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An exact sequence

(S) k >G >H >J >k

of cocommutative Hopf algebras over a field k is said to be strongly exact if for

any cocommutative coalgebra C the induced sequence

(CS) e > Hom c o a ί(C, G) > Homcoαί(C, H) > Homc o α i(C, J) > e

of groups is exact. In [6] we gave several equivalent conditions for (S) to be

strongly exact in case H is irreducible (i.e., hyperalgebra).

Recently, Yanagihara has shown that when H is pointed, (S) is strongly exact

if and only if the sequence

(S1) k >G1—^Hi > J 1 > k

of irreducible Hopf algebras extracted from (S) is strongly exact ([9], Theorem 2).

The main purpose of this paper is to generalize these results.

When H is irreducible, we showed in [6] that one of necessary and sufficient

conditions for (S) to be strongly exact is that the Hopf subalgebra G has a coalgebra

retraction in H, that is, there exists a coalgebra homomorphism η of H into G

such that 77|G = idG. This is valid for cocommutative pointed Hopf algebras

([9], Theorem 2). But, generally, this is not sufficient. In fact, we show in

Section 2 that we must demand G to have not only a coalgebra retraction but

also a G-linear coalgebra retraction (Theorem 2.7 (3)).

When H is a cocommutative pointed Hopf algebra over /c, the structure of

H is completely determined by those of its irreducible component H1 containing

1 and coradical Ho ([7], §8.1). They are considered in Sections 3 and 4. In

Section 3 we show that if a sequence (S) is strongly exact then so is the sequence

(S1) (Theorem 3.5). In Section 4 we prove that the coradical Ho of a cocom-

mutative Hopf algebra H over k is a Hopf subalgebra if and only if the dual

algebra of Ho is a direct product of separable extension fields of k (Theorem 4.7).

In this case we show that if (S) is strongly exact then so is the sequence
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(S o ) k >G0 >H0 > Jo >k

of the respective coradicals which are Hopf subalgebras.

In Section 5 we review Cartier-GabrieΓs Decomposition Theorem ([3],

Chapter II, §1, No. 4) in the context of the Hopf algebra action. We prove that

a cocommutative Hopf algebra H such that Ho is a Hopf subalgebra is isomorphic

to the smash product H1#H0 equipped with the tensor product coalgebra structure

(Theorem 5.3). This is a generalization of a well-known theorem for cocom-

mutative pointed Hopf algebras as stated above. With the aid of these theorems

we obtain a generalization of Yanagihara's Theorem. We show that (S) is

strongly exact if and only if both (S1) and (So) are strongly exact (Theorem 5.5).

The final section is devoted to construct examples.

§ 1. Preliminaries

Let k be a field. Let C, D be coalgebras over k and / : C->£> a coalgebra

homomorphism. For a group-like element g of C we put

K,(/) = {ceC\ (/®idc)Λc(c) =f(g)®c}.

LEMMA 1.1 ([8], Proposition 1). If C is cocommutative, then:

(1) K^(/) is a subcoalgebra of C which contains g.

(2) K^(/) is the largest subcoalgebra in those which are contained in

kg + Kcr(f).

(3) A subcoalgebra E of C is contained in Kg(f) if and only if / (£) =

kf(g), or equivalently, f(x) = ε(x)f(g) for all x in E.

Let H, J be cocommutative Hopf algebras over k. If p: H—>J is a Hopf

algebra homomorphism, then:

LEMMA 1.2 ([7], Lemma 16.1.1; [5], Corollary 3.4).

(1) K t(p) is a Hopf subalgebra of H.

(2) KQτ(p) = K1(p) + H, where K1(p)+ = Ker(ε)(]Kι(p).

A sequence of cocommutative Hopf algebras and Hopf algebra homo-

morphisms

is said to be exact if Im(p i) = K 1 (p ί + 1 ) for all i.

REMARK 1.3. k is itself a one dimensional Hopf algebra. For any Hopf

algebra H the unit map uH: a*-*alH is the unique homomorphism of k into H,

and the counit ε is the unique homomorphism of H into k. So we shall omit
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to state these maps explicitly in any sequence or diagram of Hopf algebras.

It is easy to see the following:

LEMMA 1.4. A sequence

k >G^UH-P^J > k

of cocommutative Hopf algebras is exact if and only if j is injective, Im(/) =

Kx(p), and p is surjective.

