HIROSHIMA MATH. J.
17 (1987), 433-446

On homomorphisms of cocommutative
coalgebras and Hopf algebras

Hiroshi YANAGIHARA-
(Received January 13, 1987)

Let

k—sGIoH L0 Lk

be an exact sequence of cocommutative Hopf algebras over a field k and let C
be a cocommutative coalgebra over k. Then it is known that the induced sequence

{e} —» Hom,,,, (C, G) £* Hom,,,,(C, H) -**> Hom,,,, (C, J)

of groups is also exact, but that p, is not necessarily surjective. In the paper
[2] T. Shudo gave a condition for this homomorphism p, to be always surjective
in the case that H is a hyperalgebra. Precisely he showed that p, is surjective
for any connected cocommutative coalgebra C over k if and only if the Hopf
algebra homomorphism j has a coalgebra retraction #: H—G such that #oj is
the identity map of G.

The main purpose of this paper is to show that the above result for hyper-
algebras and connected cocommutative coalgebras is also true for any pointed
cocommutative Hopf algebras and coalgebras. In §1 we shall show firstly some
properties of cocommutative coalgebras over a field k and coalgebra homo-
morphisms between them, which are well known in connected cases. Then we
shall show in Propositions 4 and 6 that the properties for coalgebra homo-
morphisms to have coalgebra splittings and coalgebra retractions are colocal in
a sense. These results play essential roles in the proof of our main results.
In §2 we shall give two theorems. Theorem 1 says that a sequence of pointed
cocommutative Hopf algebras over k is exact if and only if the induced sequence
of groups consisting of grouplike elements and the sequence of hyperalgebra
components of the given sequence are both exact. Theorem 2 is our main
result and is a generalization of Shudo’s result mentioned in the above.

Throughout this paper we fix a ground field k. All coalgebras, Hopf algebras
and their tensor products are defined over k, and our terminology and notations
follow those in [3], [4], [5] and [6].
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§1. Some properties of coalgebra homomorphisms

PrROPOSITION 1. Let (C, 4, &) be a cocommutative coalgebra over a field
k and g a grouplike element of C. Denote by A the dual algebra C* of C and
by D the minimal subcoalgebra kg of C generated by g. Moreover let m be
the null-space D* of D in A and C; the null-space (mi*)L of the ideal mit! of
A in C. Then we have the following:
(i) D;=\U,C,; is the largest connected subcoalgebra of C which contains D.
(ii) For any integer i>0, an element x in C is contained in C; if and only if
a-xeC;_, for any a in m, where C is considered to be an A-module as
defined in §3 in [4] and we understand C_,=(0).
(iii) If x is contained in C,, then A(x)€ X.?-, C,-;®C;.

ProOF. (i). If we put D,=A-x for a non-zero element x in D,, then D,
is a finite dimensional subcoalgebra of C by Corollary 3.9 in [4] and A/D{ is
isomorphic to the dual algebra D} of D, by Corollary 3.3 in [4]. Since xeD,,
there is an integer i such that xe C;. By Proposition 3.8 in [4] C; is an A-sub-
module of C and hence D,=A-x is contained in C,. Therefore we see

Di. ) (Ci)J. — ((mi+1).L)J_ - mi+1.

Now let D' be a minimal subcoalgebra of D;. If x is a non-zero element of D’,
then we have A-x=D' and D't=(D,)* is a maximal ideal of A=C*. Since
D'+ >mit! for some i, we see that D’ contains m and hence D'* must be equal
to m. Therefore D, contains only one minimal subcoalgebra D=kg. Next let
E be a subcoalgebra of C containing D and assume that E has no minimal sub-
coalgebra but D. Then we see that EX=Dt=m and A/E* is isomorphic to E*
by Corollary 3.3 in [4]. If we put m'=m/EtcE* and C;=(m'i*!)LcE, then
we have E=\U®, C; by Proposition 3.11 in [4]. On the other hand we see that

Ci=m"*YL = (mt+ELED)t =E n (mit)L = E n C;.
Therefore we see that
E=UReCi = URe(ENC) = UR, Ci = D,

and hence that D, is the largest connected subcoalgebra of C containing D.
The assertions (ii) and (iii) can be shown in the exactly same way as the proof
of (ii) and (iii) of Proposition 3.11 in [4] and hence we omit the detail.

