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§ 0. Introduction

Since F. Spitzer introduced interacting Markovian particle systems in [11],
Markov processes on the configuration space Sxd or SRd (S={0, 1,..., n} or
{0, I,---}) have been investigated by many authors, and various results are obtained
(see, for example, [4, 8, 9]). Those results are, in many cases, about the processes
such that the time parameters are continuous and the number of sites in the
configuration at which changes occur at the same time is finite. In this paper
we consider a Markov process on ^ = {0, 1}Z such that the time parameter is
discrete and the sites at which changes occur at each time are infinitely many.
If we consider the important roles which discrete time stochastic processes play
in the theory of probability, it seems worthwhile to investigate discrete time
Markov processes in the field of interacting infinite particle systems ([2, 3]).

Let x=(---x_1xox1---) be an element of ff. According as xt=l or 0 we
consider that the site i is occupied by a particle or not. Then x e i represents a
configuration of particles on Z. We introduce a time evolution on 2£ as follows
(for details see §1). Suppose the configuration on Z at time f is x = (• • x_ 1xox1 • • •)•
Then as time increases from t to t+1 each particle of x moves to the left by one
step with probability a (0<a<l) independently when its left site is unoccupied,
that is, a particle at site i can move to the site i — 1 only if x£_1=0, and
this transition of particle occurs independently in the configuration x. Therefore
infinitely many particles can move simultaneously when #{l: xlxl+1=01} = oo.
Getting a new configuration x'=(---xl1Xoxi---)e^ from x at time f+1, we then
apply the same transition rule to xr and so on. Thus a time evolution is obtained
as a Markov process on {0, 1}Z, which we call, following [6, 11], an exclusion
process on Z. It should be remarked here that our exclusion process can be
thought of as a simple model of semiconductor which is in a (static) electric field
if we regard xt = 1 and 0 as plus and minus charges respectively.

We define in §1 the transition probabilities of the Markov process stated
above precisely and give a sufficient condition (Su) for a translation (=shift)
invariant probability measure on & to be a stationary measure for the process
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(Theorem 1). In §2 we define a family {ny: 0 < y < oo} of Gibbs states with nearest
neighbor interaction on Z, and show that each ny satisfies the condition (Su)
(Theorem 2). In the one-dimensional case nearest neighbor Gibbs states are
renewal measures. In §3 we show that the extreme points of the convex set of
probability measures on 9£ satisfying the condition (Su) are exhausted by {7ry:
0<y<oo} and trivial measures {TT0, TT }̂ (Theorem 3). The structure of the set
J of all stationary measures is discussed in §4 under the assumption that 0<<x^
1/2. It is proved that the totality of extreme points of J is {nY: O^y^oo} and
{Gn: n e Z} (Theorem 4), where 0n is a Dirac measure concentrated at the point
0n = (Xi)ieZe3r9 Xi=l for i^n and xf = 0 for i>n. Then it follows that (Su)
is also a necessary condition for a probability measure with zero mass on {9n:
neZ} to be stationary. Thus the structure of J is completely determined.
In the last section we study the stochastic properties of a particle under the time
evolution with respect to the stationary state nr Suppose ro(t) is the random
variable that represents the position of the particle at time t which was located at
the origin at t = 0. Then it is shown that {ro(f)9 t = 0, 1,...} has homogeneous
independent increments, i.e., {ro(t) — ro(t — l)}te^ is a Bernoulli sequence. There-
fore the mean mt and the variance <r? of ro(t) are calculated explicitly, and a
central limit theorem is obtained (Theorem 5). In general it is not so easy to get
the mean and the variance of a marked particle. A correspondence between the
random variables {ro(t)9 f = 0, 1,...} and the so called random walks is considered
in Remark 4.

The structure of stationary measures for the simple exclusion processes
with continuous time parameter such that the number of sites in the configuration
at which changes occur at the same time is two was investigated to the full extent
by T. M. Liggett in [7]. It is proved there that the extreme points of the trans-
lation invariant stationary measures are of the type of product measures, that is,
Bernoulli measures. In our system, the extreme points of the translation invariant
stationary measures are nearest neighbor Gibbs states. Because Bernoulli
measures can be regarded as Gibbs states with no interaction potential, the
mechanism of transition of particles of our system seems to be more natural (cf.
Remark 1 in §1).

§ 1. Transition probabilities and a sufficient condition for stationary measures

In this section we define transition probabilities of the Markov process
described in §0 and give a sufficient condition for a probability measure on {0, 1}Z

to be a stationary measure for the process.
Let & be {0, 1}Z, which is the state psace of our Markov process. An

element of 2£ is denoted by (•••x_1xox1---) or x shortly. We assume that the
time parameter t takes its values on the set T={0, 1, 2,...}. For i, j e Z, i ̂ j , put
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i-«/V- (*i=0 or 1, ig££j},

where

and ^.j^a^j), the tr-field generated by Vu. Let «'={<|)}U(W|iy^u) and
38=&(<&). The elements of ̂  are called the basic cylinders. Subscripts i and
j in ,-[•••]; are sometimes omitted. The following lemma tells us that two proba-
bility measures on (#*, @) which have the same values on ^ coiiicide.

LEMMA 0. Suppose \x is a nonnegative function on & satisfying
(i)
(ii)
(iii) (consistency condition)

Pd[ar>aj]j) =

for all [ar • -a^] e ̂ fw, i, 7 e Z, i ^ j .

Then p. is extended uniquely to a probability measure \i on (&, &).