Let H be a Hopf algebra over k. Then for any cocommutative coalgebra C

over k the set Homcoα/(C, H) of all coalgebra homomorphisms of C into H is a

group under the convolution product, i.e.,

f*g = μH(f®g)Ac

for /, g e HomCOfl/(C, H)9 where μH (resp. Δc) denotes the multiplication of H

(resp. the comultiplication of C).

If p: H^J is a Hopf algebra homomorphism, then p induces a group homo-

morphism of Homcoα/(C, H) into Homcoαί(C, J). The following result is proved

in [8].

LEMMA 1.5. A sequence

k >G >H > J

of cocommutative Hopf algebras over k is exact if and only if the induced sequence

e > Hom c o α / (C, G) > Hom c o α Z (C, H) > HomC O f l ί(C, J)

of groups is exact for any cocommutative coalgebra C over k.

For short exact sequences we have:

PROPOSITION 1.6. Let a sequence

(S) k >G >H >J >k

of cocommutative Hopf algebras be given. If for any cocommutative coalgebra

C the induced sequence

(CS) e > Homcoα/ > (C, G) > Homcoα/(C, H) - ^ HomCOΛ/(C, J) > e

of groups is exact, then (S) is exact.

PROOF. By Lemma 1.5 it suffices to show the surjectivity of p. Take J

as C. Then the surjectivity of p* implies that there is a coalgebra homomorphism

λ: J-+H such that poλ = iάj. This shows that p is surjective.
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Conversely, if there is a coalgebra homomorphism λ of J into H such that

poX = idj, then it is easy to see that p* is surjective for every C. Therefore we

have the following corollary which plays an important role in this paper.

COROLLARY 1.7. The induced sequence (CS) is exact for every C if and only

if the sequence (S) is exact and there is a coalgebra homomorphism λ of J into

H such that p°Λ. = idj.

DEFINITION 1.8 ([6]; [9]). An exact sequence

(S) k >G >H >J >k

of cocommutative Hopf algebras over k is said to be strongly exact if the induced

sequence

(CS) e > Hom c o α / (C, G) > HomC O f l /(C, H) > HomCflal(C, J) > e

of groups is exact for any cocommutative coalgebra C over k.

If C is a cocommutative coalgebra over /c, then C is decomposed into a

direct sum of irreducible subcoalgebras ([7], Theorem 8.0.5). It follows that:

PROPOSITION 1.9. An exact sequence (S) is strongly exact if and only if

the sequence (CS) is exact for every irreducible cocommutative coalgebra.

Let p: H-+J be a Hopf algebra homomorphism. We say that p has a coal-

gebra splitting if there exists a coalgebra homomorphism λ of J into H such

that poλ = iάj. Let G be a Hopf subalgebra of H. We say that G has a coalgebra

retraction if there exists a coalgebra homomorphism η of H into G such that

In [2] Blattner, Cohen, and Montgomery have shown that when a surjective

homomorphism p: H^J has a coalgebra splitting, then H is isomorphic to a

crossed product of Kj(p) and J as an algebra, and further, if H is cocommutative,

then H is isomorphic as a coalgebra to the tensor product Kt(p)(S)J.

In [6] we gave several conditions for an exact sequence (S) of irreducible

cocommutative Hopf algebras (i.e., hyperalgebras) to be strongly exact, namely,

LEMMA 1.10 ([6], Theorems 1.3, 1.8)). Let

k >G >H-?-+J >fc

be an exact sequence of irreducible cocommutative Hopf algebras over k. Then

the following coditions are equivalent:

(1) The sequence is strongly exact.

(2) p has a coalgebra splitting.

(3) G has a coalgebra retraction.
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(4) There exists a coalgebra isomorphism Θ: H-+G®J such that (ε®iάj)θ =

P-

Let H be a cocommutative Hopf algebra over k. We denote by H1 the

irreducible component of H that contains 1. H1 is a Hopf subalgebra of H.

The following result which is proved by Yanagihara states that the strong exactness

is a local property in some sense.

LEMMA 1.11 ([9], Theorem 2). When H is a pointed cocommutative Hopf

algebra, then an exact sequence

k >G > H > J >k

is strongly exact if and only if the sequence

k > G ι >Hι > J 1 > k

is strongly exact.

§ 2. Strongly exact sequences

In this section we generalize Lemma 1.10 for not necessarily irreducible

Hopf algebras.

