HIROSHIMA MATH. J.
16 (1986), 449475

Stationary measures for an exclusion process on
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§0. Introduction

Since F. Spitzer introduced interacting Markovian particle systems in [11],
Markov processes on the configuration space SZ° or S®? (S={0, 1,...,n} or
{0, 1,---}) have been investigated by many authors, and various results are obtained
(see, for example, [4, 8,9]). Those results are, in many cases, about the processes
such that the time parameters are continuous and the number of sites in the
configuration at which changes occur at the same time is finite. In this paper
we consider a Markov process on Z={0, 1}Z such that the time parameter is
discrete and the sites at which changes occur at each time are infinitely many.
If we consider the important roles which discrete time stochastic processes play
in the theory of probability, it seems worthwhile to investigate discrete time
Markov processes in the field of interacting infinite particle systems ([2, 3]).

Let x=(-+-x_{X¢X{*--) be an element of &. According as x;=1 or 0 we
consider that the site i is occupied by a particle or not. Then x € & represents a
configuration of particles on Z. We introduce a time evolution on £ as follows
(for details see §1). Suppose the configuration on Z at time tis x=(---x_ ;1 X¢Xy**).
Then as time increases from ¢ to t+1 each particle of x moves to the left by one
step with probability « (0 <a<1) independently when its left site is unoccupied,
that is, a particle at site i can move to the site i—1 only if x;_,=0, and
this transition of particle occurs independently in the configuration x. Therefore
infinitely many particles can move simultaneously when #{I: x;x;, ;=01}=o00.
Getting a new configuration x’'=(---x_;x¢x;---) € Z from x at time t+1, we then
apply the same transition rule to x’ and so on. Thus a time evolution is obtained
as a Markov process on {0, 1}%, which we call, following [6, 11], an exclusion
process on Z. It should be remarked here that our exclusion process can be
thought of as a simple model of semiconductor which is in a (static) electric field
if we regard x;=1 and 0 as plus and minus charges respectively.

We define in §1 the transition probabilities of the Markov process stated
above precisely and give a sufficient condition (Su) for a translation (=shift)
invariant probability measure on & to be a stationary measure for the process
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(Theorem 1). In §2 we define a family {r,: 0<y<oo} of Gibbs states with nearest
neighbor interaction on Z, and show that each =, satisfies the condition (Su)
(Theorem 2). In the one-dimensional case nearest neighbor Gibbs states are
renewal measures. In §3 we show that the extreme points of the convex set of
probability measures on & satisfying the condition (Su) are exhausted by {=,:
0<y<oo} and trivial measures {r,, n,} (Theorem 3). The structure of the set
# of all stationary measures is discussed in §4 under the assumption that 0<a <
1/2. It is proved that the totality of extreme points of .# is {n,: 0<y< oo} and
{O®,: ne Z} (Theorem 4), where O, is a Dirac measure concentrated at the point
0,=(x)icz€%, x;=1 for i<n and x;=0 for i>n. Then it follows that (Su)
is also a necessary condition for a probability measure with zero mass on {6,:
neZ} to be stationary. Thus the structure of 4 is completely determined.
In the last section we study the stochastic properties of a particle under the time
evolution with respect to the stationary state n,. Suppose ro(f) is the random
variable that represents the position of the particle at time ¢ which was located at
the origin at t=0. Then it is shown that {ry(¢), t=0, 1,...} has homogeneous
independent increments, i.e., {ro(f)—ro(t—1)},n is a Bernoulli sequence. There-
fore the mean m, and the variance 62 of ry(t) are calculated explicitly, and a
central limit theorem is obtained (Theorem 5). In general it is not so easy to get
the mean and the variance of a marked particle. A correspondence between the
random variables {ry(t), t=0, 1,...} and the so called random walks is considered
in Remark 4.

The structure of stationary measures for the simple exclusion processes
with continuous time parameter such that the number of sites in the configuration
at which changes occur at the same time is two was investigated to the full extent
by T. M. Liggett in [7]. It is proved there that the extreme points of the trans-
lation invariant stationary measures are of the type of product measures, that is,
Bernoulli measures. In our system, the extreme points of the translation invariant
stationary measures are nearest neighbor Gibbs states. Because Bernoulli
measures can be regarded as Gibbs states with no interaction potential, the
mechanism of transition of particles of our system seems to be more natural (cf.
Remark 1 in §1).

§1. Transition probabilities and a sufficient condition for stationary measures

In this section we define transition probabilities of the Markov process
described in §0 and give a sufficient condition for a probability measure on {0, 1}
to be a stationary measure for the process.

Let & be {0, 1}%, which is the state psace of our Markov process. An
element of & is denoted by (-:-x_;XoX;-:-) or x shortly. We assume that the
time parameter ¢ takes its values on the set T={0, 1, 2,...}. Fori,jeZ,i<j, put
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%.,; = {ilaa;4y--a;];: a,=0 or 1, iS4 <)},
where
i[ai“'aj]j = {("'x—lxoxl“')e-%': X,=a,, i§€§j},

and %,;=0(%,;), the o-field generated by ¢,;. Let ¥={¢}U(\V,;;¥;; and
#=0(%). The elements of & are called the basic cylinders. Subscripts i and
j in ;[---]; are sometimes omitted. The following lemma tells us that two proba-
bility measures on (2, #Z) which have the same values on € coincide.

LemMA 0. Suppose fi is a nonnegative function on ¥ satisfying
(i) a¢)=0

(i) aGol) + aGl1l) =1,ieZ,

(iii) (consistency condition)

ﬁ(i[ai"'aj]j) = ﬂ(i[ai”'ajo]j+ )+ ﬁ(i[“i"'ajl]j+ 1)
= fi(;-1[0a;---a;];) + iAG-,[1a;--a;];)

forall [a;--a;]e¥,;,i,jeZ, iZ].
Then i is extended uniquely to a probability measure uon (¥, #B).

Now let us define transition probabilities of our Markov process
using Lemma 0. We denote x>y if y=(---y_,yoy;'--) is obtained from x=
(-+-X_1X¢Xx1++) by substituting some of (possibly infinitely many) x,x,,;=01"s
in x with 10’s. Note that the replacement x,x,,,=01 by y,y,,,=10
corresponds to the transition of particleat £+1 to £. Given two basic cylinders
i-1[Xi— 1% XX 5411544 and fa;--a;]; we will write [x;_---x;4 1>[a;-a;] if
we can choose a;_; and a;, ;, which are uniquely determined, such that a;_,a;---
a;a;,, is obtained from x;_---x;,, by substituting some of x,x,,,=01"s with
10°s (i—1=2¢=<j). LetO<a<1 be a fixed constant. Forx=(--x_;X¢x;-)eX
and A=[a;--a;] € ¥, ;, define

s ) 2) .
B, A) = l [Timi—qoe¥e - (U—o)re” if [xy_y-x;4,] = [ag--a;]
otherwise,
where
(k) = Xﬁk)([xi 1" Xj+1)s [ai"'aj])
1 if x2x2+1=01 1 if xﬂx¢+1=01
= nd =10 = d =01
ot) { a a,0p41 =2) { and  a,a,4,
0 otherwise, 0 otherwise.
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Since P(x,-) satisfies the assumption of Lemma 0, we can extend P(x,-)to a
probability measure P(x,-) on (%, #) uniquely. The measurability of P(-, A4),
A€ ¥, and the fact that 6(¥)=4% imply the measurability of P(-, A), A€ A&.
Thus transition probabilities P(x, A), xe &, A€ #, which determine a Markov
process (MP) on {0, 1}%, are defined. It is not so hard to check that P(x, A)
describes our exclusion process. Indeed, by the definition of P(x, 4), the tran-
sition of particles occurs independently at each site of x with probability « when
x,X,,.,=01; and further, infinitely many particles can move simultaneously if
#{4: xyxy 4 1=01}=00.