Now let us define transition probabilities of our Markov process
using Lemma 0. We denote xt>j/ if .y=(---)>-iyo)V") *s obtained from x =
(•••x.tXoXi--) by substituting some of (possibly infinitely many) xAxi + 1 = 01's
in x with 10's. Note that the replacement x£x£ + 1 =01 by >>£.)>£+1 = 10
corresponds to the transition of particle at £ + 1 to £. Given two basic cylinders
i-i[*i-i*r--*i*/+i]j+i a n d ilat"'ajlj w e w i U write [xi-i—Xj+J^a,...^] if
we can choose «;_! and a i + 1 , which are uniquely determined, such that ai-xty—
ajaj+1 is obtained from xi_1«««Xy+1 by substituting some of xAxA + 1=01's with
10's ( i - 1 ^ ^ ^ ; ) . L e t 0 < a < l be a fixed constant.
and A^lcLi-'-aj] e &itP define

f ni= f-ia*41)-(l--a)*i2) if [^-i-'-

t 0 otherwise,

where

I
I if x £ x £ + 1 =01 / 1 if

and aiajL+l = l0 = ) and ai,a£+1 =01
(k=2) J

0 otherwise, I 0 otherwise.
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Since P(x, •) satisfies the assumption of Lemma 0, we can extend P(x, •) to a
probability measure P(x, •) on (3T, @) uniquely. The measurability of P(-, A),
Ae<&9 and the fact that &(<&) = & imply the measurability of P(«, A), Ae@.
Thus transition probabilities P(x, A), x e f , Ae @, which determine a Markov
process (MP) on {0, 1}Z, are defined. It is not so hard to check that P(x, A)
describes our exclusion process. Indeed, by the definition of P(x, A), the tran-
sition of particles occurs independently at each site of x with probability a when

=01; and further, infinitely many particles can move simultaneously if

A probability measure \i on (3£, &) is called a stationary measure for the
Markov process (MP) if

(Eq) ( dfi(x)f(x) = ( dfi(x) \ P(x,
Js- Jar Jar

for all bounded measurable functions/. The set of stationary measures for (MP)
is denoted by J. Lemma 0 implies that if (Eq) holds for all indicator functions

, that is,

(Eq)' AiG[fl|-fly]y)= Z ^ ( l - a ^ G - i C ^ - i - ^ + J y + i ) ,

(m= ̂ I^m-r -^ i ] , Or-fl/l), n= ̂ Z^^),

then /i e . / .
A probability measure ^ on (#*, ^ ) is said to be translation invariant if

fi(A + £) = n(A) for any A e & and t e Z where

there exists x = (---x

such that j j = xf+£ for all i e Z{
The set of translation invariant probability measures on (#\ £8) is denoted by « \̂
Notice that the translation invariance of pi allows us not to specify the coordinates
of cylinders in measuring the elements of <g, that is, to wirte ^[010101], for
example, has its meaning. A sufficient condition of stationary measures is now
stated as follows.

THEOREM 1. Suppose a probability measure \i on (#*, $8) satisfies the
condition

(Su)

(i) fi is translation invariant,

(ii) (1-a) *°*a*"-a*nlai—aJ'] = ( l - a ) ^ ^

for Jiai—ajlj and *[>*•••&/],• in <€ with

a. = bi9 aj = bj and £i=i a£ = XUt &<
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where

Then fi is a stationary measure for the Markov process (MP).

The proof of Theorem 1 is elementary and straightforward. Therefore we
only give the outline of it. For the proof it suffices to check that (Eq)' holds for
all [ai-~aj\e<& under the assumption (Su). If #oi[^r**
it is verified directly, such as:

= A<i[000]l+2) + (l

+ aK,- i [0100] l + 2 )

(by (SuHii))

= M»[00]i+x) (by (iii) of Lemma 0 and (Su)-(i)).

For the general {.a^'-aj] we use the following notation:

k k

0011 - 1 ] , ) , R(i, j;k) = MiEO- • 0011 - 1 0 ] , ) ,

Hi, j;k) = ndio- • -ooiw],.), B(i, j , k) = Mf[i • • • i loo- • -0],.).

If fe represents 221=*^ for [at'"aj] 6 %,j then

. a ; _ 1 l ] = N(i,j; fe),

aj-iO] = R(i,j; k),

.aJ._1O]=B(i,j;/c)

by (Su)-(ii) provided (#Oi + #io)([ar"aj])>°- The consistency property of
also implies

; k) = N(i,;; k),

i J ; fe) - « ( i j + l; fe)} = JV(U + 1;

and so on.
Now suppose #oi + :":io>0 f° r Lai'"aj] a nd fe=Zi=i^jn- Then (Eq)' for

/i is proved as follows:
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N(i, j;k) + (a/(l - a))JV(i - 1 , j ; fc +1) if (a,, a,) = (0, 0)

+ aN(i-l,j; fc + 1) + (a2 /( l-a))JV(i-1,; + 1; fc + 1)

if («„«,) = (0,1)

if (ai; a,) = (1, 0)

i, j ; fc) + (a/(l-a))JV(i, j+1; fc) if (af, a,) = (1, 1)

(by (Su)-(ii) and by (iii) of Lemma 0)

Further if (ah aj)=(0, 0), for example, we have

N(i,j; k)

= N(i,j; k)

= N(i, j + l;k + i) + R(i, j + l;k) + (a/(l-a))JV(i, j +1; k+1)

-a))AT(U + l; fc+1) + U(i, j + 1; fc) = R(i,j; fc)

+ 1-"fl_,_10]. D

REMARK 1. In [7] Liggett investigated the structure of stationary measures
for the simple exclusion process with continuous time whose generator i3<x> on
^ij-measurable functions / is of the form

P(k, £){f(xki)-f(x)},

w h e r e x k i = ( • • • x k - 1 x i x k + 1 - - - x l - 1 x k x l + 1---)

f o r x = ( • • • x k _ 1 x k x k + 1 - - - x l - l x i x ! l + l - - - ) .

If we consider another exclusion process defined by the following (bounded)
operator

where the summation is taken over all configurations y^-yj with J - ^ X J . ! - - -

^j+ily+i^iC^r"^]^ ^ is s e e n easily that \i satisfying the condition (Su) of
Theorem 1 is a stationary measure for the process, that is, \ Q(2)fd/Li = 0 for all
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fe @(Q(2)). Note that O(2) permits the transition of particles at infinitely many
sites likewise in (MP).

§ 2. Gibbs states as stationary measures

In this section we give stationary measures satisfying the condition (Su) of
Theorem 1 and show that they are Gibbs states with nearest neighbor interaction
on Z.

Let a ( 0 < a < 1) be as in §1. Take P ( 0 < £ < a ) and y (>0) such that

(1) l - a = (l-/O(l-ftO i.e. a = p(l + y-py).