Let

(S) k .G-^H-^J >k

be an exact sequence of cocommutative Hopf algebras over a field k. By Lemma

1.4 we may assume that G is a Hopf subalgebra of H, so that H can be regarded

as a left G-module by multiplication.

THEOREM 2.1. The following conditions are equivalent:

(1) The sequence (S) is strongly exact.

(2) p has a coalgebra splitting.

(3) G has a coalgebra retraction which is left G-linear.

(4) There exists a coalgebra isomorphism θ: H^G®J such that (ε®idj)θ =

Proof of (1)<^>(2). This is just Corollary 1.7.

To prove (2)=>(3) we need a lemma.

LEMMA 2.2. If p has a coalgebra splitting, then p has a coalgebra splitting

λ such that λ(lj) = lH.

PROOF. Let λ' be a coalgebra splitting of p. Then g = λ\\) is a group-like
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element of H and p(g) = lj. Since H is a Hopf algebra, g~x exists, and p(g~1) =

l j . Let R^: H-+H be defined by Rg(x) = xg~1. Then R^ is a coalgebra auto-

morphism of H. Put λ = TLg°λ
f. It is easy to see that λ is a coalgebra splitting of

p that satisfies λ(lj)=lH.

Proof of (2)=>(3). By the above lemma we may assume that p has a coalgebra

splitting λ such that λ(l) = 1. Let η = idH*Sλp, where S is the antipode of H.

Since H is cocommutative 77 is a coalgebra homomorphism of H into itself.

Similar calculations as in the proof of Theorem 1.3 in [6] or of Theorem 4.14

in [2] (where η is denoted by Q) show that Im (η) ̂  G and η is a coalgebra retraction

of G.

In order to prove that η is left G-linear, take xeG and heH. Then

yy(xΛ) = Σx(ί)h{1)Sλp(x{2)hi2))

= Σx(ί)h{ί)Sλ(p(xi2))p(hi2)))

(p is an algebra homomorphism)

(by Lemma 1.1 (3))

= Σxh{ί)Sλp(h{2))

= xη(h).

This shows that η is left G-linear.

Proof of (3)=>(4). Let η be a coalgebra retraction of G which is left G-linear.

Then ή = (η®idH)AH: H-+G®H defines a left G-comodule structure on H.

The left G-linearity of η asserts that H is a left G-Hopf module, i.e., the following

diagram is commutative:

G®H — ' - ^ H —5—> G®H

G®G®G®H ^o®T®iaH ) G®G®G®H.

Therefore by Theorem 4.1.1 and its proof in [7] there is a Hopf module iso-

morphism φ between G®Hf and H sending x®h into xh, where

Hr = {heH\η(h)=l®h}.

By the definition of η we have Hf = K^T/), which is a subcoalgebra of H by Lemma

1.1. Since the multiplication of a Hopf algebra is a coalgebra homomorphism, φ

is a coalgebra isomorphism. As a coalgebra, Hf is isomorphic to J by p. In

fact, we have
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J = p(H) = p(GH') = p{G)p{H') = p(H'),

which means that the restriction ρ\H, is surjective. The injectivity of p\H> is

shown as follows. Since G = k\@G + and since φ is an isomorphism, H = H'@

G+H. On the other hand, by Lemma 1.2 (2), Ker(p) = G + H = G + GH' = G + H'.

Hence we have Ker (p) n # ' = 0, which means that p \H> is injective.

Put 0 = (idG(χ)p \H)Φ~ι Then Θ is a coalgebra isomorphism of H onto G®J

and satisfies the equation

(εG ® id.,)0 = p.

This proves (4).

Proof of (4)=>(2). Define λ: J-+H by λ(y) = Θ-1(l®y). Clearly λ is a

coalgebra splitting of p. Therefore Theorem is proved.

REMARK 2.3. Note that condition (3) of the theorem is different from con-

dition (3) of Lemma 1.10. We know that when H is an irreducible cocommutative

Hopf algebra and G is a Hopf subalgebra of H, then if G has a coalgebra

retraction, G has also a coalgebra retraction which is left G-linear ([6], Corollary

1.4). In Section 5 we shall show by giving an example that it does not hold for

non-irreducible Hopf algerbas.

§ 3. Irreducible components containing 1

Let C be a cocommutative coalgebra over a field k. For a group-like element

g of C we denote by C9 the irreducible component of C containing g. If H is a

cocommutative Hopf algebra over /c, then H1 is a Hopf subalgebra of H.

