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In this paper we shall characterize invariant measures for a uniformly re-
current diffusion kernel T on a locally compact Hausdorff space X. Our main
result is summarized as follows: Denote by H(T) the cone generated by non-
negative T-invariant measures and put X,=cl(\J,grysupp (u)). Then there
exists a strictly positive diffusion kernel Won X,, uniquely determined except for
the equivalence of diffusion kernels, such that TW=W and H(T) coincides with
W-potentials.

In sections 2 and 3, we shall discuss when H(T) is one dimensional and when
the cone formed by non-negative invariant functions with respect to the transposed
kernel of Tis one dimensional.

We remark in section 4 that similar results are valid for uniformly recurrent
continuous diffusion semi-groups on X.

A typical example of a uniformly recurrent diffusion kernels is an idempotent
kernel on X. Applying our theorem to the idempotent kernels and using results
in M. It6 [10], we see that a weakly regular diffusion kernel on X may be consider-
ed as a weakly regular Hunt diffusion kernel on some quotient space of X.

In section 6, applying our theorem to diffusion kernels of convolution type
on homogeneous spaces, we represent explicitly the above diffusion kernel W.
In this direction, for a locally compact abelian group G and non-negative adapted
Radon measure ¢ on G, G. Choquet and J. Deny [4] showed that all extreme
rays of the convex cone H(o) formed by non-negative g-invariant measures are
generated by exponentials on G. In a non-abelian case, H. Furstenberg [6]
pointed out that the extreme rays of H(o) are generated by multiplier functions on
a certain Lie group G and some particular measure o; however a caracterization
of the extreme rays is not known in the general case. But if ¢ is recurrent, our
theorem shows that H(o) is generated by at most one exponential on G even if G
is not commutative (see also [7]). Using our theorem, we can characterize non-
negative finite order measures on locally compact Hausdorff groups, particularly,
we see that non-negative idempotent measures are the normalized Haar measures
(cf. [9] and [13]).

The author would like to express his sincere gratitude to Professor M. Itd
for his constant encouragement and helpful suggestions.



584 Noriaki Suzuki

§1. Basic notation and preliminaries

Let X be a locally compact Hausdorff space with a countable base. We
denote by C(X) the Fréchet space of finite continuous functions on X, by Cx(X)
the topological vector space of finite continuous functions on X with compact
support, by M(X)=Cg(X)* the topological vector space of real Radon measures
on X with w*-topology and by M (X)=C(X)* the topological vector space of
real Radon measures on X with compact support with w*-topology. Their
subsets of non-negative elements are denoted by C+*(X), C¥(X), M*(X) and
ME(X) respectively.

A linear operator T from M (X) into M(X) is said to be a diffusion kernel
on X if it is continuous and positive, i.e., Tu e M +(X) whenever u e ME(X). The
transposed kernel T* of T is the linear continuous operator from Cg(X) into
C(X) defined by T*l//(x)=j'xpdTax, where ¢, is the Dirace measure at xe X.
Then T* is positive, i.e., for ¥ € CE(X), T*Y e C*(X). In the sequel, for a
diffusion kernel T on X, its transposed kernel is always denoted by T*. We put

2(T) = {Ae M(X); S T*y|dA| < oo for all Y e CE(X)},
2(T¥*) = {fe C(X); the function g | fldTe, is continuous on X},

2*(T)=2(T)NM*(X) and 2%(T*)=2(T*)nC*(X). Then T (resp. T*) can
be extended to a positive linear operator from 2(T) into M(X) (resp. from 2(T¥*)
into C(X) by defining T*f(x)= fdTe,).

Let T; (j=1, 2) be a diffusion kernel on X. We say that T is equivalent to
T, if for any x € X, there exists ¢,>0 such that Tye,=c,T,e,. We say that a
sequence (T;)7-, of diffusion kernels on X converges to a diffusion kernel T on X
if lim;_ o, Tje, = Te, for all xe X. In this case, we denote by lim;_,, T;=T.

Let T be a diffusion kernel on X and X, be a closed subset of X. We may
consider that M(X,)cM(X). If Tue M(X,) for any pe Mg(X,), then T may
be regarded as a diffusion kernel on X,.

Let T; (j=1, 2) be a diffusion kernel on X. If for ue My (X), T,ue 2(Ty)
and the mapping M (X) 3 u— T,(T,p) defines a diffusion kernel on X, the resulting
diffusion kernel is denoted by T;T,. In this case, for Y € Cx(X), T¥y € 2(T%)
and the mapping Cy(X)3y—T%(T*Y)) is positive linear and (T, T,)*=T3iT%
holds.

In particular, for a diffusion kernal T on X and a positive integer n=1, we
denote by T the diffusion kernel defined inductively by T"~!T provided that it is
defined, where T!=T. In case T#0, T° means the identity operator I on M(X).

A family (V,),o of diffusion kernels on X is said to be a resolvent on X
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if V,V, is defined and V,—V,=(q—p)V,V, for all p>0, ¢>0. For a diffusion
kernel V on X, if there exists a resolvent (V,),,, satisfying lim,,, V,=V, then
it is unique and by putting Vo=V, we call (V,),>, the resolvent associated with V.
In this case, we denote by Ve R and for any p>0, V,V and V'V, are defined and
V=V,=pVV,=pV,V.

Let Tbe a diffusion kernel on X. For any p>0, we assume that V, defined by

Vo = (p+ D) To(p+D7"Tru (ne Mg(X))

is a diffusion kernel on X. In this case, we see easily that (V,),., is a resolvent
and call it the resolvent generated by T.

DErINITION 1. (1) A resolvent (V,),.o on X is said to be uniformly
recurrent if there exist a family (u,),,o in C*(X) and a positive number p, sati-
sfying the following four conditions:

(@) u,>0on X for any p>0.

(b) u, converges pointwise to 0 as p—0.

(c) For any yeC(X), (u,V¥¥),,>p>0 forms a normal family on any
compact set.

(d) For any x € X, there exists { € C(X) such that

inf, 5,50 U (X)VEY(x) > 0.

(2) A diffusion kernel T on X is said to be uniformly recurrent if the re-
solvent generated by it exists and is uniformly recurrent.

DeriNITION 2 (cf. [10] p. 331). (1) A subset 4 of X x X is said to be of
transitive type if for any (x, y), (v, z)€ A, (x, z)e A and A>{(x, x); xe X},
and A is said to be symmetric if (x, y) € A implies (y, x) € A.

(2) Let F be a closed set of transitive type. A function e(x, y)>0 on F is
said to be of exponential type if it is continuous and for any (x, y), (y, z)€F,
e(x, y)e(y, z2)=e(x, z)

If F is symmetric, e(x, y)e(y, x)=1 for any (x, y) € F evidently.
For a diffusion kernel T on X, we put

supp(T) =cl{(x, y)e X x X; xe X, yesupp (Ts,)},

and call it the support of T.