When p varies from a to 0, y varies from 0 to oo. Define a nonnegative function
ny on # as follows:

ny(4>) = 0

B,G[a,-ay-iO]>) = (?/(l + y» x (1-j?)*00 x

(1-/O*00

where %uv = %uv[.ai"'aj-iaj] = %{^: aias, + i=uv9 i^tf^j — 1}. Since ;cy satisfies
the assumption of Lemma 0, it is extended uniquely to a translation invariant
probability measure ny on (#", ^ ) . We remark that

7Ty[l] = 1/(1+7) and 7iy[O]/7ry[l] = y.

Set

Then we have

THEOREM 2. (i) 7ty is a stationary measure for (MP) satisfying the con-
dition (Su) of Theorem 1.

(ii) ny is a renewal measure on (JP9 3§) corresponding to a renewal process
whose probability density function (p.d.f) of the interarrival time is given by

f(n) =

(ii)' ny is a Gibbs state with nearest neighbor interaction on Z with the
chemical potential J1 = { — 21og(l—f})— logy} -kTand the interaction potential
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J2 = {log(l-j3) + log(l-j8y)}-/cT, where k is the Boltzmann constant and T is
the absolute temperature.

1 if yf = y
(iii) y r

[ 0 otherwise.

(iv) In the weak topology ny is an extreme point of the compact convex set
3~ consisting of all translation invariant probability measures on (#", £8).

For the reference of readers we state below the definition of the terms used
in the theorem.

DEFINITION 1. A translation invariant probability measure fi on (&, &) is
said to be a renewal measure if there exist p.d.f.'s/0 and/on N satisfying

for every [a1'-aj-ll'] e c€1 j9 j ^ l . Here we used the notation

k=ldi=iaSi (aj = l) and rj^ = min {t: £<=1 as=£}, 1 ̂  £ ^ k.

Note that if we regard £ with a £ = 1 in the left hand side of (2) as a renewal
epoch of some renewal process, then the right hand side of (2) states that the
p.d.f. of its interarrival time is given by/(cf. Chap. XI of [5]).

For iJeZ, i<Lj9 let @c
Uj be the a-field generated by ^> £ , k^£<i and

DEFINITION 2. A probability measure ix on (#", ̂ ) is called a Gibbs state
with nearest neighbor interaction on Z with the chemical potential Jt and the
interaction potential J2 if its conditional probability li{\_ai--aj~]\&c

ifj}(x) of
[<V • -aj] e tfij given &c

itj is equal to

Sijix)-' exp j

where Sitj(x) is a normalizing factor which depends on i, j and x = (xt)ieZ.

PROOF OF THEOREM 2. (i) is clear from the definition of ny. For (ii) and (iii)
let/0 be a function on N defined by

[ ( 1 ^ 1 ( 1 ^ 2 ( ^ / ^ 1 n = 2, 3,...,

and / be in the theorem. Since Z^1 /0(n)=In
aL1 /(n) = l by (1), f0 and / are

p.d.f.'s on N. Note that

Z?=i n/(n) = 1 + y =
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Since

(3) ^ylai"'aj_1lbj+l'"bk] = 7iy[ai--aj_1l']ny[lbj+l--bk]/nyll]

by the definition of ny we can see that ny is a renewal measure with the above f0

and/. Therefore if we define random variables rjh i e N, on (j%, 8§, ny) by

rjt(x) = min{/c: E S = i ^ = 0 for x = (••oc_1x0x1--),

then ^ and rji+1—rjh i e N , are mutually independent and their p.d.f.'s are given
by / 0 and / respectively. Moreover the law of large numbers implies

l i m ^ ^ n~1{rj14- Z?=i fe+i ~^ )} = 1 + 7 ny-a.a.,

and hence

which proves (ii) and (iii).
Since the ratio

exp (k T)-i{Jx Zj=i

r M i + r t J ^ R i - W W * } - " - ^ if (*i-u xJ+1) = (0, o)

[ -(y"'+2) if (xi-i, xy+1) = (1, 1)

is independent of {.a^'-aj] e ^Uj given J C ^ and xJ+l9 we can easily show (ii)'.
By the renewal theory (cf. page 360 of [5]) we have

Therefore

m=l £i + - + £ w = £

(by (3) and the definition of ny)

which implies ny is mixing with respect to the translation:
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Hence we get

lim

(iv). D

ny(A{\

Hirotake

i(B+O).

YAGUCHI

= ny(A)n

§ 3. Convex combination of the Gibbs states

The purpose of this section is to prove the next theorem which determines
the structure of the compact convex set £f of all probability measures satisfying
the condition (Su) in Theorem 1.

THEOREM 3. Let nv 0<y<oo, be as in §2 and no = 8l9 1 = ( •• l l l - )> and

7ro0 = ̂ o> 0 = (--000--), where 5X is a Dirac measure concentrated at x e l
Then the set e x t y of extreme points of Sf is {ny: O^y^oo}.

REMARK 2. It follows from Theorem 3 and Choquet's theorem ([10]) that

every iieSf can be represented as //= \ nytnu(dy) for some probability
J[0,oo]

measure m^ on [0, oo].

We divide the proof of Theorem 3 into several steps. Set

M 2 = J N ( M 1 U { 0 , 1}).

It is easy to check that

(4) /z(M2) = 0 for every translation invariant probability measure \i on 9£.

LEMMA 1. Suppose \ieSf and iu[ai---aJ] = 0 for some [ai-'-ajjetf with
Then ii = pno + (l — p)nao for some ps(09 1).