COROLLARY. Let (C, 4, ¢), g, D=kg, A=C* and C; be as in Proposition 1.
Let C° be the kernel of € and put C?=C°n C;. Then an element x in C belongs
to CY if and only if
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Ax) - x®g—g®xeXif CI_; ® C?
where we understand Y '-1 C9_,®C;=0 for n=1.

Proofr. This corollary can be shown in the same way as the proof of
Proposition 3.13 in [4] and hence we omit the detail.

Let (C, 4, ¢) be a cocommutative coalgebra over k and let g be a grouplike
element of C. Then an element x of C is called a primitive element of C with
respect to g, if we have A(x)=x®g+g®x. In the following we denote by G(C)
the set of grouplike elements of C and by P (C) the set of primitive elements of C
with respect to g. It is easy to see that P,(C) is a k-subspace of C and that we
have &(x)=0 for any x in P (C).

PROPOSITION 2. Let g be a grouplike element of a cocommutative coalgebra
C and put D,=kg. If A is the dual algebra C* of C and m is the ideal of A
which is the null-space D} of D, in A, then the null-space C,=(m?)* of m2 in C
is the direct sum of D, and P(C).

Proor. Let 4 and ¢ be the comultiplication and the coidentity of C,
respectively. Since we have &(g)=1 and &(x)=0 for any x in P,(C), the sum
D,+P,C) is a direct one. If c is an element of C; and we put d=c—e&(c)g, then
d belongs to C, and &d)=0. Therefore we see, by Proposition 1, (iii), that

Ad)=d, ®g+g®d, with d;eC,.
From this equality we see that
0 = &(d) = (e®e)4(d) = &(dy) + &(d,) (*)
and
d,+edy)g=d=d,+(dy)g (%)
using (id ®¢e)4(d)=d=(e®id;)4(d). Hence we have from (*+) and (%)
Ad)=d; ®g+g®d,

=(d—e(dy)9) ®g + g ® (d—e(dy)g)
=d®g+gQ®d.

This means that d is contained in P,(C) and hence that C, is a subspace of
D,®P,C). Conversely let x be an element of Py(C). If a and b are any
elements of m=(D,)*, then we see by the definition of 4-module structure of C
given in §3 in [4] that
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{a-x, b)Y = {x, ab) = {d4(x), a®b)
= {(x®@g+g®x, a®b)
=<{x,ay{g, by + (g, ad<{x, by =0,

because we have (g, a)={g, b)=0. Therefore a-x belongs to mt=C, for any
aem and hence x belongs to C;=(m?)* by Proposition 1, (ii). In conclusion
we see that C; =D,®P,(C).

COROLLARY. Let C be a cocommutative coalgebra over k and let G(C) be
{g.lAeA}. Then the sum ¥, 4 P, (C) is direct.

Proor. By Proposition 1, (i) there exists the largest subcoalgebra D, of C
containing D,, = kg, for each A and then, by Proposition 2, we see that D, contains
P,.(C). Since the sum Y, 4 D, is direct by Theorem 8.0.5 in [3], our assertion
follows easily.

Now let C be a cocommutative coalgebra over a field k and let G(C) be the
set {g,| A€ A} of grouplike elements of C. Then the sum Y, 4 P,.(C) of vector
subspaces P, (C) is direct as seen in the above. We denote by P(C) this direct
sum and call it the space of primitive elements of C. The following proposition
is a version of Lemma 11.0.1 of [3] in non-irreducible cases.

PROPOSITION 3. Let C and D be cocommutative coalgebras over k and let
f be a coalgebra homomorphism of C to D. Assume that C is pointed. Then f
is injective if and only if the restrictions f| pc) and f| g, are both injective.

