. We

denote by C(X) the Frechet space of finite continuous functions on X, by CK(X)
the topological vector space of finite continuous functions on X with compact
support, by M(X) = CK(X)* the topological vector space of real Radon measures
on X with w*-topology and by MK(X) = C(X)* the topological vector space of
real Radon measures on X with compact support with w*-topology. Their
subsets of non-negative elements are denoted by C+(X)9 C£(X), M+(X) and
M%(X) respectively.

A linear operator T from MK(X) into M(X) is said to be a diffusion kernel
on X if it is continuous and positive, i.e., Tμ e M+(X) whenever μ e M£(X). The
transposed kernel Γ* of T is the linear continuous operator from CK(X) into

C(X) defined by T*ψ(x) = $ψdTεx, where εx is the Dirace measure at xeX.
Then T* is positive, i.e., for ψeCRX), T*ψeC+(X). In the sequel, for a
diffusion kernel Ton X, its transposed kernel is always denoted by T*. We put

= {λe M(X)\ ( T*\lι\dλ\ < oo for all ψ e C&X)} ,

*) = {/eC(X); the function f \f\dTεx is continuous on X} ,

n M+(X) and ^+(T*) = ̂ (T*) n C+(X). Then T (resp. T*) can
be extended to a positive linear operator from ^(T) into M(Z) (resp. from ^(T*)

into C(X) by defining Γ*/(jc) = J/dΓβx).
Let T} (7 = 1, 2) be a diffusion kernel on X. We say that 7\ is equivalent to

T2 if for any xe Jί, there exists cx>Q such that T^εx = cxT2εx. We say that a
sequence (Tj)f=1 of diffusion kernels on X converges to a diffusion kernel Ton X

if lirn^oo Tj εx = Tε^ for all x e X. In this case, we denote by lim^oo 7} = T.
Let T be a diffusion kernel on X and X0 be a closed subset of X. We may

consider that M(X0)cιM(X). If TμeM(X0) for any μeMx(JT0), then T may
be regarded as a diffusion kernel on X0.

Let T, O' = l, 2) be a diffusion kernel on X. If for μeMx(X), T2μe^(T1)

and the mapping Mx(Jf) 9 μ-+ Tl(T2μ) defines a diffusion kernel on X, the resulting
diffusion kernel is denoted by Ύ^T2. In this case, for ψeCg(X), T?^
and the mapping Q(X)9^->Tf(ΓfιA) is positive linear and (T1T2)* =
holds.

In particular, for a diffusion kernal Ton X and a positive integer n^l, we

denote by Tn the diffusion kernel defined inductively by Tn~lT provided that it is
defined, where Γ1 = T. In case Γ^O, T° means the identity operator / on M(X).

A family (Vp)p>0 of diffusion kernels on X is said to be a resolvent on X
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if VpVq is defined and Vp-Vq = (q-p)VpVq for all p>0, g>0. For a diffusion
kernel V on X, if there exists a resolvent (Fp)p>0 satisfying limp_»0Fp=F, then
it is unique and by putting F0 = F, we call (Fp)p^0 the resolvent associated with V.
In this case, we denote by Fe R and for any p>0, FpFand FFp are defined and

Let Tbe a diffusion kernel on X. For any p > 0, we assume that Vp defined by

Vpμ =

is a diffusion kernel on X. In this case, we see easily that (Fp)p>0 is a resolvent
and call it the resolvent generated by T.

DEFINITION 1. (1) A resolvent (Fp)p>0 on X is said to be uniformly

recurrent if there exist a family (wp)p>0 in C+(X) and a positive number p0 sati-
sfying the following four conditions :

(a) Mp>0 on X for any /?>0.

(b) up converges pointwise to 0 as p-+Q.
(c) For any ψ€C%(X), (wpF*ψ)po>p>0 forms a normal family on any

compact set.

(d) For any x e X, there exists \jι e C^(X) such that

infpo>p>oWp(x)F*ιA(x)>0.

(2) A diffusion kernel T on X is said to be uniformly recurrent if the re-
solvent generated by it exists and is uniformly recurrent.

DEFINITION 2 (cf. [10] p. 331). (1) A subset A of XxX is said to be of
transitive type if for any (x, y), (y, z)eA, (x, z)eA and y4=^{(x, x); xeJf},
and y4 is said to be symmetric if (x, y)eA implies (y, x) e A

(2) Let F be a closed set of transitive type. A function e(x, y)>0 on F is
said to be of exponential type if it is continuous and for any (x, y), (y, z)eF,

) = e(x, z)

If F is symmetric, e(x, y)e(y, x) = 1 for any (x, j;) e F evidently.
For a diffusion kernel T on X, we put

supp (T) = cl {(x, y)eX x X; xeX, yε supp (Tεx)} ,

and call it the support of T.

DEFINITION 3 (cf. [10] p. 332). (1) A diffusion kernel T on X is said to be
of sub-exponential type if there exists a closed set F of transitive type with FID
supp (T) and a function e(x, y) on F of exponential type such that for any x e X,

(2) In the above case, if in addition the function Je(x, y)dTex(y) on X is
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continuous, we say that Tis of continuous sub-exponential type.
(3) In particular, if J e(x, y)dTεx(y) = 1 on X, we say that Tis of exponential

type.

REMARK 4. Let T be a diffusion kernel on X and e(x, y) be a function of
exponential type on a certain closed set F of transitive type with F=>supp(T).
We can define the diffusion kernel eTon X by putting

φd(eTμ) =

for μ E MK(X) and ^ e
If Tis of continuous sub-exponential type, then the resolvent generated by T

exists, because for any p > 0, we see

for each /c and the right hand side defines a diffusion kernel on X as /c-»oo, where
e is a function of exponential type as in (1) and (2) of Definition 3.

For a diffusion kernel Ton X, we shall consider the following convex cones:

and

An element in H(T) is called a non-negative T-ίnvariant measure and an
element in //(T*) is called a non-negative T* -invariant function.

PROPOSITIONS. Let T be uniformly recurrent. If μe^+(T) satisfies
Tμ^μthen μeH(T).

In fact, let (Vp)p>0 be the resolvent generated by T. Then, by conditions (b)
and (d) of Definition 1, Vpεx does not converge to a measure as jp->0 for each
xeX. Hence if Tμ^μ and Tμ^μ, then Vp(μ—Tμ) does not converge to a
measure as /?-»0, which contradicts the fact that Vp(μ— Tμ)g(l+jp)μ.

From the above proposition the following corollary follows.

COROLLARY 6. Let T be uniformly recurrent. Then H(T) is a closed
convex cone in the metrizable space M+(X) and is the union of its caps1).

