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Summary

In this paper, we consider contrast functionals on the space of all probability
measures equivalent to each other. Many examples of the contrast functional
have been proposed and estimation methods based on them, called the minimum
contrast estimation methods, have been investigated since the theory of estimation
was initiated by R. A. Fisher. It is shown that a contrast functional generates a
conjugate metric structure with a Riemannian metric and a conjugate pair of affine
connections on the space. We show that this structure explains some properties of
the minimum contrast estimator. In particular, the explicit formulas for the limiting
information loss for the estimators are given in covariance structure models. More-
over we propose a generalized scoring method for seeking the minimum contrast
estimates. It is shown that the convergence of the algorithm is affected by two
geometric quantities which can be expressed in the conjugate metric structure.

0. Introduction

The concepts of information, entropy, energy, diversity, discrepancy, and
divergence for random phenomena occupy a fundamental position in various
fields of mathematical sciences, e.g., statistical mechanics, information theory,
system and control theory, evolutional biology and statistics (see Boltzmann
[14], Fisher [28], Shannon [54], Wiener [62], Kullback [39] and Simpson [56]).
Although various terminologies for the concepts are used, the concepts have a
common aspect which can be used for the comparison of random phenomena.
In this sense, as a measure of the concepts we consider a cortrast functional
defined on a pair of probability measures, which is positive except in the case of
agreement between the two probability measures. R. A. Fisher [28] was the
first to introduce a measure of information, called the Fisher information, into
the theory of estimation. Since his work, statisticians have proposed various
contrast functionals and investigated inference based on them (see, e.g.
Mahalanobis [43], Battarcharya [13], Jeffreys [35], Haldane [30], Chernoff
[18] Matusita [44], Reyni [53], Kagan [36], Csiszar [19] and Burbea and Rao
[16]).

Closely related to the work mentioned above are geometric approaches to
statistics. For example, consider a linear regression model
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with a design matrix X of size n x m and a parameter β, i.e., the n-variate data
y are observed from a point on the m-dimensional plane

in R" with a random term e. The geometric properties of μ(X) and the stochastic
properties of e together can be used to determine the optimal form for statistical
inference. Suppose that e follows the Gaussian distribution with mean 0 and

known covariance Σo Then with respect to an inner product (yί9 y2) =

y'ι Σό1 yi m ^"> tne orthogonally projective estimator

called Gauss-Markov estimator, is optimal in the sense of minimizing the variace
in the class of all unbiased estimators. There is a dual structure between the
linear regression model and the Gauss-Markov estimator in the sense that the
data space Rn can be represented as

by the pair of the model and the estimator, where β~\μ) = {y. Xβ(y) = μ}.
However, if the data follows a more general stochastic mechanism, then such a
geometric structure cannot be explained in terms of Euclidean geometry
associated with the linear regression model. To overcome this difficulty, we
need a Riemannian geometry.

Rao [47] was the first to point out that a parametric family of probability
measures or a statistical model is a Riemannian space equipped with the Fisher
information as its metric. Subsequently, the metric associated with this
Riemannian space will be called the information metric. Since Rao's work
appeared, statisticians have investigated geometric aspects of statistical models
(see Yoshizawa [63], Chentsov [17], Atkinson and Mitchell [7] and Skovgaard
[57]).

Especially important work in this field was done by Efron [21], who elucidated
a dual structure between a one-parameter curved exponential family and the
maximum likelihood estimator. In discussion of Efron 's paper, Dawid [20]
noted two affine connections, called the mixture and exponential connections.
These connections are apparently independent of the information metric in
statistical models. Amari [2] showed that the two affine connections are conjugate
in the sense that the information metric between parallel shifts with respect to
these connections is invariant. He also elucidated in the differential geometric
framework that two curvatures introduced by Efron are the second fundemental

forms with respect to the respective connections. This completes the theory
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of second order efficiency for the maximum likelihood estimator by way of the
contributions of Fisher [28], [49], [50], Ghosh and Subramanyam [29] and
Efron [21]. Thus the conjugacy between the mixture and exponential connections
plays an important role in statistics. We call the triple of the infor-
mation metric, the mixture and the exponential connections the statistical
conjugate metric structure. For recent developments in differential geometric
statistics, see Amari [3] [4], BarndorfF-Nielsen and Blaesid [9], Amari and Kumon
[5], Kumon and Amari [40], [41], Nagaoka and Amari [45], Eguchi [23], [24],
[25], Wei and Tsai [61], Kass [37], Lauritzen [42] and Taneichi, Sato and
Kawaguchi [59].

The purpose of this paper is to investigate a geometry generated by a contrast
functional on the space of all probability measures equivalent to each other and

its applications to statistical inference. The paper is divided into two parts.
Part I contains a differential geometric approach based on a contrast func-

tional. Our discussion is restricted to a finite parametric family of the full space,
or a statistical model, except for Section 4. Section 1 is devoted to prepare
differential geometric tools employed in Part I. In section 2, we introduce three
types of contrast functionals, called W-type, M-type and S-type. In particular,
a systematic construction of contrast functionals of J^-type based on operations
which lead to a relation among classical contrast functionals is given. A notion
of scale inυariance is introduced and its implication is considered in the measure

theoretic light. It is shown that scale invariance is obtained only for the class
of Chernoff informations. In Section 3, we show that a contrast functional
generates a conjugate metric structure on the statistical models. This is a triple
which consists of a Riemannian metric and a conjugate pair of affine connections.
In general, the structure is irrelevant to the statistical conjugate metric structure.
However in the case of contrast functionals of W-type, the generated conjugate
metric structures are closely related to the statistical conjugate metric structure.
Section 4 leads to an extension of the conjugate metric structures on finite para-
metric families to the full space. Nagaoka and Amari [45] present the α-geodesic
curve connecting two probability measures. This extension is defined in terms of
the Gateau differential along the α-geodesic curve. Thus we obtain the ^-re-

presentation of the conjugate metric structure on the full space. It is also shown
that the above properties on the contrast functionals of WΓ-type still hold on the

full space.
Part II deals with statistical inference based on a contrast functional from

the view point of the differential geometric approaches. In Section 5, first we
give a general survey of estimation theory in terms of the notion of a summary
introduced by Efron [22]. The set of all estimators can be classified into Fisher-

consistent, first order efficient and second order efficient classes on the basis of
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the measure of limiting information loss. It follows from the result of Eguchi
[23] that the conjugate metric structure generated by a contrast functional
determines which class the minimum contrast estimator belongs to. We present a
construction of second order efficient estimators by using the operations developed
in Section 2. A classification in the class of all contrast functional is defined
on the basis of their conjugate metric structurs. Finally the equivalence between
two classifications of estimators and contrast functionals is shown. Section 6
deals with covariance structure models which are defined by specifying the
covariance matrices of Gaussian measures (see Browne [15]). In this model,
we investigate the class of estimators proposed by Swain [58] in comparison with
other minimum contrast estimators. Explicit formulas for the limiting infor-

mation loss for the estimators are represented in terms of the trace and the
Kronecker product on square matrices. Some examples, intracorrelation model
and linear covariance structure model are given along with numerical results.
Finally in Section 7, we consider an algorithm for seeking a minimum contrast
estimate. A generalized scoring method is proposed. The convergence of this
algorithm is elucidated by the generated conjugate metric structure.

Part I. Geometry of a space of probability measures on the basis of contrast

functionals

1. Differential geometric framework of statistical model

Let μ be a σ-finite measure on a measure space (#", ^) with a σ-algebra &

of subsets of a sample space #. A space « 0̂ denotes the class of all probability
measures equivalent to μ. The density form of 0>Q is written as

with respect to μ. We often have our interests in a finite parametric family,

or a model

where Θ is an open subset of the ^-dimensional Euclidean space Rn. The dimen-
sion of & is defined by the dimension of Θ. A typical model is given in the
following example.

Example 1.1. A family of all Gaussian distributions on Rk is parametrized
as

with respect to the fc-dimensional Lebesque measure. Here the parameter θ



Differential geometric approach to statistical inference 345

consists of elements of the mean vector μ and the convariance matrix Σ. The
dimension of ^ is {fc + fc(k + l)/2}. We shall investigate special structures
of ^ in a subsequent section.