DEFINITION 3 (cf. [10] p. 332). (1) A diffusion kernel T on X is said to be
of sub-exponential type if there exists a closed set F of transitive type with F>
supp (T) and a function e(x, y) on F of exponential type such that for any x € X,
fe(x, y)dTe(»)<1.

(2) In the above case, if in addition the function [e(x, y)dTe(y) on X is



586 Noriaki SUZUKI

continuous, we say that T'is of continuous sub-exponential type.
(3) In particular, if | e(x, y)dTe(y)=1 on X, we say that Tis of exponential

type.

REMARK 4. Let T be a diffusion vkernel on X and e(x, y) be a function of
exponential type on a certain closed set F of transitive type with F>supp (T).
We can define the diffusion kernel eT on X by putting

gv/d(em - Sg e(x, YW Te,()du(x)

for pe M(X) and Y € Cx(X).
If Tis of continuous sub-exponential type, then the resolvent generated by T
exists, because for any p>0, we see

n=o (p+1)7"T" = (1/e) Xi-o (p+1)7"(eT)"

for each k and the right hand side defines a diffusion kernel on X as k— oo, where
e is a function of exponential type as in (1) and (2) of Definition 3.

For a diffusion kernel T on X, we shall consider the following convex cones:
H(T) = {pe2*(T); Tu = u}

and
H(T*) = {fe 2*(T*); T*f =f}.

An element in H(T) is called a non-negative T-invariant measure and an
element in H(T*) is called a non-negative T*-invariant function.

PROPOSITION 5. Let T be uniformly recurrent. If pe 2*(T) satisfies
Tu<p then ue H(T).

In fact, let (V,),- o be the resolvent generated by T. Then, by conditions (b)
and (d) of Definition 1, V,e, does not converge to a measure as p—0 for each
xeX. Hence if Tuspu and Tu#pu, then V,(u—Tu) does not converge to a
measure as p—0, which contradicts the fact that V,(u—Tu)<(1+p)u.

From the above proposition the following corollary follows.

COROLLARY 6. Let T be uniformly recurrent. Then H(T) is a closed
convex cone in the metrizable space M*(X) and is the union of its caps?.

In fact, we remark that M *(X) is metrizable, because X has a countable base.

1) In general, for a closed convex cone K in a locally convex space, a non-empty subset C of
K is called a cap of K if C is a compact convex set and if K~C is also convex.
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Since the mapping 2*(T)s u—»Tue M*(X) is lower semi-continuous, Pro-
position 5 gives the first part. For u#0 in H(T), we choose f, e C*(X) with
f,>0o0n X and [f,du=1. Put

H(T: f,) = Qe HT): (fdr 1),
Then H(T; f,) is a cap of H(T), which gives the second part.

We shall introduce some of the fundamental potential theoretic principles
for diffusion kernels.

Let V be a diffusion kernel on X. For an open set w in X and pe 2*(7T),
we put

BY(u; ) = {' € 2*(V); supp(u') = @, V' < Vuon X and V' = Vu in o}

and

F ) + <Vii
B,':,(y; (D) = {#'EBV(#; w); orany A€ 9 (V)’ Vu s Vi In} .

o implies Vu' < Vion X

If BY(u; w)#¢ for any relatively compact open set w and pe Mi(X), V is
said to satisfy the balayage principle and we denote Ve B.

We say that V (resp. V*) satisfies the domination principle, Ve D (resp.
V* e D) in symbol, if for any u, Ale M}(X) (resp. f, geC(X)) Vu<V A in a certain
neighborhood of supp (u) (resp. V¥f<V*g on supp(f)) implies Vu<VAi on X
(resp. V*f<V*g on X).

For the relation between the above principles, we have the following results.

LEMMA 7 (see [10]). Assume that V is a strictly positive diffusion kernel
on X, i.e., Ve, #0 for any xe X. Then

(1) VeR=>Ve B=V*eD=V+cleD for any c>0.

(2) If Ve B, then Bl(u; w)#¢ for any relatively compact open set w and
any ue 2%(V).

The implication Ve B=Ve D is not true in general; however we have the
following

LemMMA 8. Assume that Ve B and is strictly positive. Then for any
U, Ae M¥(X), if VusVA in a certain neighborhood of supp(u) and if there
exists 1€ 2+(V) such that p is absolutely continuous with respect to Vz, then
VusVion X.

Proor. By Ve B, we may assume that te ME(X). Write u=fVr with
some non-negative function f on X. For any n=1, we put g,=min {f, n} and
1,=g,Vz. Then for any ¢>0,
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(V+cDy, < (V+cI)(A+cnr)

in a certain neighborhood of supp (u,). It follows from V+cIe D that above
inequality holds on X. Letting ¢ | 0 and next n 1 oo, we have Vu<VA on X.
This completes the proof.

§2. Determination of H(T)

We now state the main result in this section.

THEOREM 9. Let T be a uniformly recurrent diffusion kernel on X and let
X,=Ccl(\Jencrysupp (). Then there exists a strictly positive diffusion kernel
W on X,, uniquely determined except for the equivalence of diffusion kernels,
satisfying the following:

(1) WeB.

(2) H(T)={Wi; e 2F(W)}?.

(3) There exists a uniquely determined funjtion e(x, y) of exponential
type on the closed symmetric set of transitive type generated by supp (W)»
such that, for any x € X, and any y € supp (We,), We,=e(x, y)We,,.

(4) extH(T)={[We,]; xe X,}, where extH(T) is the set of all extreme
rays in H(T)® and [u]={cu; ¢=0} for any u#0 in M*(X).

It will be convenient to begin the proof with a couple of lemmas. The first
is concerned with the construction of the diffusion kernel W which appears in
Theorem 9.

LEMMA 10. Let T and X, be as in Theorem 9. Then there exists a strictly
positive diffusion kernel Won X, such that We B and {We,; xe X,} < H(T).

Proor. Let (V,),-o be the resolvent generated by T and (u,),.o<=C*(X)
be the family as in Definition 1. First we remark that T'is a diffusion kernel on
X, (note that the last part of this proof gives H(T)# {0} and hence X,#g). In
fact, for any x e supp (¢) with ue H(T),

supp (Te,) < supp (T) = supp (1) < X,,

which implies cl{\U,.x, supp (7T¢,)} = X, and hence TA € M(X,) for any A € Mg(X,).
Similar arguments show that each V,, p>0, is also a diffusion kernel on X, and

2) Here and hereafter, we consider that M(X,)C M(X).

3) This means the smallest closed symmetric set of transitive type containing supp ().