In fact, we remark that M+(X) is metrizable, because X has a countable base.

1) In general, for a closed convex cone K in a locally convex space, a non-empty subset C of
K is called a cap of K if C is a compact convex set and if K-C is also convex.
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Since the mapping ^+(T)3 μ-»TμeM+(X) is lower semi-continuous, Pro-
position 5 gives the first part. For μ^O in H(T\ we choose fμeC+(X} with

fμ > 0 on X and J/μdμ = 1 . Put

Then H(T;/μ) is a cap of H(T), which gives the second part.

We shall introduce some of the fundamental potential theoretic principles
for diffusion kernels.

Let Fbe a diffusion kernel on X. For an open set ω in X and μe ̂ +(T),

we put

J5κ(μ; ω) = {μ' e ^+(F); supp (μ') c ω, Fμ' ^ Fμ on X and Fμ' = Fμ in ω}

and

For any A e ^+(F), Fμ ̂  FA in)
eB (μ; ω), ^ implies Vμ, ^ yχ on X \ '

If #F(μ; ω)τ^0 for any relatively compact open set ω and μeM£(JΓ), F is
said to satisfy the balayage principle and we denote Fe B.

We say that F (resp. F*) satisfies the domination principle, Fe /> (resp.
F* e Z)) in symbol, if for any μ, λeM£(X) (resp. /, 0eC£(X)) Fμrg FA in a certain
neighborhood of supp(μ) (resp. F*/^F*# on supp(/)) implies Fμ5^FA on X

(resp. F*/^ F*# on X).
For the relation between the above principles, we have the following results.

LEMMA 7 (see [10]). Assume that V is a strictly positive diffusion kernel
on X, i.e., Vεx^Qfor any xeX. Then

(2) // Fe B, then B^(μ; ω)^0 for any relatively compact open set ω and
any μe@+(V).

The implication Fe B=> Fe D is not true in general however we have the
following

LEMMA 8. Assume that Fe B and is strictly positive. Then for any
μ, λeM£pf), if Vμ^Vλ in a certain neighborhood of supp(μ) and if there
exists τe^+(F) such that μ is absolutely continuous with respect to Fτ, then
Vμ^VλonX.

PROOF. By Fe£, we may assume that τeM£(Jf) Write μ=/Fτ with
some non-negative function / on X. For any n^l, we put gn = mm {/, n} and
μn = gnVτ. Then for any c>0,
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(V+cI)μn ^ (V+cl)(λ + cnτ)

in a certain neighborhood of supp (μπ). It follows from F+ cl e D that above
inequality holds on X. Letting c J, 0 and next n t oo, we have Vμ^Vλ on X.

This completes the proof.

§ 2. Determination of H(T)

We now state the main result in this section.

THEOREM 9. Let T be a uniformly recurrent diffusion kernel on X and let

X0=cl(WμeH(τ) suPP(μ)) Then there exists a strictly positive diffusion kernel
W on X0, uniquely determined except for the equivalence of diffusion kernels,

satisfying the following:

(1) WeB.

(3) There exists a uniquely determined funjtion e(x9 y) of exponential

type on the closed symmetric set of transitive type generated by supp(FF)3)

such that, for any xeX0 and any y e supp (Wεx)9 Wεx = e(x, y)Wεy.

(4) exrH(T) = {[Wex']'9 xeX0}9 where exrH(T) is the set of all extreme
rays in H(T)^ and [μ] = {cμ; c^Q} for any μ^O in M+(X).

It will be convenient to begin the proof with a couple of lemmas. The first

is concerned with the construction of the diffusion kernel W which appears in
Theorem 9.

LEMMA 10. Let T and X0 be as in Theorem 9. Then there exists a strictly

positive diffusion kernel Won X0 such that We B and {Wεxι xeX0}c:H(T).

PROOF. Let (Fp)p>0 be the resolvent generated by T and (Up)p>0^C+(X)

be the family as in Definition 1. First we remark that Tis a diffusion kernel on
X0 (note that the last part of this proof gives H(T)=£{Q} and hence X0=£0). In
fact, for any x e supp (μ) with μ e H(T),

supp(Tεx) c= supp(Tμ) = supp(μ) c X09

which implies cl{\JxeXo supp (Tεx)}cιX0 and hence Tλ e M(X0) for any λ e MK(X0).

Similar arguments show that each Vp9 /?>0, is also a diffusion kernel on X0 and

2) Here and hereafter, we consider that M(X0)aM(X).
3) This means the smallest closed symmetric set of transitive type containing supp (W).
4) A ray [μ] in H(T) is a set of the form {cμ'9 c^O), where 0=£μe//(Γ), and we say that [μ]

is an extreme ray if for any η e[μ] and any v, re//(Γ), η=cv+(\ —c)τ with 0<c<l implies v,
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(Fp)p>0 is the resolvent generated by the diffusion kernel Ton X0. Hence by
restricting (up)p>0 to X0, we see that Tis a uniformly recurrent diffusion kernel
on X0. By Definition 1 (c), for a countable dense subset A in C£(X0), there

exists a decreasing sequence J = OO?=ι of positive numbers with rinv^ pw = 0
such that for any ψ e Λ , u^V^il/ converges uniformly on any compact set as
n-»oo. Let feCκ(X0) and let ω be a relatively compact open set in X0 with
ω=>suρp (/). We choose ι// e C^(X0) with ψ^ 1 on ω. Then for any ε<0, there
exists φεeΛ with supp (ι/^ε) c ω and |/(x) — ψE(x)\<ε\j/(x) on X0. Since
(upV*\l/)pej is locally bounded, we see that upnV*nf con verges uniformly on any
compact set as n->oo. Define for μ e MK(X0) and/e CK(X0)9

Then Wis a diffusion kernel on X0. The strict positiveness of W follows from the
condition (d) in Definition 1. Since F* eD (see, for example, [11] p. 60), we see

(upVp)*eD, where (upVp)μ = $ up(x)Vpεxdμ(x) (μeMκ(X0)). Hence we have
W* eDby the usual limiting process which we give here for reader's convenience.
Suppose that for /, g e C £(X0), W*f^ W*g on supp (/). Let h e C£(X0) satisfying
W*h ̂  1 on supp (/). Since for \j/ e CK(X0), upnV*nψ converges to W *ψ uniformly
on any compact set as n-»oo, for any ε>0, there exists JV>0 such that

on supp(/) for any n^N. Then (wpFp)*eZ) implies that the above inequality
holds on X0. Letting n ΐ oo and ε | 0, we have W*f^ W*g on X0, that is, W* e D.
Hence WeBby Lemma 7 (1).