A parametric family & is said to be regular if the following conditions are
satisfied :

A-l. The mapping θ*-+fQ is continuous with the topology generated by the
Hellinger distance, which will be defined in (2.1) of Section 2.

A-2. The function fθ is C3-differentiable in 0 under the integral sign.

The condition A-2 implies that

dif.dμ = J djdJedμ = J d^jd^dμ = 0

for every θ where θ = (θ\ 02,..., 0") and d^
Let φ be a C3-diffeomorρhism of θ into r. The family & is also written as

in terms of r, where T=φ(Θ) and

Note that the conditions A-l and A-2 are independent of a choice of parameter.
Henceforth we treat regular parametric families.

Amai [2] formulated a differential geometric framework for the theory of
statistical inference. He focussed on the properties of the model which are
invariant under one-to-one transformations on both the sample space and the
parameter space. Our results are based on Amari's framework. In the rest of
this section we make a concise review, see Amari [2], [3] for detailed discussion.

Let Tf(^) be the tangent space of & at/. A set of functions on X :

with z = l, 2,..., n is defined as a basis of Tfθ(^) with respect to ^-coordinates.
The tangent space Tfθ(^) is seen to be a linear subspace of

{s: s is a ^-measureable function on X with \ sfθdμ= 0}

because of A-2. Let t be a one-to-one transformation on the sample space X.
A space &l denotes the class of the densities induced from the densities in & by
means of t. Then it is noted that the natural basis of ̂ rt is still equal to that of ̂ .
Thus the choice of the natural basis is invariant under one-to-one transformations
on X.
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A Riemannian metric tensor g on J5" is introduced as the components

with respect to the parameter 0(cf. Rao [47]), which will be called the information
m e

metric. Furthermore a pair of affine connections Γ and Γ is defined to have
their coefficients

Γu.kW = Eβ{dίej(θ)ek(θ)} + Eβ{eι(θ)ej(θ)ek (θ)}

and

ΓIM(0) = Eβ{dιej(θ)ek(0)},

m e
respectively. Note that g, Γ and Γ are invariant under transformations on
the sample space. It is natural for us to require that statistical inference based
on a sample should be invariant under one-to-one transformations of the sample.

m e
The in variance of the geometric quantities g, Γ and Γ will play an important role
in investigating the structure of statistical inference.

Example 1.2. We raise two typical parametric models. One is a mixture
family :

with/,, in ^Q for j = 0, 1,..., n and

H = ί9 = (^-*l/»):

The other is an exponential family :

where

B = {βERn: ( e*'Pdμ(x) < 00} .

Then the coordinate systems η of ίFm and β of &e become the affine parameters
m e m

of Γ and Γ, respectively. In other words, the coefficients of Γ identically vanish
e

with respect to rj and those of Γ do with respect to β.

In the sense of Example 1.2, Γ and Γ are called the mixture connection
and the exponential connection, respectively. Here recall the metric connection
o

Γ, or the Levi-Civita connection with respect to g given by the coefficients
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i - Sk9ij)

The pair of connections Γ and Γ has a relation :

0 1

We now call a triple

m e
Vs = to, Γ, Γ)

the statistical conjugate metric structure, of which terminolgy will be justified

in Section 3. The α-version of Ήs is defined as

— α α

with the α-connection

We call #α the a-conjugate metric structure on J5".

We consider the case that the model 3? is embedded in an exponential family

!Fe. Let n and m be the dimensions of ̂ e and J5", respectively. Suppose that
a parametrization of J^ is given as follows :

with the ra-component parameter 0. We note that if

β(θ) = A0 + β0

with an n x m matrix ^4 of full rank, then IF returns to an m-dimensional
exponential family with the form

MX) = *•'•-*<•>,

with respect to μ, where t = A'x, φ(0) = ψ(A0 + β0) and μ is defined as

μ(B) = ( e''**dμ(x) .
JB

Thus any exponential family has reproductivity with respect to a flat embedding.

Hence we call IF an (n, m)-curved exponential family if the image β(β) is non-flat
in the parameter space B of J^ and the convex hull of β(θ) includes an open
subset of B. The structure ^s on J^ is easily given as follows: The information

m m
metric g with gij = didjψ9 the mixture connection Γ with Γijik = didjdk\l/ and the
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e e
exponential connection Γ with Γijik = 0. We introduce the form of tfs induced
to J5" by way of the orthogonal decomposition

with respect to the metric g for each / in ^. The connecting tensor B form

Tf(^e) to Tf(^) has the components

while the tensor BL connecting Tf(^^ with T}̂ ) is defined as the components
B\ with A = m + l,..., n and ί = l, 2,..., n satisfying

Bί = 0

for each a = 1, 2,..., m. The metric # on J^ is decomposed into

(1.1) 9ab = Bl

a9ijBl

and

(1-2) gλμ = B\9ijB^

i.e., the matrix form of

BOB O

O BL'GBL

m e

Similarly the connections Γ and Γ on &e are induced to &. The embedding

curvature tensor HΓ: Γ(J*")x T(J*")X TL(^)^R, or the second fundamental
form of J5" is given by components

(1.3) (HΓ)abλ = daB
ί

bB{gij + Γij>k

with respect to an affine connection Γ. In particular we write

and

In Section 4 we shall introduce a structure of estimation methods on the
e m

basis of the second fundamental forms H and H.
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2. Contrast functionals on the space of probability densities

In this section we introduce various contrast functionals over the space J*"0

of all probability densities with a common support. The product divergence
with (α, /?)-index is presented, which will lead to relations among classical contrast
functionals, e.g. the squared Hellinger distance, the Jeffereys divergence, the
Chernoff information of order α and the Kagan divergence. We consider some
operations on the space of all convex functions, which give systematic con-
struction of contrast functionals.

We call p: ^x^Q^R a contrast functional if p(f, 0)Ξ^O for all / and g
in J^o with equality if and only i f f = g . Note that the functional p is not assumed
to be symmetric. We shall assert through subsequent discussion that non-
symmetry of p is essential to the optimal structure of the statistical estimation
based on p. Thus we introduce a symbol * defined by

P *(/,#) = P(0,/)

for each /and g in ^0.
We note that for any <5>0, pδ is also a contrast functional. Hence we

assume that a contrast functional p has the same order as the squared Hellinger
distance

(2.1)

i.e., there exists a positive number ε such that

/9 o\ ijm P\ff>f) —(2.2) ~

for every smooth curve {ft: \t\<δ} through /at ί = 0.
Let w be a function defined on the real half-axis (0, oo) which satisfies

for each t >0, t Φ 1. Then by the function w, we define

pw(/, g) = Efw

The functional pw becomes a contrast functional since

Pw(/> 9) = Pw(/> 9}

and w(l) = 0, w(ί)>0 for each ί>0, ί^l, where
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From these properties we may assume without loss of generality that w(l) = w'(l) =

0. Further w is normalized to statisfy w"(l) = l since

for every constant <5>0. Then it is easily seen that the limit ε for pw in (2.2)
is equal to 1. Thus ̂  denotes the space of all C2-differentiable functions such
that w(l) = w'(l) = 0, w"(l) = l and w(0>0 if ί>0, ί^l. Henceforth we call pw

a contrast functional of weighted ratio type (of W-type, for short).

Example 2.1. Most of classical contrast functionals, or divergences can

be expressed in terms of Jf-type as follows :
(1) Kullback-Leibler information (Kullback-Leibler [38]):

PKL(/, 9) =

(2) squared Hellinger distance:

(3) Jeffereys divergence (Jeίfereys [35]):

Pj(f, 9) = y J (/-0)(log/-log0)dμ.

(4) Chernoff information of order α (Chernoίf [18]) :

1— « 1+q- - ' '
p.(f,β) = T i -

(5) exponential divergence:

Pe(f, 9) = K\ogf -log g)2dμ.