PROOF. Since /i(M2) = 0 by (4), it suffices to show that )u(M1) = 0. By the
translation invariance of ft we can assume that j = — 1 and i= —n (n=j — i+1).
For h,keZ, h<0<k, set

Kk = {xeMx: max{d<0: Hjid(l-xs) = n + l} = h,

Then Mhtk are mutually disjoint and Mx — \jh<Q<kMhfk. Let us say [06 i+1---
bj.^ e Vtj is linked to [ftjfej + 1---ft<j_1ftj] e <eu if the latter is obtained from the
former by replacing some of bSib& + 1=OVs (i^£^j—l) with 10's. Note that if
ju[0fei+1---6J_1l]>0 and is linked to [b'f-bj] then ju[b;---fcj]>0 (in fact, the
r.h.s. of (Eq)' for [fcj---b}] contains ^ [0 f t i + 1 -b J _ 1 l ] multiplied by aw(l — a)w).
Assume fi(Mhk)>0 for some /i and k. Then there is a basic cylinder [0fefc+1--«
b fc . i l j e^ j t such that / i [0b^ + 1 -b f c _ 1 l ]>0. By considering a linked chain
from fcCO&fc+^'-ft-^o&i — fejk-il]* to / l[Oll--ll0_n-fl_1OO-OOl] fc via
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1100-..OObo&i-"&k-ilJk, we have |i(fc[011-llfl_II—fl_100--001]k)>0, which
implies ju[a_n--a_ l]>0. This is a contradiction. Thus fi(Mhk) = 0 for all h

and fc, and hence JU(M1) = 0. Q

We remark that if \i e S? then

(5) /4>¥*i+i---a/] = i "K" -« i + i « J for every [ 0 , - 0 , ] .

(By the translation invariance of \i it is not necessary for us to specify the coordi-
nates of cylinders in (5).) Indeed we have

by (Su)-(ii), where s = # 0 1 [ O a i + 1 - - a J _ 1 l ] - l and t = #01[l& i+1---fry_10]; and
moreover

= ju[OOO] - ju[OOOO] - ^[00010] - /x[000110]

= ju[OOO] - /i[0000] - ^[01000] - ^[011000]

= li[\ 11000].

LEMMA 2. Suppose pi e ext ^ and /x^ TT0, TT^.

/or a// ai-'-aji and 0<q, q'<1.

PROOF. Let X be a nonnegative translation invariant function on ^ defined
by

X(4>) = 0, ![0a r • a,] = |i[00flr -ajj

= (1-aMOl] + a/i[001]
« n —1

Since X satisfies (iii) of Lemma 0 by (Su), we can extend X to a finite measure X
on (#\ ^ ) uniquely. A has the property that

Indeed if min {af, cij}=0 this is obvious from Lemma 1 and (5). If a^a^—
we have, for example,
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.} (by (4))

-11] + | i [ 0 0 1 1 1 - l l ] + /x[001111-ll] + ••• (by (Su)-(ii))

< )u[011-l l ] + /i[0111 -11] + / i [01111-l l ] +••• (by Lemma 1)

= /x[ l l . . . l l ] (by (4)).

It then follows that

0 < l(%) < /*(#*) = 1 and X(A) ^ n(A)9 Ae@,

which allows us to define two probability measures fil and fi2 on (#*, ^ ) by

^ = (\-X{%))-\n-X) and /*2 = 2(^)"U

respectively. Then fiiE^, i = 1, 2, by the definition of A, and

, i = l , 2 , 0

which implies Mi=/*2 since / i e e x t ^ . Then a direct computation gives us
2 = (A(^)/)u(^))/i. Thus ^ = A(^)/Ju(^) = iu[00]//i[0]. The second equation is
shown similarly. D

PROOF OF THEOREM 3. It is clear that TC0, n^ e ext ^ . Suppose fi e ext ^
and JUT̂ TTQ, TT^. Let f̂ and #r be those in Lemma 2. By (Eq)' and (Su)

a/z[011]

- a) + (a*/(l - *))qq'

Since /x[01]^0 by Lemma 1, we have

(6) l = * + *'

Set j8 = (1 - f̂)a. By (1) and (6)

It then follows from (4), (5) and Lemma 2 that

AI[001] + J I [0001] +•••

Since ju[O] + ^x[l] = 1, we get
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)(l-f7)-1, /i[0] = y/(l + y) and /i[l] = 1/(1+y).

For [Ofli+1---ay_1l]e^filet

fc = Zi«ifl£ and t = *oi[Ofli+i-fli-i.l]-

Then

Ol-l] , ) (by (Su)-(ii))

and

! - ^ . - ! ! ] = /iG[0...01...1]7.) (by (Su)-(ii))

By (1) and (6) it follows that

—aJ-1i] = 7ry[Ofli+1--fly_1l] for all

These equations imply fi(A) = ny(A), A eft, and hence fi = ny. It was seen in
(iv) of Theorem 2 that ny is an extreme point of Sf. Thus we have ext Sf = {7ry:

D

REMARK 3. The theorem can be also proved by using (i) and (ii) of Theorem 2
instead of (iv). In fact it follows from (i) that {TTyiO^y^ooJc:^ and from (iii)
that 7iy's are mutually singular. It is known from the above argument that ext ¥ a
{ny: O^y^oo}. Therefore ext 9> = {ny: O^y^oo}.

§ 4. The structure of stationary measures

In this section we investigate when the condition (Su) is also a necessary
condition. Let J be the compact convex set consisting of all stationary measures
for (MP). Write ©n for the probability measure on & which has a point mass at
On = (-~xn-1xnxn+1-~) where x f=l for i^n and xt = 0 for i>n. It is clear that
QneJ.

Now we have the following main theorem, which determines completely the
structure of stationary measures for (MP) with 0 < a ^ 1/2.

THEOREM4. Suppose 0<agl /2 . Then QxtJr = {ny:O^y<^oo}[){0n:ne
Z}.

Since each ny satisfies (Su) by (i) of Theorem 2, the next result follows from
Theorem 4 and Choquet's theorem.
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COROLLARY. Suppose 0<a^l /2 . Then the condition (Su) is a necessary
and sufficient condition for a probability measure \i on 9£ with fi{9n: neZ}=0
to be a stationary measure for (MP).

The proof of Theorem 4 can be done by a method of coupled Markov process
([1, 7]). First we consider the translation invariant case:

PROPOSITION 1. Suppose 0 < a ^ 1/2. Then ext {J n ̂ ~) = {ny: 0 g y ^ oo}.

We will define a (coupled) Markov process (CMP) on the state space ($*, J?) =
(#* x 3F9 88 x &) below in such a way that each component of (CMP) is the
Markov process (MP). It is proceeded by determining transition probabilities
P((x, y), C), (x, y)e%!

9Ce<%, satisfying

f P((x, j;), A x 3T) = P(x, yl),' A e ^
(7)

I P((x, y), J x 5 ) = P(y, B\ Be<%.