Proor. It suffices to show the “if*’ part. If G(C)={g,|A€e A}, then we
denote by C, the irreducible component of C containing the minimal subcoalgebra
kg, of C. By Corollary 8.0.7 in [3] we see that C is the direct sum @®,_4,C;
and f(C,) is an irreducible subcoalgebra of D containing f(kg;)=kf(g,) as a
unique minimal subcoalgebra by Theorem 8.0.8 in [3]. By our assumption we
have f(g,;)#f(g,;) for A#4 and hence we see f(C,)+f(C,;)=f(C,)®f(C,) by
Theorem 8.0.5 in [3]. Therefore we see by the same theorem that

J(C) = f(@;:e4C) = @14 F(C).

This means that f is injective if and only if f|., is injective for each A by the
injectivity of f| p_ ., and and Lemma 11.0.1 in [3].

Let C and D be pointed cocommutative coalgebras over k and let f be a
coalgebra homomorphism of C to D. If G(D)={h,|ue M}, then we put Dy=
2 uem kh,= @ ,ep kh,, which is a subcoalgebra of D. In§1 of [6] we defined the
h-inverse h—f~1(D,) of D, by f, which is the largest subcoalgebra C’ of C satisfying
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f(C)eD,. Wecallthis C'=h-f~1(D,) the c-kernel of f and denote it by c-ker f.
If G(C)={g,|A€e A}, then we denote by C, the connected component of C
containing kg, and we put f,=f|.,. Since f; is a coalgebra homomorphism of
C, to D and f,(C)) is irreducible, there is a unique x4 in M such that f;(C,)=D,
where D,, is the irreducible component of D containing kh,. Itis clear that c-ker f;
is irreducible and contained in c-ker f, and hence we see easily that c-ker f=
@ ;cq C-ker f,. In particular if C and D are connected, i.e., colocal, then c-ker f
coincides with h-ker f in the sense of [5]. Therefore if we consider that f, is a
homomorphism of C; to D,, then c-ker f is the direct sum @®,_4 h-ker f;. The
following lemma is well-known, but we give a proof for convenience’ sake.

LEmMMA 1. Let C and D be colocal coalgebras with grouplike elements g
and h, respectively, and let f'be a coalgebra homomorphism of C to D. Then f
is injective if and only if c-ker f=h-ker f is kg.

ProOF.*) Since f(g)=h, it is easily seen that c-ker f is equal to kg if fis
injective. Conversely assume that c-ker f=kg. If fis not injective, then there is
a finite dimensional subcoalgebra C’ of C such that f'=f]|.. is not injective by
Corollary 3.9 in [4]. Since c-ker f’ is contained in c-ker f, we may assume that
dim, C is finite. Moreover we may assume that f is surjective. Let 4 and B
be the dual algebras C* and D* of C and D, respectively, and f* the dual algebra
homomorphism of f from B to 4. By our assumption 4 and B are both local
rings and finite dimensional over k, and f* is injective. The fact that c-ker f=kg
means by Proposition 3.2 in [4] that the ideal of A generated by the image f*(n)
of the maximal ideal n of B coincides with the maximal ideal m of 4. Therefore
we have A=k+m=f*B)+f*(n)A and hence, by Nakayama’s lemma (cf.
Corollary 2.71in [1]), A=f*(B). This is a contradiction, because f is not injective.

COROLLARY. Let C and D be pointed cocommutative coalgebras over k and
f a coalgebra homomorphism of C to D. Denote by C, the subcoalgebra
@ ,ca kg, of C where G(C)={g,|1e A}. Then the following are equivalent:
(i) fis injective.
(ii) c-ker f is contained in C, and the restriction f| g, of f is injective.