(6) the Kagan divergence (Kagan [36]):

(7) the product divergence with (α, β)-index

,.,(/, » "TT^T^y^- (f f } {l-(ϊf\ϊ*

All the divergences (l)-(7) are of W-type. For example, the Chernoff infro-
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mation of order α can be rewritten as pw with

351

while the product divergence pΛβ with (α, /?)-index can be similarly expressed by

The divergence pΛβ is newly introduced here, which connects many other classical

contrast functionals in the following way:

Poo =

P-αα = y P α

P-αα = Pj>

i pαα = ρm,

.i pαα = pe

and

^J- 2(1-β) H~* ' 2(1-α) *"' 2(1

The graphs of wα and waβ are given in the following figure.

(3) wα, -2^α^2 (4) wα,, «+^S=0,-2^

Fig. li The comparison between the graphs of wa and wa
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The exponential divergence pe is analogous to the quasi-distance on the family
of spectral densities in stationary Gaussian processes used by Taniguchi [60].
The Kagan divergence pχ2 is reduced to

V2 _ v (πi-Pi)2

X -2-ι=ι - - -

if /and g are multinomial distributions with cell probability vectors p and π, which
justifies the notation of ρχ2. We shall give a derivation of ρe and pχ2 by a
functional-analitic approach in Section 4.

The explicit forms of the contrast functionals (l)-(7) for the most familiar
model to us :

&ι = {/,(*)= - l-j^-e-^-^2: μ e

are given as follows :

PκL(fβ,fJ = Pj(fμ,fJ= \\μ ~ ™ll 2

and

-exp

Notice that functionals (l)-(6) have various forms even for the simple model
^i while keeping ε = l in (2.2).

We now return to the subject of a general functional of W-type. The smooth-
ness of w gaurantees a unique representation of pw.

THEOREM 2.1. Suppose that the functions W j and w2 in ϋ^ are analytic.

Then pWί=ρW2 on ̂ 0 if and only z/w 1 = w2.

PROOF. The sufficiency is clear. We show the necessity. Assume pwι =
pW2 on ̂ 0. Expand W j and vv2 at ί = l:
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for p = 1 , 2. Then it holds that

-ί)0) - PW2(f, tf+(ί-t)g)

for any f, 0<f <1 and every /and g in J^0. Therefore we conclude that

w<*>(i) = v4*)(i)

for fc = 3, 4,..., since it can be satisfied that

<M

by choosing /and g sufficiently close to each other. This completes the proof.

Let iPΊ be the subclass of if whose members are defined to be convex on
(0, oo). Note that wα/? does not belong to if^. Csiszar [19] considered a
transformation * on ̂  as

w*(ί) = fvvCr1)

for w in /#/\. Note that w* is in τ^\ and w** = w. By a brief manipulation, the
symbol * yields that (pw)* = pw* on J*"0 for every win H^^ which leads us to the
following theorem on account of Theorem 2.1.

THEOREM 2.2. Let w be analytic on (0, oo). Then a contrast functional
pw is symmetric if and only ifw = w*. Under this assumption, it holds that

PROOF. The former statement is easily proved. So we show the latter
statement. From the assumption of symmetry we have

-

Differentiating w*(0 = ίvv(ί~1), we have

w"'(0 + w*"'^-1) = -Sr

These two formulas imply w'"(l)= -3/2.

We next introduce an operation φ on ̂  as
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We write

Note that vvθ belongs to -ĵ . The classical contrast functional, or divergences
as in Example 2.1 are connected with each other in terms of © and *:

Pf * = PKL ,
(T\β\

s)*£>W — f )
r V I ^~ t-'m 9r ILL, r m 7

Pmθ = PKL ,

and

Pf = Pα + 2

for any α in R. Thus the family of all ChernofF informations is closed with
respect to both operations * and ©. Furthermore let

wθ(ί) = rXO + 2 Γ s~2w(s)ds + 2 Γ I* u~2w(u)duds.

Then the operation θ yields the following properties :

THEOREM 2.3. /ί holds that

or
Ωm ffiΩ

PWU? - /)Vl?W == /)
w — Fw — r

for any w in 70^.

PROOF. By direct differentiation we have

w (0

for any w in ̂ , which completes the proof because of w(l) = w/(l) = 0.

It follows from Theorem 2.3 that the operation θ is the inverse mapping
of®. We note that

w— times
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and

n— t imes

= *

where

Γ 0 if 0 < t < 1.
WooW =

[ oo otherwise.

The operations *, © and θ are bijective. These are connected with each other

in the following way :

rt*θ*θ — rtθ*θ* _ rt*e*e — /)θ*e* — nrw — Fw — r\v — rw — rw

for any w in 7 .̂
Now we investigate a scale transformation on iΓ. Let wσ be

»f,(0 = tf^τjWtrV-wfr-1)}

It is easily seen that, for every positive constants σ and v, the function wσ is in

7F and wσv = (wσ)v. We say pw to be scale invariant if

Pw = PWσ

for any σ>0. The scale invariance implies the following: Let 901 be a space

of all finite measures which are equivalent to the carrier measure μ. We denote
the density form of $0ί with respect to μ by Λf. The space ̂  is a convex cone

in the Lί space. An equivalent relation ~ on Λ is introduced as follows: m^ ~m2

if there exists a constant σ such that m1(x) = σm2(x) forμ — a.e. x. Then it holds
that Λj ~ is isomorphic to &. In this context, let

<5(mls m2) = pWσ(/ι,/2),

where/^mi/lmj and σ=|m 1 |/ |m 2 | with Im^Jm; dμfoτ ι = l, 2. Then it follows

that

<5(ml5 m2) ̂  0

for all m x and m2 in ̂  with the equality if and only if mx ~m2. The scale in-

variance is equivalent to the following condition :

δ(σml9 vm2) = δ(ml9 m2)

for every positive scalars σ and v. That is to say, δ is well-defined as a functional

over Jϊ\ ~ . We have a characterization of scale invariance :
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THEOREM 2.4. A contrast functional pw is scale invariant if and only if
pw is the Chernoff information of order α.

PROOF. Assume the scale invariance of pw. Then it holds that

(2.3) w"(sO = w"(s)w"(0

for every positive numbers s and t. From the assumption of smoothness for w
it follows that the function satisfying (2.3) is uniquely determined up to the form

w"(f) = tk

with a constant k since

log w"(eu+v) = log w"(eM) + log w"(ev)

for any u and v in /?. Therefore the function w is, with relation to k = ( — 3 + α)/2,
represented as

which generates the Chernoff information of order α. The inverse is easily seen.
The proof is complete.

Throughout this section, our interests have been focussed on the class of
contrast functionals of PF-type. However this class may be restrictive in the class
of all contrast functionals. We can introduce a variety of representations with
respect to a contrast functional p : Let Φ be a C2-differentiable monotone function
with Φ(0) = 0 and Φ'(0) = 1 . In terms of Φ, define

Pφσ(f, 9) = <riφ[σp(f9 0)]

with a non-zero constant σ. Then pφσ is also a contrast functional with the
same order as p.

The original form of the Chernoff information of order α can be changed into

(2.4) p Λ ( f , g) = ~^γ log

if we take

as Φ. The transformation generates the additivity of information :

P«(/> 9) = P«(Λ, 0ι) + A(/2, 02)
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with /O, y)=fι(x)f2(y) and g(x, y) = gl(x)g2(y). On the other hand, the
additivity property of pα holds if and only if α=l or — 1, i.e., px = pKL or PKL-

In the following section we shall give a geometry of the parametric family
on the basis of the contrast functional p. It will be shown that the geometry is
independent of the Φ-representation of p.

3. Geometry generated by a contrast functional: finite dimensional cases

We return to the investigation of the geometry on a parametric family

in the space «̂ "0 of all probability densities with a common support. Here the
dimension of & is assumed to be finite throughout this section. Let p be a contrast
functional on J^. The restiriction of p to ̂  is written as

with respect to ^-coordinates, which will be called a contrast function on &. Then
we have an intuition that a contrast function on & tells us the statistical intrincity
of the model & if p grasps statistical backgrounds.

We use the symbols εf and δj for the partial differentials d/dθ{ and djdθ{
respectively. A metric tensor gM on & is defined by components

g\f(θ) = (si£jp(0l9 02))θl=β2=e = WjP(0, 0)

with respect to 6. A pair of aίfine connections Γ<p) and *Γ(^> are introduced by
defining the coefficients as

and

respectively (cf. Eguchi [23]). Note that the geometric objects g^\ Γ<"> and */"<">
satisfy the transformation law for the coordinates transformations.