We shall show that {Wεx; xeX0}aH(T). By the definition of Vp9

T(up(x)Vpεx} = up(x)TVpεx ^ (p + l)up(x)Vpεx.

Since linv^ upnVpn=W, TWεx<^Wεx and Proposition 5 gives WεxεH(T). This
completes the proof.

LEMMA 11. Let Wbe as in Lemma 10.

(1) Let [μ]eexr#(T). Then for any xesupp(μ), there exists cx>0 such
that μ = cxWεx. In particular, exr#(T)d{[WεJ; xeX0}.

(2) {cμ; [μ] eexrH(T), c^O} is closed in M+(X0).

PROOF. We keep the notation as in Lemma 10 and its proof. Let [μ] e
exrfί(T), x e supp (μ) and let ωx be an arbitrary relatively compact open neigh-
borhood of x in Xό. It follows from Tμ=μ that pVpμ = μ, and hence pVpμp^μ

on X0 and pVpμp = μ in ωx for μp e Bvp(μ\ ωx). Hence there exists a subsequence
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J0c:J and τεM+(X0) such that pVpμ'p converges to τ as pε J0 tends to 0. By the
same discussion as in Lemma 10, we see that τ e H(T) and the extremeness of μ
leads to τ = μ on X0. We choose ψ e C£pf0) with W*ψ>2 on ωx. Without loss

of generality, we may assume that Wp(}017*1/^}7) ̂  1 on ω^ for each peJ. Since

((Plup)μfp)pej0 is vaguely bounded. Therefore denoting by λ its accumulation
point, we have μ = Wλ and supp(λ)c=ω^. Rewriting μ = c\V(λ/c) with c = $dλ
and letting ωx J, {x}, we have μ = cxWεx with some constant cx>0.

Let (μw)^=ι be a vaguely convergent sequence in M+(X0) with [μπ] eexr/ί(T)
and lim,l_00μπ = μ. The closedness of H(T) gives μeH(T). By (1), μn = cnWεXn

for some x«e^0 and cn>0. We may assume that μ^O. Let H(Γ;/μ) be the
cap defined in Corollary 6. Since {[v]; veQxH(T',fμ)}^e*ΐH(T)5\ where
e\H(T;fμ) is the set of all extreme points in H(T;fμ), the Choquet integral
representation theorem6) yields that there exists [v]eexr//(T) such that
supp(μ)=>supp(v). Let yesupp(v) and ωy be an arbitrary relatively compact

open neighborhood of y in X0. We may assume that WεXn(ωy)>Q for all n^l.
For ε'neBw(εXn'9ωy)9 \WεxJ eexrH(Γ) gives cnWεXn = cnWε'n on X0. Choosing

\l/ e C£(X0) with W*ψ ̂  1 on Wy9 we have

Since (cnWεXr)™= i is vaguely bounded, so is (cnεj,)^= ί and hence we get μ=Wτ
for some τeM+(X0) with supp(τ)c:ω^. In the same way as above, μ = cyWεy

for some cy>0. By (1), v = c'Wεy with some c'>0, which gives [μ] = [v]. Thus
Lemma 11 is proved.

PROOF OF THEOREM 9. Let W be as in Lemma 10. Keep the preceding
notation. Let μ Φ 0 be in H(T). By the Choquet integral representation theorem,

we find a regular Borel measure Φ on H ( T ; f μ ) with JdΦ5Ξl carried by [cxWεxι

xεX0, cx = l/W*fμ(x)} such that

5) Let K be a closed convex cone in a locally convex space and C be its cap. Then every ex-
treme point of C lies on an extreme ray in K (see [14] p. 88). In this case, exr//(Γ) means

[cμ, [μ]ζΞexrH(T), c^O}.

6) Let C be a metrizable compact convex subset of a locally convex space. Then exC, the set
of all extreme points in C, is a <7δ-set and, for any *eC, there exists a regular Borel probability
measure Φ on C carried by exC which represents jc, i.e., for any continuous linear functional

/, / (*) = Sf(y)d Φ(y) (see [14] p. 7 and p. 19).
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For an exhaustion (Kn)^=ί of X0

Ί\ we put

Φn = the restriction of Φ to {cxWεxι xeKn — Kn,ί}

where K0 = 0. Let (Φπ,m)^=ι be a family of Borel measures on f/(T;/μ) which
are finite linear combination of the Dirac measures with positive coefficients sup-
ported by {cxWεx; xeKn} and which converges vaguely to Φn as m-»oo. Then
there exists a family (vrtj/M)^=1 c=MJ(X0) supported by Kn such that J λdΦnttn(λ) =
WvHtm. Hence letting m-»oo, we obtain J λdΦn(λ) = Wvn with some
Since

putting v = Σ?=ιVπ, we have ve@+(W) and μ=Wv, that is,

The converse inculusion follows from Lemma 10 and hence W satisfies (2).
Next we shall show that W satisfies (4). Putting Xί = {xeX0ι [Wfejeexr

H(T)}, we see X0=
scl(\jxeXί suρρ(Wεx)). In fact, by the Choquet integral re-

presentation theorem and the above proof of (2), we see that for any μ =

Σn=ι WvneH(T) and each π^l, supp(m>n)<=cl(VΛeXl suppCWsJ), which gives
the desired assertion. Therefore for any y e X0 we can choose sequences 00?= i ̂
X0 and (xn)^=ίc:Xί which satisfy yn e supp (Wε^) and yn converges to y as n-»oo.

By Lemma 11, [̂ εJ = [PfεxJ eexrH(T) and" hence [Pfεy] eexrH(T). This
gives (4).

For the assertion (3), we choose/e & + (W*) with/>0 on X0 and put β(x, y) =
W*f(x)IW*f(y). Then e(x, 3;) is the desired function.

Lastly we shall show that W is uniquely determined except for the equivalence
of diffusion kernels. Let W0 be another diffusion kernel on X0 which satisfies
the required conditions. As is seen in the proof of (4), for x e X0, there exists a
sequence (xπ)^=1c:Z0 such that xnesupp(WεXn) and xn converges to Λ: as H->OO.
Hence the extremeness of WεXn and the fact that W0e B show W0εXn = cnWεXn with
some cM>0. Letting n-+oo, we have W0εx = cxWεx with some constant cx>0.
This completes the proof of Theorem 9.

