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Introduction

In the present paper we aim to establish a method of finite element approx-
imations on a Riemann surface. Our method matches the abstract definition of
Riemann surfaces, and also will offer a new technique of high practical use in
numerical calculation not only for the case of Riemann surfaces but also for the
case of plane domains (cf. Mizumoto and Hara [18]). It is characteristic of our
method that by adopting an ordinary finite element approximation on every
parametric disk, the approximations of high precision are obtained.

Let € be a compact bordered or closed Riemann surface. We choose a
fixed finite collection ®={z=¢;(p), peUj; j=1,---, m} of local parameters z
=¢;(p) and parametric disks U; so that Q<{J7-,U; §1 is devoted to
construction of a triangulation K of € with width h associated to @ (cf. §1.2), a
normal subdivision of K (cf. §1.3), and a naturalized triangulation K’ associated
to K (cf. §1.4). The triangulation K of @ is constructed as the sum of
subtriangulations K; (j=1,---, m) in such a way that |K;|c U}, each 2-simplex s
of K belongs to one and only one K;, each seK; is natural (see §1.2) at most
except for the case when it has a common side with another s'eK, (k#j), and
the diameter of ¢;(s) is at most h for each seK; (j=1,---, m). Let K; (j=1,---,
m) be triangulations consisting of all 2-simplices of K; which are not minor or
major, and all naturalized simplices of K; (see §1.4). Then the triangulation K’ is
defined as the sum of K} (j=1,---, m).

In §2, we introduce and investigate two spaces A=A4(K) and A'=A4"(K")
of differentials. The space A4 consists of locally exact differentials o), such that for
each 2-simplex seK; (j=1,---, m) the coefficients of g, are constant on ¢;(s)
except that g, is modified on all lunes of minor or major simplices (see §1.4 and
§2.1). To each o,ed, we associate a differential o,=F (s,) on K’ whose
coefficients are constant on ¢;(s) for each 2-simplex seK; (j=1,---, m) and
which is equal to o, on Q except for all lunes of K (cf. §2.2). The space A’
consists of all g,=F (5,) (0,€4). We shall investigate estimates of differences of
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Dirichlet norms |a,||% and |/o}||Z- (see Lemma 2.2).

Let w be a harmonic differential on Q which satisfies some period
conditions and some boundary conditions (see §3.1). The finite element
approximations ¥, and wj of @ are defined in the spaces 4 and A’ respectively
(cf. §3.2 and §3.3 resp.). The differential w; can be numerically calculated. §3 is
devoted to error estimates of ¥, and w, for w, where w,=F ! (w},). We shall
make use of Bramble and Zlamal’s lemma (see Lemma 3.5). In Theorems 3.1
and 3.2, we obtain error estimates:

lyy—w|><Ch* and |ow,—o|><CH,

where C and C’ are constants which depend only on the differential w and the
smallest value of interior angles of triangles ¢;(s) for all seK; (j=1,---, m).
Further, in Theorem 3.2, we obtain an estimate for [w]?:

lwl? < llwyll® + & (w},)

in a special case (see §3.2), where ¢(w}) is a quantity of O (h?) which can be
numerically calculated.

Finally, in §4 we apply our results to numerical calculation of periodicity
moduli of closed and compact bordered Riemann surfaces, and we shall show
that calculation results for some concrete Riemann surfaces of genus one are
fairly good. With respect to the problems of this type, there have been some
investigations by means of finite-difference method (Gaier [11], [12], Mizumoto
[13], [14], [15], Opfer [20], [21]).

Our treatment at critical points of a Riemann surface is closely related to
that at boundary singularities on a plane (cf. Akin [2], Babuska [3], Babuska
and Rosenzweig [4], BabuSka, Szabo and Katz [5], Barnhill and Whiteman [6],
Blackburn [7], Craig, Zhu and Zienkiewicz [10], Mizumoto and Hara [18],
Opfer and Puri [22], Rivara [23], Schatz and Wahlbin [24], [25], Thatcher
[28], Tsamasphyros [29], Whiteman and Akin [30], Yserentant [31]).

The results in the present paper (Theorems 3.1 and 3.2) may be generalized
to the case of harmonic differentials on a higher dimensional Riemannian
manifold.

§1. Triangulation

1. Collection @ of local parameters Let Q be a closed Riemann surface
or a subdomain of a Riemann surface W whose closure 2 is a compact bordered
subregion of W. In the latter case, we assume that the boundary 092 consists of
a finite number of analytic arcs meeting at vertices p, (k=1,---, v), and there
exist parametric disks V; (k=1,---, v) with the centers p, and local parameters z
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=y, (p) by which ¥,NQ are mapped onto sectors {|z|<r}JN{0<argz<pB,} (0
<P =2m, B,#m). For conformity, if Q is a closed Riemann surface, then we
interpret that Q=W.

By &#={z=9¢;(p), U; j=1,---, m} we denote a finite collection of local
parameters z=¢; (p) (j=1,---, m) and parametric disks U; (j=1,---,m)on W
which satisfies the following conditions (i)~ (iv):

(i) Each U; (j=1,---, m) is a parametric disk and by the mapping z
=g@;(p), U; is mapped onto a disk |z|<p; Furthermore, each vertex p, (k
=1,---, v) is the center of some U,

(ii) £ is covered by {U;}7-,.

@iii) If U;nU,# 2. then there exists a constant L(>1) such that for the
mapping {=f (z)=¢,°9; ' (z), 1/L<|f"(z)I<L on ¢;(U;n\Uy).

(iv) If U;n0Q2#2, then ¢; (U;NQ) is a half disk {|z|<p;}N{Imz>0} or a
sector {|z|<p;}N{0<arg z<a;} (O<a;<27, a;#m).

In the latter case of (iv), by the mapping {=(¢;(p))"*, U;NR2 is mapped
onto a half disk {|{|<p}*}N{Im{>0}. In this case we define anew z=¢,(p)
and p; by (= (¢;(p))"% and p}”% respectively. Then, the local parameter z
=@;(p) is no longer conformal at the center of U;.

2. Triangulation K associated to @ For the collection @ of local param-
eters and parametric disks defined in §1.1, and for a sufficiently small positive
number h, we construct a triangulation K=K" of @ which satisfies the
following conditions (i)~(v). This is called a triangulation of 2 with width h
associated to .

(i) Each point at which 0€2 is not analytic is a carrier of some 0-simplex
of K.

(ii) K is the sum of subtriangulations K,,---, K,, of K such that each 2-
simplex of K belongs to one and only one K; (j=1,---, m), and the carrier |s| of
each 2-simplex s of K; is contained in U;.

If a 1-simplex eeK; does not belong to another K, (k#j), or a 1-simplex e
belongs to K;NK, (j#k) and the mapping ¢,°¢; ! is an affine transformation,
then e is said to be linear. If each edge of a 2-simplex se K is linear and @;(s) is
an ordinary triangle, then s is called a natural simplex.