Let

(S) k >G-L>H-?-+ J > k

be a sequence of cocommutative Hopf algebras over k. By Theorem 8.0.8 in [7~

we h a v e X G 1 ) ^ ^ 1 and p{Hx)^Jι. So we have a sequence

(S1) k >Gι-l-+Hι-^>Jι > k

of irreducible Hopf algebras, where j 1 , p 1 denote the restrictions of j , p to G1, H

respectively.

We prove that if (S) is exact (resp. strongly exact), then so is (S1). It is eas;

to see that if (S) is exact then j 1 is injective and Im (j'1) = K1(p1) Thus tb

problem is the surjevtivity of p 1 . In the following lemmas K denotes an extensioi

field of k.
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LEMMA 3.1. Let A be a finite-dimensional local algebra over k with the

maximal ideal m such that A/m = k. Then A®K is a local K-algebra with

the maximal ideal m®K.

PROOF. m®K is a maximal ideal of A®K since

(A®K)l(m®K) ^ (A/m) ®K^k®K^K.

In order to prove that m®K is the unique maximal ideal, it is enough to prove

that any element of A®K not belonging to m®K is a unit.

By the assumption m is a nilpotent ideal, so that xn®K is also nilpotent.

Since A = kl®m as a A -space, we have A®K = Kl@(m®K) as a K-space. Let

xeA®K but x^m®K. Then x = α l + z , where α^O in K and zem®K.

Since z is nilpotent, it follows that x is a unit.

LEMMA 3.2. If C is a pointed irreducible cocommutative coalgebra over k,

then C®K is also pointed irreducible as a K-coalgebra.

PROOF. C is a direct union of finite-dimensional subcoalgebras:

C = \jCi9 Ct c C 2 c . . .

So we have C®K = Wf (Cf(χ)K) and C 1 ® K ^ C 2 ® X £ •••. Since every Cf is

pointed, irreducible, and finite-dimensional over k, by Lemma 3.1 each Ct®K

is pointed irreducible. Therefore C®K is pointed irreducible.

LEMMA 3.3. Lei C be a cocommutative coalgebra over k. If g is a group-

like element of C, then (C®K)1<S)1 =

PROOF. Note that #®1 is a group-like element of C®K. By Theorem

8.0.5 in [7] we have C = C9®D, where D is the sum of all irreducible components

of C different from C9. Hence as a K-coalgebra we have

C ® K = (C9®K) 0 (D® K).

By Lemma 3.2 C9®K is irreducible. This shows that C9®K is an irreducible

component of C®K that contains g®l, so that

PROPOSITION 3.4. If p in (S) is surjective, then ρ(H1) = J1, i.e., ρι is

surjective.

PROOF. Let K be an algebracially closed extension field of k. Then H®K

is a pointed Hopf algebra over K, and p®K is surjective. Thus by Theorem 1

in [10] we have (p®K)((H®Ky®1) = (J®K)1®1. By Lemma 3.2 we have

(H®KY®ι=Hι®K and (J®K)1®ι=Jί®K. Clearly
It follows that p1 is surjective.
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If p in (S) has a coalgebra splitting λ, then ^ ( J 1 ) ^ / / 1 and the restriction 1 |ji

is a coalgebra splitting of p 1 . Therefore we have shown the following:

THEOREM 3.5. If a sequence

k >G >H >J >k

of cocommutative Hopf algebras over k is exact (resp. strongly exact), then

the extracted sequence

k > G1 > H1 > J1 > k

of irreducible Hopf algebras is exact (resp. strongly exact).

REMARK 3.6. If H is pointed, then the converse of the theorem holds ([9],

Theorem 2). But generally it is not valid as shown by an example later.

§ 4. Coradicals of cocommutative Hopf algebras

Let C be a cocommutative coalgebra over a field k. We denote by C o the

coradical of C. If/: C-+D is a homomorphism of coalgebras, t h e n / ( C 0 ) ^ D 0 .

I f/ is injective (resp. surjective) then we have /(C o ) =/(C) n Do (resp./(C0) = D0)

([7], Lemma 9.0.1 and Theorem 8.0.8). We denote by/ 0 the restriction o f / t o

Co.