Similarly, we have the following

PROPOSITION 12. Let V and Wbe any two diffusion kernels on X. Assume
that VW is defined and satisfies VW= W. If W is strictly positive, We B and
cl(\JxeXsupp(Wεχ)) = X, then for any xeX and any y e supp (FεJ, there exists
a constant c j c v>0 such that Wεx = cxvWεv.Λ Λ *

7) This means that for any /i^l, Kn is compact and is contained in the interior of Kn+ί, and
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PROOF. For an xeX, choosing (xn)^=1c:X and a family (αJίJLi of positive

numbers which satisfy xecl(W^= 1 supp(WεXn)) and Σ?=ι anεxn

E & + (W)9 we
see that λ = Σ*=ι α«εjcn satisfies x e supp (Wλ). Let X be a compact neighborhood
of x and denote by μ the restriction of Wλ to K. For any y esupp(Vεx) and

any relatively compact open neighborhood ωy of y, we have V(Wμ — Wμ'y) —

Wμ-Wμ'y = Q in ωy, where μ'yeB%(μι ωy). Since F*/(x)>0 and f V*fd(Wμ-

Wμ'y)=]fd(Wμ-Wμ'y) = Q for any feCftX) with /0>)>0 and supp(/)cωr

we have xξ£supp(Wμ—Wμy). Hence there exists an open neighborhood U0

of x such that Wμ— Wμ'y = 0 in t/0. Let 17 be any open neighborhood of x with

UcU0. By the equality Wμ'y=$ Wε'x>ydμ(x) for μ; eB%(μ ω,) and ε^e
BJ5r(εx; ωy) (see [10] Proposition 9), we see that

W(μυ-μf

υ,y}^W(μ-μ'y) on X,

where μ^ denotes the restriction of μ to U and μί/> ye B%(μυ\ ωy), because

^(μ-μ;)-Pf(μί/-μί/>;,)=^(μ-μl7)-^(μ;-μί7j3?) and μ'y-μ'ϋty e B%(μ- μυ\

ωy). Therefore Wμu=Wμ'U}y in ί/0. Since supp (μt/) c L/0 and μc/^TO on X,

Lemma 8 gives Wμu=Wμ'Uty on J£. By multiplying some constant and letting
ωy I {y} an(i then (7 4 {x}, we have Wfex = cPFey with some constant c>0, which
proves the proposition.

COROLLARY 13. Let T and X0 be as in Theorem 9. We consider that T

is a diffusion kernel on X0. Then H(T) is one dimensional if and only if the

closed symmetric set of transitive type generated by supp (T) is equal to X0 x X0.

PROOF. The "if" part: Let Wbe as in Theorem 9. Put F = {(*, y)eX0x
X0; Wex = cWεy with some constant c>0}. Then F is a closed symmetric set of

transitive type and F=)supρ(T) by Proposition 12, and hence F = X0xX0. This

implies that H(T) is one dimensional.

The "only if" part: Let F be the closed symmetric set of transitive type in

X0 x X0 generated by supp (T). For each x 6 X09 we put Fx = {y e X0'9 (x, y) e F}.

Then supp(Tεx)cFv and hence supp(V p ε x )cF x for all p>0, where (Fp)p>0 is the
resolvent on X0 generated by T. This gives supp (Wεx)c:Fx. Since H(T) is one

dimensional, we see easily that supp(Wεx) = X0. Thus FX = X0 and hence F =

^Γ0 x JiΓ0. This completes the proof.

A diffusion kernel Ton X is said to be idempotent if T2 is defined and T— T2.
This is a typical example of uniformly recurrent diffusion kernels.

COROLLARY 14. Let T be a strictly positive idempotent diffusion kernel on

X. Then T is uniformly recurrent and the diffusion kernel W obtained in
Theorem 9 is equivalent to the restriction of T to MK(X0}, where X0 =

d (Wμ6H(r) supp (μ)) = cl (\JX& supp (Tεx))'.
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In fact, denoting by (Vp)p>0 the resolvent generated by T, we see (l + p)Vp =
/ + (l/p)T, and then the required results are shown immediately.

§3. The cone H(T*)

In this section, we shall consider the conditions under which the cone H(T*)

is one dimensional.
We begin with the following definition.

DEFINITION 15. Let T be a diffusion kernel on X. We say that T* is

uniformly recurrent if for any \jι eC^(X) with t/^0, there exists an xeX such
that

Σy=ι(T*)*Ψ(χ) = oo.

Here (T*)n is defined in the following manner: For a non-negative lower semi-

continuous function g on X, we define Γ*0(x) = J gdTεx. Then T*g is also non-
negative lower semi-continuous. So we can define (T*)ng(x) = ^(T*)n~1gdTsx

inductively (n^2), where (τ*)1 = T*. If the diffusion kernel T" is defined,
(T*)" = (Tn)* of course.

REMARK 16. Let Tbe uniformly recurrent on X and let X0 and Wbe as in

Lemma 10. If X0 = X, that is, c\(\JxeXsupp(Wεx)) = X, then T* is uniformly
recurrent.

In fact, if cl (\JxeX supp (Wεx)) = Z, then given ψ e C^(X) with \fι ^0, we have
W*ψ(x)τ£Q for some xeX. Since up(x)V*ψ(x) converges to W*ψ(x) and up(x)
converges to 0 along some decreasing sequence of p, limp ; o F*ι/φc) = Σ^L0

(T*)»^(jc) = oo.

Analogously to Proposition 5, we have the following

PROPOSITION 17. Let T* be uniformly recurrent. If /e^+(T*) satisfies

T*f£f, then /e

As a function version of Corollary 1 3, we have

PROPOSITION 18. Let T be a diffusion kerenl on X. Assume that T* is
uniformly recurrent and that the closed symmetric set of transitive type generated

by supp (T) is equal to XxX. Then (l)o(2) :
(1) For any xeX, there exists /e JFf(Γ*) such thatf(x) > 0.
(2) Γis of continuous sub-exponential type.
Furthermore, in the above case H(T*) is one dimensional.

PROOF. Suppose first that (1) is fulfilled. Then we can choose a function
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g in #(Γ*) such that g>Q on X. Put e(x, y) = g(y)lg(x) on XxX. Then

e(x, y) is of exponential type and for any x e X, J e(x, y)dTεx(y)=l9 which shows
that Γis of exponential type.