ProoF. It is easy to see that (i) implies (ii). Conversely assume that (ii)
is true. Let C, be the connected component of C containing kg, for each A and
put f,=f|c,. Since c-ker f=@® .4 c-ker f, is contained in Co= @, 4 kg;, c-ker f,
is contained in kg, for each A and hence f; is injective by Lemma 1. On the other
hand since f| g, is injective, the sum 3, 4 f,(C,) is direct by Theorem 8.0.5 in

*) T. Shudo communicated to the author that a shorter proof of Lemma 1 can be given if we
use Proposition 3. Our proof is independent of Proposition 3 and hence Lemma 11.0.1
in [3].
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[3]. This means by the equality f(C)=f(D ;4 C.)= D ;.4 f(C,) that fis injective.

Let C be a pointed cocommutative coalgebra over k and let E be a sub-
coalgebra of C. Then we say that E has a coalgebra retraction in C if there
exists a coalgebra homomorphism 5 of C to E such that #|; coincides with the
identity map idg of E. The property for E to have a retraction in C is colocal in
a sense. To see this we need the following

LEMMA 2. Let C and E be cocommutative coalgebras over k and assume
that E has a grouplike element g. Then the mapping n of C to E given by
n(x)=e(x)g is a coalgebra homomorphism, where ¢ is the coidentity of C.

Proor. This follows easily from the fact that ¢: C—»k is a coalgebra
homomorphism of C to the trivial coalgebra k and the subcoalgebra kg of E is
isomorphic to k as coalgebras over k.

PROPOSITION 4.  Let C be a pointed cocommutative coalgebra over k and let
E be a subcoalgebra of C. Assume that G(C) is equal to {g,;| A€ A} and that
G(E) is the subset {g,| ue M} of G(C) with Mc A. Let C, be the connected com-
ponent of C containg kg, for each A and let E, be the connected component of E
containing kg, for each pe M. Then E has a coalgebra retraction in C if and
only if E, has a coalgebra retraction in C, for each pe M.

Proor. First assume that there is a coalgebra homomorphism 5 of C to E
such that #n|g=idg. Then it is clear that |y, =idg, for each peM. Since
E,=C, for each pe M by Theorem 8.0.5 in [3], we have #(C,)>n(E,)=E, and
hence n(C,)=E,. Therefore n|c, is a coalgebra homomorphism of C, to E,
such that (7|c,)|g,=idg,. In other words E, has a coalgebra retraction in
C,. Conversely assume that E, has a coalgebra retraction in C, for each pe M.
Let u, be a fixed element of M. If 1 is an element of A but not in M, we define a
map 7, of C; to E by n,(x)=¢(x)g,, where ¢ is the coidentity of C. Then 5, is a
coalgebra homomorphism of C, to E by Lemma 2. If uis an element of M, then
there exists a coalgebra homomorphism 7, of C, to E, such that n,|g, =idg,.
Now we define a coalgebra homomorphism 5 of C to E by n=@;.4n,. It is
easy to see that 5| p=idp.

Next we give another property of coalgebra homomorphisms. Let M and N
be sets and let f be a map of M to N. Then a map g of N to M is called a
splitting of f if the composite fog is equal to the identity idy of N. Similarly if
C and D are cocommutative coalgebras over k and if p is a coalgebra homo-
morphism of C to D, then a coalgebra homomorphism 7 of D to C with pot=id,,
is called a coalgebra splitting of p. It is clear that if f: M— N (resp. p: C—D)
has a splitting g: N—-M (resp. 7: D—C), then f (resp. p) is a surjective. Moreover
we have the following
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PROPOSITION 5. Let C and D be cocommutative coalgebras over k and let
p be a coalgebra homomorphism of C to D. Then the following are equivalent:
(i) p has a coalgebra splitting =: D—C.
(ii) For any cocommutative coalgebra F and any coalgebra homomorphism
a: F-D there is a coalgebra homomorphism w: F—C with 6= pow.

Proof. (i)=>(ii). It suffices to put w=106. (ii))=>(i). If F and o are taken
as D and idj, respectively, then w in (ii) is a coalgebra splitting of p.