PROPOSITION 4.1. (1) If a sequence

(S) k >G-UH-^J >k

of cocommutative Hopf algebras is exact, then the sequence

hr r* Jo v ΊJ Po v f ^ L,

K > Lr0 > n 0 > Jo > K

of coalgebras is exact, that isjo is injective, p 0 ΪS surjective, and K 1(p 0) = Im (j0).

(2) //(S) is strongly exact, then p 0 has a splitting and Ho is isomorphic

to (Go®/O)o

PROOF (1) The injectivity of j 0 and the surjectivity of p 0 follow from the

above remarks. Moreover, by definition, we have

K^Po) = Ho n K t(p) = Ho n G = G o .

(2) The first assertion is obvious. Since H is isomorphic to G®J, the

second assertion follows from Theorem 2.1 and the next lemma.

LEMMA 4.2. // C, D are cocommutative coalgebras over k, then we have
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(C®D)0 = (C0®D0)0.

PROOF. We may assume that both C and D are of finite dimension. Let A

and B be the dual algebras of C and D respectively. Then A®B is the dual

algebra of C®D. Let W(A), 9ΐ(£), 9i(A®B) be the Jacobson radicals of A, B,

A®B respectively. Then it is easy to see that

M(A®B) Ξ> M(A) ® B + A ® M(B).

It follows that (C®D) 0 ^C 0 ®I> 0 . This implies that (C®Z>) 0c(C 0®/) 0) 0 .

Conversely, it is clear that (C0®D0)0^(C®D)0 because C 0 ® D 0 is a sub-

coalgebra of C®Zλ

REMARK 4.3. (1) Go has always a retraction in //0 if j is injective. Indeed,

then Go can be regarded as a subcoalgebra of a cosemisimple coalgebra i/0, so

that there is a subcoalgebra #0 of Ho such that HO = GO®H'O. If we put

if xeG0

then it is clear that η0 is a retraction of Go in Ho.

(2) G o® J o is not necessarily cosemisimple. But we see in the following

that it is cosemisimple in case Ho is a Hopf subalgebra of H.

Let C be a cocommutative cosemisimple coalgebra over fe. Then the dual

algerba C* is a direct product of extension fields of k. C is called separable

if C* is a direct product of separable extension fields of k (cf. [1], §3.4). The

following lemmas are consequences of the field theory (see, e.g., [4], Cap. IV,

§10).

LEMMA 4.4. Let C be a cocommutative cosemisimple coalgebra over k.

Then the following conditions are equivalent:

(1) C is separable.

(2) For any extension field K of k, C®K is a cosemisimple K-coalgebra.

(3) // K is an algebraically closed extension field of k, then C®K is a

direct sum of one dimensional subcoalgebras.

PROOF. Since C is a direct sum of simple subcoalgebras, it is enough to prove

the lemma in case C is simple.

(1)=>(2). Assume that C is the dual coalgebra of a finite separable extension

field L of k. Then C®K is the dual coalgebra of a X-algebra L®K. Since

L is separable over k, L®K has no nilpotent elements (loc. cit. Theorem 21,

p. 197). It follows that L®K is a direct product of extension fileds of K, which

means that C®K is a cosemisimple coalgebra.
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(2)=>(3) is trivial since C®K is a cocommutative pointed coalgebra.

(3)=>(1). Assume that L = C* is not separable over k. Then there exists

an algebraic extension field E of k such that L®E has a nonzero nilpotent element.

Let K be an algebraically closed extension field of E. Then we have L®kE^

L®kK. This contradicts the assumption.

LEMMA 4.5. Let C be a cocommutative coalgebra over k. Let K be an

extension field of k. Then we have, as K-coalgebras, (C®K)0^C0®K. The

equality holds if Co is separable.

PROOF. We may assume that C is of finite dimension. Since the Jacobson

radical SR(C*) of C* is nilpotent, we have $i(C*®K) 2 <R(C*)® K. It follows that

(C®K)0 ^C0®K.

Next assume that C o is separable. Then C0®K is a cosemisimple subco-

algebra of C®K by Lemma 4.4 (2). It follows that C0®K^(C®K)0. This

proves the lemma.

LEMMA 4.6. Let, C, D be cocommutative cosemisimple coalgebras over k.

If either C or D is separable, then C®D is cosemisimple.

PROOF. We may assume that both C and D are of finite dimension. Then

(C®D)* = C*®D* has no nonzero nilpotent elements. It follows that (C®D)*

is a direct product of fields, which proves the lemma.