Suppose conversely that T is of continuous sub-exponential type and let
φc, y) be a continuous function on X x X of exponential type such that J d(eTεx)^

1. Then \e& + ((eT)*). Since (teW^M^Dnf^pp^ e(x9 z)](T*)^(jc) for
any ^ e C£(X) and Γ* is uniformly recurrent, so is (eT)* evidently. Hence it
follows from Proposition 17 that 1 e H((eT)*). For a z 6 X, we put g(x) = e(z, x).
Then g >0 on X and 0 e //(T*), for

Γ*#(x) - f e(z, y)dTεx(y) = \ e(z, x>(x, y)dTεx(y)
j j

x, y)dTεx(y) = ^(x)

Turning to the second assertion, we choose gεH(T*) with g>0 on X and

let / be an arbitrary element in //(T*). Put F = {(x, y)eX xX; f(x)g(y) =
f(y)g(x)} It suffices to show that F = XxX. Since F is a closed symmetric
set of transitive type, it also suffices to show that Fz)supρ(T). Let xeX and

y E supp (Tεx). If /(x) = 0, then f ( x ) = T*f(x) gives /= 0 on supp (Tεx). Hence

(x,y)eF. If /(x)>0, put h=.τnm{g(x)f9f(x)g}. Then Λe^+(.T *) and
Γ*AgA, so Γ*ft = A. This implies g(x)f=f(x)g on suppOTfeJ. Thus
F=DSupp(T), which completes the proof.

By a similar proof, we have

PROPOSITION 19. Let T be a diffusion kernel on X . Assume that the closed
symmetric set of transitive type generated by supp(T) is equal to XxX and
that there exist g e H(T*) and μeH(T) wif/z g>Qon X, supp(μ) = Jf anά\gάμ<

oo. TAen H(T*) is one dimensional.

In fact, for any feH(T*), putting . A = min {/, ^}, we have Ae^+(T*),
T * A ^ A and J hdμ = j hdTμ = $ T*hdμ, which imply AeH(T*). Thus by the
same argument as above, we obtain Proposition 19.

EXAMPLE 20. Let Ω be a bounded domain in a Euclidean space with smooth
boundary and let G(x, y) be the Green function on Ω of a second order uniformly
elliptic differential operator with bounded smooth coefficients. It is well-known
that there exist λ > 0 (the first eigen value) and // e C + (Ω) (7 = 1,2) such that
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and §fj(x)dξ(x)< oo, where ξ denotes the Lebesgue measure (cf. for example

[11] p. 105). Considering the diffusion kernel T defined by

Tμ = ((I/A) G(x, y)dμ(y))ξ (μ e MK(Ω)) ,

we see f^eH(T) and /2eH(T*). By Proposition 19, //(T*) = {c/2; cΞ>0}.

This means that the eigen space for the first eigen value λ is also one dimensional

even if we consider it in the space C+(Ω).

§ 4. Invariant measures for uniformly recurrent continuous
diffusion semi-groups

A family (Tt)t^0 of diffusion kernels on X is said to be a continuous diffusion

semi-group if T0 = /, TtTs is defined and TtTs=Tt+s for all ί, s^O and for any

μeMκ(X}9 t-*TtμeM(X) is continuous, i.e., the mapping ί-> J Tfψdμ is con-

tinuous for any ψ e CK(X).

We say that a family of diffusion kernels (Vp)p>0 defined by

is the resolvent generated by (Tt)t^0 provided that it has a sense, and (Γf)f^0 *s

uniformly recurrent if the resolvent (Vp)p^0 is uniformly recurrent. We also say

that (Tf)^o is uniformly recurrent if for any φeC^(X) with i/^O, there exists

an x e X such that lim s t o o \ T*ψ(x)dt=vo. Put
Jo

H ((Γf),£0) = ^r^o H(Γf) and H((T*)^0) = Λ^0 H(T*) .

Using the following two lemmas, the cones H((Tt\^0) and H((T*)t^0) are

determined by the results obtained in the previous sections.

LEMMA 21. Let (Tf)f^0 be a continuous diffusion semi-group on X. As-

sume that the resolvent (Fp)p>0 generated by (Tt)t^0 exists. Then for any

p>0, H((Tf)^0) = H(P^) and

In fact, H((Tt)t^0)c:H(pVp) is evident and the converse inclusion also holds

by virtue of the resolvent equation and the unicity of the Laplace transformation.

Similarly, H((T*)^0) = H(pV*) is obtained.

LEMMA 22. Let (Tt)t^0 and (Vp)p>o be the same as above. Then

(resp. (T*)f^0) is uniformly recurrent if and only if pVp (resp. pV*) is uniformly

recurrent for some

PROOF. The resolvent (Uq)q>0 generated by pVp exists and
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for any q with Q<q<p. Suppose that pVp is uniformly recurrent for some

p>0 ana let (uq)q>0 and q0 be as in Definition 1 corresponding to (Uq)q>0. Put

<7ι=Mo/(4o + l) and vq = uq/(p.q} (0<q^qί) and υq = vqι (q>qί). Then
(Vq)q>0 and ql is a pair which determines the uniform recurrence of (Vq)q>o and
hence (7])f^0 is uniformly recurrent. The converse assertion is obtained similarly.

We also have

Tfψdt

for any ^ 6 Cχ(X)9 which implies our desired assertion and the proof is completed.

In the case of continuous diffusion semi-groups, using the above lemmas

and the results in sections 2 and 3, we obtain the following

THEOREM 23. Let (Tt)t^0 be α uniformly recurrent continuous diffusion

semi-group on X and (Vp)p>0 be the resolvent generated by (Tt)t^o Then
(1) H((Tt)t*0) = {Wv; v e &+(W)}, where Wis the diffusion kernel obtained

in Theorem 9 from T=pVp with some p>Q.

(2) H((Tt)t^o) is one dimensional if and only if the closed symmetric set of

transitive type generated by W ί έ 0supp(T f) is equal to X0xX0, where X0 =
cH^eH((Γt)t£o)suPP(Aθ) and we consider that (Tr)f^0 is- a continuous diffusion
semi-group on X0.

(3) // (TfX^o is uniformly recurrent and the closed symmetric set of

transitive type generated by \Jt^0 supp(Tr) is equal to X x X, then the following
statements (a) and (b) are equivalent:

(a) For any xeX, there exists anfeH((Tf)t^o) such thatf(x)>0.
(b) (Tf)t^Q is of continuous sub-exponential type, i.e., there exists a con-

tinuous function e(x, y) on X x X of exponential type such that for any f^O

and any xeX,$ d(eTtzx}^l and 1 e@+((eTt)*).
Furthermore, in this case H((Tf)t^0) is one dimensional.

