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§1. Introduction

Let R" be the n-dimensional Euclidean space and f be a continuous function on
R" with compact support. For a positive integer | with 2/<n, -a solution of the
equation

(1.1) Au=c,,f

is given by

Ul(x) = J lx =y ~"f(y)dy,

where ¢, ,=(2l—n) (2l —2—n)---(2—n)2'(I— 1)!n"/2/T(n/2). The function U} is called
the Riesz potential of order m of f. In particular, U4 is the Newton potential of f.
Naturally, the following problem arises: Find a representation of a solution of the
equation (1.1) for any positive integer [ and any L?-function f. We note here that for
an LP-function f, U/, does not necessarily exist in case m—(n/p)=0.

Let m be a positive integer and p>1. We denote by #2 the space of all
distributions u such that D*ueL? for any |a| =m. If m—(n/p) <0, then ue £Z can be
represented as follows ([12]):

(1.2) uX) =Y, cm-18,%" + Uh(x), fell.

We are also concerned with the following problem: For any positive integer m and p
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> 1, represent ue #? in a form like (1.2).

To answer the above problems, we need to introduce potentials of order m of
LP-functions for any positive integer m and any p> 1. For a positive integer m, the
Riesz kernel of order m is given by

[x]™ =", m<n or m=n, m—n odd,
KmlX) = B

(Omn—log[x)lx|™™", ~ m=n, m—n even,
where J,,, are suitable constants (see §3). Further, for an integer k<m—1 we
consider the kernel

Km (X—_V)_Z”;. §k(xy/'y!)Dme('_Y)’ 0sksm-—1,

Km,k(x, ,V) = {
Km(x _y)’ k § -1

and potentials
U ix) = fxm,k(x, NfB)dy.

The kernels x,,(x, y) appeared in the context of integral representations of
subharmonic functions ([9], (17]). In §3, we show the existence and integral
estimates of U}, , for feL? and k= [m— (n/p)] (the integral part of m—(n/p)) in case m
—(n/p)#0, 1,---,m— 1. An inequality by G. O. Okikiolu [16] plays a central role in
the study of the integral estimates. We also discuss the case m—(n/p)=0, 1,-+-,m—1.
In case m—(n/p)<0, the integral estimates are given in S. L. Sobolev [22], E.M.
Stein and G. Weiss [25] and D. R. Adams [1]. E.Sawyer [20; Proposition 3.2] gives
a weighted norm inequality for U}, , with feL? under several conditions. In §4, we
introduce higher Riesz transforms of feL”, by which we can express partial
derivatives of order m of U}, ,. This is a generalization of M. Ohtsuka [15; Theorem
9.6] and Y. Mizuta [14; Theorem 5.1]. In §5, we give a representation of a primitive
of higher order, as an analogue of the integral representation given by Yu. G.
Reshetnyak [18; Lemma 6.2]. We establish reltionship between the primitive of
order m and the potential of order m. By using this relationship we make some
improvements of integral estimates for U7 ,. In §6, we investigate the Beppo Levi
space .£F, and give potential and integral representations of Beppo Levi functions
for arbitrary positive integer m and p>1. Note that M. Ohtsuka [15; Theorem
9.11] and Y. Mizuta [14; Theorem 5.2] give an expression of Beppo Levi functions
by U/, under some conditions on m and p. We also investigate characterizations of
the closure L of 2 in £%, where 2 is the class of all infinitely differentiable
functions with compact support. These results include a characterization by P. 1.
Lizorkin [12; Theorem 4]. As a consequence, we give a representation of a solution
of the equation (1.1) for any positive integer | and any L?-function f. In §7, using
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potential representations of Beppo Levi functions, we establish embedding
theorems and interpolation theorems for the spaces L2. As corollaries we obtain
some extensions of Sobolev’s embedding theorem [2; Theorem 5.4].