4) Aray [¢]in H(T) is a set of the form {cy; ¢=0}, where 0% p€ H(T'), and we say that [1]
is an extreme ray if for any 7 €[] and any v, t€H(T), n=cv+(1—0c)r with 0<c<1 implies v,

rE€[pl
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(Vp)p>o is the resolvent generated by the diffusion kernel T on X,. Hence by
restricting (4,),>0 to X,, we see that Tis a uniformly recurrent diffusion kernel
on X, By Definition 1 (c), for a countable dense subset A4 in C¥(X,), there
exists a decreasing sequence J=(p,)?=, of positive numbers with lim,., p,=0
such that for any Y €4, u, V3 ¥ converges uniformly on any compact set as
n—o. Let fe Ci(X,) and let w be a relatively compact open set in X, with
w>supp (f). We choose € Ci(X,) with y =1 on @. Then for any ¢<0, there
exists Y,eA with supp (Y, )cw and |f(x)—y (%) <ep(x) on X,  Since
(u,V 3 pes 1s locally bounded, we see that u, V* f converges uniformly on any

Pn” Pn
compact set as n—oo. Define for pue Mg(X,) and fe Cy(X,),

Sdeﬂ = limn—wo Sup"V:nfd/'l'

Then Wis a diffusion kernel on X,. The strict positiveness of W follows from the
condition (d) in Definition 1. Since V} € D (see, for example, [11] p. 60), we see
(u,V,)*e D, where (u, Vou={u X)WV, du(x) (ne Mg(X,)). Hence we have
W* e D by the usual limiting process which we give here for reader’s convenience.
Suppose that for f, ge C¥(X,), W*f<W*g on supp (f). Let he Ci(X,) satisfying
W*h21onsupp(f). Sincefor ¢ € Cy(X,), u, V3 ¥ converges to W*y uniformly
on any compact set as n— oo, for any £>0, there exists N >0 such that

(U, Vp)'f < (15, V,)*(g +2h)

on supp (f) for any n=N. Then (u,V,)* € D implies that the above inequality
holds on X,. Lettingn 1t oo and & | 0, we have W*f< W*g on X, thatis, W* e D.
Hence We B by Lemma 7 (1).

We shall show that {We,; xe X,} cH(T). By the definition of V,, TV,e,<
(p+1)V,e, so that

T(u(X)Vye,) = u(x)TV,e, < (p+Duy,(x)V,e,.

Since lim,_,q u, V, =W, TWe < We, and Proposition 5 gives We, € H(T). This
completes the proof.

LEMMA 11. Let W be as in Lemma 10.

(1) Let [uleextH(T). Then for any xesupp (u), there exists ¢,>0 such
that uy=c,We,. In particular, extH(T)<={[We,]; xe X,}.

(@) {cu; [u] eexcH(T), c=0} is closed in M*+(X,).

ProOF. We keep the notation as in Lemma 10 and its proof. Let [u]e
exrH(T), x € supp (1) and let w, be an arbitrary relatively compact open neigh-
borhood of x in X,. It follows from Tu=u that pV,u=p, and hence pV,u,<u
on X, and pV,u,=pu in w, for u, € B »(u; w,). -Hence there exists a subsequence
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J,=J and 1€ M*(X,) such that pV,u, converges to 7 as pe J, tends to 0. By the
same discussion as in Lemma 10, we see that 7€ H(T) and the extremeness of u
leads to t=pu on X,. We choose y € Ci(X,) with W*}>2 on w,. Without loss
of generality, we may assume that u,(y)Vy(y)=1on w, foreach peJ. Since

Vo) = (V300 ol o)),

((p/up)iy)pes, is vaguely bounded. Therefore denoting by A its accumulation
point, we have u=WA and supp(d)cw,. Rewriting p=cW(i/c) with c¢=[dA
and letting w, | {x}, we have u=c We, with some constant ¢, >0.

Let (u,)%-, be a vaguely convergent sequence in M *(X,) with [u,] € extH(T)
and lim,,, p,=p. The closedness of H(T) gives ue H(T). By (1), u,=c,We,,
for some x,€ X, and ¢,>0. We may assume that u#0. Let H(T; f,) be the
cap defined in Corollary 6. Since {[v]; veexH(T; f,)}cextH(T)», where
exH(T; f,) is the set of all extreme points in H(T; f,), the Choquet integral
representation theorem® yields that there exists [v]eexrH(T) such that
supp (u)>supp (v). Let yesupp(v) and w, be an arbitrary relatively compact
open neighborhood of y in X,. We may assume that We, (w,)>0 for all n=1.
For ¢,eB¥(e,,; w,), [We, ]eextH(T) gives c,We, =c,We, on X, Choosing
Y € Ci(X,) with W*) =1 on w,, we have

gd(c,,sj,) < c,,& WHyde, = g\ﬁd(c,,st").

Since (c,We,, )i, is vaguely bounded, so is (c,e,)i%; and hence we get u=Wr
for some Te M*(X,) with supp(r)cw,. In the same way as above, u=c,We,
for some ¢,>0. By (1), v=c'We, with some ¢’>0, which gives [u]=[v]. Thus
Lemma 11 is proved.

PROOF OF THEOREM 9. Let W be as in Lemma 10. Keep the preceding
notation. Let u7#0bein H(T). By the Choquet integral representation theorem,
we find a regular Borel measure @ on H(T'; f,) with [ d®<1 carried by {c,We,;
xeX,, ¢c,=1/W*f,(x)} such that

4= Sidrb(,{).

5) Let K be a closed convex cone in a locally convex space and C be its cap. Then every ex-
treme point of C lies on an extreme ray in K (see [14] p. 88). In this case, exrH(T) means
{cp, [pl€ extH (T), ¢20}.

6) Let C be a metrizable compact convex subset of a locally convex space. Then exC, the set
of all extreme points in C, is a G;-set and, for any x& C, there exists a regular Borel probability
measure @ on C carried by exC which represents x, i.e., for any continuous linear functional
LS )=[f(»do(y) (see [14] p. 7 and p. 19).
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For an exhaustion (K,)%,; of X,7, we put
&, = the restriction of @ to {c We,; xe K,—K,_{}

where Ko=¢. Let (®,,)5-, be a family of Borel measures on H(T; f,) which
are finite linear combination of the Dirac measures with positive coefficients sup-
ported by {c,We,; xe K,} and which converges vaguely to @, as m—oo. Then
there exists a family (v, ,)5=; = M{(X,) supported by K, such that j).dd>,,,m(l)=
Wv,... Hence letting m— oo, we obtain | 2d®,(1)= Wy, with some v, e Mi(X,).
Since

p= Tiey | 2d0,0) = £iy Wy,

putting v=3%,v,, we have ve 2% (W) and u=Wy, that is, H(T)c={Wv;
ve 2+(W)}.