§ 5. Weakly regular Hunt diffusion kernels

We say that a diffusion kernel Fis a weakly regular Hunt diffusion kernel

on X if
(H.I) there exists a continuous diffusion semi-group (Tf)^0 on X such that

F= ί°° Ttdt, i.e., for μ e MK(X) and ψ'e CK(X\ ( ψdVμ= (°° at ( ψdTtμ;

(H.2) B%(μ', ω)^0 for any open set ω and any μeMJ(X);

(H.3) for any ι// e C^(X), the greatest F-subharmonic minorant of V*ψ on

X vanishes and Khas the lower regularizatioji property : Let Q be an open set and
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u be a real-valued Borel function satisfying \u(x)\^$fdVεx with some fεC~£(X).
If for any xeί2, any compact set K^Ω and any ε'XtCKeBv(εxι CK), u(x)^
§udε'XίCK, then u(x) = \iminfy_+xu(y) is F-superharmonic in Ω.

Here a real-valued Borel function u on X is said to be V-superharmonic in
Ω if u is lower semi-continuous in Ω and for any x e Ω and any compact set K

with KczΩ, w(x)^J udε'XfCK, where ei,cκe^m(εχί C^O Also if — w is F-super-
harmonic in Ω, then w is said to be V-subharmonic in Ω.

Weakly regular Hunt diffusion kernels are characterized by M. Itό in [10].
That is, a diffsion kernel F on X is a weakly regular Hunt diffusion kernel if and

only if
(D.I) F, F*e/>;
(D.2) F is non-degenerate, i.e., for any x.yeX with x^y, Fελ.^0 and

Fεy is not proportional to Vεx;
(D.3) for any closed set F in X and any ψ e C£(JQ, the F-reduced function

Hp* of F*ιA on F is upper semi-continuous and #£**(*) = inf {#&*; K:
compact} = 0 on X.

Here, F-reduced functions are defined as follows: For a diffusion kernel F
on X, a real-valued lower semi-continuous function u on X is said to be F-
supermedian if for any x e X and AeMJpQ with F/l^Fex, $udλ^u(x). We
denote by 5+(F) the totality of non-negative F-supermedian functions. For a
subset A in X and a function g^Q on A, we define the V-reduced function of g

on A by

= inf (ιι(jc); u e S+(F), M ^ 0 on A} on X

whenever {ueS+(V)ι u^g on A} ̂ 0.
A strictly positive diffusion kernel satisfying (D.I) and (D.3) is called a

weakly regular diffusion kernel.
In this section, we shall show that under some additional assumption, the

condition (D.2) in M. Itό's result can be removed in the following sense: A weakly
regular diffusion kernel F on X may be regard as a weakly regular Hunt diffusion
kernel on some quotient space of X.

We begin with the following lemmas.

LEMMA 24. Let V be a weakly regular diffusion kernel on X and let he
C+(X) with /ί>0 on X. For e(x, y) = h(y)/h(x), the diffusion kernel eV (see
Remark 4) is also weakly regular.

In fact, the strict positiveness of eVis clear. Since F, F* e/) if and only if
eV, (eV)* e /), we see that eFsatisfies (D.I). By the definition, the equality
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holds on X for any ψ e C£(X) and any closed set F in X, which shows that eV

satisfies (D.3).

For a diffusion kernel V on X and an x e X9 we put

Fx = {y e X\ Vεx — cVεy with some c > 0} .

LEMMA 25. Let V be a weakly regular diffusion kernel on X. Then:
(1) For any compact set K, \JxeKFx is also compact.

(2) For any closed set F, WxeF Fx is also closed.
(3) The relation x~y on X defined by xeFy is an equivalence relation

and the quotient space X/ ~ is a locally compact Hausdorff space with a countable

base.

PROOF. Choosing /e^+(K*) with />0 on X, we put e(x, y)=V*f(y)l
V*f(x) on XxX. Then Fx = {yeX; eVεx = eVεy} for any xeX. Let (ωX=1

be an open exhaustion of X8\ First we show that for any compact set K in X,

^xeχ
Fx is relatively compact. Choose ψeC%(X) with (eV)*\l/(x)^l on K.

By the proof of Lemma 13 in [10] and Lemma 24, H(

c

e^*Ψ converges to 0 uni-
formly on any compact set as n->oo. Hence there exists an 7V>0 such that
#^**(x)^l/2 on K. It follows from the definition of eF-reduced functions

that

H&f+ = (eV)*ψ on CωN.

On the other hand from eVεx = eVεy (y e Fx) it follows that

The above two equalities and (eV)*ψ(y) = (eV)*ψ(x) for yeFx imply that

\JxeKFx

cωN> tnat is> ^JχeκFx is relatively compact.
Next we shall show (2). If (2) is valid, (1) holds by the above proof. Let

(yn)ΐ=ι be a convergent sequence in ^JxeFFx with \imn^^yn = y. Then there
exists a sequence (xn)^=1 in F with eVεyn = eVεXn. By the above proof, W£Lι Fyn

is relatively compact and contains COί?=ι so that we may assume that (xπ)^=ι
converges to some x e F as n -> oo . This implies y e Fx and hence \JxeF Fx is closed.

Clearly x~y is an equivalent relation. By (2) the natural projection π
from X onto X/~ is a closed mapping and by (1), Fx is compact for any x e X.
Hence a theorem in [12] (Theorem 20, p. 148) gives (3). This completes the
proof.

PROPOSITION 26. Let V be a weakly regular diffusion kernel on X. As-

8) This means that for any n^l,ωn is relatively compact open and ωncωn+ι and that
-y
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sume that there exists an accumulation point W of (pVp)p^Q as p t oo, where

0 is the resolvent associated with V. Then'.
(1) W is strictly positive idempotent and VW= WV= V.
(2) c\(UxeXsupp(Wεx)) = X.

(3) For any xeX, Fx=>supp(Wex).
(4) For any μ e M$(X\ Wμ e M£(X).
(5) For any ψ e C$(X\ W*ψ e C#

PROOF. First we remark that VE R (see Proposition 15 and Remark 16 in
[10]). By our assumption, there exists an increasing sequence (pw)£Li such that
\impn^pnVpn=W. Note that limpntoo Vpn = Q. Since pWpεx= Vεx-Vpεx^Vεx

for any xeX, (D.3) gives VWεx=Vεx (use Lemma 13 in [10]) and hence VpW is
also defined and VpW=Vp for all p^O. By the Fatou lemma and strict positi-
veness of V, W is strictly positive and idempotent. Furthermore we see VpW=

=Vp for any p^O, which shows (1).
For any x E X, Vεx φ 0 and Ve D imply x e supp (Vεx). Therefore

which shows (2).
The assertion (3) follows from Proposition 12, and (4) and (5) follow from

(3) and Lemma 25 immediately. Thus Proposition 26 is shown.