First we give a local rule of the movement of particles in the configuration
(x, y) = (xh yi)ieZ under the time evolution as follows:

( i ) If xf_ txt = j / f _ 1#yf = 01 at time t then at time t +1
Xf-iXf = ^f-i^i = 10 with probability a,
Xj-iXj = ^,-1^1 = 01 with probability 1—a.

(ii) If xi_2xi_1xi = 011 and yi,1yi = 01 at time t then at time t+1
x/_2xI_1xi = 101, ^j-iJi = 01 with probability a,
Xi-2xi-ixi = 011, j^i-i^i = 10 with probability a,
xi_2xi_1xi = 011, yt-iyi = 01 with probability 1 —2a.

(iii) The exchange of the roles of x and y in (ii).
(iv) If Xi-xX—Ql (resp. ^ - 1 ^ = 01) and none of the above three cases at

time t then at time t + 1
. yi^lyi) = 10 with probability a,

i-tfi) = 01 with probability 1—a.

Then the rule of transition, which determines P((x, j;), •) for 0 < a ^ 1/2, is obtained
by applying the local rules (i)—(iv) independently to the configuration (x, y) (cf.
§1). It is easy to check that P((x, j;), •) satisfies (7).

Denote by J the set of all stationary measures for (CMP) and by F the set
of translation invariant probability measures on 3C. Here we say that a proba-
bility measure v on # is translation invariant if v(C) = v(C+^) for all C e f and
£ e Z where

C + £ = {(x', / ) : (xj, y'i) = (xi+^ yi+it), i eZ, for some (x, y)eC}.

Since every v e J satisfies
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(Eq) [ dv(x, y)g(x, y) = ( dv(x, y)\_ P((x, y), d(x>, y'))g(x', y')
Jar Jar Jar

for every bounded measurable function g by definition, it follows from (7) that if
veJ and \i± and \i2 are the marginal measures of v defined by nx{A) = v(Ax&)
and ii2(B) = v(<%' x B) then fit and fi2 e J.

Let TT be the path space &T = {(x(t), y(t))teT} equipped with the usual Borel
structure, and write P(X,y)( •), (x, y) e if, for a probability measure on W
determined by

r:(x(£\ y(£))eSi9 £ = 0, l,...,fc}

,(" n / / x „ , , x ,4XXX f „ , , .
>c, >̂ ) \ P((x, j ) , fl(x(l), y ( l ) ) ) \ P((x(l

P((x(/c-2), y(k-2)), d(x(k-l\ y(k-l)))P((x(k-l), y(k-l)), Sk)9
JSk-i

fceN, Sie^, £=Q,...,k. The elements of iT are written sometimes by w =
(̂ (OXeT- We denote by Pf((x, y), •), t e N, the f-th iteration of P((x, y), •), and so,

Pk((x, y\ C) = P(x>y){(w(t))teT: w(k)eC},Ce S.

DEFINITION 3. For x9 y e & we will write x^y if xt^yt for all i e Z, and for
two probability measures pix and \i2 on #", write \ix ̂ /x2 if there exists a probability
measure v o n f with the first marginal fit and the second marginal JU2, and such
that v{(x, y): x<>y} = l.

The following is clear by the definition: if x ̂  y (resp. x = j , x ̂  y), t n e n

P'((x, y\ {(x\ / ) : x '^y(resp.x ' = / , x ' ^ / ) } ) = 1, teN.

Given (x, ̂ e f 1 , we will say {i, i + 1,..., j - l , ; } c = Z , i g j , is a plus cluster
associated with (x, >̂ ) if {i,...,j} is a maximal set which has the property that
X; — yt = Xj — yj = +1 and x£ — y^ ̂  0 for all ̂  with i ̂  ^ ̂ j . We permit the case
i=—00 and/or j= + 00. A minus cluster is defined similarly. Note that the
clusters are mutually disjoint. Let sm>n(x, j/), m, n e Z , m^n, be the sum of
numbers of plus and minus clusters which intersect with {m, m + 1,..., n}. We
sometimes write s{m w}(x, y) instead of smfB(x, y). Set

(T̂ Cx, y) = lim s u p ^ ^ (TOiII(x, >>), o'-ao(^> j ) = Hm s u p ^ ^ c_n)0(x, 3;),

a(x, y) = lim,,.^ <FOtn(x, y) (if exists).

LEMMA 3. For any (x, y) e jr and * e N,
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ajx, y) ^ J_ P'((x, y\ d(x\ y'))ajx'9 y').

The same statement holds for cr.^.

PROOF. By the definition of P((x, y), •) each particle of (x, y) stays or moves
to the left-neighboring site under the one step time evolution; and further the
number of sites i with Xi = yt in (x, y) never decreases. Hence for any fixed
(x, y)eSt and k e N,

£>m(x, y)} = 1, 4 ^ m,

which yields

(8) P(x,y) {(w(0),eT: so,n(w(k)) ^ 2k + 50>n(x, JO, n e N} = 1.

Hence the lemma follows by the definition of a^. Q

The next lemma is fundamental to the proof of Proposition 1.

LEMMA 4. Let a* {0<G*<\) be given. Then there exist ? e N and

such that for all (x, y ) e j r with <J(X, y)^.cr*

PROOF. 1 °. Take L = LCtx̂ ) e N so that

fr* = b*K, L) = (2-1(7*-3.2-^)/2^ > 0.

Let Si = {B(j)}jeZ be a partition of Z into

Given (x, .y) e ̂  let C) (resp. C )̂ be the left-(resp. right-)most cluster which
intersects with B(j). Denote by A\Xty)j the set of all paths w e f such that
w(0) = (x, y) and such that during the time from 0 to t the configuration on C) n
B(j) and C} n B(j) has been all frozen and further at least one cluster in B(j)
has disappeared. Then we can choose 1 = ?(L) e N and q* = g*(L, a) > 0 such that

for all j and (x, y) satisfying sB(j)(x9 y)^4. This is possible because the members
of &\BU) (^ e restriction of W to B(j)) are the same and finitely many for all
j e Z ; and sB(.)(x, ^)^4 implies that A{Xty)t. is not empty for all sufficiently large
t. Let us fix such 1 and q* and write ̂ 4y instead ofA[Xty)J for brevity. We remark
that if j \ ^j2 -4lS'"^Js-(s-1)4? then

(10) P(X,yMh n ̂ -2 n ••• n A J = r ii=i
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Indeed if CeJW j B (the <r-field ^w>n is defined analogously to ̂ m>n in §1) then
P((x, y), C) is ^m_i,n+i-measurable and further if DeH$m,tn, with n + 2^m' then

P((x, y), C()D) = P((x, y), QP((x, y), D).