The converse inculusion follows from Lemma 10 and hence W satisfies (2).

Next we shall show that W satisfies (4). Putting X, ={xe X,; [We,]€exr-
H(T)}, we see X,=cl(\U,.x, supp (We,)). In fact, by the Choquet integral re-
presentation theorem and the above proof of (2), we see that for any p=
>w=1 Wv,e H(T) and each n=1, supp (Wv,)=cl(\U x, supp (We,)), which gives
the desired assertion. Therefore for any y € X, we can choose sequences (y,)5; <
X, and (x,);=; = X, which satisfy y, e supp (We,,)and y, converges to y as n—c0.
By Lemma 11, [We, ] =[We, ]eextH(T) and hence [We,]eexrH(T). This
gives (4).

For the assertion (3), we choose fe 2 *(W#*) with f >0 on X, and put e(x, y)=
W*f(x)/[W*f(y). Then e(x, y) is the desired function.

Lastly we shall show that Wis uniquely determined except for the equivalence
of diffusion kernels. Let W, be another diffusion kernel on X, which satisfies
the required conditions. As is seen in the proof of (4), for x € X, there exists a
sequence (x,)y=; <X, such that x, e supp (We, ) and x, converges to x as n— oo.
Hence the extremeness of We, and the fact that W, e B show W,e, =c,We, with
some c,>0. Letting n—»o, we have W, ,=c, We, with some constant c¢,>0.
This completes the proof of Theorem 9.

Similarly, we have the following

PROPOSITION 12. Let V and W be any two diffusion kernels on X. Assume
that VW is defined and satisfies VW=W. If W is strictly positive, We B and
cl (\Uyex supp (We,))= X, then for any x€ X and any y e supp (Ve,), there exists
a constant c, ,>0 such that We,=c, ,We,.

7) This means that for any n=1, K, is compact and is contained in the interior of K., and
\J :=l K »= X 0°
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Proor. For an x € X, choosing (x,)2; =X and a family (a,); of positive
numbers which satisfy xecl(\J;Z, supp(We,)) and 3 7, a.e, €27 (W), we
see that A=37, a,¢,, satisfies x e supp (W1). Let K be a compact neighborhood
of x and denote by u the restriction of WA to K. For any yesupp(Ve,) and
any relatively compact open neighborhood w, of y, we have V(Wu—Wu,)=
Wu— Wi, =0 in w,, where uj e B¥(u; w,). Since V*f(x)>0 and [ V*fd(Wu—
W)= fa(Wu— Wuy)=0 for any feC}(X) with f(y)>0 and supp(f)cw,,
we have xe&supp (Wu—Wy;). Hence there exists an open neighborhood U,
of x such that Wu—Wu,=01in U,. Let U be any open neighborhood of x with
UcU, By the equality Wu,=[We, du(x) for p,eB¥(u; w,) and & e
BY(e,; w,) (see [10] Proposition 9), we see that

W(py—pu,y) < W(p—py) on X,

where py denotes the restriction of u to U and py ,e€BY(uy; w,), because
W(p—uy) = Wlpy — py,y)=Wp — po) — Wy, — py,,) and - pj—py, € B (n— pys
w,). Therefore Wuy=Wuy , in U,. Since supp (uy)<U, and puy<WA on X,
Lemma 8 gives Wuy=Wpuy , on X. By multiplying some constant and letting
w, | {y} and then U | {x}, we have We,=cWe, with some constant ¢>0, which
proves the proposition.

COROLLARY 13. Let T and X, be as in Theorem 9. We consider that T
is a diffusion kernel on X,. Then H(T) is one dimensional if and only if the
closed symmetric set of transitive type generated by supp (T) is equal to X, x X,.

ProOF. The “if”” part: Let W be as in Theorem 9. Put F={(x, y)e X, X
X,; We,=cWe, with some constant ¢>0}. Then F is a closed symmetric set of
transitive type and F > supp (T) by Proposition 12, and hence F=X_,x X,. This
implies that H(T) is one dimensional.

The “only if”” part: Let F be the closed symmetric set of transitive type in
X, x X, generated by supp (T). For each xe X,, we put F,={y e X,;(x, y) € F}.
Then supp (Te,)= F, and hence supp (V,¢,) = F, for all p>0, where (V,),5, is the
resolvent on X, generated by T. This gives supp (We,)=F,.. Since H(T) is one
dimensional, we see easily that supp (We,)=X,. Thus F,=X, and hence F=
X,x X, This completes the proof.

A diffusion kernel Ton X is said to be idempotent if T? is defined and T= T?>.
This is a typical example of uniformly recurrent diffusion kernels.

COROLLARY 14. Let T be a strictly positive idempotent diffusion kernel on
X. Then T is uniformly recurrent and the diffusion kernel W obtained in
Theorem 9 is equivalent to the restriction of T to Mg(X,), where X,=
cl (\J yerr(ry Supp (1)) =cl (\ ;cx supp (T,)).
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In fact, denoting by (V). o the resolvent generated by T, we see (1+p)V,=
[+(1/p)T, and then the required results are shown immediately.

§3. The cone H(T*)

In this section, we shall consider the conditions under which the cone H(T*)
is one dimensional.

We begin with the following definition.

DEerFINITION 15. Let T be a diffusion kernel on X. We say that T* is

uniformly recurrent if for any € CE(X) with Y #0, there exists an x € X such
that

=1 (T*)"(x) = oo.

Here (T*)" is defined in the following manner: For a non-negative lower semi-
continuous function g on X, we define T*g(x)=| gdTe,. Then T*g is also non-
negative lower semi-continuous. So we can define (T*)"g(x)=j(T*)"‘1ngax
inductively (n=2), where (T*)!=T*. If the diffusion kernel T” is defined,
(T*)"=(T")* of course.

REMARK 16. Let T be uniformly recurrent on X and let X, and W be as in

Lemma 10. If X, =X, that is, cl(\U,x supp (We,))=X, then T* is uniformly
recurrent.

In fact, if cl (\Ucx supp (We,))= X, then given Y € C¥(X) with ¥ #0, we have
W*J(x)#0 for some xe X. Since u,(x)V3¥(x) converges to W*y(x) and u,(x)
converges to 0 along some decreasing sequence of p, lim, o Viy(x)= X so-

(T*)"(x) = co.
Analogously to Proposition 5, we have the following

PROPOSITION 17. Let T* be uniformly recurrent. If fe 2%(T*) satisfies
T*f<f, then fe H(T¥*).

As a function version of Corollary 13, we have

PROPOSITION 18. Let T be a diffusion kerenl on X. Assume that T* is
uniformly recurrent and that the closed symmetric set.of transitive type generated
by supp (T) is equal to X x X. Then (1)<>(2):

(1) For any xe€ X, there exists fe H(T*) such that f(x)>0.