The main result in this section is the following

THEOREM 27. Let V be a weakly regular diffusion kernel on X. Assume

that there exists an accumulation point W of (pVp)p>o as p t oo, where (Vp)p^o
is the resolvent associated with V. Let x~y be the equivalence relation defined
by Vεx = cXιyVεy with some cX}y>Q. Then there exist a weakly regular Hunt

diffusion kernel V on the quotient space X/~ and a function e(x, y) on X x X
of exponential type with e(x,y) = cxy such that, for anyfeCK(X/~) and any

xeX,

where π is the natural projection of X onto X/ ~.

PROOF. By Lemma 25, X/ ~ is locally compact. Let e(x, y) be the same
as in the proof of Lemma 25. Then eVεx — eVεy for any xeX and any y eFx.
Hence e(x9 y) — cx>y. The equality eVεx = eVεy and the resolvent equation give
eVpεx = eVpSy for any p>0 so that eWεx = eWεy. Therefore, for jc e X/~, VeWεx is
independent of x e x. For any /e CK(X/~), we define
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Then V is a diffusion kernel on X/~. Let V p be a diffusion kernel defined by
$fdVpεπ(x) = $f(π(y»dVpeWεx(y) for all/eCK(X/~). Then (Kp)^0 js the re-
solvent associated with V, which implies F* e Z>. We shall show Fe Z>. Let
ly e M%(X/~) (7=1, 2) and suppose that Vll ^ FΛ2

 m a certain relatively compact

open neighborhood ώ of supp(li) Let λ/eMJCY) satisfy
(π(x)Xl/π(x)) (7 = 1,2) for any ^eC^X), where
$ψdeWεx. Then by Proposition 26, supp (λ/) c {x π(x) e supp (I,-)} and F/11=^
Fλ2 in {x; π(x)eώ}. Hence FeD gives Vλl^Vλ2 on Jf. This implies Fl^
Fl2 on X/-, that is, Fe/).

Clearly F is non-degenerate. Since F satisfies (D.3), Lemma 13 in [10]
shows that F also satisfies (D.3). Therefore by [10], F is a weakly retular Hunt
diffusion kernel on X/ ~ , which completes the proof.

§ 6. Diffusion kernels of convolution type

Let G be a locally compact Hausdorff group with a countable base and let X
be a homogeneous space of G. Then X may be identified with the (left) coset
space G/H, where H = {g e G; 0x0 = x0} for some x0εX. Denote by πH the
natural projection of G onto X = G/H.

In the sequel, we always assume that H is compact.
For any v e M+(G) and μeM+(X), the convolution v*μ may be defined by

ψ(y)dv*μ(y) = \ ( ψ(gx)dv(g)dμ(x)
JXJG

provided that the right hand side is finite for any ψ e C£(X). The convolution of
two measures v, τeM+(G) is defined similarly and we use the same notation
v*τ.

Denoting by ξH the normalized Haar measure on //, we see that the mapping
ηf{: CK(G)-*CK(X) determined by

η&(f) (πflω) = J f(gh)dξH(h) (/e cx(G))

is well-defined and clearly it is continuous, positive, linear and surjective (cf. [2]
and [3]), so that the transposed mapping ηH: M(X)-+M(G) defined by

ψdηH(μ) = J ηϊWdμ (μ E M(X) and ψ 6 Q(Z))

is continuous, positive and injective. Then for veM+(G) and μeM+(X),

v*ηH(μ) = ηH(v*μ) and ηH(^H(gy) = ̂ H for any geG.

DEFINITION 28. Let X = G/H be a homogeneous space of G.
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(1) A diffusion kernel T on X is said to be of convolution type if for any
xeX,

Tε =

where e denotes the neutral element of G. We say that ηH(TεnH(e))eM+(G) is
the representing measure of T, which is denoted by στ in the sequel. Then
Tμ = στ*μ for any μe ̂ (T) and στ*εh = στ for any h eH.

(2) A continuous diffusion semi-group (Tt)t^0 on X (resp. a resolvent

(Vp)p>o on X) is said to be of convolution type if each element is of convolution
type.

REMARK 29. (1) Let Γ be of convolution type and let σeM+(G) satisfy
Tεx = σ*εjc for any x e X. Then σ*ξH = στ.

(2) Let (Tt\zo be a continuous diffusion semi-group on X of convolution
type. Then σTQ — ξH, σTt*σTs = σTt+s for any t, s^O and the mapping t-*σTt is
vaguely continuous.

(3) Let (Vp)p>0 be a resolvent on X of convolution type. Then (σVp)P>o
satisfies the resolvent equation, i.e.,

for any p, q>Q.

In fact, στ=ηH(TεπH(e)) = ηH(σ*επH(e)) = σ*ηH(επH(e)) = σ*ξH^ which implies
(1). The assertions (2) and (3) follow from (1) easily.

From the manner of the construction of diffusion semi-groups and resolvents
(see [10] p. 317 and p. 323-325) we obtain

PROPOSITION 30. (1) Let V be a Hunt diffusion kernel on X, i.e., there
j oo

exists a continuous diffusion semi-group (Tf)^0 on X such that F=\ Ttdt. If
Jo

Vis of convolution type, then so is (T^Q.
(2) // Ve R and is of convolution type, then the resolvent associated with

Vis also of convolution type.

DEFINITION 31. We say that σ e M+(G) is recurrent if for some/e C£(G),

Σ?»ι JJ - (\f(9^2'"9n)dσ(gi)dσ(g2y"dσ(gn) = oo

and that σ is sub-exponential if there exists an exponential E9) on the closed
subgroup generated by supp (σ) such that J E(g)dσ(g)^l.

9) A positive continuous function £Όn a topological group Γ is called an exponential on Γ
if it satisfies E(gg')=E(g)E(g'} for any g, g'<=Γ.
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For the existence of recurrent and sub-exponential measures, we refer to
[1] and [7].

Using Theorem 9, we see the following theorem, which is the main result
in this section.

THEOREM 32. Let T be a diffusion kernel on X = G/H of convolution type.
Then T is uniformly recurrent if and only if its representing measure στ is
recurrent and sub-exponential. In this case, there exist a closed uni-modular
subgroup Γ in G and an exponential E on Γ such that

(1) cl(W-=0supp((σΓ)«))10) = Γ,
(2)
(3)

where ξr denotes a Haar measure on Γ.

PROOF. Suppose that Tis uniformly recurrent. We keep the same notation
as used in Theorem 9 and its proof. Since the resolvent (Vp)p>0 generated by T
is of convolution type, there exists a sequence J = (pn)™=ι of positive numbers
with limn_00pn = 0 such that (up(x)σVp*εx)peJ (x e X) converges vaguely to an
element in H(T) as n-+co. Put ρw=Wεπιl(ey Then, for any xeX, pw*εx =
cxWεx, where cx = limn^upn(πH(e))/upn(x)>Q. Since limn^upn(πH(e)) = Q, we

have

(9)dσVp(g) = oop

for any/6 C£(G) with supp (/) n supp (pw)^0, which implies that στ is recurrent.