THEOREM 4.7. Let H be a cocommutative Hopf algebra over k. ThenH0

is separable if and only if Ho is a Hopf sub algebra of H.

PROOF. Assume that Ho is separable. In order to prove that Ho is a Hopf

subalgebra, it is sufficient to prove that Ho is closed under the multiplication M

ofH.

Since Ho is separable, H0®H0 is cosemisimple and H0®H0 = (H®H)0 by

Lemmas 4.6 and 4.2, respectively, so we have M(H0®H0)^H0, because M is a

coalgebra homomorphism. Consequently, H0 is a Hopf subalgebra of H.

Conversely, assume that H0 is a Hopf subalgebra of H. Let K be an alge-

braically closed extension field of k. Then H0®K is a cocommutative pointed

Hopf algebra over K, so its irreducible components are isomorphic to each other

as coalgebras over K. Since HJ = /cl we have (H0®κy®1 = Hl®K = Kl by

Lemma 3.3. It follows that every irreducible component of H0®K is one dimen-

sional. Hence, by Lemma 4.4 (3), Ho is separable. This proves the theorem.

Now consider an exact sequence

(S) k > G > H > J >k
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of cocommutative Hopf algebras. If Ho is separable, then both Go and Jo are

separable since the dual algebra G$ of Go (resp. J% of Jo) is a homomorphic

image (resp. isomorphic to a subalgebra) of H%. Thus Proposition 4.1 becomes

as follows:

COROLLARY 4.8. Assume that Ho is separable. If (S) is exact (resp.

strongly exact), then the sequence

(So) k — > Go —>H0 — > Jo >k

of coalgebras is an exact (resp. a strongly exact) sequence of Hopf algebras.

§ 5. Decomposition Theorem

In the previous section we showed that the coradical Ho of a cocommutative

Hopf algebra H is a Hopf subalgebra if and only if Ho is separable. We prove

that in this case H is a semidirect product of H1 and Ho. This is known as

Cartier-GabrieΓs Decomposition Theorem in the theory of formal groups ([3],

Chap. II, §1, No. 4). When H is pointed then Ho is the group algebra of the

group of all group-like elements of//, and it is well-known that H is isomorphic to

the smash product H1#H0 ([7], §8.1). The notion of the smash product is

refered to [7], Chapter VII.

Let H be a cocommutative Hopf algebra over a field k. Since the multi-

plication of H is a coalgebra homomorphism, the following map

μ\Hι®H0 >H, h®x > hx

is a coalgebra homomorphism. In case H is pointed, as stated above, μ is an

isomorphism. In any case we have:

LEMMA 5.1. μ is surjective.

PROOF. Let K be an algebraically closed extension field of k. Then H®K is

pointed Hopf algebra over K. Thus by Lemmas 3.3 and 4.5 we have

(μ®K)(H'®H0®K) = (μ®K)((H*®K) ®K(HO®K))

=2 (μ®K)((H®KY®i ®K(H®K)O)

= H®K.

It follows that μ is surjective.

If Ho is separable, then (H®K)0 = H0®K by Lemma 4.5. Therefore a

similar argument shows the following:

PROPOSITION 5.2. If Ho is separable, then μ is a coalgebra isomorphism.
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If Ho is separable, then Ho is a Hopf subalgebra by Lemma 4.7. In this case

we can consider the adjoint action of Ho on H:

α: Ho ® H • H, x ® h I > Σx(1)hS(x(2)).

Under this action H is an H0-module algebra. Note that if H is pointed α is the

same action as that given in Theorem 8.1.5 in [7], so that in this case we have

α(i/ 0® H1) C / / 1 , We show that in any case H1 is stable under α.

Indeed, let K be an algebraically closed extension field of k. Then (H®K)1®1

= Hι(g)K and (H®K)0 = H o ® K since Ho is separable. So we have

= (oc®K)((Ho®K) Oxί/

since, as easily seen, α®X is the adjoint action of (H®K)0 = H0(g)K. It follows

Therefore H1 is an H0-module algebra under α. An easy calculation shows

that μ is an algebra homomorphism of the smash product W$H0 into H, where

the multiplication of H1$H0 is given by

(h$x) (l#y) = Σ(x)hx{ί)lS(xi2)βxi3)y

for h, leH1, x, yeH0.