(iii) Each 2-simplex seK; which has not a common edge with any 2-
simplex of another K, (k#j), is a natural simplex.

A 2-simplex of K; which has a common edge with a 2-simplex seK;
(j#k), is said to be an adjoint (simplex) of s and is denoted by s'.

(iv) For each pair of a 2-simplex seK; and its adjoint s'eK, with a
common edge e, either one of the following three cases (a), (b), (¢) occurs.

(a) Both s and s are natural simplices.
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(b) @;(s) is a curvilinear triangle such that ¢; (e) is a strictly concave arc
w.r.t. ©;(s), ¢, (s') is an ordinary triangle, and all edges of s and s’ except for e
are linear (cf. Fig. 1). Then s is called a minor simplex. The case where s’ is a
minor simplex and s is its adjoint may also occur.

(Dj(e)

Fig. 1

(c) @, (s) is a curvilinear triangle such that ¢; (e) is a strictly convex arc
W.r.t. ;(s), @, (s') is an ordinary triangle, and all edges of s and s’ except for e
are linear (cf. Fig. 2). Then s is called a major simplex. The case where s’ is a
major simplex and s is its adjoint may also occur.

o;(€)

\

Fig. 2

If s is a minor or major simplex of K;, then it is assumed that |s'|cU;
for its adjoint s'.

(v) For each 2-simplex seK; (j=1,---, m), d(¢;(s))<h, where through-
out the present paper we denote the diameter of a region G by d(G).

Next, we assume that for the fixed @ the class of the triangulations K =K"
satisfies the following conditions (i') and (ii'):

(i) For each j=1,---, m the union of carriers of all minor and major
simplices of K;, and all their adjoints is contained in a closed subset R; of
U;NQ which is independent of the individual triangulation K.

(i) The number N of minor and major simplices of K satisfies the
inequality:

1

M'I,

(L. N

1A
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where M is a constant which is independent of the individual triangulation K.

3. Normal subdivision of triangulation K For a triangulation K= K" of Q
with width h associated to @ we can construct a subdivision K'=K!"2 called
the normal subdivision of K=K" by the following procedure:

(i) K' is the sum of the subtriangulations Ki,---,K. which are the
subdivisions of K,,---, K,, respectively which are defined in the following (ii),
(iii).

(ii)) If seK; is a 2-simplex which is not minor or major, then s is
subdivided to four 2-simplices s,, s,, s; and s, of Kj so that ¢;(s;), @;(s2),
@;(s3) and ¢@s,) are mutually congruent ordinary triangles as in Fig. 3.

a=q;(a) (a: simplex)

Fig. 3

(iii) Let seK; and s'eK, be a minor (or major) simplex and its adjoint,
and let e, e, and e; be edges of s such that e, is the common edge of s and s'.
We subdivide the edges e, e, and e; to two edges e;, and e,,, e,, and e,,, and
e3; and e;, respectively so that ¢ (e;, ) and ¢, (e;,), @; (e2; ) and ¢; (e;, ), and

€31

a=g (a) (a: simplex)

Fig. 4
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®; (e3;) and @; (e3, ) have the same length respectively. Then we subdivide the
simplex s to two minor (or major resp.) simplices s, and s, of K} and, two
natural simplices s; and s, of K} so that ey,, e, ,, €,;, €55, €3; and e;, are edges
of s,, s, and s, (cf. Fig. 4). Here we note that such a subdivision is always
possible if & is sufficiently small.

We can easily see that the normal subdivision K'=Y7.,Kj is a
triangulation of 2 with width h/2+ O (h*) associated to @ (cf. (1.10)).

4. Naturalized triangulation For each minor (or major) simplex seK; we
define the naturalized simplex bs of s as the 2-simplex such that |s|c|bs| (||
c|s| resp.) and ¢;(ts) is the ordinary triangle which has two common sides
with ¢; (s). Further we define a 2-simplex bé=be(s) (#£=%#£(s) resp.) with
two edges whose carrier is the closed region |bs|—|s| (|s|—|bs| resp.). bé(s)
(#¢ (s) resp.) is called the deficient (excessive resp.) lune of s.

Each triple of a minor (or major) simplex seK;, its adjoint s'cK, and its
deficient lune .b¢ (excessive lune #2 resp.) is denoted by (s, s, b¢) ((s, s, #¢)
resp.), and is called a triple for a minor (major resp.) simplex s or for a deficient
(excessive resp.) lune b¢ (¢ resp.) (cf. Fig. 5), where it is always assumed that |b¥¢|
c|s'| for each (s, s', bé).

@i(b¢) o;(1)

Fig. 5

For simplicity of notation, we also denote bZ=bé(s) or #¢=%#4(s) by ¢
=£¢(s). If a minor or major simplex s is in K, then we say that £=2£(s) is a
lune of K; and write leK .

Now we shall define the naturalized triangulation K’ associated to K.

First, K; (j=1,---, m) are defined as triangulations such that the collection
of all 2-simplices of K consists of all 2-simplices of K; which are not minor or
major, and of all naturalized simplices of minor and major ones of K;. Then
the triangulation K’ is defined as the sum of K; (j=1,---, m). We should note
that K’ is no longer a triangulation of €, and also is not an ordinary
triangulation.
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5. Parametrization of lunar domains Let (s, s, £) be an arbitrary triple
for a deficient or excessive lune ¢, and let e, and e, be two edges of £ such that
e, = 0s. Further, let

(1.2) = (1—t)z; +tz, 0=t=1)
and
(1.3) "= (1-1); +1t{, (0=t=1)

be parameter representations of the oriented segments ¢;(—e;) and @e;)
respectively. The representation (1.3) induces a parameter representation of the
curve @j(e,):

(14) Z'=g((A—-t);+1tl;) (0=:=1),

where z=g ({)=¢;°¢; ' ({). By (1.2) and (1.4) we obtain a parameter represen-
tation of the lunar domain o; (¢):

(1.5) z=z(t, 1)= (1—-1) + 12"
=(1—1)(A—=t)zy+tz,)+tg((Q—2)y+12Ly)
0=t=1, 0=71).
6. Area of lune

LeEmmA 1.1. Let (s, s, £) be a triple for an arbitrary deficient or excessive
lune €. Then, the estimate

9" (¢1)
g¢)
holds, where throughout the present paper we denote the area of a region G by
A(G), z=g()=ree ' (), hy=d(p;(¢)) and {, is one of the vertices of the
lunar domain ¢, (¢).

19) atoen st (|FE0] o)

Proor. Here we shall preserve the notations in §1.5. By Taylor’s
expansion we have

(L.7) Z—2,=¢' () (-11) z+—;—g"(c1 ) L=y P2+

for the point z” of (1.4) on ¢, (e,), and

(18) 2 —zy =t(z;—zy) 1
=g'() (Cz—C1)t+§g"(C1) C=C )t +-
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for the point z’ of (1.2) on ¢;(—e,), where we assume that the triangulation K is
so chosen that ¢, (e, ) is contained in a disk V centered at {, such that ¢, ' (V)
cU;NU;. By (1.7) and (1.8) we find that the equality

t(t 1)

(1.9) =7 = (-0 9" €)+0((L—8)?)

holds for the point z’ of (1.2) on ¢; (—e,) and the point z” of (1.4) on ¢; (e;)

with common ¢.
Since [, —¢| £ hy (1/1g (1) +0 (hy)), the equality (1.9) implies

(1.10) PR < 9" (&)

"(¢1)?
Therefore we obtain the estimates

+0(hy )>.