(2) Tis of continuous sub-exponential type.

Furthermore, in the above case H(T*) is one dimensional.

PROOF. Suppose first that (1) is fulfilled. Then we can choose a function
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g in H(T¥*) such that g>0 on X. Put e(x, y)=g(y)/g(x) on X xX. Then
e(x, y) is of exponential type and for any x € X, | e(x, y)dTe,(y)=1, which shows
that T is of exponential type.

Suppose conversely that T is of continuous sub-exponential type and let
e(x, y) be a continuous function on X x X of exponential type such that [ d(eTe,) <
I. Then 1e2*((eT)*). Since ((eT)*)"Y(x)=[inf,cq,ppey) (X, 2)]1(T*)"Y(x) for
any Y € C{(X) and T* is uniformly recurrent, so is (eT)* evidently. Hence it
follows from Proposition 17 that 1 € H((eT)*). Fora ze X, we put g(x)=e(z, x).
Then g>0 on X and g € H(T*), for

7%m=wymmm=&mmmwmm>

=an§d&ywn4w=guxﬂvﬂu)=gu»

Turning to the second assertion, we choose g € H(T*) with ¢>0 on X and
let f be an arbitrary element in H(T*). Put F={(x, y)e XxX; f(x)g(y)=
f(g(x)}. It suffices to show that F=X x X. Since F is a closed symmetric
set of transitive type, it also suffices to show that Fosupp (7). Let xe X and
yesupp (Te,). If f(x)=0, then f(x)=T*f(x) gives f=0 on supp (Te,). Hence
(x,yeF. If f(x)>0, put h=min{g(x)f, f(x)g}. Then he2*(T*) and
T*h<h, so T*h=h. This implies g(x)f=f(x)g on supp(Te). Thus
F o supp (T), which completes the proof.

By a similar proof, we have

PROPOSITION 19. Let T be a diffusion kernel on X. Assume that the closed
symmetric set of transitive type generated by supp(T) is equal to X x X and
that there exist g € H(T*) and ue H(T) with g>0 on X, supp (u)=X and j gdu<
0. Then H(T*) is one dimensional.

In fact, for any fe H(T*), putting h=min {f, g}, we have he 2*(T¥*),
T*h<h and [hdu=|hdTu=(T*hdu, which imply he H(T*). Thus by the
same argument as above, we obtain Proposition 19.

ExaMpPLE 20. Let Q be a bounded domain in a Euclidean space with smooth
boundary and let G(x, y) be the Green function on Q of a second order uniformly
elliptic differential operator with bounded smooth coefficients. It is well-known
that there exist A> 0 (the first eigen value) and f; € C*(Q) (j =1, 2) such that

[ 6 naEw = .,

S%wmmmw=mm
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and [f3(x)dé(x)<oo, where ¢ denotes the Lebesgue measure (cf. for example
[11] p. 105). Considering the diffusion kernel T defined by

Ty = «1/1)§ Glx, Nu()E (e M(Q),

we see f,éeH(T) and f,e H(T*). By Proposition 19, H(T*)={cf,; c=0}.
This means that the eigen space for the first eigen value A is also one dimensional
even if we consider it in the space C*(Q).

§4. Invariant measures for uniformly recurrent continuous
diffusion semi-groups

A family (T;),, of diffusion kernels on X is said to be a continuous diffusion
semi-group if Ty=I, T,T, is defined and T,T,=T,, for all t, s=0 and for any
pe M(X), t—Tue M(X) is continuous, i.e., the mapping t— [ T*ydu is con-
tinuous for any ¥ € Cx(X).

We say that a family of diffusion kernels (V,),- o defined by

V=" enTpdt  (ueMg))

is the resolvent generated by (T,),», provided that it has a sense, and (T;),5¢ is
uniformly recurrent if the resolvent (V,),5 is uniformly recurrent. We also say
that (T¥),50 is uniformly recurrent if for any € C{(X) with y #0, there exists

an x € X such that limg,, Ss T¥y(x)dt=00. Put
0

H((T,),;O) = Mizo0 H(T;) and H((T;k)tgo) = Mi20 H(TY).

Using the following two lemmas, the cones H((T;),»,) and H((T¥),,) are
determined by the results obtained in the previous sections.

LEMMA 21.  Let (T;);»o be a continuous diffusion semi-group on X. As-
sume that the resolvent (V,),.o generated by (T,),so exists. Then for any
p>0, H(T),z0)=H(pV,) and H(T}),20)=H(pV}).

In fact, H((T)),50) < H(pV,) is evident and the converse inclusion also holds
by virtue of the resolvent equation and the unicity of the Laplace transformation.
Similarly, H((T}),z0)=H(pV}) is obtained.

LEMMA 22. Let (Tp),zo and (V,),>o be the same as above. Then (T),5,
(resp. (T¥),z0) is uniformly recurrent if and only if pV, (resp. pV}) is uniformly
recurrent for some p>0.

ProoF. The resolvent (U,),> o generated by pV), exists and
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Uq = (q+])—ll + pla+ 1)_2Vp‘1/(¢1+1)

for any g with 0<g<p. Suppose that pV, is uniformly recurrent for some
p>0 and let (u,),>, and g, be as in Definition 1 corresponding to (U,),>o. Put
41=r4,/(q,+1) and v,=uy,_, (0<q=gq,) and v,=v, (9>q,). Then
(vg)y>0 and g, is a pair which determines the uniform recurrence of (V)0 and
hence (T3),5 ¢ is uniformly recurrent. The converse assertion is obtained similarly.
We also have

lim, . (1/p) Shes PV = lim, o | Ty
0
for any Y € C(X), which implies our desired assertion and the proof is completed.

In the case of continuous diffusion semi-groups, using the above lemmas
and the results in sections 2 and 3, we obtain the following

THEOREM 23. Let (Ty),»o be a uniformly recurrent continuous diffusion
semi-group on X and (V,),-o be the resolvent generated by (T.);»o. Then

(1) H((T)iz0)={Wv; ve 2+ (W)}, where W is the diffusion kernel obtained
in Theorem 9 from T=pV, with some p>0.

(2) H((T});»o0) is one dimensional if and only if the closed symmetric set of
transitive type generated by \U,»qsupp(T;) is equal to X,xX,, where X,=
Sl (\J uen(Toyezo) SUPP (1)) and we consider that (T),»o is a continuous diffusion
semi-group on X,.

() If (TF)»o is uniformly recurrent and the closed symmetric set of
transitive type generated by \ U, supp (T)) is equal to X x X, then the following
statements (a) and (b) are equivalent:

(a) Forany xe X, there exists an fe H(T}),»,) such that f(x)>0.