A probability measure y on (&, #) is called a stationary measure for the
Markov process (MP) if

E) [, ducoseo = {_aueo | Pex, dx)six)

for all bounded measurable functions f. The set of stationary measures for (MP)
is denoted by #. Lemma 0 implies that if (Eq) holds for all indicator functions
Y4 A€ %, that is,

(EqQ)' u(GlLay--a;]) = by am(1—0)"u(;— 1[bi—1-*bjs1]j4+1)>

[bi-1bj+11P[a; - a ]
d (1) J (2)
(m= l___zi:_lh ([Bi—y++bj+1], [ai"'aj])’ h= 25_111 ),

then yues.
A probability measure u on (%, #) is said to be translation invariant if
WA+ £)=p(A) for any Ae & and ¢ € Z where

there exists x=(-+-x_;X¢X;---)€A

A+ 4= y=(Cry_1yoyr)e&
such that y,=x;,, forall ieZ

The set of translation invariant probability measures on (%, #) is denoted by 7.
Notice that the translation invariance of u allows us not to specify the coordinates
of cylinders in measuring the elements of ¢, that is, to wirte x[010101], for
example, has its meaning. A sufficient condition of stationary measures is now
stated as follows.

THEOREM 1. Suppose a probability measure u on (%, &) satisfies the
condition

(i) uis translation invariant,
(ll) (l_a) ifox[ai...aj]#[ai...aj] = (1 _a)am[bi...bj]#[bi_”bj]
for lay--a;l; and [by--b;]; in € with

a=b, a;= bj and 3j-;a, = Xj-; by,

(Sw)
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where
#Ol[ai"'aj] = #{ﬂ! alal+1=01, iéﬂéj—l} .
Then u is a stationary measure for the Markov process (MP).

The proof of Theorem 1 is elementary and straightforward. Therefore we
only give the outline of it. For the proof it suffices to check that (Eq)’ holds for
all [a;--aj]e ¥ under the assumption (Su). If #0,[a;--a;1+%,0[a;--a;]1=0
it is verified directly, such as:

[, H@0PC [00 D = = an(l—o)ulbi-ibibisibis 2],

[bi-1bibi+1bi+2]>[00]
= p(;[000]; +2) + (1 —a)u(;[001];, )
+ apu(;- 1[0100];+ 5) + o1 —o)u(; - 1[0101];4 )
= p([00];+1) — opu(LOOL]; 4 2) + op(;—4[0010];45) + ap(;— 1 [0011];,2)
(by (Su)~(ii))
= u(;[00];+,) (by (iii)) of Lemma 0 and (Su)-(i)).

For the general [a;---a;] we use the following notation:

k k
NG, j; k) = pGL0--001T--11)), R(, j; k) = pGL0---0011--10]),

k—1
—S

L(i, j; k) = p([10---0011---1];),  B(, j, k) = #(i[l%ﬁ00-~-0]j)-

If k represents 3" J_;a, for [a;---a;] € €, ; then

(1 —o)fortOaivr=a;-111=1y[0g; 4 ---a;- 1] = N(, j; k),

(1—ofoit0aser-as-1011f0ay  -+-a;,0] = RG, 3 ),

(L—yforltaier=aj-l=lyllg, 40,411 = L(, j; k),

(1—o¥orttaivima;-0ly[la,, 4---a;_,0] = B(i, j; k)
by (Su)-(ii) provided (¥,;+#,0)([a;--a;1)>0. The consistency property of u
also implies

N(G, j+1; k+1) + R(i, j+1; k) = N(i, j; k),

{ (- {RG, j; k) — R(, j+1; k)} = NG, j+1; k+1)

and so on.

Now suppose #o;+#;0>0 for [a;--a;] and k=3 {_;a,. Then (Eq)’ for
u is proved as follows:
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(L—g)fotecan=t 5 om(l—ayulby byl
[bi-1bj+11>[ai-aj]
NG, j; k) + (@/(1—o)N(@—1, j; k+1) if (a; a;)=(0,0)

(I—a)N(, j; k) + aN(, j+1; k)
+aN(i—1,j; k+1) + (@*/(1—a)N(i—1, j+1; k+1)
if (a;a)=(0,1)
{aNG, j; k) + (1—0)N(i—1, j; k)
+B(i—1,j+1;k+1) + (1—-)L(i—1, j+1; k+2)}/(1—a)
if (a;a)=(1,0)
(NG, j; k) + (¢/(1—=a))N(, j+1; k) if (a;ap)=(1,1)
(by (Su)—(ii) and by (iii) of Lemma 0)

= (1—ofoiter-e-1u[a; -a,].
Further if (a;, a;)=(0, 0), for example, we have
NG, j; k) + (@/(1-a)N(i—1, j; k+1)
= N(, j; k) + (2/(1—a))N(G, j+1; k+1)
= NG, j+1; k+1) + R(@, j+1; k) + (¢/(1—a))N(, j+1; k+1)
= (1/(1—a)) NG, j+1; k+1) + R(i, j+1; k) = R(i, j; k)
= (1 —oolOers 0114 [0y, 0y 0], O
ReMARK 1. In [7] Liggett investigated the structure of stationary measures

for the simple exclusion process with continuous time whose generator Q() on
4%; ;-measurable functions f is of the form

Q®f)(x) = el O =f(x)}

{k,2}0{i,..., j}+
where x*t= (-+-Xp_ 1 Xy X410 Xp - 1 XX g +1°7)
for x = (X 1 XeXpa 17Xy 1 XX g 4170) -

If we consider another exclusion process defined by the following (bounded)
operator

Q@Of)(x) = Z[TT=img 0t - (L—0)” 1{f iy ) —f (xi+x))}

where the summation is taken over all configurations y;---y; with ;_;[x;_---
X;+11j+15ilyi---y;]; it is seen easily that u satisfying the condition (Su) of

Theorem 1 is a stationary measure for the process, that is, g Q@fdu=0for all
x
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fe 2(Q®). Note that Q® permits the transition of particles at infinitely many
sites likewise in (MP).

§ 2. Gibbs states as stationary measures

In this section we give stationary measures satisfying the condition (Su) of
Theorem 1 and show that they are Gibbs states with nearest neighbor interaction
on Z.

Let « (O<a<1) be as in §1. Take f (0<f<a) and y (>0) such that
¢y l—a=(1-fHA-py) ie. oa=pl+y—py).