A(p;(¢)) =lzp—z'max |2/~
( 9" &)

§2. Spaces of differentials

1. Subspace A of I, Let I'’=I7?(2) be the set of all locally exact
differentials ¢ in the class C° on Q with the finite Dirichlet norm

+ O (hy )>

loll? = llol%= J6*0<00,
2

where by *¢ we denote the conjugate differential of 6. Let I',=T, (2) be the
completion of I'?. We should note that in Chapter 5 of Ahlfors and Sario [1],
I, is defined as the completion of I''=I°nC!.

We define a subspace A=A (K ) of I', as the space of differentials o, which
satisfy the following conditions (i)~ (iv):

(i) o4el..

(ii)) If seK; (j=1,---, m) is a natural simplex, then

0, =agdx + bydy on @;(s) {(z=x+iy),

where a, and b, are constants.
(iii) Let (s, s, b¢) be a triple for a minor simplex s, and let e; and e, be
two edges of b¢ such that —e, =ds. Then

0, =agdx + bydy on @;(s),



Finite element approximations on a Riemann surface 625
o= od¢ + Bodn on @ (s')— @i (b0),

and o, is a harmonic differential in b¢ which satisfies the boundary conditions
o= agdx + bydy along ¢;(e;)

and
o¢ an o¢ on
op= <a05;+ﬂoé—x—>dx + (a05;+[306—y dy along ¢;(e;),
where a,, by, o, and B, are constants, and

(=f@)=poj'(z)  (z=x+iy, {=&+in).

(iv) Let (s, s, #¢) be a triple for a major simplex s, and let e, and e, be
two edges of #¢ such that e, =ds. Then

0, = agdx + bydy on ¢;(hs),
oy = od¢ + Bodn on ¢ (s),
and o, is a harmonic differential in #¢ which satisfies the boundary conditions

o,=aogdx +body  along ¢;(e;)

and
_ & on 0¢ on
g, = <a°6x +ﬁoax)dx + (a05+ﬁ05§ dy along o;(e;),

where a,, by, a, and B, are constants, and {=¢&+in is as in (iii).
We note that g,€4 is generally discontinuous on each edge of 2-simplices
of K.

2. Space A" Let K’ be the naturalized triangulation associated to K. For
each differential o,€4, we define the differential o}, on K’ associated to o, as the
differential o}, which satisfies the following conditions (i)~ (iv):

(i) For each 2-simplex seK; (j=1,---, m)

op=aedx+bydy on ¢;(s),

where a, and b, are constants.
(ii) If seK is a natural simplex, then

’

o =0y, on |s|.
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@) If (s, s’, b¢) is a triple for a minor simplex s, then

!

0, =0y on |s|Yls’| —|be|.
@iv) If (s, s, #¢) is a triple for a major simplex s, then
o, =0y on |as|Y]s].

We should note that the differential o, is defined just twice on each
deficient lune b¢, while it is never defined on any excessive lune #£. In the
former case, for each triple (s, &, b¢) we shall denote the differential o}, on
bseK; and s'eK; by o}, and o, respectively.

The space of all differentials o; associated to g,eA is denoted by A’
=A"(K'). Let g, and y;, be two differentials of A’. Then the inner product (o},
1) of o, and yx; is defined by

(O';,, X;l ) = (0';,, X;I )K’

=X | oW*th

seK’
1851

and the norm | o] of o} is defined by

okl = lloul e =/ (@3 o4 .
We see that o,=F (6,) defines a one-to-one mapping of 4 onto A'.

3. Finite element interpolations Let o be an element of I',. We define the
finite element interpolation & of o in the space A as the differential uniquely
determined by the following conditions (i) and (ii):

(i) ¢ée4;

(ii)) For each 1-simplex eeKk,

[

4. Harmonic differentials on a lune

LemMA 2.1. Let¢=¢(s) be a deficient or excessive lune of K;, let e; and e,
be two edges of ¢, and let o, and o, be exact differentials in the class C° on ¢
which satisfy the condition

1) We shall use the common notations ( , ) and | || for both inner products and both norms
of differentials of the spaces 4 and A’.
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J‘ 0'1=_Jv 62.
(2} €y

Further, let y be the differential harmonic in ¢ and continuous on ¢ which satisfies
the boundary conditions

1 =0; along e; (i=1, 2).

Then the inequalities

2.1 izl £ jf max{(a12+b12 ), (a2 +b,?)}dxdy

(Pj(‘)

<oyl + lloa i

hold, where

lIxIlf=J x*x,  etc, and
1€1

0y=a,dx+bydy and o,=a,dx+b,dy on ¢; ().

Proor. By making use of the parameter representation (1.5) of the lunar
domain ¢;(¢), we define a differential ¢ on ¢ by

oo ()= (1-1)a,°0; ' () + 10,005 (z)  (z=z(t, T)ep;(£).

We note that ¢ satisfies the same boundary conditions as y on d¢. Since y is
harmonic in ¢, the inequality

22 IxI% < lloll?

holds. Further, the inequalities

(23) loll? < Jf (1= )/a,>+b,>+1/a,” +b,? 2dxdy
’Pj(ﬂ)
§ﬁ[ max{(a,®+b,?), (a,*+b,?)}dxdy
le(l)

hold. The inequalities (2.2) and (2.3) imply the inequality (2.1).

5. Difference of norms of o, and o,

LeMMA 2.2. Let o, be an arbitrary differential of the space A and let o,
=F(0y).
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(1) The inequalities

Q4 ol =llonl®>+ X lowl,

#eek

< llo ||2+Z ) A((/J,W))(J 0;,'>2'(1+Kh)

j=1 #eK; 2

hold, where e, is the edge of #¢ such that ¢;(e,) is a segment, A is the length of
¢jle;) and Kk is a constant which depends only on the transformations f (z)

=00 (z).
(ii)

25) Nowl? < llowll + “ZK (10751 ¢ + b 120)

= o+ 3 % (4(0,00)) (@ +b) + A @ (0O)) (o™ +557)},

where for each triple (s, s', b¢) the notations in (iii) of §2.1 are preserved.

Proor. (i) By Lemma 2.1 we see that for each triple (s, s, b¢)
(2.6) lowllZe < lonusllZe + lonslZ,

Hence the first inequality of (2.4) is obtained.
Let (s, s, #¢) be a triple for an excessive lune #¢. We preserve the

notations in (iv) of §2.1. We shall prove the inequality

2
27 lowll;e < Ao, (M))< j 0’;2) “(1+xh),

€2
from which the second inequality of (2.4) follows.