(b) (T.z0 is of continuous sub-exponential type, i.e., there exists a con-
tinuous function e(x, y) on X x X of exponential type such that for any t=0
and any xe X, [ d(eTe,)<1 and 1€ 2+((eT)*).

Furthermore, in this case H(TY¥),5,) is one dimensional.

§5. Weakly regular Hunt diffusion kernels

We say that a diffusion kernel V is a weakly regular Hunt diffusion kernel
on X if

(H.1) there exists a continuous diffusion semi-group (7;),>0 on X such that
V= S°° Tdt, ie., for we My(X) and Y € C(X), S ‘pdvﬂ=g°° dt S WdTu;

0 ' 0

(H.2) Bl(u; w)#¢ for any open set w and any pue M¥(X);

(H.3) for any iy € C{(X), the greatest V-subharmonic minorant of V*} on
X vanishes and V has the lower regularization property: Let € be an open set and
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u be a real-valued Borel function satisfying |u(x)| gf fdVe, with some fe CE(X).
If for any x€Q, any compact set K<Q and any e, cx€B"(s,; CK), u(x)=
[ ud &, ck, then u(x)=liminf,_,  u(y) is V-superharmonic in Q.

Here a real-valued Borel function u on X is said to be V-superharmonic in
Q if u is lower semi-continuous in Q and for any x € Q and any compact set K
with K< Q, u(x)gfuds;,cx, where €, cx € Bi(e,; CK). Also if —u is V-super-
harmonic in Q, then u is said to be V-subharmonic in Q.

Weakly regular Hunt diffusion kernels are characterized by M. It6 in [10].
That is, a diffsion kernel V on X is a weakly regular Hunt diffusion kernel if and
only if

(D.1) V,V*eD;

(D.2) V is non-degenerate, i.e., for any x, ye X with x#y, Ve, #0 and
Ve, is not proportional to Ve,;

(D.3) for any closed set F in X and any ¥ € C{(X), the V-reduced function
HY*Y of V*y on F is upper semi-continuous and HY*¥(x)=inf {H{yY; K:
compact} =0 on X.

Here, V-reduced functions are defined as follows: For a diffusion kernel V
on X, a real-valued lower semi-continuous function u on X is said to be V-
supermedian if for any xe X and Ae M¥(X) with VAL Ve, fudl§u(x). We
denote by S*(V) the totality of non-negative V-supermedian functions. For a
subset 4 in X and a function g =0 on A4, we define the V-reduced function of g
on A by

H4(x) = inf {u(x); ueS*(V),u=g on A} on X

whenever {ue S*(V); u=g on A}+#g.

A strictly positive diffusion kernel satisfying (D.1) and (D.3) is called a
weakly regular diffusion kernel.

In this section, we shall show that under some additional assumption, the
condition (D.2) in M. Itd’s result can be removed in the following sense: A weakly
regular diffusion kernel ¥ on X may be regard as a weakly regular Hunt diffusion
kernel on some quotient space of X.

We begin with the following lemmas.

LEMMA 24. Let V be a weakly regular diffusion kernel on X and let he

C*(X) with h>0 on X. For e(x, y)=h(y)/h(x), the diffusion kernel eV (see
Remark 4) is also weakly regular.

In fact, the strict positiveness of eV is clear. Since V, V* e D if and only if
eV, (eV)* e D, we see that eV satisfies (D.1). By the definition, the equality

HGEP™W(x) = (1/hCO)HE V()
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holds on X for any ¥ € C#(X) and any closed set F in X, which shows that eV
satisfies (D.3).

For a diffusion kernel ¥ on X and an x € X, we put
F.={yeX; Ve, =cVe, withsome c>0}.

LEMMA 25. Let V be a weakly regular diffusion kernel on X. Then:

(1) For any compact set K, \U,x F, is also compact.

(2) For any closed set F, \U,.p F, is also closed.

(3) The relation x~y on X defined by xeF, is an equivalence relation
and the quotient space X|~ is a locally compact Hausdorff space with a countable
base.

Proor. Choosing fe 2*(V*) with f>0 on X, we put e(x, y)=V*f(y)/
V*f(x) on X xX. Then F,={yeX; eVe,=eVe,} for any xeX. Let (w,)-,
be an open exhaustion of X®. First we show that for any compact set K in X,
U,ex F, 1s relatively compact. Choose e Cx(X) with (eV)*¥(x)=1 on K.
By the proof of Lemma 13 in [10] and Lemma 24, H{)*Y converges to 0 uni-
formly on any compact set as n—o0. Hence there exists an N>0 such that
HM*¥(x)<1/2 on K. It follows from the definition of eV-reduced functions

Con

that
HeV* = (eV)*y on Cwy.

Con
On the other hand from eVe, =eVe, (y € F,) it follows that
HERW(v) = HER™ (x).

The above two equalities and (eV)*y(y) =(eV)*¥(x) for yeF, imply that
Uex Fxcwy, that is, \U,x F, is relatively compact.

Next we shall show (2). If (2) is valid, (1) holds by the above proof. Let
(yn)=, be a convergent sequence in \U,. F, with lim,_. y,=y. Then there
exists a sequence (x,)=, in F with eVe, =eVe, . By the above proof, \U%, F,,
is relatively compact and contains (x,)%; so that we may assume that (x,)%,
converges to some x € F as n—oo. This implies y € F, and hence \U,.f F, is closed.

Clearly x~y is an equivalent relation. By (2) the natural projection =
from X onto X/~ is a closed mapping and by (1), F, is compact for any x € X.
Hence a theorem in [12] (Theorem 20, p. 148) gives (3). This completes the
proof.

PROPOSITION 26. Let V be a weakly regular diffusion kernel on X. As-

8) This means that for any n=1, w, is relatively compact open and @,C w,+; and that \Uy-; o,
=X,



Invariant measures for uniformly recurrent diffusion kernels 599

sume that there exists an accumulation point W of (pV,),so as pt oo, where
(Vp)pzo is the resolvent associated with V. Then:

(1) Wis strictly positive idempotent and VW=WV=V.

(2) cl(Uyex supp (We))=X.

(3) For any xe X, F,osupp (We,).

(4) For any pe M¥(X), Wue MH(X).

(5) For any y € CH(X), W*y e CE(X).

ProOOF. First we remark that Ve R (see Proposition 15 and Remark 16 in
[10]). By our assumption, there exists an increasing sequence (p,)%-; such that
lim, 1 p,V,,=W. Note that lim, .V, =0. Since pVV,e,= Ve, —V,e < Ve,
for any xe X, (D.3) gives VWe,= Ve, (use Lemma 13 in [10]) and hence V,W is
also defined and V,W=V, for all p=0. By the Fatou lemma and strict positi-
veness of V, W is strictly positive and idempotent. Furthermore we see V,W=
WV,=V, for any p=0, which shows (1).