Hence if Ck e <%mtn and £>* e &m>>n>, k = 1, 2, and if n + 4 <; m' then

P((x, y), d(x', y'))n(^', / ) , C2 n D2))

P((x, y), d(x', y'))P((x', /), C2)P((x', y'), p2)
iODi

P((x, y), d{x', y'))P((x', y% C2) • ( P((x, y), d(x', y'))P((x', /), D2)

= Pix>y) {w: w(k) e Q , fc = 1, 2} • P(x>y) {w: w(k) e Dk9 k = 1, 2}.

2°. For ( ^ ^ e f define

b(x, j) = liminf^^ n-^lj^O: sB(j)(x, y)^4, 0<(j + l)2L<n}.

If a(x, y)*£(T* we have fe(x, y ) ^ b*. In fact it holds that

(11)

for all sufficiently large n, which implies b(x, y)^b*. Let us fix (x, y)e& with
( O l put

} = O'^O: sBU)(x, y)^4}.

Then {74?A}A6N satisfies

(12) l i m i n g rri${£: 0<0 4 ? £ + l)2^<n} ^ b(x, j)/(4?) ^ bj(4l).

It is easy from (9), (10) and the law of large numbers to conclude

(13) liming s-1* :̂ weAUw l^t^s) ^ q*

for P(xo>)-a.a. w. By the same consideration for obtaining (8) we have

(14) sOtn(x9y) + 2^sOtn(HW + H^^eAUH,0<(j4U + l)2L<n}9 neN,

for P(xo,)-a.a. w. Combining (12)-(14), we get

*(*, y) - ^ooW?), yQ)) ̂  q*bJ(4T) for P(x,y)-a.a. w.

Hence the lemma holds with 5^ = q^b J(4f). Q
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Let c: ^ - • { O , 1}Z be a measurable map defined by c(x, j ;) = (---c_1coc1---)

where ct = c(x, y)t = 1 if i is the left-most site of some plus or minus cluster associ-

ated with (x, y) and ct = 0 otherwise.

LEMMA 5. For any veJf) 3s v{(x, y): x^y or x^y} = l.

PROOF. Since v e j r , BirkhofF's ergodic theorem states that

<r(x, y) = l i m ^ (n +1)"1 E?=o <x, y\

= l im, ,^ (n +1)"1 Z?= o c((x, y) + Oo

holds for v-a.a. (x, y) and that

(15) [ a(x9 y)dv(x, y) = [ c(x, y)tdv(x, y), i e Z.

Now suppose v{(x, >;): a(x, y )>0}>0 and so there is a o* (0<o-^<l) satisfying
v{(x, y): cr(x, y)xr*}>0. Since v e / , by (Eq) for g = <ro0 we have

0 =

for every t e N. If we choose ? and <5* as in Lemma 4, the second term in the
r.h.s. of the above equation is not smaller than v{<r(x, y)^a^} -(5*>0 for t = h
But this is impossible because the first term in the r.h.s. is nonnegative by Lemma 3.
Thus v{(j(x, y)>0} must be zero, and hence v{(x, y): c(x, j / ) f =l} = 0 for every
i e Z, which proves the lemma. D

For the last step of the proof of Proposition 1 we summarize the necessary
tools below as a proposition which are borrowed from [7] (the proof given there
is also valid for our case).

PROPOSITION 2. (i) / / v e e x t ^ , then each of v{(x, y): x = y}, v{(x, y):
x^y} and v{(x, y): x^.y} is either zero or one. The same statement holds for
v e e x t ( ^ n W) in the translation invariant case.

(ii) (a) If Hi, fi2£^, there is a V G 7 with marginals \ix and )U2. (b) If
fil9 / / 2

e e x t ^ > then v can be taken in ext^J. (c) In the translation invariant
case, if fil9 /*2e«/ [\ &", then v can be taken in J n W. (d) If ^ / i2eext( j^ n
^"), then v can be taken in ext(J n W).

The proof of Proposition 1 is now completed as follows.

PROOF OF PROPOSITION 1. By (iv) of Theorem 2 ny eext{J n F). If fie
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ext (J n &) then either \i g ny or fi ̂  nr Indeed choose v e ext (J n «F) by (ii)-(d)
of the above proposition so that it has marginals JJ, and nr Then by (i) and
Lemma 5, either v{xgj} = l or v{x>y} = l, and hence fi^ny or ja^nr Further
if Org /gygoo and /x^7ry (resp./* ̂  7iy) then ]x^%y, (resp. /*^TTV) by (iii) of
Theorem 2. Therefore for a given /^eext(«/ n ^") there is a y oe [0, oo] such
that jU^7ry for y>y0 and /i^7ry for y<y0 . If fJt^ny9 it holds for all integers i and
j (i^j) and for all (fc,,..., kj)e{0, l}j~i+1 that

where vej 0 ^ is such that the first and second marginals are [i and ny re-
spectively and such that v{x^y} = 1. Letting y f y0 we have

by the continuity of nr Since the opposite inequality is verified similarly, it
follows that fi = nyo. Thus ext(«/ n 3r)<^{ny: O^y^oo}. The reverse inclusion
is clear by (iv) of Theorem 2. Q

Now we will prove Theorem 4. First we improve Lemma 4 for the general
case.

LEMMA 4'. Let 0 < a * < l . Then there exist ? eN and <5*>0 SMC/Z that for
all (x, >;) wirfc ojx,

, J), {(x', / ) : ajx, y)-*JLx\

77ie same statement holds for G-^.