§2. Notation and preliminaries

We use R" to denote the n-dimensional Euclidean space (n=2) and for each
point X= (xy,--+, X,)we write |x|=(x,2+ ---+x2)*/2. For a positive number r, we
write B, ={x; |x| <r} and S, = {x; |x| =r}. We denote by w,(r) and o,(r) the volume of
B, and the surface area of S,, respectively. We simply write w,(1)=w, and g,(1)=0,,.
For a nonnegative integer k, C* stands for the space of all k times continuously
differentiable functions on R", and C® denotes the space of all infinitely
differentiable functions on R". According to L. Schwartz [20], & denotes the Fréchet
space consisting of all C*-functions on R", & stands for the Fréchet space consisting
of all C®-functions rapidly decreasing at infinity and 2 denotes the LF-space
consisting of all C*-functions with compact support. The symbols &', &’ and 2’
stand for the topological duals of &, & and 2, respectively. We use the symbol <u,
¢> for the canonical bilinear form on 8’ x & or &' x & or 9' x 2. The inclusion
relations & = %' =2’ hold. We call an element of 9’ a distribution.

If o =(ay, -, a,) is an n-tuple of nonnegative integers a;, we call « a multi-index
and ednote by x* the monomial xjt---x;», which has degree |«|=)}_,a; If « and
are two multi-indices, we write a = f provided «;= f; for 1 £j<n. We also write

d!=a1!“‘a"!, a+ﬂ:(a1+ﬁ17“.5 an+ﬂn)

o oy oy _fR= _ —
<ﬂ>=<ﬁ1>“'<ﬂn>’ *ohzlahen sl

For 1< j<n, ¢; stands for the multi-index (0,---, i,---, 0). If D;=0/0x;for 1< j<n,
then

and if = f

D*=D%1...D%
gives a differential operator of order |«|. The Laplace operator on R" is
A=Y ,(@%/ox}) =Y~ D*i =Y, D}

and its iterations are denoted by A!, =1, 2,---. The Leibniz formula

'D“(fg) ()= Zﬂga(;>D”f (x)D*~’g(x)

is valid for functions f'and g which are || time continuously differentiable.
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Throughout this paper let 1 <p< oo and (1/p)+(1/p’)=1. As usual we denote
by L? the class of all measurable functions for which

1/p
11, = ( ﬁf(x)lpdx> <o

Moreover, for a measurable set Ec R", we put
L?(E) = {feL” f(x)=0 for x¢E}.
For a function f on R" and a set E < R", we write
(x),  x€E,
Sle(x) =
0, x¢E.

For measurable functions f'and g, f«g stands for the convolution product of fand g,
that is,

Jrg(x) = ff (x—y)g(y)dy
if the integral exists for almost every x. For distributions u and v, we denote their

convolution also by uxu, if it exists.
If fis an integrable function, then the Fourier transform of fis the function Zf

=f defined by
Fflx) = j e 2 f(y)dy

for all xeR" where x'y=3"_ x;y;. Moreover, we define the Fourier transform #u
of ue &’ to be the element of & whose value at ¢pe& is

<Fu, ¢> = <u, Fp>.
For ue % and a multi-index a, the following formula holds:

F (D*u) = 2nix)*F u.

For a real number r, [r] denotes the integral part of r.
Throughout this paper, we use the symbol C for generic positive constant
whose value may be different at each occurrence, even on the same line.
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§3. Integral inequalities and Riesz potentials of order (m, k)

3.1. Kernels of order (m, k)

We begin with some observations on Taylor’s theorem. Let ueC*®. For a
nonnegative integer k, by Taylor’s theorem we have

G ux)=Y,, x&MDUO) +k+1,,, pss Ix'(—l)—cl—y_'—”{x’)"D"u(tx’)dt

0

where x'= x/|x| (x>x0). We put

(k+1)y,,, =,,+1fx'(lx—|7t—)k(x’)’D7u(tx')dt, xx0
u(x) = [ o7
0, x=0.
We note that
(3.2) D*u(0)=0 for |BI<k,
(3.3) D*u(x) = D*u(x) for |a|=k+ 1.