When g varies from « to 0, y varies from 0 to co. Define a nonnegative function
7, on € as follows:

(¢) =0

#Glai-a;-10]) = (7/(1+7)) x (1=p)* x (1/p)*e

¢ X ((L=Bp)y)¥s x (Bya)’~*

laraj-11) = A/A+) x (A=)t x 1y
x (L= By)fy)* x (Byla)i~F,

where #,,=#,[a;-a;_,a;1=#%{¢: aja,,,=uv, iS4<j—1}. Since #, satisfies
the assumption of Lemma 0, it is extended uniquely to a translation invariant
probability measure 7, on (%, #). We remark that

0] = y/(1+y), =,[1]=1/1+y) and =,[0]/=,[1] =y.

Set
Q, ={xeZ:lim,,,n ' Th_ox, =lim,on ! 172 1 x, = (1+7)71}.
Then we have

THEOREM 2. (i) =, is a stationary measure for (MP) satisfying the con-
dition (Su) of Theorem 1.

(ii) m, is a renewal measure on (%, &) corresponding to a renewal process
whose probability density function (p.d.f.) of the interarrival time is given by

(1 -B)(Blx) n=1
A=A (Byle)yt m=2,3,....

(ii)) =, is a Gibbs state with nearest neighbor interaction on Z with the
chemical potential J;={—2log(1—B)— logy}-kT and the interaction potential

f(n) =
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J,={log(1—pB)+ log(1—pBy)}-kT, where k is the Boltzmann constant and T is
the absolute temperature.
. Lif y=y
(iii) n(Q,) =
0 otherwise.

(iv) In the weak topology m, is an extreme point of the compact convex set
T consisting of all translation invariant probability measures on (%, ).

For the reference of readers we state below the definition of the terms used

in the theorem.
DEerFINITION 1. A translation invariant probability measure y on (&, &) is
said to be a renewal measure if there exist p.d.f.’s f; and f on N satisfying
¢)) play--a;— 111 = fo(n)-T15=1 f(ny 41 —10)
for every [alw-aj_,l] € %:,;,j=1. Here we used the notation
k=3{.,a, (aj=1) and n,=min{t: 3’ a,=¢},

Note that if we regard ¢ with a,=11in the left hand side of (2) as a renewal
epoch of some renewal process, then the right hand side of (2) states that the

p.d.f. of its interarrival time is given by f (cf. Chap. XI of [5]).
For i,jeZ,i<j, let #;; be the o-field generated by %, ,, k</¢<i and

1S¢<k

j<k=zé.
DEFINITION 2. A probability measure u on (%, &) is called a Gibbs state

with nearest neighbor interaction on Z with the chemical potential J, and the
interaction potential J, if its conditional probability p{[a;--a;]|%¢ ;}(x) of

[a;--a;] € %, given &5 ;isequal to
E;, ()" exp [(1/kT){J, Yi-iay —J(xiqa;t+ajx;, + Yiztaa )},

where Z; (x) is a normalizing factor which depends on i, j and x=(X,);cz-
PRrOOF OF THEOREM 2. (i) is clear from the definition of n,. For (ii) and (iii)

let f, be a function on N defined by
14yt n=1
Jo(n) =
I+ A =B *(Byfo)

and f be in the theorem. Since X 2, fo(n)=>2,f(n)=1 by (1), f, and f are

n=23,...,

p.d.f.’s on N. Note that
Zamanf(n) =14y =@ = (fo(1) .



Stationary measures for an exclusion process 457

Since

3 7Ty[ai“'aj— 11bj+ bl = ny[ai'”aj—ll]ny[lbj+1"'bk]/ny[1]

by the definition of 7, we can see that 7, is a renewal measure with the above f,
and f. Therefore if we define random variables #;, i€ N, on (Z, 4, m,) by

n{x) = min {k: > k_, x,=i} for x =(-x_ Xox{"),s

then ny and n;, —#;, i€ N, are mutually independent and their p.d.f.’s are given
by f, and f respectively. Moreover the law of large numbers implies

limn—»oo n_l{rll + Z?;ll ("i+1 —'I.)} =1 + Y nv'a'a-’
and hence
lim,,,n '3 ox; =(1+y)"! =n-aa,

which proves (ii) and (iii).
Since the ratio
exp (kT) ' {Jy Ti-ia, —Jp(xi—yai+ajxjey + 242t aya,44)}
o my[xi-1a;-a;x 4]
{p/A+P}H{A=B)Byla} =D i (x4, Xj44) = (0, 0)
=( (1+A=B{A=P)Pyla}~U~H2 if x;_4 # Xj44
YA+ (L =PHHA=P)Py/oa}~U~HD if  (xi-4, X540 = (1, 1)

is independent of [a;---a;] € €, ; given x;_, and x;,;, we can easily show (ii)".
By the renewal theory (cf. page 360 of [5]) we have

lim,, o 3 peq Ie, 4t 2= f(E)
=limy. g Zpme1 (f*) () = [Zioinf(M] = A+y)7h

Therefore

lim,_, , m,(o[ao --a;- 111Ny [1b; l"'bj]j+ll)

= lim,_ 2z m([ao ai-11cis 1 Civg—11biv g4 17bjs )]
cisrrcivg-1€{0, 13241

= tim g mfagai 1 fo() X, TT )} [lbys b ]/ L1 ]2

(by (3) and the definition of =)

1

= m,[ao-+a;—11Im,[1b;14---b;],

which implies 7, is mixing with respect to the translation:
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lim, .., 74 N (B+ £)) = n(A)n(B), A, Be%.

Hence we get (iv). 0

§3. Convex combination of the Gibbs states

_ The purpose of this section is to prove the next theorem which determines
the structure of the compact convex set & of all probability measures satisfying
the condition (Su) in Theorem 1.

THEOREM 3. Let m,, 0<y<o0, be as in §2 and ny=0,, 1=(---111---), and
Ty =04, 0=(---000---), where 8, is a Dirac measure concentrated at x€Z.
Then the set ext & of extreme points of & is {n,: 0Sy=<o0}.
ReMARK 2. It follows from Theorem 3 and Choquet’s theorem ([10]) that
every ue & can be represented as u= S n,m,(dy) for some probability
[0,]
measure m, on [0, oo].
We divide the proof of Theorem 3 into several steps. Set
My ={xeZ: XPx=2F(1—x)=2XFx=2¢ (1—x;)=00},
M, =2~M,uU{0,1}).
It is easy to check that
(4) w(M,)=0 for every translation invariant probability measure u on Z'.
LemMA 1. Suppose pe & and play--a;]1=0 for some [a;--a;]1€ € with
¥oi1la;--a;1>0. Then p=pny+(1—p)n,, for some pe (0, 1).

ProOF. Since y(M,)=0 by (4), it suffices to show that u(M{)=0. By the
translation invariance of u we can assume that j=—1 and i=—n (n=j—i+1).
For h, ke Z, h<0<k, set

M, ={xeM,;: max{d<0: X71,(1-x,)=n+1} = h,
min {d20: Tioox,=1+ Tl ,a,}=k}.