PROOF. Choose L, fo*, @, B(j), ?, ^^ and S* = q*b*/(4t) as in the proof of
Lemma 4, and fix (x, y) with (TM(X, ^)^ff*. Write {jo<Ji<—} = {j^O: sBU)(x,
y)^4}. Since P(jcy)-a.a. w satisfy (13) and (14), it is sufficient for the proof
to show that

*«(*> y) - ffoo(w(J)) ^ <5*

under the assumptions w(0) = (x, y) and (13) & (14). Let us fix such w. If
aOtn(x, y)^(2/3)(T^ then

50>(?)) S sojix, y) + 21 S (2/3)(n + l K + 2?

by (14). If(TOjM(x,j;)>(2/3K,then

by (11). Hence, given £>0, for all sufficiently large n witn <rn(x, y) > (2/3)0-*
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: weA
Uw

sOtn(x9 y)-s0J

<n} - 21 (by (14))

+ l)2L<n}(q*-e) - 27 (by (13))

* - 8 ) - 2?,

that is,

21.

Therefore

lim s u p w ^

g max

As e is arbitrary,

a - - 3 • 2"

- 3 • 2-L}q*l(2L41) ^ GJX, y) - 8*,

which was to be proved.

Just like c(x, y) let c: ^->{0, 1}Z be a map defined by £(x, y)t= 1 if and only
if i is the right-most site of some plus or minus cluster associated with (x, y).

LEMMA 6. Suppose v{(x,y): a^00(x,y) = (TO0(x, y) = 0} = l. Then there exists

an increasing sequence {w£}jeeN of positive integers satisfying limjg^^ v(CMfi)=

0, where

Cn = {(x, y)e <F: c(x, > )̂-w + c(x, y)n + c(x, y)-m + c(x9 y)H^l}9 n e N .

PROOF. It is enough to show that for any e > 0 and L e N there is £ e N such
that £>L and v(Cje)<£. Assume the contrary, that is, for some e>0 and L e N
it holds that v(C£) ̂  s for all £ > L. Then for

we have

l i m i n g [hn(x, y)dv(x, y) ^ e/2.
Jar

On the other hand, the assumption of the lemma implies

v{(x, y): l i n w ( 2 n + l)-i#{i: c(x, y

and hence
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l i m ^ ^ J_ hn(x, y)dv(x, y) = 0

by the dominated covergence theorem. This is a contradiction. •

LEMMA 7. For any veJ

v{(*, y)- s^x, y)=hmn^ s_w>n(x, y)^2} = 1.

PROOF. For v e J n 3? we proved v{5(x9 j ) =0} = 1 in the proof of Lemma 5
using Lemma 4. In the same way, for v e J we can prove v{oj<x> y) = &-oo(x* y)
= 0} = l using Lemma 4'. Then by Lemma 6 there is an increasing sequence
{n(^)}£eN of positive integers satisfying l im^^ v(Cn(£)) = 0. Let usshowv(Fi) = 0
for all i e Z where

Assume the contrary, that is, v(F,)>0 for some i. Since v e 7 , (Eq) with
g{x9 3 ;)=5^n U ) + 1 > l l ( ij )_1(x, y) is written as

(16) 0 = [ dv(x, y) {g(x, y)- (_P((x, y), d{x\ y'))g{x\ y')}
Jar Jar

JCn(H) JCn(Jl)

By the definition of P((x, y), -) the integrand of the second term in the r.h.s. is
nonnegative for all (x, y)eCc

niJLy Hence for £ with n(£)>\i\+2

(17)

The last inequality is obtained by considering that if the particle at i +1 (of x or >>)
jumps to i and the one at i (of y or x resp.) does not, then at least one cluster
disappears. More precisely, if (x, j;) 6 C£(A) n Ft then

0(x, y) - tf(^, / ) ^ 1 for (x', / ) e

where

Therefore if we let £->oo in (16), noticing that the first term in the r.h.s. is not
smaller than — 2v(Cn(je)), we have a contradiction. Thus v(Ft)>0 can not happen.
It is not so hard from v{soo(x, y) ^ 3} > 0 to derive v(Ff) > 0 for some i e Z (see the
proof of Lemma 1). Hence v{s00(x, y) ^ 2} = 1. Q
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PROOF OF THEOREM 4. By virtue of Lemma 7 the argument given in the
proof of Theorem 1.4 of [7] is also applicable to our case. It is enough to show
that extc/c={7iy: O^y^oo} U {0n: neZ}. Take any \ix eextS and put ^2(.) =
A*i( * +1) (a translation of z^). It is clear that

(18) in?^ [ / i i {x^ + 1 =01}- / i 2 {x^ + 1 =01}] | ^ 1;

which corresponds to the assumption of Corollary 5.3 of [7]. By Proposition 2
there is v e ext .7 with marginals JLL1 and \i2.

Let us show

(19) v{x^y} = 1 or

(Eq) for the number of coupled sites fn(x, y) = Z| f |^n{l — |xf — yf|} is written as

(20) o = Z(i)V([zL+1)E(2)P([z]M+1, mn){fn(mn)-fn(wn+1)},

where the summations X(i> a n d 2(2) a r e taken over all configurations [z] n + 1 =
C(«P ^)|i|^n + i] and [z]n = [(af, 5 f) | i UJ respectively. The variation /w([z]w)-

/ndXL+i) of coupled sites is divided into two parts; the increment /j,"([z]n+1, [z]J
caused by the movement of particles staying in the interval [ —n,..., n] and the
variation/Jd caused by that of particles crossing the boundary ( — n — 0 and n + 0).
Then (20) becomes

(21) 0 = Z (1)v([z] l l+1)Z

or

or yn_1 = xn = yn+1

for n> 1. By the same reason as for (17) the first term in the r.h.s. of (21) is not
smaller than a(l— a)v{xi = y i+17^^ i = x i+1} for |i|-f-l^rc. By (18) the Cesaro
limit of the second term as n->oo is zero (see the proof of Corollary 5.3 of [7]).
Hence v{Xi = yi+1 ¥:yi = xi+1} = 0 for all i e Z. Assume (19) does not hold. Then
Lemma 7 implies that v(B) = 1 or v{(y9 x): (x, y) e B} = 1 where B = {(x, y): 3ioeZ
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such that Xi^yt for all i<i0, xt<yt for infinitely many i<i0 , Xj^yj for allj^f0,
and Xj>yj for infinitely many j*zi0}. Since v e 7 , ^{xi = yi+1¥

:yi:=xi+

for some i e Z. This is a contradiction. Thus we get (19).
Now it is not so hard to follow the route laid by [7] if we notice that

which follows from (Eq) with f(x) = xf. Q

§5. Stochastic properties of the drift of particles

In the previous sections we have been concerned with the structure of
stationary measures for the Markov process (MP). In this last section we consider
some statistical properties of a particle under the time evolution in the stationary
state.