H^HQ becomes a Hopf algebra if we equip it with the tensor product

coalgebra structure, and then μ is a Hopf algebra isomorphism. Thus we proved

the Hopf algebraic version of Cartier-GabrieΓs Decomposition Theorem:

THEOREM 5.3. Let H be a cocommutative Hopf algebra over k and assume

that the coradical Ho is separable. Then:

(1) Ho is a Hopf subalgebra of H.

(2) H1 is stable under the adjoint action of Ho on H:

α(x®/z) = Σ(JC) x(i)n^(x(2))eH1 for xe//0, heW.

(3) The smash product Hι$H0 has a Hopf algebra structure.

(4) μ: H1#H0->H, /I®XH^/IX is a Hopf algebra isomorphism.

COROLLARY 5.4. Let H be as in the theorem. Then we have a strongly

exact sequence

k > H1 >H-?-+H0 > k,

where p is given by p(hx) = ε(h)x for heHι, xeHo.
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PROOF. Define;: Hί-^H1^H0 and p': H^H0-^H0 as follows:

j(h) = A*l, p'(Ajχ) = ε(h)x,

for heH1, xe Ho. Then we have an exact sequence

k > H 1 ^ U ifijf/fo -^U i/0 > k

of cocommutative Hopf algebras. This is strongly exact since p' has a coalgebra

splitting λ: Ho->Ho

ι$H, xh+ltfx.

We are in a position to give a generalization of Theroem 2 in [9]. Let H

be a cocommutative Hopf algebra such that Ho is separable, or equivalently, Ho

is a Hopf subalgebra. Let

(S) k >G-UH - ^ J >k

be a sequence of Hopf algebras. Then we have the following two sequences:

(S1) k —-> G1 J^> H1 -£-» P >k

(So) k >G0J±+H0J±+J0 > k

of Hopf subalgebras extracted from (S).

If (S) is exact (resp. strongly exact), then both (S1) and (So) are exact (resp.

strongly exact) by Theorem 3.5 and Corollary 4.8 respectively.

Conversely, assume that both (S1) and (So) are exact.

Clearly the following diagram is commutative:

where μG, μH, and μ3 are Hopf algebra isomorphisms as in Theorem 5.3 (4). It is

easy to see that K1 ( S ) 1(p1®p0) = G 1®G 0 . It follows that Kί(p) = G, so that (S)

is exact.

Further, assume that both (S1) and (So) are strongly exact. Then both p1

and p 0 have coalgebra splitting, so that p has a coalgebra splitting. This shows

that (S) is strongly exact. Therefore we have:

THEOREM 5.5. Assume that Ho is separable. Then (S) is exact (resp.

strongly exact) if and only if both (S1) and (So) are exact (resp. strongly exact).

REMARK 5.6. When H is pointed and when (S) is exact, then (So) is always
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strongly exact as stated in the proof of Theorem 2 in [9].

REMARK 5.7. In the next section, we shall construct an exact sequence of

cosemisimple Hopf algebras which is not strongly exact.

§ 6. Examples

In this section we give examples which show that Corollary 1.4 in [6] is not

true for non-irreducible Hopf algebras (Remark 2.3), the converse of Theorem 3.7

does not hold generally (Remark 3.8), and there exists an exact sequence of cosemi-

simple Hopf algebras which is not strongly exact (Remark 5.7).

First, we briefly construct a certain kind of Hopf algebra generated by a

coalgebra.

Let C be a coalgebra over a filed k. The tensor algebra ΊC on C has a

bialgebra structure ([7], Proposition 3.2.4). If C is cocommutative, then ΊC

is a cocommutative bialgebra.

Let C be cocommutative. Let S' be a linear transformation of ΊC defined by

S'(cίc2'-cn) = cncn_γ cx,

for c!,..., cn in C. Let / be an ideal of ΊC that is generated by the set

Then it is easy to see that / is an S'-stable biideal of TC, i.e., we have

ATC(I) ς T C ® / + / ® T C , ε τ c(/) = 0, and

and that / Π C = 0. Therefore H(C) = TC// is a cocommutative Hopf algebra with

the antipode S induced by S'. By the natural injection c: C->H(C), C is regarded

as a subcoalgebra of H(C).

Let /: C-*D be a homomorphism of cocommutative coalgebras. Then we

have a unique Hopf algebra homomorphism H(/) : H(C)-*H(D) which makes the

following diagram commutative:

I f/ i s surjective, then H(/) is also surjective since H(D) is generated by D as an

algebra over k.