Then M, , are mutually disjoint and M, =\U,<9<; M,,;. Let us say [0b;, ;-
b;_,1]€ %, is linked to [b;b;,,---bj_ b/l € &, ; if the latter is obtained from the
former by replacing some of b,b,,,=01’s (i</<j—1) with 10’s. Note that if
u[0b;44---b;_;11>0 and is linked to [b;---b;] then u[b;---b;]>0 (in fact, the
r.h.s. of (Eq)’ for [b;---b;] contains u[0b;,---b;_,1] multiplied by a™(1—a)").
Assume u(M,,)>0 for some h and k. Then there is a basic cylinder [0b,, -
b,—11]€ %, such that u[Ob,,,---b,_;1]1>0. By considering a linked chain
from ,[0b,,,--b_1bgb;---b;_11]; to ,[011---11la_,---a_,00---001], via ,[011---
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1100---00byb,---b,_ (1], we have pu(,[011---11a_,---a_,00---001],)>0, which
implies p[a_,---a_;]1>0. This is a contradiction. Thus u(M,;,)=0 for all h

and k, and hence y(M,)=0. [

We remark that if ue & then

(5) plaa;sy--a;] = play--a;qa;] for every [ay--a;].

(By the translation invariance of y it is not necessary for us to specify the coordi-
nates of cylinders in (5).) Indeed we have

ul0a;,y---a;—(1]-(1—a)* = p[0---01---1],
pl1b;yy---b;—10]-(1—0)* = p[1---10---0]

by (Su)—(ii), where s=#,,[0a;,,---a;_;1]—1 and t=*%#y,[1b;,---b;_,0]; and
moreover

u[000111] = u[000] — £[0000] — u[00010] — L[000110]
= u[000] — u[0000] — p[01000] — [011000]
= u[111000].

LeMMA 2. Suppose ueext ¥ and u#mng, n,,. Then
p[00a;---a;]/u[0a;---a;] = g = p[00]/u[0],
ula,--aj11]/pla;--a;1] = q' = p[11]/p[1]

for all a;---a;; and 0<gq, q'<1.

PrOOF. Let 1 be a nonnegative translation invariant function on ¢ defined
by

A¢) =0, z[Oai"'aj] = pu[00a;--a;]
] = (1—0)u[01] + u[001]
AL11] = (1—@p[101--11] (n>1)
Z[lu-lOa,----aj] = u[1---100a;---a;].

Since 1 satisfies (iii) of Lemma 0 by (Su), we can extend 1 to a finite measure A
on (%, #) uniquely. 4 has the property that

Ma;--a;] < play--a;], ¢ #[ay-a;]e€.

Indeed if min {a;, a;} =0 this is obvious from Lemma 1 and (5). If g;=a;=1
we have, for example,
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A[11---11]=(1 —a)pu[101---11]
= (1—a) {u[0101---11]+p[01101---11] + p[011101---11]+---}  (by (4))
= u[0011---11] + p[00111.--11] 4 p[001111---11] +---  (by (Su)—(ii))
< p[011---11] + p[O111---11] + p[01111---11] +--- (by Lemma 1)
= p[11---11] (by (4)).
It then follows that
0<AMZ)<uw(Z)=1 and MA) = u(d), Ae4A,
which allows us to define two probability measures u, and p, on (%, #) by
by =(1-AZ) " (u—2) and p, = A2)7'A
respectively. Then y;€ &, i=1, 2, by the definition of 4, and
u=0-MNuy + M)y, wes, i=1,2, 0<M%) <1,

which implies u,=p, since peexts. Then a direct computation gives us
A=(AUD)Z)u. Thus g=MUZT)/(Z)=u[00]/u[0]. The second equation is
shown similarly. 0

Proor oF THEOREM 3. It is clear that n,, n,eext¥. Suppose uecexts
and u#m,y, m,. Letq and g’ be those in Lemma 2. By (Eq)’ and (Su)

HL01] = X ppobibsbsipr017 8™(1 — )" ulboby by bs]
= oqu[001] + (1 —a)u[01] + a2u[0101] + ou[011]
= {og+(1—a)+(@*/(1—a))qq’ +aq'}u[01].
Since u[01]#0 by Lemma 1, we have
(6 1=q+q" + (¢/(1-2)qq".
Set f=(1—q)a. By (1) and (6)
y=q{l-g)(1—-a+aq)} = (1-¢)/(1-q).
It then follows from (4), (5) and Lemma 2 that
u[0] = u[01] + w[001] + u[0001] +---
= (1+q+4*+--)u[01] = (1—q)~'u[01] = («/B)p[01],
ul1] = p[10] + p[110] + p[1110] +---
= p[01] + p[O11] + W[0111] +---= (1 —g')"'u[01] = (o/Bp)ulO1].

Since u[0]+ u[1]=1, we get
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pl01] = (By/o)(1+y)~", p[0]=7y/(1+7) and p[1]=1/1+y).
FOI‘ [Oai+1"'aj_ 11] € %i,j let

k=73j.a, and t=#4,[0a;,a;_;1].

Then
(1= 0)~'m,[0ay, y-+-a;- ;1] = m,([0---01-11)) (by (Su)ii))
= (1/(1+9)) (1 = BYI=5=+((1 — By)ly)*~(Byfayi~F
and

k

(1-0)"'pu[0a;, y---a;_41] = p([0---01---1];)  (by (Su)(i1))
= @/~ kg1 u[01] = g/ g (By/) (1 + 7)1
By (1) and (6) it follows that
#[Oai+l"'aj_11] = Tty[oai.,_l-"aj_ll] fOI' all ai+1"'aj_1 .

These equations imply u(4)=n,(A4), Ae¥, and hence p=m, It was seen in
(iv) of Theorem 2 that =, is an extreme point of . Thus we have ext &= {n,:
0<y=so}. 0O

REMARK 3. The theorem can be also proved by using (i) and (ii) of Theorem 2
instead of (iv). In fact it follows from (i) that {n,: 0Sy< o0} =% and from (iii)
that n,’s are mutually singular. It is known from the above argument that ext & <
{n,: 0=y<oo}. Therefore ext#={n,: 0<y<0}.

§4. The structure of stationary measures

In this section we investigate when the condition (Su) is-also a necessary
condition. Let .# be the compact convex set consisting of all stationary measures
for (MP). Write @, for the probability measure on & which has a point mass at
0,=("X,—1X,X,+1-+) Where x;=1 for i<n and x;=0 for i>n. It is clear that
0,es.

Now we have the following main theorem, which determines completely the
structure of stationary measures for (MP) with 0<a<1/2.

THEOREM 4. Suppose 0<a=<1/2. Then extSf={n,:0<y<0}U{O,: ne
VAR

Since each =, satisfies (Su) by (i) of Theorem 2, the next result follows from
Theorem 4 and Choquet’s theorem.
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COROLLARY. Suppose 0<a=<1/2. Then the condition (Su) is a necessary
and sufficient condition for a probability measure u on & with u{6,: ne Z}=0
to be a stationary measure for (MP).

The proof of Theorem 4 can be done by a method of coupled Markov process
([1, 7]). First we consider the translation invariant case:

PROPOSITION 1.  Suppose 0<a<1/2. Then ext(fnJ)={n,: 0Sy=o0}.