Put Γ = supp(pfΓ). Then for every p>0, Γcιsupp(σFp)=cl(W^=osuPP((σr)/l))
Since VpT=TVp9 we have στ*ρw = pw*ρτ = pw. By Theorem 9, we see that for

any #esupp(σr), pw==c

gPw*εg = cfgεg*Pw witn some cg>Q and c^>0, because
d (W^6G supp (ρw*Zg)) = cl (\jgeG supp (ε9*pw)) = G. Hence Γ = cl (WJL0

 SUPP '
((σr)

n)), Γ is a closed subgroup and for every g eΓ, ρw = cgpw*εg with some cg>0.
Then putting E(g) = l/cg, we see easily that E is an exponential on Γ and Epw is
invariant with respect to the right translation on Γ, that is, Epw is a right Haar
measure on Γ, which we denote by ξr. Since for any μe@+(W), Wμ = pw*μ,
where μ = { cxεxdμ(x), we have H(T) = {(l/£)ξΓ*v; ve&+(W)} so that (3) is
shown.

The equalities

(l/E)ξΓ*στ = στ*(l/E)ξΓ = (ί/E)ξr

10) In this case, (στ)
n=(στ)

n~ί*στ is defined inductively for /i^l, where (στ)° = εe.
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show that

(g) = l and

where ΔΓ denotes the modular function of Γ, which imply the assertions (1) and (2).

In fact, by simple calculation and by Corollary 13, we see (AΓIE)ξΓ ε {μ ε M+(Γ);

στ*μ = μ} = {μe M+(Γ); μ*στ = μ} = {c(l/E)ξΓ'9 c^O}, which shows AΓ==1.

Finally we shall show that if στ is recurrent and sub-exponential then T is

uniformly recurrent. Let E be the exponential on the closed subgroup Γ generated

by supp(σr) which satisfies $ E(g)dστ(g)^l. Since σr is recurrent, Eστ is also

recurrent so that $ E(g)dστ(g) = l. Hence (l/E)ξΓ ε#(T), where ξr is a left

Haar measure on Γ. Put μ = (l/E)ξΓ. It follows from στ*μ = μ that the resolvent

(Pp)p>o generated by Texists and σVp= Σ£=o(l + P)~"(σr)" eM(G) and pσVp*μ =
μ. Let ω be a relatively compact open set in G with eeω. Since σVp ε ί?, we

choose μ'peBσvp(pμ\ ω). Put up(x) = \dμ'p on Jf. Then (wp)p>0 is a family

defining the uniform recurrence of T. In fact, since στ is recurrent, we see

linipio jd/ip = 0, and since σVp*μ'p = μ in ω, (ttp(x)σvp)p>0 is vaguely bounded

and its vague accumulation points as p-+Q are non-zero. Hence (up)p>0 satisfies
all the conditions in Definition 1, that is, T is uniformly recurrent. This com-

pletes the proof.

COROLLARY 33 (cf. [7]). Lei σεM+(G) be recurrent. Then σ is sub-

exponential if and only if H(σ)^{0}9 where σ may be considered as a diffusion

kernel on G of convolution type. In this case, we obtain:

(1) Γ = cl'(VJ"=0 supp(σn)) is a uni-modular closed subgroup in G.
(2) There exists a uniquely determined exponential E on Γ such that

(3) //(σ) = {(l/£)£Γ*v; ve^ + (σ)}, where ξr is a Haar measure on Γ.

We say that σεM+(G) is of finite order if for some n^2, σ" is defined and

σ" = σ. In particular, we say that σ is ίdempotent if σ2 = σ.

Generalizing a characterization of above measures on abelian groups (cf.

for example [9] and [13]), we obtain

PROPOSITION 34. Let 0 Φ σ e M + (G).

(1) if σ is idempotent, then supp(σ) is a compact subgroup in G and σ

is the normalized Haar measure.

(2). If σn = σ for some n^3, then there exist a compact subgroup K in G

and an element gεG such that gn~l εK and σ = ξκ*Bg = εg*ξκ, where ξκ is the

normalized Haar measure on K.

PROOF. (1): Clearly σ is recurrent. By Corollary 33, σ = cEξΓ, where

Γ = supp(σ) U {e}, E is some exponential on Γ and c>0. Thus eEsupp(σ).
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By σ*σ = σ, Γ is compact and E = l, which imply that σ is the normalized Haar

measure on a compact group.
(2): Put K = supp(σn~1). It follows from (1) and σn-l*σn-ί=σ"-1 that

σn~l = ξκ. This gives σ = ξκ*σ = σ*ξκ and Jdσ = l. For any #0esupp(σ),

we put g = (golY~2 Then g~lgr, g'g~l e K for all g' e supp (σ), because

9ι92'~9n-ιeK for any gί e supp (σ) (j = 1, 2,..., n - 1).

Hence σ = ξκ*εg = εg*ξκ. Clearly gn~ l e K. This completes the proof.

Finally we shall describe the results corresponding to Theorem 27 for the

diffusion kernels of convolution type. This generalizes the result that any dif-
fusion kernel of convolution type with associated resolvent on a locally compact

abelian group is the canonical prolongation of a Hunt diffusion kernel on a

quotient group by some compact subgroup (see [8] and [13]).

THEOREM 35. Let V be a weakly regular diffusion kernel on X = G/H

of convolution type. Then there exist a uniquely determined compact sub-

group K with K=>H and a uniquely determined weakly regular Hunt diffusion

kernel V on G/K of convolution type such that Vis the canonical prolongation

ofV on G/H, that is, ηH(VεπH(g)) = ιlκ(VεJtκ(g))for every geG.

PROOF. By Proposition 30, the resolvent (Vp)p^0 associated with V is of

convolution type. Since (pσVp)p>0 is vaguely bounded, there exists an accumu-

lation point σeM+(G) as p t oo. Then by Theorem 27 we see that σ*σ = σ and

σv*σ = σv. By Proposition 34, there exists a compact subgroup K in G such that

σ = ξκ. Since σVp*ξH = σVp for any p > 0, σ*ξH — σ, which implies K<=:H. Using

Theorem 27 again, we see that the required assertion is valid.

COROLLARY 36. Let V be a weakly regular diffusion kernel on X = G/H

of convolution type. IfX is a symmetric space, that is, H is a maximal compact

subgroup of G, then Vis a weakly regular Hunt diffusion kerenel on X.
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