The property for a coalgbra homomorphism between pointed cocommutative
coalgebras to have a coalgebra splitting is also colocal in the same sense as for
coalgebra retractions. Let C and D be pointed cocommutative coalgebras over k
with grouplike elements G(C)={g,|Ae A} and G(D)={h,|u e M}, respectively.
Let C, be the connected component of C containing kg, for each A€ A and let
D, be that of D containing kh, for each ue M. If p is a coalgebra homomorphism
of C to D, then there is a mapping p’ of 4 to M such that p(g;)=h,,. Itis
easy to see that p(C,) is contained in D,.;.

ProprosITION 6. Let C, D, p, A, M, C,;, D, and p’ be as above. Then p has
a coalgebra splitting if and only if the following are satisfied:
(1) p’ has a splitting v': M- A.
(i) For any pin M the restriction p,: C..,y—D, of p to the subcoalgebra C,.,,
of C has a coalgebra splitting.

PrOOF. Assume that p has a coalgebra splitting v: D—»C. Since (h,)
is a grouplike element of C, there is a unique A in A such that t(h,)=g,. So we
define a map 1': M—A by ©(h,)=g.(,). Then we see easily from por=id, that
7’ is a splitting of p’. Now if 7, is the restriction of 7 to the subcoalgebra D, of
D, then 7, is a coalgebra homomorphism and we see that

Ppety = (po1) ID“ = (idp) |D“ = iduu

Therefore p, has a coalgebra splitting t,.

Conversely if our assertions (i) and (ii) are satisfied, then we see from (p’o7")(1)
=p that p,(C,,))=p(C.,) is contained in D, for any p in M. Since p, has a
coalgebra splitting 7,: D,—C,.(,, for any ue M, we define 1: D>C by 1=@ 4y T,
Is is easy to see that 7 is a coalgebra homomorphism with pot=id,,.

§2. Strongly exact sequences of Hopf algebras

Let (H, m, i, 4, &, ¢) be a pointed cocommutative Hopf algebra over a field
k, where m, i, A, ¢ and ¢ are the multiplication, the identity, the comultiplication,
the coidentity and the antipode of H, respectively. Then it is known that the set
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G(H) of grouplike elements of H has a group structure with unit 1, under the
composition gg'=m(g®g’) for g and g’ in G(H) (cf. Proposition 4.7 in [4]).
If g is an element of G(H), then we denote by H, the connected component
of H containing kg. In particular we denote by H, the connected component of
H containing k1, =k. Moreover let h, be the map of H to itself given by h (x)=
m(g®x)=gx forany x in H. The following two propositions play important roles
in the proof of our main results.

PROPOSITION 7. Let (H, m, i, 4, ¢, c), Hy, H, and h, be as above. Then h,
is a coalgebra automorphism of H and gives a coalgebra isomorphism between
H, and H,

PrOOF. By the definition of Hopf algebras we have Am=(m®@m)1(4®4)
where 7 is the k-linear automorphism of HQ H® H® H given by 1(x® y®z@w)=
x®z@y®w. Therefore if 4(x)=3,) x;,®x(;, for any element x in H, then we
have for a grouplike element g of H

4(gx) = (Am)(g®x) = (M@m)1(4®4)(9®x)
= (m®m)f(9®g®(2(x) x(1)®x(2)))
= (MAm) (X (x) §®X1)®I®x(3))
= Xx 9%1) ® gx(2) = (h,®h,)A(x)

hence we see 4h,=(h,®h,)A. On the other hand we have the following com-
mutative diagram:

ls@e le
k®k i, k

Therefore we have for any x in H
em(g®x) = i(e®e)(g®x) = &(g)e(x) = &(x)

and hence ¢h,=¢. This means that h, is a coalgebra endomorphism of H. Since
G(H) is a group and we have h, , =idy and hyoh,=h,, forany g and g’ in G(H),
we see (h))"'=h.,. So h,is a coalgebra automorphism of H. Moreover since
h(14)=g, it is easy to see that h, gives a coalgebra isomorphism of H, onto H,.