We give some indentities which will be used in a subsequent discussion.

Since the contrast function attains a minimum at Θ1=Θ2 ( = ̂ ? say)> it holds that

(3.1) εtp(θ, ff) = 0

and

(3.2) δjP(θ,θ) = 0

for ϊ,7 = 1, 2,..., H, which lead, by differentiating the both sides of (3.1) and (3.2), to
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(3.3) djεip(β, 0) = εjεiP(0, θ) + εjδiP(0, θ) = 0

and

(3.4) dfijP(0, θ) = εiδjP(0, 0) + δiδjP(0, θ) = 0,

where d^d/dθ1. Furthermore we have

εkεjεiP ~^~ δkεjεiP + εkδjεiP "i" ^k^jεiP = ®

and

= 0

for ϊ, 7, fe=l, 2,..., w, where the arguments of p are abbreviated. The above
identities can be rewritten as

(3.5)

and

(3.6)
Using these relations, we have the following lemmas.

o
LEMMA!. Let Γ(p) be the metric connection with respect to g(p\ Then

it holds that

o
PROOF. By definition, Γ(p) has the coefficients

for ϊ, 7, fe = l, 2,..., n, which are expressed as

(3.7) i (ε,ε,ε/P - Γ<fi>ti - Γ®tJ

By inserting (3.5) into (3.7), we have

0 1r(p) _ _Lfr(p) _ι_ *r(p) \
-1 o'.fc ~ 2 i7''fe ίj'' "

This completes the proof.
Define a tensor !ΠP> of order 3 as
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The difference between (3.5) and (3.6) leads us to

which shows the following lemma.

LEMMA 2. The tensor Γ(p) is symmetric.
Let Γ be an affine connection and let C be a curve in & with a parameter t,

i.e.,

Then a vector field X on J5" is said to be parallel along C with respect to Γ if

#(0 + r'Jk(0(ty)x*(t)όJ(t) = o,

where X is expressed as X(ί) = -X'ί(OβiWO) with the natural basis {et}. The
correspondance π: Jf(0)-»X(0 on Z is called the parallel shift with respect to Γ.
By using Lemmas 1 and 2, we show the conjugacy between Γ^ and

THEOREM 3.1. Let π and *π be the parallel shifts with respect to Γ<p) and
, respectively. Then it holds that

, *πY) = g«»(X9 7)

for all vector fields X and Yon &.

PROOF. Take a curve

in *̂. We write

and

where π0>ί and *π0>ί denote the parallel shifts along C with respect to Γ(p) and
>, respectively. Thus it holds that

= o

and

J = 0
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for ϊ = l, 2,..., n. Therefore

From Lemmas 1 and 2 it follows that

and

with the metric connection Γ(p) and the symmetric tensor T(p). Hence we have
the identity:

ft = 0

for ί, j, k = l, 2,..., n, which shows that g(p) (π0tX9 *π0ί7) is constant in t. This
completes the proof.

o
One notes that if π is the parallel shift with respect to the metric connection

Γ<">, then

g^(πX9 πY) = g^(X9 Y)

o
Considering π and *π as a conjugate version of π, we call a triple

V(p) = (g(p\ Γ(P\ *Γ«»)

a conjugate metric structure generated by p (cf. Fig. 2).

77 r
Fig. 2. The compatibility the metric #(p) and a pair of parallelisms with

respect to Γ(p) and*Γ ( p ).
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Amari [2] showed that the structures <£s and ^α have the same conjugacy
as in #(p). In fact the symmetry of the tensor

T = Γ - Γ

is easily shown on account of

Tijk(0) = £^(0

Lauritzen [42] referred to T as the skewness of the model &. On the
other hand, the tensor Γ(p) expreses the non-symmetry of p. Symmetry of a
contrast function p leads to the freeness of Γ(p) although the inverse statement
does not hold in general.

Let ε(0) be a positive scalar function on & '. For a contrast function p,

β(0l9 02) = e(02)p(0i9 02)

becomes a contrast function again. In comparison between ^(p) =
\ r(f>\ */"<">) and V(β) = (g(β\ Γ<«, *Γ^>), we have the following relations

and

The first relation shows that the metric tensor #(p) and g(β) are in conformal
correspondance. This implies that the angle between any two vectors with
respect to #(p) agrees with that with respect to g(β\

The structure #(p) leads to the following expansion by neglecting the fourth
and higher order terms :

(3.8) p(0l9 02) = g

~

for any 0ί and 02 close to 0 with 0p = 0p-0 (ρ=l, 2). Note that the formula
holds for any coordinate system. Let Φ be a monotone C2-function with Φ(0) = 0
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and Φ'(0) = l. As discussed in Section 2, a contrast functional p has the re-

presentation Φ(p). Note that the formula (3.8) is independent of this
representation, since the difference between p and Φ(ρ) is of the fourth or higher
order at least.

Let & be the space of all contrast functionals over J .̂ The space 0> is
closed under manipulations defind as

and

l+q 1-q

α = Pi 2 P2 2

1+α , 1-α
Pfflα = —2—pl + —2—p2

for ρί and p2 in 0> and for all α, — 1 <α< 1.

THEOREM 3.2. Under the above setup, the conjugate metric structures of

pftt and pSα satisfy

if the tensor #(pl) is equal to g(p2\

PROOF. The second equality is immediate. We show the first equality.
By differentiating p^α, we have

i±α

H- 1-" 2

4

for 7, fc = l, 2,..., n. It holds that

_2/_ = 1

because of g(p^ = g^\ Therefore we have

Similarly it follows that

_

and the same relation holds also for *Γ^^α). The proof is complete.

Note that
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for any α, — l<α<l if (pl9 p2) = (pκL» PKL) with the Kullback-Leibler divergence

PKL and

Let us see the conjugate metric structures generated by classical contrast
functions. We need the following assumption :

A-3. The definite integral

is twice differentiable with respect to θ± and Θ2 under the integral sign for
any θί and Θ2 sufficiently close to each other.

The following proposition is a straightforward extension of Eguchi's results
[23] in an exponential family to the regular parametric family &.

THEOREM 3.3. Let pw be a contrast function of W-type on ^. Then under
the assumption A-3 we have

(3-9)

on & where

αw = 3

PROOF. By the assumption A-3,

(3.10)

where Eθ denotes the expectation with respect to fθ. Furthermore it follows

from A-3 that

(3.11) β jβAPw(»ι,

By substituting θ± = θ and Θ2 = θ in (3.10) and (3.11), we can conclude that



364 Shinto EGUCHI

and

on J5". This completes the proof.

Theorem 3.3 shows the every contrast function pw has the α-conjugate metric
structure #α with α = αw. Amari pointed out through personal communication
that a contrast functional of FF-type is invariant under one-to-one transformations
on the sample space. The invariance between pw and #α may lead us to (3.9).
Indeed consider

which is often adopted as a measurement of optimality for density estimators.
The conjugate metric structure <g(p) is given in the following way:

and

Thus neither the functional p nor ^(p) is invariant under transformations on the

sample space, which may come from non-existence of &(p) in {^α}.

Example 3.1. Applying theorem 3.2 to the classical contrast functions

in Example 2.1, we have the following structures:

(1) the Kullback-Leibler information:

(2) the squared Hellinger distance:

^(//2)=^ (α

(3) the Jeffreys divergence:

(4) the Chernoff information of order α:

(5) the exponential divergence:
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J = V. (α=-3)

(6) the Kagan divergence:

(7) the product divergence with (α, β)-index:

Recall the operations *, 0 and θ on ̂  defined in Section 2. We note that

and

αwθ = αw - 2.

If pw is symmetric, then αw = 0 on account of Theorem 2.2. That is, the conjugacy
of ^(pw) becomes trivial.

We have investigated the restricted version of a contrast functional on J^0.
However a contrast function p may be defined only on & when we are concerned
with J5". On the basis of this idea, a class of contrast functions only on & is
introduced. The application to statistical estimation is reported in Eguchi [27].