Let D = kg, a one dimensional coalgebra generated by a single group-like
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element g. Then we see easily that H(D) is a two dimensional Hopf algebra

klφkg, with A(g) = g®g, ε(g)=l, and g2=\.

Let C be a cocommutative coalgebra and let D be as above. If we define

/ : C-+D by f(c) = ε(c)g for CEC, t h e n / i s a surjective coalgebra homomorphism.

P u t / = H ( / ) . Let L 1 = K 1 ( / ) and Lg = Kg(f). Then we have an exact sequence

(S) k >Lί > H(C) -/-* H(D) • fc.

It is easy to see that

Lx Π Lg = 0, L,Lg c L,, L ^ <Ξ L,, L 2 <Ξ jr^ .

By Lemma 1.1 (3), we have C^Lg. Thus we have

C 2 " c Ll9 C2n+1 <= L,

for n = 0, 1,2,.... Since 1 e C 2 (see the definition of the ideal I), we see that C" c

C π + 2 for w = 0, 1, 2,. . . . Therefore

L t = f C2"> ^ = Σ C 2 " + 1 , and H(C) = 1 , 0 1 , ,
n=O n=0

since H= Σ C Λ .
Λ = 0

EXAMPLE 1. Assume that C is the dual coalgebra of a purely inseparable

extension field K of k with degree more than 1. Then C is a simple coalgebra

and has no group-like elements. Since X(χ)X® ®i<C (n times) is a local k-

algebra, the dual coalgebra C®C® ®C = (lC®K(χ) ®K)* is irreducible, so

that its homomorphic image C" in H(C) is irreducible for any n e N . Let D be as

above. Then it follows that Lγ and Lg are irreducible subcoalgebras and that

(L 1 ) 0 = /cl and (Lg)0 = C. Since H(D)1 = /cl, we have an exact sequence

(S1) k > Lx > Li > fcl > fc.

Trivially, this is strongly exact.

Since H(C)0 = /cl + C, it follows that H(C) has only one group-like element,

namely, 1. This implies t h a t / h a s no coalgebra splittings because H(D) has two

group-like elements. Thus (S) is not strongly exact. This shows that the converse

of Theorem 3.5 does not hold.

Next, define η: L1®Lg-+L1 by

x for x e Lx

η(x) =
ε(x)l for xeL .
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Then η is a coalgebra retraction of Lx. This and Theorem 2.1 show that Corollary

1.4 in [6] is not true for non-irreducible Hopf algebras.

EXAMPLE 2. Assume that ch{k)φl, and there is an a e k such that yja φ. k.

Let H be a four dimensional vector space over k with a basis {e, x, y, z}. Define

a multiplication on H by the following table:

e

X

y

z

e

e

X

y

z

1
2

X

X

(e + z)

0

X

y

y

0

-y

z

z

X

-y

e

Then calculations show that H is an associative, commutative /c-algebra with unit

element e which we denote by 1 from now on.

Define linear mappings

Δ.H >H®H and ε: H >k

by

-- 1 ® 1, ε(l) = 1

A(x) = x (x) x + ay (x) y, ε(x) = 1

Δ(y) = χ®y + y®χ, ε(y) = 0

= z ® z, ε(z) = 1.

Then we see easily that A and ε are /c-algebra homomorphisms, so that H is

a bialgebra over k. Further, the multiplication table of H shows that idH*idH = ε.

It follows that H is, in fact, a Hopf algebra with idH as its antipode.

Put C = kx + ky. Then C is a subcoalgebra of H, and the dual algebra C*

of C is isomorphic to the quadratic extension field k(yfa) of /c, so that C is a

simple subcoalgebra. It follows that H is a cosemisimple Hopf algebra with

simple subcoalgebras fel, /cz, and C.

Let D be a coalgebra as in Example 1. Consider a linear mapping p : //->

H(D) defined by

p ( l ) = l , p(*) = 0, Pϋ0 = 0, and p(z) = 1.

Then p is a Hopf algebra homomorphism of H onto H(D). By Lemma 1.1 we

have
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Kt(p) = kl + kz and K/p) = C.

Thus we have an exact sequence

(S) k > K x (p) > H -JL> H(D) > k

of cosemisimple Hopf algebras, p has no coalgebra splittings because C has no

group-like elements. Therefore (S) is not strongly exact.
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