We will define a (coupled) Markov process (CMP) on the state space (', Z)=
(FXZ, #xB) below in such a way that each component of (CMP) is the
Markov process (MP). It is proceeded by determining transition probabilities
P((x, ), O), (x, y)e &, Ce &, satisfying

P((x, y), AXZ) = P(x, A), Aec @

(M
P((x, y),  xB) = P(y, B), Be4%.

First we give a local rule of the movement of particles in the configuration
(x, ¥)=(X;, yi)iez under the time evolution as follows:

(i) If x;_yx;=y;_1y;=01 at time ¢ then at time ¢+ 1
X;_1X; = y;—1y; = 10 with probability «,

X;_1X; = Yi~1y; = 01 with probability 1—a.

(ii) If x;_,x;_1x;=011 and y;_,y,=01 at time ¢ then at time ¢+1
X;_2X;_1%; = 101, y;_,y; = 01 with probability a,
X;_2X;_1%; = 011, y;_,y; = 10 with probability o,
X;_X;_1%; =011, y;_,y; = 01 with probability 1—2a.

(iii) The exchange of the roles of x and y in (ii).

(iv) If x;_,x;=01 (resp. y;—,y;=01) and none of the above three cases at

time ¢ then at time ¢+1
X;— 1 xresp. y;—,y;) = 10 with probability o,
X;—1x{resp. y;_,y;) = 01 with probability 1—oa.

Then the rule of transition, which determines P((x, y),-) for 0<a<1/2, is obtained
by applying the local rules (i)—(iv) independently to the configuration (x, y) (cf.
§1). It is easy to check that P((x, y),-) satisfies (7).

Denote by .7 the set of all stationary measures for (CMP) and by  the set
of translation invariant probability measures on Z. Here we say that a proba-
bility measure v on & is translation invariant if v(C)=w(C+ ¢) for all Ce Z and
4 € Z where

C+ ¢ =A{"y): (xi, y) =i+ Yis+s)s i€ Z, for some (x, y)eC}.

Since every ve .7 satisfies
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E) | gl = |_avix ) PG ), A 00 y)

for every bounded measurable function g by definition, it follows from (7) that if
ve.# and p, and u, are the marginal measures of v defined by u,(4)=v(AXx %)
and u,(B)=v(% x B) then yu, and pu, € 4.

Let #~ be the path space Z*={(x(), y(t));cr} equipped with the usual Borel
structure, and write P, (), (x, y)eZ, for a probability measure on %~
determined by

Py {(x(@), y(O)yer: (x(6), y(£))€S,, £=0, 1,..., k}

= 5%, 3) | PG ), dx(D, y(O) | PUx(D), 3(1), d(x(2), @)
A PUx(k=2), y(k=2), dxtk—1), (k= DIP(Cx(k—1), yk—D), Sy,

keN, S, e Z, £=0,...,k. The elements of % are written sometimes by w=
(w(t).er- Wedenote by P!((x, y),-), t € N, the t-th iteration of P((x, y),-), and so,

PY(x, ), €) = Pz {(W(D)er: w(k) € C}, Ce Z.

DEerFINITION 3. For x, ye & we will write x<y if x;< y, for all ie Z, and for
two probability measures u, and u, on &, write u, < u, if there exists a probability
measure v on Z with the first marginal p; and the second marginal y,, and such
that v{(x, y): x<y}=1.

The following is clear by the definition: if x<y (resp. x=y, x=y), then
Pi((x, y), {(x, y): x' S y'(resp. x'=y’, x’2y)}) =1, teN.

Given (x, y)e &, we will say {i, i+1,...,j—1,j}<Z, i<j, is a plus cluster
associated with (x, y) if {i,...,j} is a maximal set which has the property that
x;—y;=x;—y;j=+1 and x,—y, 20 for all £ withi<¢<j. We permit the case
i=—oo0 andfor j=+o0o. A minus cluster is defined similarly. Note that the
clusters are mutually disjoint. Let s, ,(x, ), m, neZ, m=<n, be the sum of
numbers of plus and minus clusters which intersect with {m, m+1,..., n}. We
sometimes write s, _.(x, y) instead of s,, ,(x, y). Set

am,n(x’ y) = (n —m+ 1)—lsm,n(x’ y) >
0(x, y) = limsup,_, 0o,(X, y), 0_,(x, y) =limsup,.,0_,0(x, y),

G(x, y) = lim,, , 69 ,(x, y) (if exists).

LEMMA 3. For any (x, y)e & and teN,
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0.6 ) 2 [_ Pk, ), dx', ¥, 3.

The same statement holds for o_ .

ProOOF. By the definition of P((x, y),-) each particle of (x, y) stays or moves
to the left-neighboring site under the one step time evolution; and further the
number of sites i with x;=y; in (x, y) never decreases. Hence for any fixed
(x, )& and keN,

Py {W(O)er: 8o m(WK)) S2k 45, (x, )} =1, £ < m,
which yields
® Py {W(D)eer s 50, (W(K) S 2k +50,(x, ¥), neN} = 1.
Hence the lemma follows by the definition of ¢, 0
The next lemma is fundamental to the proof of Proposition 1.

LEMMA 4. Let 0, (0<o4,<1) be given. Then there exist te N and 6,>0
such that for all (x, y)€ & with 6(x, y) =0y

Pi((x, y), {(x', )2 6(x, ) —05(x", y)204}) = 1.
Proor. 1°. Take L=L(o,)€ N so that
by = by(oy, L) = 270, —3-271))2L > 0.
Let 2 ={B(j)} ez be a partition of Z into
B(j) = {j-2%,j-2L+1,...,(j+1)- 2L —1}.

Given (x, y)eZ let C} (resp.C%) be the left-(resp. right-)ymost cluster which
intersects with B(j). Denote by Af, , ; the set of all paths we#  such that
w(0)=(x, y) and such that during the time from 0 to ¢ the configuration on C} n
B(j) and C% n B(j) has been all frozen and further at least one cluster in B(j)
has disappeared. Then we can choose I=%L)e N and g, =q4(L, «)>0 such that

©) Py (Al .0 Z 44

for all j and (x, y) satisfying sg(;(x, y)=4. This is possible because the members
of &|p(;, (the restriction of Z to B(j)) are the same and finitely many for all
J€Z; and sg.y(x, y)=4 implies that 4f, ,, . is not empty for all sufficiently large
t. Letus fix such 7 and g, and write 4; instead of 4, ,, ; for brevity. We remark
thatifj, <j,—41<---<j,—(s—1)4i then

(10) Py (AN A0 nA;) = TTiz1 P,y (4;))-
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Indeed if Ce Z,,, (the o-field Z,,, is defined analogously to £,,, in §1) then
P((x, y), C) is &, 1,,+-measurable and further if D € Z,,, with n+2<m’ then

P((x, ), CnD) = P((x, y), OP((x, y), D).
Hence if C, € #,,,, and D, € &, ,, k=1, 2, and if n+4<m’ then

Piy{we# : wk)eCyn Dy, k=1,2}
- ng nDy P((x’ y)’ d(x,’ y’))P((x,’ ,V'), Cz n Dz))
= SCMDI P((x, y), d(x’, y)P((x', ¥'), COP((x', ¥"), D,)