Let H' be another pointed cocommutative Hopf algebra over k and let p be
a Hopf algebra homomorphism of H to H'. If g is a grouplike element of H,
then the image g'=p(g) of g by p is that of H’. If H} and H/, are the connected
components of H’ containing kly. and kg’, respectively, then the restrictions p,
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and p, of p to H,; and H, map H, and H, to H; and H,, respectively. Moreover
let h, be the coalgebra automorphism of H’ given by h,(x)=g’'x for any x in H'.

ProrosITION 8. Let H, H', p’, h, and h, be as above. Then h, gives a
coalgebra isomorphism from h-ker p,=c-ker p, to h-ker p,=c-ker p, and h,
gives a coalgebra isomorphism from p,(H,) to p,(H,).

Proor. Our assertions are direct consequences of the definition of c-kernels
of coalgebra homomorphisms and the following commutative diagram of the
coalgebras:

H, -4 H,

W |

H, ¢, H),
where h, and h, are coalgebra isomorphisms. We omit the detail of the proof.

Now let H, H' and H” be pointed cocommutative Hopf algebras over k
and let p: HoH' and p’: H' - H" be Hopf algebra homomorphisms. If g is a
grouplike element of H, then g’'=p(g) and g"=p’(g’)=(p’'p)(g) are those of H’
and H”, respectively. Let H,(resp. H}, H], H,, H,, or Hj}.) be the connected
components of H (resp. H', H", H, H' or H") containing kly (resp. klg., klg.,
kg, kg’ or kg”). Then we have the following direct consequence of Proposition 8.

COROLLARY. In the above situation p(H,) coincides with c-ker p, if and
only if p(H,) coincides with c-ker p,., whzre p; and p}. are the restrictions of
p’ to Hy and H., respectively.

Now let
ki, 6L, H L,5 %, (*)

be a sequence of pointed cocommutative Hopf algebras over k where j and p are
Hopf algebra homomorphisms. We recall that the sequence (*) is said to be
exact in the sense of §2 in [6] if we have ig(k)=h-ker j, j(G)=h-ker p and p(H)
=h-ker ¢;. If G(G), G(H) and G(J) are the groups consisting of grouplike
elements of G, H and J, respectively, then the above sequence (*) induces the
following sequence of groups:

1, 2o, 6(6) 25 6(H) 25 GU) <5 1, (+%)

Moreover if G,, H, and J, are the connected components of G, H and J containing



442 Hiroshi YANAGIHARA

klg, k1 and kl1,, respectively, then the sequence (*) induces also the following
sequence

k—>Gll—>H1LJl-——>k (%x*)
of connected Hopf algebras. Then we have the following

THEOREM 1. The sequence (*) of Hopf algebras is exact if and only if the
sequences (¥*) of groups and (**#) of connected Hopf algebras are both exact.

Proor. First assume that the sequence (*) is exact. Then it is easy to see
that j’ is injective, that p’ is surjective and that the image of p’cj’ consists of only
one element 1,. Let g be an element of G(H) such that p'(g)=1, and H, the
connected component of H containing kg. Then we see from Proposition 7
that p(H,)=p(h,(H,))=p(g9)p(H,)=J,. If p,is the restriction of p to H,, then p,
is a coalgebra homomorphism of H, to J, and c-ker p, is contained in h-ker p.
Since g belongs to c-ker p, and hence to h-ker p=j(G), there is a unique grouplike
element g’ in G(G) with j'(9')=j(g")=g. Therefore the sequence (**) of groups is
exact. As seen in the above if g e G(H) is mapped into J, by p, then we have
p(H)=p(gH,)=p(H,). Since p is surjective, this means that p,: H;—J, is also
surjective. If C is c-ker p, =h-ker p,, then C is contained in h-ker p=j(G) and
hence contained in j,(G,)=j(G,)=H, N j(G) by injectivity of j. Since (poj)G) is
equal to k1,, (p,°j,)(G) is also equal to k1;. Therefore C coincides with j;(G,)
and so the sequence (***) of connected Hopf algebras is exact.