For a multi-index J with |§| <k, applying (3.1) to D%, and using (3.2) and (3.3), we
obtain

Dou(x) = Y- 15, +1519 sk(7/¥)D*°u(0)
(3.4)
= (x —0f

+k+1Y,,, =k+1f —T%x')’DV+‘u(tx')dt-
0 .

Let m be a positive integer, and K,, be a homogeneous function of degree m —n
which is infinitely differentiable in R"—{0}. For a multi-index &, D*K,(x) is a
homogeneous function of degree m—n—|aj, and hence

(3.5) |D°K,(x)| < C|x|™ "~ 1e1-

Furthermore, in case m=n, let L,(x)= P,(x)log|x| where P,(x) is a homogeneous
polynomial of degree m—n. For a multi-index o, we see that

D*L,(x) = H,(x)log|x| + hy(x),

where H,(x) is a homogeneous polynomial of degree m—n—|a| and h,(x) is a
homogeneous function of degree m—n—|a|, and for || =m —n+1, H,(x)=0. Hence
we have
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(3.6) [D°L,(x) < Clx[™™ "~ '*'(1+[log|x]]), ~ for |o|<m—n,
(3.7) ID*L(x)| € C]x|"""" "' for |u|=m—n+]1.

For an integer k<m—1, we set
Km,k(x’ Y) = Km(x_y) - ZI Y1 gk(xy/}’!)Dme(‘—J’),

where we regard the second term of the right-hand side as zero if k< —1. For a
multi-index a with ja] <m—1, it is easily seen that

y—a

X
DaKm(x_y) - ZI 71 ék.yga(y me(_y)’ for Ial = k’

——D
—a)!
(3.8) DiK,ulx, y)=
D*K, (x—y), for k+1=Z|e|=m—1,
where D% denotes the differentiation with respect to x. Furthermore, for an integer k
with 0<k<m—1, we set

Ly i%, ) = Ly(x—=y) =1y, <k(x"/¥)D"L,(—y).

We put I, ={tx; 0<t <1} and denote by d(y, ,) the distance between y and I,.
For y¢l. and k=0, it follows from (3.1) that

Ko, y)=(k+1)Y,,, =H1Jm M{ x)'D'K ,(tx — y)dt.

0
We shall give estimates of K,, ,(x, y) and L,, ,(x, y) for d(y, ) =|x|/2.

LeEMMA 3.1. (i) Let k be a nonnegative integer with k <m— 1 and o be a multi-
index with |a| < k. Then for d(y, 1) =|x|/2

IDEK a6, NS CToim oy + 1 gagior s IXIIyIm 777020 7
(i) Let a be a multi-index. Then for d(y, )= |x|/2
|DuKm(x—y)| < Clylm—n" e

(iii) Letk be aninteger withm—n <k <m— 1 and o be a multi-index with |a| < k.
Then for d(y, 1)z |x|/2

IDELon il WIS Y=y + 1 s1siera Xm0
Proor. (i) It follows from (3.4) that

IDiKm,k(x’ J’)| éZk— tay +1g1 71 gkl(xy/y!)Dy+mK (_y)l

J""'y—”k( VDK (1 — ).

0

+(k+1)21y| =k+1
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Using (3.5) we see that for y¢l,

ID;Km,k(x’ y)l éZk— ra) +12 19 gkc|x['7||ylm_n_ AR
1x1
+(k+1)2.y.=k+1f C(x| —Offex'— ym=n k=17 = e,
0

We note that d(y, 1,)=|x|/2 implies |y|/3<|tx'—y|<3|y| for 0<t<|x|. Hence for
d(y, 1) 2 |x|/2

1 x|
J‘ (le_[)k][x'_ylm'"-k-l— Iy é C|x|k+ llylm—n—k—l— ran
0

This concludes the proof of (i).

(ii) This follows from (3.5) and the fact that d(y, I,) = |x|/2 implies |y|/3 < |x — y|
=3yl

(iii) Wenotethat|y+a|=k+1=2m—n+1for|y|=k—|a|+ 1. Therefore, using
(3.7) we can prove (iii) in the same way as in the proof of (i).