By y and § we denote the arguments of the oriented segments ¢;(—e,) and
@i (e,) respectively. By making use of the parameter representation (1.5) of the
lunar domain ¢;(¥¢), we define a differential ¢ on #¢ by
(2.8) oc=adx+bdy

= (1—1) (agcos y+ by sin y)-((cos y) dx + (siny)dy)
+ T (0tgcosd + By sind)-

<(cos 5)( dx+— i dy> + (sin d) (g% Z" dy>>
(z=2z(t, De@;(#2)).

We note that ¢ satisfies the same boundary conditions as g, on d(#¢). Hence
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29) lowlfe S lloll7, < A(@;(#0) max (a>+b?),
(Dj(i“)

since ¢, is harmonic in #¢.
From the equation (2.8) it follows that

(2.10) max (a* +b*) < max{(ay cos y + b, sin y)?,
o jist

(0tg cOs 8+ Py sin 8)2 max |f” (z)|?}.
‘I’j(#”

Further we note that

1

(2.11) aocosy+bosiny=If o
—e,
and
. 1 1

2.12) %y COS0 + fosind=—| o,=— O,

ll e —-e

1 2
where
(2.13) A=J |dz| and u=f |f (z)dz|.
¢jez) vjley)

By making use of the power series expansion of f” around a vertex z, of the
lunar domain ¢; (¥¢), we see that

(2.14) max If" @) SIS (20)1? (1 +xh)

and

(2.15) bz (1f'(zy)| —xzh) ldz| = A(|f" (z1 )| —k2h)
¢je3)

with constants x;, k, >0 depending only on f. Then the estimate (2.7) follows
from (2.9)~(2.15).
(ii) The inequality (2.5) is obvious from the definition of oy.

§3. Finite element approximations

1. Formulation of problems Let {C;, C,, C;} be a partition to three
parts of the boundary 0Q such that each C; (j=1, 2, 3) is a sum of boundary
components of 02, and let y, (k=1,---, k) be the boundary components of C,.

Let @ be a differential in I", which satisfies the following conditions (i), (ii)
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and (iii):

(i) If U;NC,#%. then ©°¢p; ' is harmonic on a neighborhood of
0;i(U;nNCy);

(ii)) ©=0 along C,;

(iii) @ is exact on a neighborhood of each boundary component of C,,
where the conditions (i), (ii) and (iii) may be ignored if Q= &.
By I', we denote the subspace of I', consisting of all differentials ¢ for which
there exists a function v on £ such that

dv=0-¢ on £,
v=0 on Cl’
v = const. on vy, (k=1,---, k).

By o we denote the harmonic differential in I, uniquely determined by the
conditions

3.1) f *0 =0 k=1,---, k)
Yk

and

3.2) * =0 along Cj;.

The differential w can be constructed by the following procedure. Let y be the
harmonic component of @ in the orthogonal decomposition of I', (cf. Chapter 5
of Ahlfors and Sario [1]), and let u be the solution of the boundary value

problem:
u is a harmonic function on ,
u=0 on C,,

u = const. on 7y,
f *du=f *X (k=1""’ K)
Yk Yk

*du = xy along C;.

and

Then, w=y—du. We note that the differential wog ;! (j=1,---, m) is harmonic
on ¢; (UnN2)."

1) It is sufficient for our purpose that wee; ' is of the class C* on ¢;(U;N2) and hence we
can weaken the assumption (i) for ©.
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LemMMA 3.1. The harmonic differential w satisfies the minimal property
(33) lw] = min joj.
ge -]

In the equality (3.3), the minimum of the right hand side is attained if and
only if o=w.

Proor. For each gel’g there exists a function v such that

dv=0—w,
(34 v=0 on C,,
v = const. on y, (k=1,---, k).

From (3.1), (3.2) and (3.4) it follows that

(3.5 (6—w, w) =J. (210}
o

K
=J vx + Y, v*co+f v =0,
cy Cs

k=1 "%

where

(o, )= (o, T)g=j O*T.

Q
The equality (3.5) implies that
loll? = llwl? + lo—w)? = |o]?.
In the last inequality, the equality holds if and only if c=w.

The unique harmonic differential w in Iy is called the harmonic solution in
Ig.

Our aim is to obtain finite element approximations of w in the spaces A
and A', and error estimates between them and w.

2. Finite element approximation y, in 4 Let & be the finite element
interpolation of @ in the space 4. By A we denote the subspace of A con-
sisting of all differentials 6,64 for which there exists a function v on Q
such that

dv=06—o0,,
v=0 on C,,

v =const. on vy, (k=1,---, k).
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By ¥, we denote the differential of 44 such that
(3.6) [l = min g,
aeAg

We call ¢, the finite element approximation of w in the space A.
Next, we consider the special case where the differential @ satisfies the

condition:
=0 along C,.

We denote such a differential & by @,. Since 4g =T , We see that
3.7 ol < 1l

LemMA 3.2. (i) In the case of general O, the ‘equality
(3.8) I —oll = ,}g}{; llon—al
holds, where the minimum is attained if and only if 6,=V,.

(ii) In the case of @ =0, the equality
(3.9) Y=l = lul® = el
holds.

Proor. (i) First, by a method similar to (3.5), it is shown that
(3.10) (w, 6,—Y,)=0 for each o,e4,.
By (3.6), standard arguments imply that
(3.11) Wy 0,—Y,)=0 for each o,e44.
From (3.10) and (3.11), it follows that

lo—oull? = lo—¥ull* + llow—Yull* Z o= yul12.

In the last inequality, the equality holds if and only if o,=V,,.
(ii) Since 4g < Tg, both ¢, and w are elements of I'e . Hence, by 3.5)

(w, Y,—0)=0 and thus /
Is—ol? =yl — ol

From (3.11) the following lemma immediately follows.
LemMa 3.3. In the case of general O, the equality
(3.12) low—wall® = lloull> — 1Yull®

holds for each o,€ Ag.
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3. Finite element approximation wj, in A’ Let A'g={0}|0,=F(0,), 6,64 g}.
By wj, we denote the differential of A’g such that

(3.13) okl = min jiajl.
)
We call w}, the finite element approximation of w in the space A'.
LemMmA 3.4. The equality
(3.14) lloh— @il = llo4lI* — llwj?
holds for each a,eA's.
Proor. By (3.13), standard arguments imply that
(3.15) (), op—wp) =0 for each g,ed.

This implies (3.14).

4. Lemma of Bramble and Zlamal The following lemma is due to J. H.
Bramble and M. Zlamal (cf. [9]).

LEMMA 3.5. Let 4 be a closed triangle on the z-plane (z=x+iy) with d(4)
<h, let v be a function of the class C? defined on A4 such that v=0 at each vertex
of 4. Then, the inequality

(3.16) J:[ ((%)2 +<g—§>2>dxdy
B 0%v\? % \? [0*\?
sava[ () +2(azy) + (52) )

holds, where B is an absolute constant and 0 is the smallest interior angle of the
triangle A.