For any xe X, Ve,#0 and Ve D imply x € supp (Ve,). Therefore

CI(UxeX Supp( Wex)) DCI(UXEX SUPP( Wst)) = UxeX supp( st) = AX9

which shows (2).

The assertion (3) follows from Proposition 12, and (4) and (5) follow from
(3) and Lemma 25 immediately. Thus Proposition 26 is shown.

The main result in this section is the following

THEOREM 27. Let V be a weakly regular diffusion kernel on X. Assume
that there exists an accumulation point W of (pV,),»0 as pt oo, where (V,);30
is the resolvent associated with V. Let x~y be the equivalence relation defined
by Ve,=c, Ve, with some c, ,>0. Then there exist a weakly regular Hunt
diffusion kernel V on the quotient space X/~ and a function e(x, y) on X x X

of exponential type with e(x, y)=c, , such that, for any fe Cx(X|/~) and any
xeX,

(1720 = { srOnaveme v,
where n is the natural projection of X onto X/|~.

ProoF. By Lemma 25, X/~ is locally compact. Let e(x, y) be the same
as in the proof of Lemma 25. Then eVe,=eVe, for any xe X and any yeF,.
Hence e(x, y)=c,,. The equality eVe,=eVe, and the resolvent equation give
eV,e,=eV,e, for any p>0 so that eWe, =eWe,. Therefore, for X € X/ ~, VeWe, is
independent of xeX. For any fe Cx(X/~), we define

(147250 = | FrOavewey).
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Then ¥ is a diffusion kernel on X/~. Let ¥/, be a diffusion kernel defined by
£V jeniey=[ f(n(y))dV,eWe,(y) for all fe Cx(X/~). Then (V,),»0 is the re-
solvent associated with ¥, which implies 7*eD. We shall show Ve D. Let
1;€ ME(X/~) (j=1, 2) and suppose that V1, V1, in a certain relatively compact
open neighborhood & of supp (4;). Let A;e M{(X) satisfy [ydi;=[(eW)*y-
(n(x))d1(r(x)) (j=1,2) for any Y € Cx(X), where (eW)*y(n(x))=(eW)*}(x)=
fWdeWe,. Then by Proposition 26, supp (4;)<{x; n(x) € supp (Zj)} and VA, <
Vi, in {x; n(x)e ®}. Hence Ve D gives VA, <VA, on X. This implies V1, <
V1, on X/~ that is, V € D.

Clearly V is non-degenerate. Since V satisfies (D.3), Lemma 13 in [10]
shows that ¥ also satisfies (D.3). Therefore by [10], ¥ is a weakly retular Hunt
diffusion kernel on X/~ , which completes the proof.

§6. Diffusion kernels of convolution type

Let G be a locally compact Hausdorff group with a countable base and let X
be a homogeneous space of G. Then X may be identified with the (left) coset
space G/H, where H={geG; gx,=x,} for some x,e X. Denote by my the
natural projection of G onto X =G/H.

In the sequel, we always assume that H is compact.

For any ve M*(G) and pe M*(X), the convolution vxu may be defined by

| voaveun = { §_wigmirigydu
X XJG

provided that the right hand side is finite for any € C§(X). The convolution of
two measures v, 7€ M*(G) is defined similarly and we use the same notation
VHT.

Denoting by &, the normalized Haar measure on H, we see that the mapping
nji: Cx(G)— Cy(X) determined by

n#(f) (ma(9)) = S flghydeu(h)  (fe Cx(G)

is well-defined and clearly it is continuous, positive, linear and surjective (cf. [2]
and [3]), so that the transposed mapping 5, : M(X)—M(G) defined by

§ V() = g nhWdn  (pe M(X) and € C(X)

is continuous, positive and injective. Then for ve M*(G) and pueM*(X),
vinp(i) =np(vp) and ng(e,, ) =¢4¢y for any g€ G.

DEerFINITION 28. Let X =G/H be a homogeneous space of G.
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(1) A diffusion kernel T on X is said to be of convolution type if for any
xeX,

Tsx = ”H(Tann(e))*sxs

where e denotes the neutral element of G. We say that ng(Te, ) e M*(G)is
the representing measure of T, which is denoted by o in the sequel. Then
Tu=or*u for any ue 2(T) and or*e, =07 for any he H.

(2) A continuous diffusion semi-group (T}),»o on X (resp. a resolvent
(Vp)p>0 on X) is said to be of convolution type if each element is of convolution
type.

REMARK 29. (1) Let T be of convolution type and let se M*(G) satisfy
Te,=ox¢, for any xe X. Then o%éy=07.

(2) Let (T)),»0 be a continuous diffusion semi-group on X of convolution
type. Then oy =&y, o7 *0r =0or,,, for any ¢, s=0 and the mapping t—or, is
vaguely continuous.

(3) Let (V,),>0 be a resolvent on X of convolution type. Then (dy,),50
satisfies the resolvent equation, i.e.,

oy, — Oy, = (g—p)oy *oy,
for any p, g>0.

In fact, o7 =ny(Te,, () =Nu(0%Er () = T¥Np(Er, (o) = 0%y, Which implies
(1). The assertions (2) and (3) follow from (1) easily.

From the manner of the construction of diffusion semi-groups and resolvents
(see [10] p. 317 and p. 323-325) we obtain
ProposITION 30. (1) Let V be a Hunt diffusion kernel on X, i.e., there
exists a continuous diffusion semi-group (T,),»¢ on X such that V=S°° Tdt. If
= 0

V is of convolution type, then so is (T);»o.
(2) If Ve R and is of convolution type, then the resolvent associated with
V is also of convolution type.

DEerINITION 31.  We say that 6 € M*(G) is recurrent if for some fe C¥(G),

2 (- (1010290409 )do(g)-dotg) = 0

and that o is sub-exponential if there exists an exponential E? on the closed
subgroup generated by supp (o) such that | E(g)do(g)<1.

9) A positive continuous function E on a topological group I” is called an exponential on I”
if it satisfies E(gg’)=E(g)E(¢g’) for any g, g’ .
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For the existence of recurrent and sub-exponential measures, we refer to
[1] and [7].

Using Theorem 9, we see the following theorem, which is the main result
in this section.

THEOREM 32. Let T be a diffusion kernel on X =G/H of convolution type.
Then T is uniformly recurrent if and only if its representing measure o1 is
recurrent and sub-exponential. In this case, there exist a closed uni-modular
subgroup I' in G and an exponential E on I such that

(1) cl(Us=osupp ((ar)"N' P =T,

(2 [E@)dor(g)=1,

(3) H(T)={(1/E)r*v; ve 2*(T)},
where ¢ denotes a Haar measure on I'.