= [, PGt ), dx', DR ¥, €+ PG 30, d's yDP(GE' ¥ D)
= Py {w: wk)e Cy, k=1, 2} - P,y {w: w(k) € Dy, k=1, 2}.
2°. For (x, y)e & define
b(x, y) = liminf,_, , n™1#{j =Z0: sp;)(x, y) 24, 0<(j+1)2L<n}.
If 6(x, y)= o0, we have b(x, y)=b,. In fact it holds that
(1) #{i20: s0(x, )24, 0<(j+ D25 <n} 2 {n(04/2)—3(n2 L+ 1)} /25

for all sufficiently large n, which implies b(x, y)=b,. Let us fix (x, y)eZ with
6(x, y)=o, and put

{o<ii<iz<:-} = {j20: sp;(x, y)24}.
Then {j,z,},x satisfies
(12) liminf,,  n~1#{4: 0<(juz, +1)2L<n} = b(x, y)/(47) = b,/[(47).
It is easy from (9), (10) and the law of large numbers to conclude
(13) liminf,,, s7'#{¢: we d;,,, 1S €<s} 2 q«
for P ,-a.a. w. By the same consideration for obtaining (8) we have
(14)  so.u(x, ¥) + 21 Z so,.(w(D) + #{4: we A4, , 0<(jan+1)2F<n}, neN,
for P, ,-a.a. w. Combining (12)-(14), we get

E(x’ J’) - a’oo(x(’f): y(‘i)) g Q*b*/(4i) for P(x,y)'a.a. w.
Hence the lemma holds with §,=q,b,/(4}). 0
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Let ¢: Z—{0, 1}%Z be a measurable map defined by c(x, y)=(---c_1c0c1~?-)
where ¢;=c(x, y);=1if i is the left-most site of some plus or minus cluster associ-
ated with (x, y) and ¢;=0 otherwise.

LEMMA 5. ForanyveZnJ v{(x, y): xSy or x=y}=1.
PrOOF. Since ve 7, Birkhoff’s ergodic theorem states that

a(x, y) = lim,_, , (n+1)"* X7 c(x, y);
= lim,_ ., (n+1)7* X7 c((x, y)+i)o

holds for v-a.a. (x, y) and that

(15) S; &(x, y)dv(x, y) = S; o(x, P)dv(x, y), ieZ.

Now suppose v{(x, y): (x, y)>0}>0 and so there is a o, (0<04<1) satisfying
v{(x, y): 6(x, y)>0,}>0. Since ve.#, by (Eq) for g=0, we have

0= {_ v, ) {oulx, )= | Px, ), dx's y D', 1)

o]
F<ox G20x*

for every teN. If we choose 7 and d, as in Lemma 4, the second term in the
r.h.s. of the above equation is not smaller than v{G(x, y)=04} 04+>0 for t=*%.
But this is impossible because the first term in the r.h.s. is nonnegative by Lemma 3.
Thus v{a(x, y)>0} must be zero, and hence v{(x, y): ¢(x, y);=1}=0 for every
i € Z, which proves the lemma. 0

For the last step of the proof of Proposition 1 we summarize the necessary
tools below as a proposition which are borrowed from [7] (the proof given there
is also valid for our case).

PROPOSITION 2. (i) If veext#, then each of v{(x, y): x=y}, v{(x, y):
x=<y} and v{(x, y): x=y} is either zero or one. The same statement holds for
veext(F N .T) in the translation invariant case.

(i) (a) If puy, uy € F#, there is a ve F with marginals p, and p,. (b) If
U1, Uy EXt F, then v can be taken in ext F. (c) In the translation invariant
case, if iy, U € F N T, then v can be taken in Fn7. (d) Ifu;, p,eext(£n
T), then v can be taken in ext(Z N 7).

The proof of Proposition 1 is now completed as follows.

ProOF OF PrOPOSITION 1. By (iv) of Theorem 2 m,eext(#Sn.J). If pe
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ext (4 n 7) then either u<7, or p=n,. Indeed choose veext(F n.J) by (ii)(d)
of the above proposition so that it has marginals x4 and n,. Then by (i) and
Lemma 35, either v{x<y}=1 or v{x=y}=1, and hence p<n, or u=n,. Further
if 0Sy'<y<c and pu<n, (resp.u=n,) then usn, (resp.u=n,) by (i) of
Theorem 2. Therefore for a given pueext(# nJ) there is a y,€[0, co] such
that u=n, for y>y, and p<n, for y<y,. If u=<m, it holds for all integers i and
j (i£j) and for all (k,..., k;) € {0, 1}/-i*1 that

u{xe&: x,2k,, is6=2j} =v{(x, y)eZ: x,2k,, iS4}
é V{(x, y)e‘T: yﬂgkﬂr léé_g]} = TCT{yE.%": ylgkﬂa léﬂé]},

where ve # nJ is such that the first and second marginals are y and 7, re-
spectively and such that v{x<y}=1. Letting y 1y, we have

wxeZ:x, 2k, is45j} S ny{xeZ:x, 2k, iSCZj}

by the continuity of n,. Since the opposite inequality is verified similarly, it
follows that u=m,. Thus ext(# NS )c{n,: 0Sy=<oo}. The reverse inclusion
is clear by (iv) of Theorem 2. [J

Now we will prove Theorem 4. First we improve Lemma 4 for the general
case.

LeMMA 4'. Let 0<oy.<1. Then there exist ie N and 6,>0 such that for
all (xs y) With Gm(x9 y)..Z.‘O-*

Pi((x9 y)’ {(X,, y,): aoo(x9 y)_aw(x,a y/)gé*}) =1
The same statement holds for o_ .

Proor. Choose L, by, 2, B(j), 1, q4« and 8, =qb,/(47) as in the proof of
Lemma 4, and fix (x, y) with 6,(x, y)=0,. Write {j,<j; <--}={j=0: sp;(x,
y)=24}. Since P ,-a.a. w satisfy (13) and (14), it is sufficient for the proof
to show that

T(X, ¥) — 6 (W(D) 2

under the assumptions w(0)=(x, y) and (13) & (14). Let us fix such w. If
aO,n(x9 y)§(2/3)6*9 then

S04 (W(D) = so.u(x, y) + 21 £ (2/3)(n+1)oy + 21
by (14). If 6o, (x, )>(2/3)0y, then
${0>0: 0<(jaz, + 12E<n} = [{n(04/2)— 3(n2-L + 1)}/(2L4H)] -2

by (11). Hence, given ¢>0, for all sufficiently large n witn o,(x, y)>(2/3)04
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(n + 1) (aw(x9 y) + 8) - So,n(W(i)) > sO,n(x9 y) - SO,n(w(?))

> #{¢>0:w eA,-“ﬂ, 0<(jazs+1)2L<n} — 2t (by (14))

2 #{£>0; 0<(jss +1)2E<n}(qs—e) — 2 (by (13))

2 [{{n(g4/2)—3(n2"E+ 1)}/(2%41)} — 2] (g4 — &) — 21,
that is,

S0 (WD) = (n+1)(0,(x, y)+¢)
— [{{n(o4/2) = 3(n27L + 1)}/(2141)} —2] (g4 —¢) + 21.
Therefore

lim sup, ., ,, 6o .(W(?))
< max {o,(x, y)+e—{(04/2)—3-27L} (g« —&)/(2147), (2/3)0*} .