5. Pointwise estimate

LEMMA 3.6. Let 4 be a closed curvilinear triangle on the z-plane (z=x+iy)
with d(4)<h which is the image of some 2-simplex seK; (j=1,---, m) by z
=q;(p), and let v be a function of the class C* defined on A4 such that v=0 at
each vertex of 4. Then,

o o
ox|” |0y
4 0% o*v | |0%
<he—_ i e
=" Sing ( 0x? dxdy * 0y? ) (1+xch)
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on 4, where 0 is the smallest interior angle of the ordinary triangle which has
common vertices with A, and k is a constant which depends only on f(z)

=00; ' (2)

Proor. (Cf. Theorem 3.1 of Strang and Fix [27].) Let z,=x,+iy, be a
fixed point and z=x+iy an arbitrary point in 4, and let k=x—x, and I=y
—¥yo- Here we choose the point z, so that for each ze4 the segment between z

and z is contained in 4.
By Taylor’s theorem we have that

v(z)=P@)+r(z),

where

0 0
P(z)= v(zo)+<ka+15;>v(zo),

0 2
3.17) r(z)= <k6—+1_> v(z')

with some point z' on the segment between z, and z. First, from (3.17) the
estimate

ot
oy?

0%
0x0y

62

a2 +2

) (zed)

(3.18) |r(z)]<h2 max(

immediately follows. Let z; (j=1, 2, 3) be the vertices of 4. Then, by the
assumption of the lemma '

(3.19) v(z;)=P(z;)+r(z;)=0 (=1, 2, 3).
Since P(z) is a linear function of x and y, by (3.19) we have the expression
(3:20) P(z) = —r(z1) §1(2) —7(22) $2(2) — r(z3) P5(2),

where ¢; (j=1, 2, 3) are linear functions of x and y such that
¢j(zk)=5jk U’k=13 25 3)

with Kronecker’s symbol 6. (3.18) and (3.20) imply the estimate

oP ?
(.21) l l o Tir)l 52 ¢2
3 02| | 0% | |8% 06,
=z Z |} -max =X
Sid “323‘< +2\5xay| T 6y2) rajs3 | ox |

Here we can easily verify that
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24 1

(3.22) ox |=h, sinf

(=127,

where h, is the diameter of the ordinary triangle which has common vertices
with 4. From (3.21) and (3.22) it follows that

oP

Ox

0%

o' )(1+xh)
dy*

P

82
xdy

(3.23)

+|—=

1
<3h — max(
sinfl  z4
By Taylor’s theorem we have that

dv(z) 0v(zo) d a\o
ox  0x + kax-H@ 50(2)

with some point z’ on the segment between z, and z. Since 0Jv(z,)/0x
=0P (z,)/0x and
0 , 6
k$+ — —v( )| < h max
> (1+xh).

2

% 02

6x6 y

by (3.23) we obtain the estimate
ov(z) < é‘lh max<
Sinf ze4

Ox
Analogously the estimate for |0v/0y| is obtained.

62
ox?

62
0x0dy

&
0y?

+2|a—]+

6. Approximation by ¥,

THEOREM 3.1. Let w be the harmonic solution in I'g defined in §3.1 and let
Y, be the finite element approximation of w in the space A. Then,

(3.24) ly—ol?
o 05, (G @) G+ G))
< B —) +{=) + + dxd
sin20 Z o/ 0x oy 0 oy y
m da\?* (0a\* [(0b\*> [0b\?
2 _ — _ hind
O LR ((ax> +<ay) +<ax> +<ay> ))

where B and C are constants independent of the triangulation K and the

differential ©, 0 is the smallest value of interior angles of all triangles ¢;(s)
(seKj; j=1,---, m),

w=adx+bdy on ¢;(U;nQ) (=1, m),

by @; (K}) we denote the image set by ¢; of the carrier of K}, and R; (j=1,---, m)
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are the closed subsets of U;N\Q defined in (i') of §1.2.
Proor. First, by (i) of Lemma 3.2,

(3.25) Y-l < llo—wll.
Hence it is sufficient to estimate |&®—w]|.
We have
(3.26) lo—wlb= Z Z Il — ol

Jlse

Here we note that weg; !(j=1,---, m) is of the class C* on ¢;(U;NQ). Then,
by Lemma 3.5,

(3.27) llo— wll?

st ], (&) +(5) +(5) +(5) )

for each natural simplex s of K; For simplicity, we denote the right hand side
of (3.27) by I[e; (s)].

For a triple (s, s',¢) fo. a minor simplex s, we denote the differential &' on
hseK; and s'eK; by dhs and @ respectively. Then, by Lemma 2.1

(3.28) lo—wl? <l —olf +1dk —wll7.

This inequality and Lemma 3.5 imply that

(3.29) 1o -2y < @y —wllfs + 0y — o)
SI[e;(as)]+ 1o (s)].

Let (s, s, ¢) be a triple for a major simplex s. Then, by Lemma 3.5

(3.30) lo—wll? <I[e;(as)]+ |d—-owll?
and

(3.31) lo—wlg < Il (s')].

Let

& =aydx +bydy on ¢;(4s), and
& =aodl + Bodn on  @s),

where ag, by, ®o and f, are constants. Then we define differentials @, and
@y, on s and s'+ ¢ respectively by

@y =aydx + bydy on @(s), and
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Qg 4, =0odE + Bodn on @ s'+¢).
Then, by Lemma 2.1
(3.32) lo—wl? £ ld;—llf + |0y —ollF.
Further, by Lemma 3.6
(3.33) | os—wl|?

32h? da| l|éa| |ob| |ob 2
Ae;(6)) sin? w'(s)<a+-9;+8x ay >(1+Kh)
and
(3.34) g4, — 7
32h2 oo 60( 6ﬂ op\? )
< = Pr|cP

where w=adx+bdy on ¢;(s) and w=adl+Bdn on ¢, (s'+¢).
By (3.25)~(3.34), Lemma 1.1 and (1.1), the estimate (3.24) is obtained.

7. Approximation by w;

THEOREM 3.2. (i) Let w be the harmonic solution in I' defined in §3.1, let wj,

be the finite element approximation of w in the space A’ and let w,=F ' (w}).
Then

(3.35) ||w,,—co|!2
, da 0a\* [ob\*> [ob
sara(* 8] (@) @) +(5) +(3) e
, da\* [(da\* [ob\* [ob
o fomax (5 4(3) +(3) +(5)))

m
+C'h* Y max (a®+b?),
j=1 ‘Pj(Rj)

where A', B' and C’' are constants independent of the triangulation K and the
differential O, and other notations are the same as in Theorem 3.1.