We next study integrability properties of K, ,(x, y) and L,, ,(x, y) as functions of

LEMMA 3.2. Let m— (n/p)>0, x1, 2,---, m—1 and k=[m— (n/p)]. Then:

(i) For each multi-index o with |o| Lk,

1/p’ N
<ﬁD;Km,k(x’ )’)lp'dy> é Clxlm—(n/p)— el .

(ii) For each multi-index a with |a|=k,

1/p’
<ﬁDiKm,k(x, $) = DiKpilz, y)l"'dy) < Clx—zjm=0ip=1a1,

Proor. (i) We have

) 1/p’
<J‘|D§Km.k(x9 y)]p dy)

1/p’ , 1/p
= <J | DEK X, y)l”'dy> + (J |DEK g ix, YIP dy)
diy,l )< 1x1/2 d(y,l, )z 1x1/2

=Il+12'

First we estimate I,. It follows from (3.5) and (3.8) that
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|DiKm,k(X, WECx—ymnre 4 Czlyl skyza|X|'7V TS |y

Since d(y, 1) <|x|/2 implies |x —y|<(3/2) |x| and |y| <(3/2) |x|, we have

1p’
e )
1x-y1 <(3/2)1x1
¢ AR
1y = me—n— 171
+ CL iy skrzal <f1y1<(3/2)|x,|y|p v dy) :

From |a| <k, |y| Sk and m—(n/p)> k it follows that p(m—n—|a|)> —nand p(m—n
—|y])> —n. Hence we see that

11 é Clxlm-(nlp)- a4 CZMH gk,ygalx,'“ —a) |x|m—(n/p)—|y|
= Clxlm-(nlp)- e

Next, in order to estimate I, we apply Lemma 3.1 (i). Then using the fact that d(y, 1,)
=|x|/2 implies |y|=|x|/2 we have

1/p’
I, SCY- 1o +1515k+1 |x|l<J [y[prem=n=t= '“')dy)

From /2 k — || + 1 and m — (n/p) <k+1, it follows that p'(m—n—I—|e| )< —n.
Hence we see that

1yr2ixi/2

I S CYh oy + 151k 1 XM OPTIT 160 = Clx =@/ = ver,

Thus we obtain (i)
(i) For a multi-index a with |«| =k, it follows from (3.8) that

Dsz,k(x’ Y) - D‘;cKm,k(x’ y) = DaKm(x_y) - DaKm(Z—Y)~

Hence we have
, 1/p’
( ﬁDZKm,k(x, Y) — DK (2, Y)IP dY>
O\
= <ﬁD“Km(x —y)—D*K,(z—y)I* dy)

1/p’
= <ﬁD"‘Km(x—z—y)—D“Km(—y)I”'dy>

, 1/p’
= (ﬁDiKm,k(x -z ) d)’> :

Consequently, (i) gives (ii).
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Let m=n and k=(m—(n/p)]. From m—(n/p)=m—n+(n/p’) it follows that k
=>m—n. Hence using (3.6), (3.7) and Lemma 3.1 (iii) we can prove the following

lemma in the same way as in the proof of Lemma 3.2 (i).

Lemma 3.3. Ifm=n, m—(n/p)>1, 2,---, m—1 and k=[m—(n/p)], then
(i) for lajsm—n

1/p’
<J]D;Lm,k(x’ y)l”'dy> < Clx[m=®n=121(1 + [log|x]]),

(i) for m—n+1=|o <k
, 1/p’
<JID§Lm,k(x, b))l dy) S Clxm- e

Next we consider the case m—(n/p)=1, 2,---, m—1

LeMMA 3.4. If k=m—(n/p) coincides with one of the numbers 1,--, m—1,then

(i) for each multi-index o with |a|<k—1
1/p . 1/p’
(j | D3K o i~ 1 (%, y)!"'éb)) x| 1+1og ,x,> ,
1y1 <1

where log* t=logt for t=1 and log* t=0 for t<1,

(ii) for each multi-index o with |a|=k—1

1/p 1/p
( J IDZK mi— 1(X = y) = DZK - 1(2, y)l"'dy> < Clx—z| <1 +10g+,xTZ‘> :
1y1 <1