We shall note that the conjugate metric structures induced by this class of contrast
functions are fairly different from the α-conjugate metric structures.
Let φ be a C3-diffeomorphism of θ into τ. We define a contrast function

on J5" with respect to τ, where G(r) is the matrix that consists of the components
of g and rp = ψ~1(^p) with p = l, 2. The function ρφ can be considered as an

approximation of p with g(p) = g on &\

with respect to the coordinate system τ. Note that

ι> #2) = Pψ(0ι> #2)

if the mapping φoi/r1 is an affine transformation. Thus there is a one-to-one

correspondance between the class of all non-flat transformations of coordinates
and the class of all contrast functions ρτ.
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Mahalanobis [43] introduced the squared distance

y (t*ι - A*2>' ^ol G"ι - μύ

in the normal family with known covariance Γ0, which is called Mahalanobis'
D2. The contrast function pφ can be considered as an extension of D2 to the
family &", by which reason we call pφ of Mahalanobis-type, or of M-type for short.
Similarly as in the case of the contrast functions of M-type, a straightforward
calculation leads us to the following theorem.

THEOREM 3.4. Let pφ be a contrast function of M-type with respect to φ:
θ-*τ. Then the Riemmanian metric due to pφ coincides with the information
metric g. The pair of affine connections ΓM and *ΓM has the following

coefficients

r?Jtk(T) = dΰjk(τ) + djgki(τ)

and

with respect to τ.
Note that the pair of ΓM and *ΓM decomposes ChristofelΓs three indices

I 1
~όΓ (diθjk + djdki) ~~ ~ϊ~ dkQij

2* Z*

into the first and second terms, respectively. The contrast function pτ of M-type
deeply depends on the parameter τ.

Example 3.2. We consider a mixture model of countably many distributions:

where /f is in J 0̂ with z = l, 2,.... The contrast function of M-type with the

mixture parameter θ = (θl, 02,...) is given as

Σ?=ι ΣΓ=ι (e{-

which is nothing but the Kagan divergence in Example 2.1.

Example 3.3. Let J^ be an exponential family, i.e.,
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The expectation parameter r/ is often used by defining a transformation φ of θ
into i) by

Φ(0) = Eθx.

Then the contrast functions of M-type with respect to 6 and η are

PeVi, #2) = Y (θ,-θ2γG(θ,)(θ,-θ2)

and

respectively, where G(θ)=\_d2l(dθidθj)\l/(θ)i^. By a straightforward calculation
it holds that

and

on J .̂ Thus we have the relation

on J^ with p*(01? 02) = Pη(&2> #ι) For the case of the multinomial family
with means 0 :

with 0 = (σiJ)i^j for I-1 = (σ^')ίJ, it holds that

P,(*2, »ι) = P*(»ι, «2) = y

which is often called the generalized least squares function (cf. Browne [15]).
Thus we have pη = Pβ on 00, which means the same duality as pα = p*α on ^0

with the Chernoff divergence of order α in Example 2.1. By a linear trans-
formation

S(x) = Bx

with a nonsingular matrix β, the family ^0 is transformed into

We note that this transformation keeps the contrast function invariant, i.e.,
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Σ2) ΪΓ1}2 = Pβ(θl9 Θ2) .

It is seen form Examples 3.2 and 3.3 that a contrast function pτ of M-type has the
α-conjugate metric structure if the parameter τ is significant in a statistical sense.

4. Geometry generated by a contrast functional : infinite dimensional cases

Our interests have been so far limited to a finite parametric subfamily & of
J^o, where "̂0 is the space of all probability measures with a common support.
It may be noted that many contrast functional can be defined over "̂0 as in
Example 2.1. If we can directly treat the space « 0̂ itself as a geometric object,
then we may expand a perspective formulation in various fields of statistics, e.g.,
nonparametric inference and robust method, etc. However, we do not see any
theory on infinite dimensional manifolds which is applicable to such fields. As
the first step for proceeding a differential geometric approach to such fileds, we
attempt to extend the conjugate metric structures on JF to J .̂

α

Nagaoka and Amari [45] derived a curve C connecting /and g in J*"0:

* < m : 0 < t

for α, — 1 < α < 1, where

ΰ
l + α 1+q 2

{(i-i)f— + tg^)}^

α
The curve C satisfies the α-geodesic equation

£t + L#2 + ̂ -Etfc = 0

where ί̂ = log(/^?) and Et denotes the expectation with respect to the density /#?.
α α

Thus the curve C is called the α-geodesic curve. Note that the curves C with α= 1
and — 1 are reduced to one parameter mixture and exponential families given by

and

: 0<ί<l}

respectively.
Dawid [20] proposed a tangent space of J2^ at / as

7}(JF0) = {seL2(/): £/{s(jc)} = 0
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where L2(/) denotes the space of squared intergrable functions with respect to /.
The metric on 7(^Ό) was defined as the IΛmetric

which is reduced to the information metric if the model is restricted to a finite
parametric case.

In order to proceed further with the differential geometry on J 0̂, we introduce
m e

the (^-representation of the statistical conjugate structure #s = (0, Γ, Γ) over &$.
The natural basis of Tf(^o) can be made in the following expression :

(4.1) *•(/) = lim^o Y {log (Λ?) -log/}

for g in ̂ 0> where pΛ denotes the Chernoff information of order α in Example 2.1.
In particular we have the mixture and the exponential expressions given by

and

respectively. The transformation of e*(f) into e*g\f) is given as

In particular,

PκL(f, g).

The Gateau derivative of e£(/) along the α-geodesic curve connecting /
with q is defined by

which can be expressed as

(4.2) δ,β«(/) = - -î ϋ. e ( f ) e (f) - ̂ - gft(f) ..
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where

« l-α 1-α 2- -

and /? and q are sufficiently close to / with respect to the Hellinger topology.
These formulas (4.1) and (4.2) generate an extension of the statistical conjugate
metric structure

Vs = (g, T , /)

on ίF to the infinite dimensional space ^Q as follows: The information metric
g has the (^-representation

Furthermore the mixture connection and the exponential connection have the
^-representations

•* pq,r(j) — 2 *Pβr(7 )

and

respectively, where

r

Accordingly the α-representation of the α'-connection is

pqr\J ) -- ^ •* pqr

Note that the α-representation of α-connection vanishes over ^Q.
Recalling the contrast functional pχ2 and pe in Example 2.1, these have the

following correspondance with the α-representation: For the α-representation

gpq(f) defined in (4.3),

PjXp, 4) = ̂ --10^(4)
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and

Pe(P> 4) = liπw 9p,q(<l) + (PKL(P, 4)}2

We similarly define the conjugate metric structure generated by a contrast

functional in terms of the α-geodesic: The metric #(p) is

and the conjugate pair of the affine connections is

and

where ε£ and δ* denote the Gateau differentials along the α-geodesic curve con-

necting/with p with respect to/x and/2, respectively.

Let pw be a contrast functional of JF-type. We suppose the following

condition for pw :

A-4. The integral

is twice Gάteau-dereiffntiable with respect tof^ andf2 under the integral sign for

any fi andf2 with a sufficiently small Hellίnger distance between /Ί and /2.

We give a formal extension of Theorem 3.3 to infinite dimensional cases.

THEOREM 4.1. Under the assumption A-4, we have

PROOF. We write

l+« l+α 1+α 2
f t ) U = {(l-t-u)f 2 + t p 2 + up 2 }l + α

and

l+α l + α l+α~- --

l+a l+α 2 / ( f l+α l+α
2 •"• 2 1 + ί t l - j 2 JΓ 2
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Then it follows from A-4 that

L gsdμ,
ί , M t,U

and

53 \ - L'" 9s \ 9s Ύ ft.u
-a \ - L'" ( 9s \\ 9s

"" 9s) - Γ \7^)\.7

By an argument similar to the proof of Theorem 3.2, we can conclude

0(P~) = g

and

on J^0. This completes the proof.