(i) Let O, be the differential defined in §3.2, let w be the harmonic solution
in I'g, and let wj, be the finite element approximation of w in the space A'. Then
the estimate

(3.36) leoll < eyl + & (e0})
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638
holds with
2 l 2
(337 e(w)= Z ) A(q»,(#e))( f w;) 'max{l, (;) max |f (z>|2}
Jj=1g0eK e "X E7]

2
where e, and e, are the edges of #¢ such that ¢; (e, ) is a straight segment, A and
W are the lengths of the segments @; (e, ) and ¢, (e, ) resp., and f (z )=@ee; ! (2).

Proor. (i) First, note that
(3.38) leon— @l < 2[1yn— 0l + 2] 0, — Yl .
From Lemmas 2.1, 2.2 and 3.3, and (3.13), it follows that
—¥ull® = llogll® — ¥4l
< Nl = 1yl + Z llonll 3,
S Il = 19l * + Z ”wh”u

D) (A(w,(W)) (@0 +b5?) + A (@x (02)) (06> + 557 ))

j=1beek

(3.39) o,

=

+ j; “ZGK.(A (@j(#€)) (@®+bo? )+ A (@i (#2)) (@0 +Bo*))s

where for each triple (s, s,
= aydx + bydy

Yi=odE + Bodn

and for each triple (s, s,
W, = agdx + bydy

W, = 0odé + Bodn

b¢) for beekK;

on ¢;(is) and

on @),

#¢) for #2€K;

on ¢;(is) and

on  @s)

with constants ag, by, oo, Bo, A bo, %o and Bo.
In the inequality (3.39), we have

(3.40) A(p;(b¢)) (ao®+b5?)

_A(e;(b2)) 2
~40,6)) ¥nlls

A(g; (b))

A(p;(5)

BVACACA)
A(9;(5))

<2

¥n—

) (I —ol2 +llwl?)

o2 +24(p;(b¢) )'max (a® +b?).
(s
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Since we can easily verify that
h?
A(@; (85))>—,—sinb  (hy =d(p;(8s))),

by Lemma 1.1 we have

Ag;(b2)) Alp; (v¢))
3.41 J = J
G4 A 6)) ~ Ale, (5))— A0, 60))
b (e @)
=2sin0<’g' Cz| O )>

with the notations in Lemma 1.1. (3.40) and (3.14) imply

m

(342) ¥ Y Alp;(b€)) (@ +bo*)

ji=1 bleK

R3S ol 423 T Al 60))max @b

sm0, 1 beekj J=1 beek;

where C is a constant depending only on the transformations of local param-
eters.  Since similar estimates for other terms of the right hand side of (3.39)
are obtained, from (3.39) it follows that

(343) lloy—ul?

C Ch
< lo—ol® + Yy —ol?

+ 2121 “Z (A (9,(¢) Jmax (@+b%)+ A(ode) )g%(a’ +Bz)>,
where for each triple (s, s, ¢) for ¢eK;

w=adx+bdy on ¢;(s), and

w=adé+ fdn on @ (s).

(3.38), (3.43), Theorem 3.1, Lemma 1.1 and (1.1) imply the estimate (3.35).
(ii)) (3.7) and Lemma 3.3 and the proof of Lemma 2.2 (i) imply the
inequalities

leoll? < 1Yall? < leowl?

2
<loj+ ¥ ¥ A(<p,(#e>)(1f w)

=1
J ueK 2

-max{l, <£>2max |f(z)|2}
n) ejse)
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From Lemma 2.2, (3.41), the proof of Theorem 3.1 and Theorem 3.2, the
following corollary follows.

COROLLARY 3.1. Let w and wy, be the same as in Theorem 3.2, & be the finite
element interpolation of w in the space A, and &' =F (®). Then, the estimate

(3.44) lwp—ad'l = A"h

holds, where A" is a constant dependent only on w and 6 in Theorem 3.1.

§ 4. Applications

1. Periodicity moduli of Riemann surfaces Let Q be a closed or compact
bordered Riemann surface of genus 1 with no or one boundary component. Let
{A, B} be a canonical homology basis of €2 such that A x B=1. Then there
exists a unique system of harmonic differentials {@, g, x, T} on Q satisfying the
period and boundary conditions:

4.1) j¢=fx=1~ f¢=fx=0,
B B A A

4.2) JQ=I T=—1, f Q=f =0,
A A B B

4.3) p=0=*x=%1=0 along 0Q

and

4.4) f *¢=J *Q=J X=J =0,
o Flel Fle} 20

where the conditions (4.3) and (4.4) may be ignored if 0Q=2. If 02=, then ¢
=y and o=r.
We can easily see that

II¢IIZ=J *@, IIQ||2=I *o, and
4.5)

(¢ Q)=J *¢=f *0=0.
B A

We call

P1=f *¢ and P2=I*Q
4 B

periodicity moduli of 2 with respect to A and B respectively, which are the
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quantities determining the conformal structure of Q. By (4.1)~(4.5) we see
that

*p *0
=—— and =—.
CE =Tel?

These relations imply that

1 1
4.6 =|¢I*=— and =|oll*= )
4.6) p: = ¢l EE p2= ol TE
If 02=2, then
1 1
47 =P = = —.
4.7 pi =14l ol = 7

By making use of a relation analogous to (4.7) for the modulus of
quadrilaterals on the complex plane, Gaier [11] presented a method to obtain
upper and lower bounds for the modulus by the finite difference approximation.

2. Calculation of periodicity moduli Let {0,, ©,, ©;, ©,} be a system of
differentials in I'(Q) satisfying the period and boundary conditions:

J‘@1=J‘@3=1, j@l=J‘@3=0,
B B A A
f@2=j94=—1, f@2=f@4=0,
A A B B

0,=0,=0 along 0Q,

and @; and O, are exact on a neighborhood of 022. Here we interpret that 02
=C, for ®, and 0,, and 0Q=C, for ®; and O, in the notations in §3.1. We
note that @,, @,, @, and O, satisfy the conditions for the differential @, in §3.2.
Then we can easily see that ¢, o, y and 7 are the harmonic solutions in I o, Te,
Ts, and T, oy respectively. Let ¢, o0}, x, and 7, be the finite element
approximations of ¢, o, x and 7 in the space A’ respectively. Then by (ii) of
Theorem 3.2 and (4.6), we obtain upper and lower bounds for p, and p,:

4.8 — < p, Z NP+ e (P,

48) ey SP S 147 +e (4)
and

49 —fé = | . [2+8 ).
4.9) ]|Xh||2+8(Xh) p2 = lloal (@)



642 Hisao Mizumoto and Heihachiro HARA

If 9Q2=4.then ¢=yx and po=1, and thus (4.8) and (4.9) imply the inequalities

1
< =—< , 2+8 A .
o et@) =" Tp, = 1A e )

3. Numerical example 1 (the case of a closed Riemann surface) Let Q
be the two-sheeted covering surface with four branch points z=—3, —1, 1, 3
over the extended z-plane. Then Q is a closed Riemann surface of genus one. A
canonical homology basis {4, B} of Q is chosen as in Fig. 6. We aim to obtain
good upper and lower approximate values of the periodicity moduli p; and p,
of Q with respect to A and B respectively.