ProOOF. Suppose that T'is uniformly recurrent. We keep the same notation
as used in Theorem 9 and its proof. Since the resolvent (V,),., generated by T
is of convolution type, there exists a sequence J=(p,), of positive numbers
with lim,_,p,=0 such that (u,(x)oy *e,),e; (x € X) converges vaguely to an
element in H(T) as n—o. Put py=We, .. Then, for any xeX, py*e, =
c,We,, where c,=lim, o u, (ng(e))/u,(x)>0. Since lim,., u, (ny(e)=0, we
have

21 () §£G102-9.)do1(g )dor(g2)dor(g,)

= lim, 0 ey Sf(g)dav,(g) -

for any fe C£(G) with supp (f) n supp (pw) # @, which implies that g is recurrent.
Put I'=supp (pw). - Then for every p>0, I'<supp (ay,)= cl (\U;o supp ((a1)")).
Since V,T=TV,, we have ap*py =py*pr=py. By Theorem 9, we see that for
any g €supp(0r), Pw =CoPw*e,=Cyexpy With some c,>0 and c,;>0, because
¢l (U e SUPD (P *£)) = €1 (U e SUP (e;#py)) = G.  Hence T =cl (Uiio supp-
((ap)™), I is a closed subgroup and for every g € I', py = c,py*¢, with some ¢,>0.
Then putting E(g)=1/c,, we see easily that E is an exponential on I' and Epy is
invariant with respect to the right translation on I, that is, Epy is a right Haar
measure on I', which we denote by &,. Since for any ue 2 (W), Wu=py*i,
where j=|c.edu(x), we have H(T)={(1/E) *v; ve 2+(W)} so that (3) is
shown.
The equalities

(1/E)¢r*or = op*(1/E)Sr = (1/E)y

10) In this case, (67)"=(a7)" '*or is defined inductively for n=1, where (¢7)°=c..
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show that

SE(g)daT(g) ~1 and SAr(gﬂ)E(g)daT(m -1,

where 4 denotes the modular function of I, which imply the assertions (1) and (2).
In fact, by simple calculation and by Corollary 13, we see (4,/E)¢€{ue M*(I);
orxu=ut={pe M+*(I'); uxor=u}={c(1/E)¢; c=0}, which shows 4,.=1.

Finally we shall show that if o4 is recurrent and sub-exponential then T is
uniformly recurrent. Let E be the exponential on the closed subgroup I' generated
by supp (o7) which satisfies [ E(g)dar(g)<1. Since oy is recurrent, Egy is also
recurrent so that [ E(g)dor(9)=1. Hence (1/E)ér e H(T), where & is a left
Haar measure on I'. Put u=(1/E)¢,. It follows from o*u=yu that the resolvent
(V,)p>o generated by Texists and oy = Y50 (L + p)™"(07)" € M(G) and poy *u=
u. Let o be a relatively compact open set in G with eew. Since oy, € B, we
choose p, € B°v»(pu; w). Put u(x)=| du, on X. Then (u,),»o is a family
defining the uniform recurrence of 7. In fact, since o is recurrent, we see
lim, o [ du,=0, and since oy *u,=p in , (u,(x)oy,),>o is vaguely bounded
and its vague accumulation points as p—0 are non-zero. Hence (u,),. o satisfies
all the conditions in Definition 1, that is, T is uniformly recurrent. This com-
pletes the proof.

COROLLARY 33 (cf. [7]). Let 0 e M*(G) be recurrent. Then o is sub-
exponential if and only if H(c)#{0}, where 6 may be considered as a diffusion
kernel on G of convolution type. In this case, we obtain:

(1) I'=cl(\UZosupp(6™)) is a uni-modular closed subgroup in G.

(2) There exists a uniquely determined exponential E on I' such that
{ E(g)do(g)=1.

(3) H(o)={(1/E),r*v; ve 2 (06)}, where & is a Haar measure on I'.

We say that o e M*(G) is of finite order if for some n=2, ¢" is defined and
o"=g¢. In particular, we say that ¢ is idempotent if e2=o0.

Generalizing a characterization of above measures on abelian groups (cf.
for example [9] and [13]), we obtain

PROPOSITION 34. Let 0#0e€ M™*(G).

(1) 1If o is idempotent, then supp (o) is a compact subgroup in G and o
is the normalized Haar measure.

(2). If o"=o0 for some n=3, then there exist a compact subgroup K in G
and an element g€ G such that g"~' € K and o=_E{gxe, =g &y, where Ey is the
normalized Haar measure on K.

PrOOF. (1): Clearly o is recurrent. By Corollary 33, o=cE{;, where
I'=supp (o) U {e}, E is some exponential on I' and ¢>0. Thus eesupp (o).
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By ox6=0, I' is compact and E=1, which imply that ¢ is the normalized Haar
measure on a compact group.

(2): Put K=supp(o"~!). It follows from (1) and o 'xg" !=¢""! that
" 1=¢;. This gives o=Exo=0x¢x and [do=1. For any g,esupp (o),
we put g=(g;1)*2. Then g tg’, g’9~' € K for all g’ € supp (v), because

9192 gn-1€K forany g esupp(s) (j=1,2,.,n—1).
Hence o =¢gxe, =g *E.  Clearly g"~t e K. This completes the proof.

Finally we shall describe the results corresponding to Theorem 27 for the
diffusion kernels of convolution type. This generalizes the result that any dif-
fusion kernel of convolution type with associated resolvent on a locally compact
abelian group is the canonical prolongation of a Hunt diffusion kernel on a
quotient group by some compact subgroup (see [8] and [13]).

THEOREM 35. Let V be a weakly regular diffusion kernel on X=G/H
of convolution type. Then there exist a uniquely determined compact sub-
group K with K> H and a uniquely determined weakly regular Hunt diffusion
kernel V on G/K of convolution type such that V is the canonical prolongation
of V on G/H, that is, ng(Ver,,s) =Nk(V exy(q) fOr every g€ G.

ProoF. By Proposition 30, the resolvent (V,),>o associated with V is of
convolution type. Since (poy,),-o is vaguely bounded, there exists an accumu-
lation point 6 € M*(G) as pt oco. Then by Theorem 27 we see that o*o =0 and
oy*a=0y. By Proposition 34, there exists a compact subgroup K in G such that
o=C{k. Since oy *{yg=0y, for any p>0, 0¥{y =0, which implies K< H. Using
Theorem 27 again, we see that the required assertion is valid.

COROLLARY 36. Let V be a weakly regular diffusion kernel on X=G/H
of convolution type. If X is a symmetric space, that is, H is a maximal compact
subgroup of G, then V is a weakly regular Hunt diffusion kerenel on X.
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