Part II. Applications to statistical estimation

5. Classification of estimation methods

Fisher [28] presented a notion of efficiency in terms of information loss.
Many statisticians have contributed to the classification of estimation methods
on the basis of this notion and established a field of asymptotic theory in statistical
inference (cf. Chernoίf [18], Rao [48], [49], [50], Bahadule [8], Ghosh and
Subramanyam [29], Efron [21], Hosoya [32], Amari [2], Phanzagl [46] and
Akahira and Takeuchi [1]). In particular, we discuss the classification of
estimation methods in terms of limiting information loss, which consists of three
classes having Fisher-consistency, first order efficiency and second order efficiency,

respectively.
We, along this stream, investigate estimation methods based on contrast

functions, which will be called the minimum contrast methods or estimators.
In this section we present a classification of contast functions on the basis of the
conjugate metric structures established in Section 3. First the results in Eguchi

[23] are reviewed in the light of the classification of contrast functions. Next
we show that every method of estimation based on a contrast functinal of W-
type becomes second order efficient by using the operations *, θ and θ developed
in Section 2. Finally we consider a characterization of three classes of

estimation methods.
We now look at another view of estimation in the light of the idea "summary"
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introduced by Efron [22]. Let J^ be the family of all probability density func-
tions with a common support on a sample space ff. We are concerned with a
prametric subfamily & of «F0 with the information metric g on J5". If a random
vector x has a density/in J5", then x is said to have the information #. Suppose

that a random sample (xί9 x29. 9 XN) from a density /in J5" is given. Then the
sample has the information Ng.

Let ίw = ί(jc1, JC2,..., XN) be a statistic with the information g(tN)9 i.e., the
information metric on the family of induced densities ftN of Πf=ι/(X )> where
/ is in ̂ . We call the tensor

δtN = Ng- g(tN)

the information loss in reducing from the sample to the statistics tN. The fol-
lowing property is well-known, see e.g. §5a.4 in Rao [51]:

Proposition. Let tN be a statistic with sample size N. Then the information
loss due to tN is nonnegative, i.e.,

δtN(A9 Λ) ^ 0

for any tangent vector A at /, where / denotes the true density.

A mapping fN: Πf=ι #*-»^Ό *s called the maximum likelihood summary if

Σf=ι log/*(*,) = max/e^0 Σf=ι log/ (*,)

for the sample (xί9 x29...9xN). Note that fN is often called a nonparametric
maximum likelihood estimator.

Henceforth we restrict estimators of the true density / to mappings of }N.
Thus an estimator T: &(Γ*&: is said to be Fisher-consistent if Tis idempotent,
i.e.,

T 2 ( f ) = T(f)

for every / i n "̂0. Let p be a contrast functional on «^"0. We call Tp

the minimum contrast estimator by p if there exists a tubular neighbourhood
Λ*(&) of & in &Q such that

Pϊf, Tp(f)-] = mmgerP(f,g)

for every / in rf(&). Every minimum contrast estimator is Fisher-consistent
since p[Tp(f)9 g~\ = 0 if and only if g = Tp(f). Beran [12] discussed the minimum
Hellinger distance estimator, i.e., Tp with p = H2 according to our terminology,
in the light of robustness.

A Fisher-consistent estimator TN = T(fN) is said to be optimal if the infor-
mation loss due to TN uniformly vanishes for each sample size N. The following
fact is well-known under mild conditions:
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If the model ̂  is an exponential family, then the maximum likelihood esti-
mator is optimal. In other words, the likelihood principle is compatible with the
sufficiency principle under the exponential family. However, to our regret, it is
impossible to obtain a uniform solution for the optimality of estimation under a
general regular parametric family. Therefore we restrict our situation to the

following one :
The model J5" is assumed to be an (rc, m)-curved exponential family. More-

over a measurement of the optimality is adopted the limiting information loss

δτ = lim^oo δT(fN)

in place of δτ(fN^ with sample size N.
On the basis of this changing, let us classify the class g of all estimators as

follows :

^o = {Te«f : Tis idempotent on J^},

*! = {Te *0: lim^oo N~^T(fN) = 0}

and

fx : δτ ^ δs for every S in ̂ } .

The subclasses ίf0, ̂  and #2 °f & are called the Fisher-consistent, the first order
efficient and the second order efficient classes, respectively.

The following theorem has been established through a half of a centrury by
Fisher [28], Rao [48] [49] [50], Ghosh and Sabramanyam [29], and Efron [21].
Finally Amari [2] has presented an elegant form in terms of differential geometric
terminology, which we review in Section 1.

THEOREM 5.1 Let T be in ^'ί. Then the limiting information loss due to
T is decomposed into

δτ =
where

In particular the maximum likelihood estimator belongs to #2.

We note that the term <#(J* )>2 is independent of the estimator T. Therefore

we call <//(J*")>2 the model part of δτ and call (H(AT)y2 the estimation part of δτ.
Eguchi [23] investigated which class a minimum contrast estimator Tp

belongs to. Recall the conjugate metric structure generated by p:
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on J ,̂ which is defined in Section 3. Let 0>Q be the class of all contrast functions
over ^e and

!̂ = {p e P0: gM = εg on

Vs on

Then we have the following correspondance of these classes with the classes

ίf0, #19 and #2.

THEOREM 5.2 /ί /zo/ds that Tp belongs to #k if p belongs to 0>k for /c = 0, 1
and 2. In particular, for a contrast function pw of W-type, Tpw always
belongs to ̂  and it holds

(5.1) δ(TpJ = <A(^)>2 + {2 + w'"(l)}2<T>2.

It follows from Theorem 5.2 that Γpw belongs to <f2 if and only if wj"(l) = -2.
Accordingly we define a mapping on ̂  as

where the operations *, Θ and © on ^\ are defined in Section 2. Then we have
the following theorem.

THEOREM 5.3 Setting up the above, the minimum contrast estimator by

pκ(w) belongs to #2for every w in ̂ .

PROOF is easily seen from the fact that (κ(w))"'(l)= —2 for every w in iP^.

In addition to this result, it follows that the product divergence pΛβ defined
in Section 2 is in « 2̂ if a + β= —2/3. Thus in this case the minimum contrast
estimator by pΛβ is in ̂ 2.

Returning the subject to the classes of estimators, let us consider the
relations between the classes of estimators and the classes of contrast functions.

THEOREM 5.3. Let / be the maximum likelihood summary of the sample

(*ι> X2>- >χN) from a density f in an (n, m)-curved exponential family &.
Then

(5.2) lim^oo NE{PU, T,(/)]} ^ ̂

for any p in ̂ Q.

PROOF. Take a parametrization

: θεΘ}



376 Shinto EGUCHI

by a parameter space Θ in Rm. We write

and

p(& 6) =

with/=/£. Since 0 is a minimizer of p(β, 0) with respect to Θ,

(5.3) (3βpG§, 0))a=f = 0

for 0 = 1, 2,..., m with da = d/dθa. By the first order expansion of (5.3), we have

0 - θ = (B'GMB)-lBGW{β-β(θ)}9

where the true density /is expressed as//J(β) and B = dβ(0)/d0 and G(p) denotes
the matrix composed of the components of the metric g(p\ From the first
approaximation

it follows that

lim^ NE{p\J,

since the limiting distribution of ^/N{β — β(θ)} follows the Gaussian law with
mean 0 and co variance G"1, where G denotes the Fisher information matrix of
β. By Cramer-Rao's inequality, we have

which implies the inequality (5.2). This completes the proof.
Eguchi [25] gave a characterization of classes ^ and <f2> which is given in

the following theorem.

THEOREM 5.4. The following statements are equivalent to each other:

( i ) An estimator T(f) belongs to &Ί.

(ii) limN

(iiϊ) lim^ NE{p[f, Γ(/)]} = y (n - m).
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Furthermore the estimator T(/) belongs to #2 if and only if

(5.4) lim^oo NE{ptf, 5(/)] - p[/, T(/)]} ^ 0

for each S(f) in ̂  and each p in &2

We can conclude that the class < 2̂ completely discriminates the class «f2

from the class ^ in the sense of (5.4). Thus Theorems 5.2 and 5.3 lead the
equivalence between classifications ̂ 0 ID ̂  ID ^»2 and

6. Covariance structure model

Let ̂  be the space of all Gaussian measures on Rk with known mean vector
and let Sf be the space of all positive definite matrices of order fc. Then the
space ^ has the density form of

( f Σ ( x ) = (2π)-i*(det Σ)-ie~ix'Σ~ίχ: Σ e &}.

as in Example 1.1. Skovgaard [57] intensively investigated the Riemannian
geometric properties of .̂ We consider a subfamily J5" of ^ which is specified
by

with respect to Σ-coordinates of 0, where Θ denotes an open subset of Rn with
n<k(k+1)/2. Here we call ̂  a covariance struture model, which includes some
important statistical models, e.g., factor analysis model, linear covariance model
and intraclass correlation model (cf. Anderson [6], Browne [15] and Shapiro
[55]). We apply the results in Section 5 to this model. As a result, explicit for-
mulas for the limiting information losses due to minimum contrast estimators
are given in addition to their asymptotic mean square errors and biases.