First, we construct a triangulation of the closed region:
D={z| |z|£./3, Rez 20, Imz >0}

as in Fig. 7. The closed regions G, and G5 are mapped onto the regions G% and
G* resp. by the local parameters (=g, (z)=a/z—1 and w=¢;(z)=b logz (a
=2 (\/3—1 )2 and b=ﬁ ) respectively, where a and b are so determined that
|d¢/dz|=1 and |dw/dz|=1 on |z—1|=,/3—1 and |z|=./3 respectively. We
construct ordinary triangulations K% and K% of G} and G% as in Fig. 7
respectively. By K, and K; we denote the image triangulations of K% and K3
by the mappings ¢; ! and ¢3! respectively. The triangulation K, of the region
G,=D— (G,G) in Fig. 7 is so constructed that each 2-simplex s of K, is
natural, minor or major according as |s|N|K,+K;|=3, |s|NIK,|#3, or
|s|NIK 3] # @, where if some intersection is a point then it is interpreted to be
vacuous, and the local parameter ¢, (z) of K, is the identity mapping ¢, (z)=z.

A triangulation L, of the region D;={z] |z|g\/§, Rez=0, Imz2=0} is
defined by the reflection of the triangulation L=K, + K, + K3 with respect to
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K5(Gs)

w=0;(z)=>b log z

X.(GY) >

K, (G>)

C=<p2(z)=a\/:

K3 (G1)

Fig. 7

643




644 Hisao MizuMoto and Heihachiro HARA

Fig. 8

the circle |z|=\/§ (cf. Fig. 8). Next we define a triangulation L, of the fourth
quadrant by the reflection of the triangulation L+ L, with respect to the real
axis and then a triangulation L of the left half-plane by the reflection of L+ L,
+ L, with respect to the imaginary axis. Consequently, a triangulation L, of the
extended z-plane is defined by L,=L+ L, +L,+ L;. Then, a triangulation K of
the covering surface € is so constructed that the projection T of K onto the
extended z-plane is the triangulation L,. We see that the triangulation K
conforms to the definition in §1.2. We denote the parts of T*(D) and T~ *(L)
on the upper sheet of Q by D and L again respectively.

Let ¢ =y and po=r1 be the differentials on the present €2 defined in §4.1, and
let ¢, and gj, be the finite element approximations of ¢ and g respectively in the
space A’ (K'), where K’ is the naturalized triangulation associated to the present
K.

Let A (L) be the space of differentials on D which are the restrictions of
those in A (K ) to D. Let A4(L) be the subspace of A (L) which consists of the
differentials o, in 4 (L) satisfying the conditions:
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g,=0 along co={z| 0§Imz§\/§, Rez =0},
0,=0 along ¢, ={z| 1€Rez<./3, Imz =0}

J‘ 1
Op=,
BnD 4

andlet 4,(L') = {a,=F(0y), o,eA4(L)}. Further, let 4,(L) be thesubspace
of A (L) which consists of the differentials o, in 4 (L) satisfying the conditions:

and

6,=0 along c¥={z] 0<Rez<1, Imz=0},

|z|=\/§, 0= argzgg}

g,=0 along cf= {z

and

and let A,(L)={o,=F/(0}), a,,eAg'(L)}. By ¢,, and g,; we denote the

Table 1. Periodicity moduli p; of closed Riemann surface

Exact p1=j +$=0.781701
A
Original triangulation (h=0.213758)
| Brli* + () Idh— &1
Upper —_3 -3
bopel | =0.782184+0.429347x 10 =3.76256 X 10
=0.782613  (0.000912)
! lg—o'l
Lower lchl2+2(h) e
bound | = 1 =6.14254%107?
1.280878+0.150405 X 10—
Finite =0.780714  (—0.000987)
element Normal subdivision (h=0.106879)
approxi- :
mations U (ARSI ligh— &
bppe; =0.781968-+0.107413 x 103 =1.12050x 103
oun =0.782075  (0.000374)
__ le—&1
Lower llanl* +e(as)
bound | _ 1 =1.83821x1073
1.279506+0.381486 X 10—°
=0.781551  (—0.000150)

( ): Deviation from exact value.
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K3(GY)
Ks(GS)

w=@3(z)=>b log z

.G , —>

/
K,(G,)

{=0,(z)=ayz—1

K3(G?)

Fig. 9
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differentials in A%(L') and 4,(L) respectively which minimize norms | o}, in
Ay(L) and A,(L') respectively. Then, by making use of the symmetricity of K’,
the period and boundary conditions of ¢}, o), ¢, and g, ., and their
minimality w.r.t. norm, we can verify that ¢, ; and g}, ; are the restrictions of ¢,
and ¢, to L respectively, and || ¢I% =16/}l and [|o}l% =16]gp.I2-
Consequently, to attain our aim it is sufficient to make numerical calculations
of ¢, and g, ; (cf. Mizumoto and Hara [16], [17] for the calculation method).

We should note that the symmetricity of ¢ and ¢ on Q2 has not been used
and thus our method does not reject an application to the differentials which do
not have symmetricity on €.

Table 1 shows the exact value of the periodicity moduli p; which can be
calculated by making use of a complete elliptic integral, and the values of our
finite element approximations. Furthermore, computation results for the normal
subdivision K! (see Fig. 9) of the present K are shown. It can be said that the
both of upper and lower bounds of p, are close to the exact value.

4. Numerical example 2 (the case of a compact bordered Riemann surface)
Let 2 be a two-sheeted compact bordered covering surface with three branch
points z=—1, 1, 3 over the ellipse:

E={z=x+iy

E+1_5=1}

Then @ is a compact bordered Riemann surface of genus one with one
boundary component C. A canonical homology basis {4, B} of £ is chosen as
in Fig. 10. We aim to obtain good upper and lower approximate values of the

i/15

—iJ15
Fig. 10
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periodicity moduli p, and p, of Q with respect to 4 and B respectively.
First, we construct a triangulation of the upper half ellipse D=EN{z|Imz
20} as in Fig. 11. The closed regions G,, G;, G, and G5 are mapped onto the

regions G%, G¥, GI and G¥ resp. by the local parameters {=¢, (z)=a./z+1, {
=¢;3(z)=a\/z—1, {=¢,(z)=b/z—3 and w=¢s(z)=cosh™'z (a=2/5'*

and b=2/85'*) respectively, where a and b are so determined that |d{/dz| are
equal to |dw/dz| at z=zy+i (zo=—1, 1 or 3). We construct ordinary
triangulations K%, K%, K¥ and K¥ of G% G%, G¥ and G¥ as in Fig.11
respectively. By K,, K3, K, and K we denote the image triangulations of K%,
K%, K¥ and K¥ by the mappings ¢; ', @3, ;' and ¢5! respectively. The
triangulation K, of the region G,=Q- (G,G,;G,UGs) in Fig. 11 is so
constructed that each 2-simplex s of K, is natural, minor or major according as
IsINIK,+ K3+ Ky +Ks|=D, |sINIKy;+ K3+ K4 #3, or |s|N|Ks|#92, with the
convention as in the previous section, and the local parameter of K, is
¢ (z)=z. ‘

A triangulation L, of the lower half ellipse D, =EN{z|Imz <0} is defined
by the reflection of the triangulation L=K, + K, + K3+ K, + K5 with respect to
the real axis and a triangulation L, of E is defined by L,=L+L,. Then, a
triangulation K of the covering surface € is so constructed that the projection T
of K onto the z-plane is the triangulation L,. We see that the triangulation K
conforms to the definition in §1.2. We denote the parts of T-*(D) and T~ (L)
on the upper sheet of @ by D and L again respectively.