As ¢ is arbitrary,
0o(W(D) S 05(x, y) — {(04/2)—3-271}q*/(2141) < 0,(x, ¥) — Ox,
which was to be proved. 0

Just like c(x, y) let &: F—{0, 1}Z be a map defined by &(x, y);=1 if and only
if i is the right-most site of some plus or minus cluster associated with (x, y).

LEMMA 6. Supposev{(x, y): 6_ (X, y)=06,(x, yY)=0}=1. Then there exists
an increasing sequence {n,},.x of positive integers satisfying lim,_, ., W(C,,)=

0, where
Co={(x, Y)eZ: c(x, y)-pt+c(x, p)p+x, y)_p+&x, )21}, neN.

ProOOF. It is enough to show that for any e>0 and L eN there is ¢ € N such
that /> L and v(C,)<e. Assume the contrary, that is, for some ¢>0 and LeN
it holds that v(C,)=e¢ for all /> L. Then for

h(x, ) = @n+ 171 X4y <a {e(x, )i+, Y)i}

we have

liminf, _, S_ h(x, y)dv(x, y) = ¢/2.
x

On the other hand, the assumption of the lemma implies
v{(x, y): lim, ., , Qn+1)74{i: c(x, y);+8(x, y)i21, li[Sn}=0} =1,

and hence
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fimy oy {_ G )5, ) = 0
z
by the dominated covergence theorem. This is a contradiction. 1l

LemMa 7. For any ve #
V{(%, 1)1 55(x, Y)=lim, ., o 5_p (%, )2} = 1.

Proor. Forve# nZ we proved v{G(x, y)=0}=1 in the proof of Lemma 5
using Lemma 4. In the same way, for ve .# we can prove v{c,(x, y)=0_,(x, »)
=0}=1 using Lemma 4’. Then by Lemma 6 there is an increasing sequence
{n(€)}yen of positive integers satisfying lim,_, ,, W(Cp(py)) =0. Let us show v(F;)=0
for all i € Z where

Fy={(x, y): e(x, y)i=c(x, y)i+1=1}.

Assume the contrary, that is, v(F;)>0 for some i. Since ve#, (Eq) with
9(X, ¥)=S_na)+1,n0y-1(%, ) is written as

a 0=y o6 - {_PCx 0 dix, yDaCe, 32}

-
Cn(2) Cn(p)

By the definition of P((x, y),-) the integrand of the second term in the r.h.s. is
nonnegative for all (x, y) e C;(;). Hence for £ with n(¢)>|i|+2

= > —_ c .
(17) SC:(E) = SC:(Q)ﬂFg = a(l a)v(cn(g) n F‘) .

The last inequality is obtained by considering that if the particle at i+ 1 (of x or y)
jumps to i and the one at i (of y or x resp.) does not, then at least one cluster
disappears. More precisely, if (x, y) € C;(,y N F; then

P((x’ y)’ ng"v)) g “(l—a),
g(x,») —g(x',y)z1 for (x,y)eE®Y,
where
E&F = {(x', y): (x, y)=(x', ¥), xi=yi=1}.

Therefore if we let £— 00 in (16), noticing that the first term in the r.h.s. is not
smaller than —2v(C,,)), we have a contradiction. Thus v(F;)>0 can not happen.
It is not so hard from v{s(x, ¥)=3}>0 to derive v(F;)>0 for some i € Z (see the
proof of Lemma 1). Hence v{s,(x, y)<2}=1. O
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PrOOF OF THEOREM 4. By virtue of Lemma 7 the argument given in the
proof of Theorem 1.4 of [7] is also applicable to our case. It is enough to show
that ext S c{n,: 0Sy< o0} U{@,: neZ}. Take any u, eext.# and put p,(-)=
(- +1) (atranslation of ;). Itisclear that
(18) ITT7=m D {xixi 1 =01} — pp{x;x; ., =01}]] < 1;

which corresponds to the assumption of Corollary 5.3 of [7]. By Proposition 2
there is v e ext Z with marginals u; and p,.
Let us show

19) vixSy}=1 or v{x=y}=1.
(Eq) for the number of coupled sites f,(x, y)= X j; <o{l —|x;— y;|} is written as
(20) 0 = Zylzlns D E2)P([2)ns 15 [21) Uul[2]0) = fullzDn+ )} »

where the summations 3, and X ,, are taken over all configurations [z],, ;=
[(ai, b)jij<n+1] and [2],=[(a, Ei)|i|§,,] respectively. The variation f,([Z],)—
f[z],+ 1) of coupled sites is divided into two parts; the increment fi*([z], ., [Z],)
caused by the movement of particles staying in the interval [—n,..., n] and the
variation f24 caused by that of particles crossing the boundary (—n—0 and n+0).
Then (20) becomes

@) 0= X y([zls+ DEP[z]n+ 15 [£1) S ([2]n+ 1> [2]0)
Foalv{x 1=y =0, X, Ay} VX =Y F Y =X
+ VX # Vs Xn4 1= Ynr1=1}
+ VX 1 =Xy =Yne1=1#yp=Xp 41
‘ OF Ypo 1 =Yu=Xp41=1#X,=Yp11}
+ (=ov{X,o 1 =Yp=Xp s 1 =0#X, =Yy,
OF Yy 1 =Xy =Yn+1=0#y,=X,14}
VX1 F Yoot Xy =Y =1 =X, =y, =0, Xpu i # Yauid
=X, 1 =Y, =Xy =0#X, =Yy y
OF  Ypo1=X,=Yps1=0#y,=X,4,}]
for n>1. By the same reason as for (17) the first term in the r.h.s. of (21) is not
smaller than ol —a)v{x;=y;,1#y;=x;4,} for |i|+1<n. By (18) the Cesaro
limit of the second term as n— oo is zero (see the proof of Corollary 5.3 of [7]).

Hence v{x;=y;+#yi=xX;;13=0forallieZ. Assume (19) does not hold. Then
Lemma 7 implies that v(B)=1 or v{(y, x): (x, y) € B} =1 where B={(x, y): Jio€Z
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such that x; <y, for all i<i,, x;<y; for infinitely many i<i,, x;=y; for all j =i,
and x;>y; for infinitely many j=io}. Since ved, v{x;=y;11#)i=%;+1}>0
for some ieZ. This is a contradiction. Thus we get (19).

Now it is not so hard to follow the route laid by [7] if we notice that

paf{xi % =01} = py{xpx;4, =01}, i€Z,
which follows from (Eq) with f(x)=x;. O

§5. Stochastic properties of the drift of particles

In the previous sections we have been concerned with the structure of
stationary measures for the Markov process (MP). In this last section we consider
some statistical properties of a particle under the time evolution in the stationary
state.

Suppose the configuration at t=0 is x=(---x_,x_;1x,---)€Z and evolves
according to the transition probabilities P(x, 4), xe &, A€ #. Then the particle
which was located at the origin drifts to the left. Problems are

i) what the expected value m, of the drift is
and

ii) what the variance 62 from the expected value is.