Suppose the configuration at t = 0 is x = (---x_2x_1lx1---)e^' and evolves
according to the transition probabilities P(x, A), x e &, A e &. Then the particle
which was located at the origin drifts to the left. Problems are

i) what the expected value mt of the drift is
and

ii) what the variance of from the expected value is.
We will consider these problems under the assumption that the distribution \x of
the configuration x at t = 0 is ny (yeR). Recall that Theorem 4 states that if
0 < a g 1/2 then ny is an extreme point of the set of stationary measures for (MP).

Let <% be the path space 2£T with the Borel structure J5" generated by cylinder
sets {ue<%:u(s)eAs,s = O,...,t}, Ase&, teT. Fix 0 < a < l . For 0<y<oo
define a probability measure £y on (<2f, J5") by

where Px( -), x e #*, is a measure on Ql defined similarly to P(X,y)( •) in §4. Set

%* = {ue<%: !<(0)=(—x-ilXi-)}

and denote by <̂* the conditional probability measure of £y with respect to ^*,
that is,

(22) {•(•) = {,(. n v*)iejp*) = (!+?)«,(• n

For w e t * let ro(0) = 0 and

rn(0) = max{i<0: Z^,u,(0) = n}, neN,

which represents the site where the n-th particle from the origin is seen to the
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left at f=0. For each n e N and teT we denote by rn{i) the random variable
on (^*, £*) which represents the position of the particle at time t which started
from rw(0). Let /? be the positive number satisfying (1). Then we obtain

THEOREM 5. (i)

r o ( s - l ) - r o ( s ) = ^ s = l , . . . , 0

l-i8y)1-e% (eu...,et)e{09lV,

and hence

(ii) m, = \ ro(t)tf(du) = pyt,

(iii) <7?

(iv) (central limit theorem)

{ro(t)-m,}/fft~^N(0, 1) as f -» oo,

where N(0, 1) is //ie normal distribution with mean 0 and variance 1.

The theorem is an immediate consequence of the following lemma:

L E M M A 8. For all teT,t£ 1,

ro(s-l)-ro(s) = es, s = l,..., t,

where / ( • ) i's ^^ P-^/- defined in Theorem 2.

PROOF. We first show

(23) £*{

for every eie{Oi 1} and (z1 , . . . ,zk)eNk , fceN, which is the assertion of the
lemma for t = 1. Suppose z = zx-\ \-zk and

{ x o = l ; Xt=l for / with i= — 2 J = i zi> ^ = l,.--> fc

andx f = 0 for the other i with — z < i < 0
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Note that ^ + I = _ 2 _ 1 [ l a _ z + 1 - a _ 2 a _ 1 l ] _ i . Then by (22)

= Si + S2

= w/vl) (by (Eq)')

= / o ( l ) n i = i / ( z 1 ) (by (2)).

Therefore

(24) {*{tt6«*:r 1 _ 1 ( l ) -r 1 ( l ) = z J , / = l,...,fc} = n j -

Further it holds that

(25) S,/S2 = ( l - M i 5 r for all (zu...,zk).

In fact if (#o i + # i o)(^) > 0, by the same simplification as in the proof of Theorem 1
(the case that (ah a,)=(l, 1))

St =( l -a)- s <"^> + W(-z- l ,0; fc + 1),

S2 =(l-a)-«o»w+ i (a/( l-a))N(-z-l , 1; fc

and hence SJS2=(l-Py)IPy. If (#01 + #io)(^)=0» that is, if

A=_ z[l l • l l ] 0 , then

and so

S1/S2 = {(l-a)JV(-z-l ,0;fc + l) + L ( - z - l , 0; fc+2)}

x{aJV(-z-l, l;k

Then combining (25) with (24) we get (23). Notice that (23) implies

(26) £*{ro(0)-ro(l)=ei) i i(l)e(£+e i)}

i-/»y)1-"«?{'-o(0)=o, «(0)€£}
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for all W i O ( ^ ^ o ij)
In order to prove the lemma for t = 2, we set

& = <r{rn(t), n = 0, 1,...; teT}(a^);

F + g l = {ue<%: 3u'eF s.t. Wj(0 = "1+^(0 f o r a11 * a n d 0.

(the translation of the set F to the left by ex);

TG = {MG^: 3u'eG s.t. u(f+l) = u'(f) for all

and define

Then

{•ei{ii(0)6£} = {*{ii(0)6£} for all F e ^ ^ o

by (26), and hence {• ei(F) = £*(n that is,

) ( l -^) 1-^*({r o(0) = 0} n

for all F e # . If F = {ro(0)-ro(l) = ̂ 2, r£_1(l)-r£(l) = z£, lg^g/c} in the
above, we have

by (23), which is the assertion of the lemma for t = 2. In the same manner, by
defining £* eier..et_l( •), we can prove the lemma for all t e T inductively. •

REMARK 4. By (i) of Theorem 5 it is known that under £* the particle
located at the origin at f = 0 acts as if it is a random walker on Z which moves to
the left with probability /fy and stays with probability \—fiy. By Lemma 8

-ri(t)^2, r o(s- l ) - r o(s) = es, s =

which implies that the conditional probability that there exists no particle at the
left-neighboring site of ro(t) given ro(s — 1) — ro(s) = es, s = l,..., t, is 1-/(1) for all
(el9...,et)e{09 1}', teN. Since ^y = a( l - / ( l ) ) by (1), we can understand that
the transition rate /fy is determined by two elementary probabilities: the proba-
bility 1-/(1) that the site ro(t)—l is unoccupied and the probability a that a
particle at ro(t) jumps to the left when it is unoccupied.

REMARK 5. If we consider (ro(t) — r1(t),r1(t) — r2(t),...), teT, as a time
evolution on the state space NN, then Lemma 8 implies that the product measure



Stationary measures for an exclusion process 475

U?=i fa (A =/> ^ e N) is a stationary measure for the process. (This is a special
case of the so called zero range process.)
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