Let S be the sample covariance matrix based on a sample with size N from a
density of the model J5". Swain [58] introduced a class of contrast functions

Pv(fsifz) = Pv(S> Σ) = Σr=ι v(λr) 9

where Vs denote the eigenvalues of Sί/2Σ~ίSί/2 and υ(λ) is a C3-function on

(0, oo) satisfying ι (l) = ι/(l) = 0, ι/'(l) = y and v(λ) > 0 if λ > 0, λ Φ1. We call pv

a contrast function of spectral type, or ofS-type for short. Note that pv0(S9 Σ) =
pv(Σ, S) with v°(λ) = v(λ~1). On the other hand, we have considered a contrast
function of JΓ-type
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where the function w is in the space ϋ^ defined in Section 2. The class of contrast
functions of S-type is closely related with that of contrast functions of W-type.
For example, the Kullback-Leibler information pKL can be expressed as both

pυ and pwwithι>(0 = ~-w(ί) = -y( — logf + f—l) . Further the Chernoίf inform-
2* £

ationof order α has both expressions of W-type and of S-type, i.e., ρΛ = pWχ with

w.ω = Ί^(i-^) + -Trϊ-(ί-i)

and ρΛ = ρv with

where pΛ is defined in (2.4).

Let φ be a parameter transformation of Σ into τ. With respect to the
parameter r, the contrast function of M-type is introduced by

pφ(S,Σ) = ±(τί-τ2)'G(τi)(τ1-τ2),

where τί = φ(S) and τ2 = φ(Σ) and 0(1 )̂ denotes the Fisher information matrix
of TV For example, consider a transformation </>: &*-*y defined by

φ(Σ) = Σ*.

Then we have the contrat function of M-type :

This function pφ can be also of S-type, i.e.,

However there is generally no relation of inclusion among the classes of contrast
functions of S-type, Pf-type and M-type. A common property is the invariance
under linear transformations on Rk, i.e.,

p(P'SP, P'ΣP) = p(S, Σ)

for every non-singular matrix P. In addition to this invariance, a contrast
function of S-type has the following invariance :

THEOREM 6.1. Let pv be a contrast function of S-type. Then

Pυ(P1SP29 P,ΣP2) = pv(S, Σ)
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for every non-singular matricies P^ and P2.

PROOF. We write the eigenvalues of a square matrix M of order k as

Then the proof follows from

λrl(PlΣP2r
l(PlSP2)

for r=l, 2,..., k.

Let v be analytic on (0, oo). Define

with v(λ) = Σ/c ak(λ - l)fc. Then it holds

(6.2)

for every 5 and Σ in £f. We note that φυ(S, Σ) is postitive definte for every distinct
S and Σ in ̂ . James [34] showed that the squared geodesic distance with repect

to the information metric is given as pυ(S, Σ) with υ(λ)= -=- (log λ)2. By using the

relation (6.2), the squared geodesic distance can be expressed as

where log denotes the logarithmic mapping defined on «$^.
The generalized least squares function

is often used in covariance structual models (cf. Anderson [6]). This function

has the form pυ with v(λ)= — (A"1 — I)2 but can not be expressed as the form of

W-type. In general, every contrast function of S-type can be easily calculated,

while every contrast function of FΓ-type is not so, e.g., the Chernoff information
of order α is generally integrable only for α, |α| < 1. Thus a contrast function of
5-type is more applicable than that of FF-type in the space .̂ In addition to
these aspects, we shall show that this function has the additivity property. Let

fs and fΣ be in ^ with statistically independent marginals of the common size,
that is,

and
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where

/ Si 0 \ / ^ 0
5 = and Σ = [

\ 0 S2 ) \ 0 Σ2

Then in the above setup, we state the following theorem.

THEOREM 6.2. Let pυ be a contrast function of S-type. Then pυ has an
additivity of information, i.e.,

(6.3) Pv(S, Σ) = p^S,, ΣJ + Pv(S2, Σ2) .

PROOF. According to the notation in the proof of Theorem 6.1, it holds that

where 6 denotes the order of SjΣ~[l Sj. Therefore we have

Σί=ι

which imples (6.3). This completes the proof.
Now we define an estimator T: <&-*& as

PvLfs* T(fsy] = mmferPv(fs,D,

which is called the minimum contrast estimator by pυ according to the terminology
in Section 5.

From now on, we investigate the properties of this estimator. First we re-
present the α-conjugate metric structure on & with respect to the convariance
parameter Σ in the following way. The information metric has the matrix form
of components

— y-1 6h τ~l
- & \£) Z<

and the α-affine connection has the matrix form of coefficients

with respect to Γ-coordinates, where ® denotes the Kronecker product. On the
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other hand, we obtain the conjugate metric structure &(ρv) by the arguments
similar to ^α as follows: The metric 0(pv) is

r-i

and the affine connection Γ(pυ) is

snce

Pv(S, Σ) = it

+ (higher order terms) .

From these results, we immediately have

with αυ=-3-2t/"(l), which leads the following theorem because of Theorems
3.2 and 5.2.

THEOREM 6.3. Let pv be a contrast function of S-type on &. Then the min-
imum contrast estimator by pv has the limiting information loss

(6.4) <H(J^)>2 + (l + t,-(l))2<r>2f

where (H(&"J)2 and <T>2 are defined in (5.1) for the covarίance structure model ^.
Let pw be a contrast function of FΓ-type. From Theorem 6.2, it follows

that the minimum contrast estimator by ρv has the same limiting information loss
as the estimator by pw if w'"(l) + t/"(l) = 0

Recall the operations *, © and © on ̂  in Section 2. These operations can

be also defined on the space ^ of all convex functions i/s with u(l) = t/(l) = 0

and ι/'(l)= y . Thus define v: ^-»^ by

Then the minimum contrast estimator by pv(t?) is second order efficient for every
v in y* by a similar reason as in the proof of Theorem 5.3.

Next by using the commutative relation between the trace and the differential
operations on matrices, we present explicit formulas of the limiting information

loss of the minimum contrast estimator by pv or pw.
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THEOREM 6.4. Let & be a covariance structure model of dimension n as in

(6.4). Then the Gramian forms of <#(̂ )>2 and <T>2 as in (6.4) have the
following components.

(6.5) <#(^)>2

fr = tr {(daΣ

x

and

(6.6) <T>2, = 2 tr (δ.ΓΓ 1) tr (δ^-1) + 2k

- tr (daΣΣ-ldcΣΣ-ldbΣΣ-^ddΣΣ-lgcd + tr (dtfΣ-idcΣΣ'1deΣΣ'1')

for α, 6 = 1, 2,..., «. Herg dαΣ = (d/dθα)Σ(θ) and gab denotes the (α, b)-entry of

the inverse matrix of

a=b=l,2,...,n .