We will consider these problems under the assumption that the distribution u of
the configuration x at t=0 is m, (yeR). Recall that Theorem 4 states that if
0<a=1/2 then =, is an extreme point of the set of stationary measures for (MP).

Let % be the path space £T with the Borel structure & generated by cylinder
sets {ue: u(s)e 4, s=0,...,t}, A,e#, teT. Fix O<a<l. For 0<y<w
define a probability measure &, on (%, &) by

F) = |_7,0PF), Fes,
x
where P(-), x € Z, is a measure on % defined similarly to P, ,(-) in §4. Set
U* ={ue#: u(0)=(-x_;1x,---)}

and denote by {3 the conditional probability measure of ¢, with respect to #*,
that is,

(22) &G = &G nam)E(*) = A+p)E,(- n@*).
For ue#* let ro(0)=0 and
r(0) = max {i<0: >72,u,(0)=n}, neN,

which represents the site where the n-th particle from the origin is seen to the
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left at 7=0. For each neN and e T we denote by r,(t) the random variable
on (#*, £¥) which represents the position of the particle at time ¢ which started
from r,(0). Let B be the positive number satisfying (1). Then we obtain

THEOREM 5. (i)
EHuew*: ro(s—1)—ro(s)=e, s=1,..., t}
= I—I;=1(ﬂ}0es(l _ﬁ}))l_e"'9 (ela”" et) € {O’ l}ts IGN,

and hence

@ m, = ro@eEw = pn

i) o7 = (ro()—mes(au) = Byt~ By,
(iv) (central limit theorem)
{ro(®—m}jo,—3> N(0, 1) as t— oo,
where N(O, 1) is the normal distribution with mean 0 and variance 1.
The theorem is an immediate consequence of the following lemma:
LEMMA 8. ForallteT, t=1,

ro(s—1D)—rys)=e, s=1,..., t,

44 [ ueuU*
ry_(®)—rt)=z,, ¢=1,..,k
= {TTies B1)(1—B7)' =} {TTh=1 S (2}
(z45---, 2z ) eNK, keN, (ey,..., ) € {0, 1},
where f(-) is the p.d.f. defined in Theorem 2.
Proor. We first show
(23) S{uew*: ro(0)—ro()=e;, ry_ (1) —1,(1)=2,, £=1,..., k}
= (By(1—By)' "o T15=1 f(z0)

for every e, €{0, 1} and (z,,..., z,) e N¥, ke N, which is the assertion of the
lemma for t=1. Suppose z=2z,+---+2z, and

xo=1; x;=1foriwithi=—31_,z; £=1,..., k;
xXeX

and x;=0 for the other i with —z<i<0

= —z[la—z+1'”a—2a—ll]0 = A.
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Note that A+1=_,_,[la_,,,--ra_,a_,;1]_,. Then by (22)
uea*: ry_()—r()=2z,, £=1,..,k}-(1+y)!
= {ue: u(0)=uo(l)=1, u(l)e A}
+ E{ue: uy(0)=1, uo(1)=0, u(l)e A+1}

= _,-,[b_,_,b_z,---b_llbl]xwam(l_a)"n’[b_’_lmlbd
+ _,_,u,_,-1b_z,...b-,ou,m°‘m(1”“)"”7“’"“""1’"‘01]
=S5;+8S,
= m,(A) (by (Eq))
= fo(1)-TT§=1/(zp) (by (2)).
Therefore
(24) uew*: ry_()—r()=z,, ¢=1,...,k} = [Ti=, f(z,).
Further it holds that
(25) S:/S, = (1 —By)/By for all (z,,...,2).

In fact if (%4, + #,0)(4) >0, by the same simplification as in the proof of Theorem 1
(the case that (a;, a;))=(1, 1))

S; =(1—a)y Ffoa+IN(—2z—-1,0; k+1),

S, = (1—o) for* Y (g/(1 —a))N(—z—1, 1; k+1);
and hence S/S,=(1—-8y)/By. If (¥, +#.0)(A)=0, that is, if
A=_,[11-.-11],, then

Sy =(1-a)n,(-,-,[011---11]o) + 7,(-,-([111---11],),
S, = (1-oan,(_,_,[011---101],) + anm,(_,_,[111---101],);

and so
S1/S; ={(1-)N(—z—1,0; k+ 1)+ L(—z—-1,0; k+2)}
x{aN(—z—1, 1; k+1)+al(—z—1,1; k+2)}~1
= (1-By)/By.
Then combining (25) with (24) we get (23). Notice that (23) implies
(26) &3 {ro0)—ro(1)=e,, u(1) e (E+ey)}

= (By)(1—By)'~:&3{ro(0)=0, u(0) € E}
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forall Ee B_, 0=0(\Vi<j<0 %i))-
In order to prove the lemma for t=2, we set
F = o{r (), n=0, 1,...; te T} (cF);
F+e ={ue#:3ueF st u()=uj, (t) forall i and t}, FeZ,
(the translation of the set F to the left by e;) ;

1G = {ue@: W' eG st u(t+1)=u'(s) forall teT}, GeF;

and define
| FoelF) = E({ro(0)—ro(l)=e1} N o(F +e1))/ &5 {ro(0) —ro(1)=e,} .
Then

¥ e {u(0) e E} = E*{u(0)e E} forall Ee®

¥v.€e1 - 00,0

by (26), and hence &¥ , (F)=¢3(F), that is,

7se1

E3({ro(0)—ro(1)=es} N o(F +e,)) = (By)*:(1 - By)'~ &5 ({ro(0)=0} n F)

for all Fe#. If F={ro(0)—ro()=e,, r,_;(1)—r,(1)=2z,, 1<£=<k} in the
above, we have

&{ro(@—ro(D)=ei} n{ro(1)—ro(2)=e;, 1, () —ry(=2z,, 124 <k})
= {I1&: (By)e=(1—py)' =} AT 1k=1 f (2}

by (23), which is the assertion of the lemma for t=2. In the same manner, by
defining &¥ , .,....,_,(-), we can prove the lemma for all te T inductively. [

REMARK 4. By (i) of Theorem 5 it is known that under ¢* the particle
located at the origin at t=0 acts as if it is a random walker on Z which moves to
the left with probability By and stays with probability 1—fy. By Lemma 8

SMHuew*: ro()—ri(D22, ro(s—1)—ro(s)=e, s=1,..., t}
= (1 =fW) [ T5=1 (By)e=(1—By)' e,

which implies that the conditional probability that there exists no particle at the
left-neighboring site of ry(¢) given ro(s—1)—ro(s)=e,, s=1,..., t, is 1 —f(1) for all
(esy.-., €)€{0, 1}', teN. Since fy=0o(1—f(1)) by (1), we can understand that
the transition rate fy is determined by two elementary probabilities: the proba-
bility 1—f(1) that the site ro(f)—1 is unoccupied and the probability « that a
particle at ry(¢) jumps to the left when it is unoccupied.

ReMARK 5. If we consider (ro(t)—r(t), ri(t)—ry(8),...), teT, as a time
evolution on the state space NV, then Lemma 8 implies that the product measure
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T151 fu (fi=f, £€N) is a stationary measure for the process. (This is a special
case of the so called zero range process.)
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