Conversely assume that the sequences (x*) and (**x) are both exact. If g’ is
an element of G(G), then we have h; o j=joh, where h, and h;,., are coalgebra
homomorphisms given in Proposition 7. Since j,: G;—~H, is injective, we see
from the above equality that the restriction j,: G,,—Hj,, of j is also injective.
This means that j: G—H is injective, because different connected components of
G is mapped to different connected components of H by the injectivity of j'.
Now if g” is any element of G(J), the connected component J,” of J containing g”
is equal to h,(Jy)=g"J; by Proposition 7. Since p': G(H)—G(J) is surjective,
there is an element g in G(H) such that p'(g)=g". Then we have h .op=poh,
and hence the restriction p, of p to H,=gH, is a surjection onto J,-, because
p1:H—J, and hy:J,—J, are both surjective. Therefore p is surjective.
Next let C be h-ker p and let C=@®,,C,, be the connected components
decomposition of the cocommutative coalgebra C where {g,| 1€ A} is the set
of the grouplike elements of C and C,, is the connected component of C
containing kg, for each Ae A. Then g, belongs to ker p’=j'(G(G)) and hence
there is a unique element g} in G(G) such that g,=j'(g3)=j(g5;) for each e A.
Let H,, and G, be the connected components of H and G containing kg, and
kg), respectively. Then, by the corollary to Proposition 8 and the exactness
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of the sequence (x**), we have j(G,;)=c-ker p,=C,, where p,: H, ,—J, is the
restriction of p to H,,. 1If g, is any grouplike element of G and G, is the
connected component g,G, of G containing kg,, j'(g,) is contained in ker p’ by
the exactness of the sequence (**) and hence we see by the corollary to Proposi-
tion 8 and the exactness of the sequence (***) that j(G,)=c-ker p, where p,
is the restriction of p to the connected component H, of H containing j'(g,)=
Jj(g,)- Moreover since p(j'(g,))=(p'°j'Ng,)=1,, we see that j(G,)=c-ker p,
is containedin h-ker p. Therefore we have h-ker p=C=3%, , C, =j(G).

In the paper [6] the author showed that a sequence
k—s G-I H 2,7

of cocommutative Hopf algebras over a field k is exact if and only if the induced
sequence

{e} I Homcoal (C’ G) I Homcoal (C’ H) - Homcaal(C’ J)

of groups is exact for any connected cocommutative coalgebra C over k (cf. Lemma
6 in [6]). However the functor Hom,,, (C, *) is not necessarily right exact. So
we give the following notion of strong exactness for pointed cocommutative Hopf
algebras, which is already given in the case of hyperalgebras in [2]. Let the
sequence (*) of cocommutative Hopf algebras over k be exact. Then this sequence
is called strongly exact if the following sequence

{e} - Homcoal (C’ G) - Homcaal (C’ H) - Homcaal (Cs J) - {e}

of groups is exact for any pointed cocommutative coalgebra C over k. Now we
show the main result of this paper.

THEOREM 2. Let the notation be as above, and assume that the sequence
(%) is exact. Then the following are equivalent:
(i) The sequence () is strongly exact.
(ii) The sequence (x*#) is strongly exact.
(iii) p has a coalgebra splitting.
(iv) py has a coalgebra sppltiting.
(v) G has a coalgebra retraction in H.
(vi) G, has a coalgebra retraction in H,.

PrOOF. The equivalence of (i) and (iii) (resp.(ii) and (iv)) follows from
Lemma 6 in [6] and Proposition 5. Moreover the equivalence of (ii) and (vi)
is shown by T. Shudo in Theorem 1.8 of [2]. By our assumption and Theorem 1
the sequence (*#) of groups and (**x) of hyperalgebras are both exact. If (iii) is
true, then p has a coalgebra splitting 7: J->H. By Proposition 6 there exists a
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splitting 7': G(J)—»G(H) of p’. If g=1'(1;) and H, is the connected component
of H containing g, then we see that the coalgebra homomorphism p,=p|g,:
H,—J, has a coalgebra splitting 7,: J,—»H, by the same proposition. Since
the following diagram

H, - J,
hxl lidh:h‘.l
H,-f=, J,

of coalgebras is commutative, we see that p, has also a coalgebra splitting. There-
fore (iv) is true. Conversely assume that (iv) is true. Since the sequence (*x) of
groups is exact, p’: G(H)—G(J) has a splitting t": G(J)—G(H) such that t'(1,)=
14. Let J, be any connected component of J and let g” be the unique grouplike
element of J contained in J;. If we put g=1'(g") and H, is the connected com-
ponent of H containing g, then we have the following commutative diagram

H, -4 7,

.