PROOF. We show the formula (6.5). For the decomposition

we define B and 51 by the matrix representations of the connecting tensors of
7} (SO with Tf(&) and Tj(&)9 respectively. That is, B = {vec(3βl)}β=lf2j...ίll.

and BL satisfying

where vecΣ = (σll5 σ12,..., σlfc,..., σfcl, σΛ2,.. 5 σfefc)'. It follows from the decom-
position that

(6.7) BL{BLf(Σ-ι ® Z1-1^1}"1^1' = Σ®Σ -

By the definition of H(&) as in (1.3), it holds

(6.8)

= {vec
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for 0, 6 = 1, 2,..., n with respect to θ. By inserting (6.7) into the right-hand side
of (6.8), we have

since it holds

(vec A)'B ® C vec D =

for each square matrix ,4, B, C and D. Because of an identity

the formula (6.5) holds. We can show the formula (6.6) by the same way as the
derivation of (6.5) (see, Eguchi [26] for detailed derivation). The proof is

complete.
e

We remark that the derivation of H(^) can be also given by a straightforward
extension of the generalized definition of curvatures by Efron [21] to multidimen-

sional cases :

E{dade£gc'dέdb£} - E{dcdatdet}gcdgehE{dddbtdht},

where £ = -tr (Σ^xx'^-log (det Γ)/2.
We, up to now, disscussed the properties of estimators independent of the

parametrization (6.1), e.g., Fisher-consistency, first order and second order
efficiency. This discussion is justified since the estimators in our formulation
are independent of (6. 1). Nevertheless we often have our interests in the parameter
θ, itself (cf. Efron [22] and Berkson [12]). Thus, from now on, we intestigate
the ^-version of the minimum contrast estimator T(fs) by ρv, i.e.,

with the parametrization φ from Θ to & as in (6.1). The asymptotic bias of the

estimator θ is expressed as

for α = l, 2,..., n, with the sample size N where

and

Hence the bias -corrected estimator is defined by
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For the bias-corrected estimator 0*,

where

^^{triaArr-1^

We apply the above formulas to two pratical models :

Example 6.1. (Intraclass correlation model) Let S be sample covariance
matrix from a /?-variate normal density with covariance matrix

σrs = 1 if r = s,
* = (O,

= 0 otherwise.

Then a generalized least squares estimate 9 based on t;(λ) = (λ — 1)2/4 is

where J = 1Γ — / with 1 = (1, 1,..., 1)'. The limiting information loss by θ is of

form Hg + lόTg, where

)2 - {4tr(J2;-1)3/tr(J2;-1)2}2

and

T§ = 4(tr JΣ-1)2 + 2 tr (J^1)2 - 8 tr (JΣ-^/tτ (JΣ~^2 + 4(tr JZ-

In particular H§ has a simple form

It is noted that the term Γ vanishes at every θ. The mean squared error of the
bias-corrected estimator

withί=I(δ)is

tr (/Γ-i)2) +~±2(H0+ Γ0)/tτ

(= ̂  £/ + ̂  ( ̂ i + r2), say)
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Table shows that the influence V2 in terms of the estimator 0* is fairly larger than

the term Fx caused by the model.

Table. Values of U, Vι and V2 at true vaues 0's in the case of k=6.

θ

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

U

0.0171

0.0305

0.0454

0.0600

0.0704

0.0711

0.0579

0.0333

0.0096

*Ί

0.0021

0.0095

0.0325

0.0889

0.1886

0.2809

0.2429

0.0889

0.0067

V
2

5.5572

9.2169

12.9174

15.6444

16.1355

13.6252

9.0412

4.5511

1.3379

Example 6.2. (Linear coυariance model) A linear covariance structure

is described as

Σ= Vβ1 + F20
2+ + 7βθ«.

for θ = (θί,...9 θq\ where positive definte matrices Vί,V2,...,Vq are linearly

independent in the space of all symmetric matrices. A generalized least squares

estimates 6 based on v(λ) = (λ-l)2/4 is given as 0 = G-l(S)r(S), where

,ί>=l q

The information loss due to θ is represented as <H1>
2 + 16<Γ1>

2,

where

= 2 tr

- tr ( VaΣ-ι VCΣ~1 VeΣ~l) tr

and

< Γt>
2 = tr ( VaΣ-^ VcΣ~ι Vjr* ) tr (

with gcά is the inverse element of the matrix
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7. A generalized scoring method for a minimum contrast estimator

Let & be an (n, m)-curved subfamily of an exponential family tFe and let p
be a contrast function on &e. In many practical models, the minimum contrast
estimator by p cannot be obtained as a general solution. This aspect is reduced to
a nonlinear optimization problem for the minimization. We now consider an
algorithm for seeking the minimum contrast estimator T(/) by p, i.e.,

with the maximum likelihood summary /. Take a parametrization

(7.1) & = {/>(β)(x) = *W -W>

and let the parametric form of p on ̂ x^ denote by

Under this parametrization we define an algorithm in terms of the following
mapping S from & to & defined by

where

(7.2) s(θ) = 0+ (G^(θ)Γί--p(β9 0}

with dld0 = (d/dθί,..., d/Bθmy. Then the algorithm constritutes a sequence

fc— times
(7'3) St(f) = ί^S(f)

from a starting point /=/β. The algorithm is nothing but the Fisher scoring
method in the case that p is the Kullback-Leibler information. In this sense,
we call the algorithm a generalized scoring method. We note that if s(θ) is
defined by

in place of G^p\θ) in (7.2), then this algorithm is reduced to the Newton-Raphson

method. As is well-known, the sequence has quadratic convergence

(7.4) \\sk+1(f) - r(/)n ^ B\\sk(n - n/)iι2

for the minimum contrast estimator T(/), where || || denotes the m-dimensional
Euclidean norm and ε is some positive constant.
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What we should pay attention is that the generalized scoring method deeply
depends on the prametrization (7.1), while the minimum contrast estimator
T(/) is independent of the parametrization. Since our purpose is to seek T(/),
it is necessary to know how the parametrization affects the convergence of the
squence (7.3). Thus, in this situation, the quadratic convergence property of (7.4)
has no significance because this property relates only to the parameter space Θ.
Therefore we now investigate the convergence of this algorithm in terms of the
conjugate metric structure #(p).

As is introduced in Section 1, let us give the formula of

induced from &e to « "̂. The orthogonal decomposition

with respect to the metric g^ leads the components {g\p^} of #(p) on Tf(^e) to
the components {g$} and {g$} on Tf(&) and T}(J*") respectively, as is similar
to (1 . 1) and (1.2) for the metric #(p) in place of the information metric g. Similarly
the connection Γ(p) over &e is induced as

with the coefficients {Γ^/J of Γ<p). We denote the embedding curvature tensor
with respect to the connection *Γ^p) by *H(p), i.e.,

with the coefficients {*Γ%]k} of *Γ<p). We write

e = e (θ) = g^Λb(e)Bi

b(θ)ei\β(θγ\

and

where e^)=(d^)p(^ β) with/^=/.

On the basis of the above setup, we state the following property without
reference to the parametrization.

THEOREM 7.1. Let {<§&(/)}&= ι,2,... be a sequence starting from f in &
which is defined in (7.3). Then it holds,

(7.5)

for any integer k withf=fβ. Furthermore the third term can be expressed as
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(Ί 6\ __ L Γ(P) pdplopc i J_ * fj(p) pdpbpλ
V/.O; £ * α f c . c £ £ £ -Γ £ nabλe e e

PROOF. Because of the formula (3.8), the proof follows from a straight-
forward claculation.

We remark that the convergence of the generalized scoring method is at-
tainable as

PC/, §(/)] >-> PC/,

through a kind of the Pythagoras theorem (7.5). However this mechanism is
strongly affected by the terms of (7.6). The first term depends on the parametri-

zation, while the second is invariant under transformations on the parmaeter space.

If we restrict the model & to a nonlinear regression model and consider the

maximum likelihood estimator, then the components of Γ^ and *mp) are

reduced to the parameter effect curvatures A[m and the intrinsic curvature A*
by Bates and Watts [10]. Furtheremore we can extend the results by Hamilton,

Watts and Bates [31] to a minimum contrast estimator in a general curved

exponental model:

THEOREM 7.2. Let T(f) be a minimum contrast estimator by p. Then it

holds that

(7.7)

= ̂ -*H(

a

p

b\eaebeλ + (higher order terms).

for each f in « "̂.

PROOF. The proof is immediate.

Theorem 7.2 shows that the invariance of T(f) for parameter transfor-

mations leads to the invariance of the right-hand side of (7.7).

Now we propose a modification of the generalized scoring method by

in place of s(θ) in (7.2), by which we define an algorithm

(7.8) S*(Λ) =/«(.,

By Theorems 7.1 and 7.2, the following theorem holds.

THEOREM 7.3. For the modified method S* as in (7.8), we have
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Plf, S*(fβy] = p[f,
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