Let ¢, o, x and 7 be the differentials on the present Q defined in §4.1, and
let ¢, 0, x» and 1, be the finite element approximations of ¢, @, x and t
respectively in the space A’ (K’), where K’ is the naturalized triangulation
associated to the present K.

Let A (L) be the space of differentials on D which are the restrictions of
those in A (K ) to D. Let A¢(L), Ao(L), Ax(L) and A.(L) be the subspaces of
A (L) which consist of the differentials o,,, 64,, 6,3 and o,4 in 4 (L) respectively
satisfying the conditions:

Op =043=0 along co={z| 3=<Rez=4, Imz=0},
0 =04,3=0 along ¢, ={z| —1<Rez<l, Imz=0},
Oh2 =04,=0 along c¢¥={z| 1<Rez=3, Imz=0},
Ohy =04, =0 along c}={z| -4<Rez=< -1, Imz=0},

On =0, =0 along c={z=x+iy| x*/16+y?/15=1, y=0},

_ 1
Fhp = Oh3 =§
BnD BnD

and
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1
Opz = O = "%
AnD AnD

Further, let Ay (L')={0},}, 4, (L')={0}s}, A, (L')={043} and A,(L')={0}4},
where o},;=F (0,;) (=1, 2, 3, 4). By @, 1, Ohr> X4 and 7,, we denote the
differentials of A(L'), Ao (L), A4 (L) and A:(L') respectively which minimize
norms in As (L), Ao (L'), A7(L') and A;(L’) respectively. Then, by making use
of the symmetricity of K’, the period and boundary conditions of @, 0 Xk Th
On1> Ohr» X and 7, 5, and their minimality w.r.t. norm, we can verify that ¢} ;,
Oh.1» Xnr and 7, are the restrictions of ¢y, g;, x, and 7, to L' respectively, and
Il =4l dneli, Nk =4l0helis Iz =4lxncli and |l =417, L07
Consequently, to attain our aim it is sufficient to make numerical calculations
of 1, Ohrs Xho and 7, ;.

The exact values of the periodicity moduli p, and p, can be calculated by
the following procedure.

Let C, and C; be the boundary parts of the upper half ellipse domain D
defined by

2 2

LAy y;O}

Co={z] 35 Rez <4, Imz=0}U{z=x+iy TE+15

and
C,={z| —1<Rez=<1, Imz=0}.
Let 4 be the rectangular domain

4={W|0<ReW<1, 0<ImW<rt},
and let I'y and I'; be the boundary parts of A defined by
To={W|0<ImW=rt, Re W=0}

and
Iy={W|0<ImW=rt, ReW=1}.
If D is conformally mapped onto 4 so that C, and C,; are mapped onto I, and

I', respectively, then the periodicity moduli p, is equal to 7. The conformal map
W=f(z): D—4 is constructed by the composition of the following mappings:

. 2 - .
i) w=m'cosh lz—1;

K'(k) 2n
K (k) cosh™14’

(i) ¢(=sn(K(k)w), where
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L Z=2y Zy—Zs (=0 =l
) 72, 2,-2, (-0 L0
where {;=sn (K (k) w;) (=1, 2,3,4) with w, =—1+i (2n/cosh™14), w,=—1,
wy=2 cosh™! 3/cosh ™ 4—1, wy=1+i (2n/cosh™14), and Z,=—1/k, Z,=—1,
Zy=1, Zy=1/k with k= (Jlc—1/c—1)% c=((s—E, ) €a—82)) ((Es
=)/ (€3—C1))s

V) W= l( L JZ i —<1+iK’(K)>>
(IV) _—2 K(K) 0\/(1—22)(1"‘7(7222) K(K) .

Then we see that

___K'()
PL=T=0K ()

Next, let C and C; be the boundary parts of D given by

Co={z|1< Re z<3, Im z=0}
and

Table 2. Periodicity moduli p; of compact bordered Riemann surface

Exact _ -
o pi= JA*¢_1.539330
Original triangulation (k=0.138840)
Upper | 147 +2@h) 14—
b(fund =1.540588+0.572262x 10~ =1.15335%x102
=1.540645  (0.00132)
1
- - ltn =71l
IThll® +(zh)
{;(())l\:’lfc; = =3.74131x1073
0.649700+0.225117 x 103
Finite =1.538639  (—0.00069)
elemer{t Normal subdivision (h=0.069420)
approxi-
mations Uoper | B2 +&(h) Il dh— &l
bPP | | =1539652+0.142916x 10~* =5.80447% 1073
oun =1.539666  (0.00034)
: It =7ll
ST RIS Tp—7T
Lower | ImlP+e(@) ’
bound | _ 1 =1.09209% 103
0.649652+0.558093 x 10—*
=1.539153  (—0.00018)

( ): Deviation from exact value.
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Table 3. Periodicity moduli p, of compact bordered Riemann surface
Exact _ _
value P2 _JB*Q 1.839350
Original triangulation (h=0.138840)
(ARER A low—2l
oPper | _1.841976-+0.351532 10 =7.65797x10~2
=1.842328  (0.00298)
1
—_—— =2l
Lower | 1GI*+e06) '
bomd | = =5.22574x1073
0.544588+0.145580x 103
Finite =1.835760  (—0.00359)
element Normal subdivision (h=0.069420)
approxi- -
mations lhll® +2(h) o2l
Upper —a _ -3
bound =1.840016+0.875764 X 10 =2.28613x10
oun: =1.840104  (0.00075)
1 Y
—_ =%l
Lower l2all* + ()
bound - =1.73332x1073
0.54390440.361871x 10~*
=1.838437  (—0.00091)
(): Deviation from exact value.
x* y? ;
Ci=<z=x+iy R—+1—5= 1, ng}U{zl —4<Re z<—1, Im z=0}.

Let 4, I'y and I'; be as above. If the domain D is conformally mapped onto the
domain 4 so that C; and C; are mapped onto I, and I'; respectively, then the
periodicity moduli p, is equal to 7. The conformal map W=f(p): D—-4 is

constructed similarly to the case of periodicity moduli p,.

Tables 2 and 3 show the exact values of the periodicity moduli p, and p,,
and the values of our finite element approximations. Furthermore, com-
putation results for the normal subdivision K! of the present K are shown. It
can be said that the both of upper and lower bounds of p, and p, are close to

the exact values.
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