Hg,ﬂlﬂg J'1

of coalgebras with vertical isomorphisms h, and h,.. Since p, has a coalgebra
splitting by our assumption, so does p|y,. Therefore p has a coalgebra splitting
by Proposition 6.

Next the implication (v)=>(vi) follows from Proposition 4. Conversely
assume that (vi) is true. Let G, be a connected component of G and g’ be the
unique grouplike element of G contained in G,. Then the following diagram

G, I H,

he'l lh.l‘ (g”)

G, 7— H,
ilea

of coalgebras with vertical isomorphisms 4, and h;.,, is commutative. Since j,
has a coalgebra retraction in H; by our assumption, this commutative diagram
means that G, ahs also a coalgebra retraction in H,. Therefore G has a coalgebra
retraction in H by Proposition 4.

The following proposition and its corollaries are also shown in the case of
hyperalgebras in [2].

PROPOSITION 9. Let
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kG loH P 7k

o o

k— G- H- 2,7 .k
be a commutative diagram of pointed cocommutative Hopf algebras over a
field k with exact rows. Then we have the following:
(i) If the upper row is strongly exact and y has a coalgebra splitting y': J—J,
then the lower row is also strongly exact.
(ii) If the lower row is strongly exact and there is a coalgebra homomorphism
o': G—G such that a'ca=idg, then the upper row is also strongly exact.

ProOF. (i) By our assumption and Theorem 2 p has a coalgebra splitting
1: JoH. Therefore if we put T=fty’, then we have p7t=pfty’ =ypry’=yy' =id;.
This means by Theorem 2 that the lower row is strongly exact.
(ii) Similarly we have a coalgebra retraction f: H—»G of j by our assumption
and Theorem 2. Therefore if we put f=a'fB, then we have fi=a'ffj=o'fja=
o'a=idg, and hence the upper row is also strongly exact by Theorem 2.

COROLLARY 1. Let N be normal Hopf subalgebra of a pointed cocom-
mutative Hopf algebra H over a field k, and G be a Hopf subalgebra of H such
that the join J(N, G) of N and G is equal to H. If the intersection I(N, G) of
N and G has a coalgebra retraction in G, then N has also a retraction in H.

PrOOF. Our assertion follows easily from Proposition 9, (i), Theorem 2
and the following commutative diagram of Hopf algebras where the right vertical
mapping is an isomorphism by Theorem 3 in [6]:

k —> I(N, G)—> G — G/I(N, G) — k

T l

k >N >H —— HIN — > k.

COROLLARY 2. Let N be a normal Hopf subalgebra of a pointed cocom-
mutative Hopf algebra H over a field k and let G be a Hopf subalgebra of H
containing N. If the natural surjection p: H—-H|N has a coalgebra splitting,
then the natural surjection p: G—G/|N has a coalgebra splitting.

Proor. This follows from Proposition 9, (ii), Theorem 2 and the following
commutative diagram:

|11

k—sN—H-*,HN L
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COROLLARY 3. Let N and N be normal Hopf subalgebras of a pointed
cocommutative Hopf algebra H over a field k such that NoN. If N has a coal-
gebra retraction in H, then N/N has also a coalgebra retraction in H|N.

Proor. This is a direct consequence of Proposition 9, (i), Theorem 2 and
the following isomorphism

(H/N)((N/N) = HIN

of Hopf algebras obtained from the corollary to Theorem 2 in [6].
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