Proor. (i) We have
) 1/p’
(j DK - 150 P dy)
1y1 <1
) 1/p
< < J ID2K - 1%, VIp dy)
1Y <1,dp,l)<1x1/2

1/p
+< J IDZK o ie- 1, I dy)
1y1 <l,d(y,e)z1x1/2

=11 +12

For I,, by (3.5) and (3.8) we see that

, 1/p
I < C(J be—ylPmn- '“"dy>
1x=y1 <(3/2)1x)
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1/p’
17— p'(m=n—171) i
+ CZI)’I §k—1,yga|x| <J|y' <(3/2)|x||y| d.V>

From ||, |y| £ k— 1 it follows that p'(m —n—|a|), p (m—n—|y|)> —n. Hence we have

550

11 < Clxlm—(nlp)— ter 4 CZIV! k-1 7>a'x||y‘ - |a||x|m—(n/p)- 17— Clxlk— ran

For I,, by Lemma 3.1 (i) we see that

1/p’
el pr—
1yi<tLayirzixi/2

1/p
+Czk—|a|+1§l§k|x'l<‘[ |ylp(m_"’l—|a|)dy>

=1y, +15;.

1yirz1x1/2

Since p(m—n—k)= —n, we have

1/p’ 1\
121=‘Clxl"""(f Iyl‘"dy> éﬂxl""“'(lﬂog*m) .
1IX1S1y1E<i

Since ¢ =k —|a|+ 1 implies p'(m—n— £ —|a|) < —n, we have

Iy =CYh ay +1gigulXl|x|m =Pt = Gk,

Thus we obtain (i).
(ii) For a multi-index a with |x| =k — 1, as in the proof of Lemma 3.2 (ii), We

have

1/p’
<J ID:Km,k—l(xw y)_D‘;Km,kvl(Z’ y)lp dy)
1y1 <1

1/p’
< f DK -y (x =2, Y dy>
1z+y1 <1
, 1/p’
<f | DK k- 1(x — 2, )IP d}’>
1z+y) <Ldly_,)<i1x—z1/2

1/p’
+ (f IDIK - 1(x—2, Y)I° d)’)
1z+yr <ldyly,_ )2 1x-z1/2

=J1+J2.

IIA

For J, in a way similar to the estimate for I, in (i) we have
Ji =Clx—z|.

For J,, it follows from Lemma 3.1 (i) that
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1/p’
Jy = CIX-ZIU lyl""'"‘""‘)dY)
1z+y1 <l,iy121x—2z1/2

1/p’
+C22§,§k|x—z|'<f [yl (m—"—l_Hl)dJ’)

Iyr2i1x-zi/2
=Jy1+ 2.

For |z| =2, we see that
1/pr
le—<_—CIX~ZI<J Iyl""dy> s Clx—z|.
1z1—1s1y1s1z1 +1

For |z] <2, we have

1/p’ 1 1/pr
Ja1 §C|x—2|<f |Y|‘"d,V> S Clx—¢| <1+log+——> )
1x=z1/251y1£3 |x —z|

For J,,, noting that p(m—n—I—k+1)< —n for 2<1<k, we have
J22=CZZ:lsklx‘xHX—2|m—(n/p)—l—k+1=C|x_zl-

We have completed the proof of (ii).
The proof of the next lemma is similar to that of Lemma 1}.4 ().

LeEMMA 3.5. Ifmzn, m—(n/p)=1,2,---, m—1 and k=m—(n/p), then
(i) for |o|=<m—n

1/p’
(j IDZ Lo i 1(x, y)l"'dy> < Clx[*'#! (1 +[loglx]),
1y1 <1
(i) form—n+1=5|o| <k

, 1/p’ 1 \P
<J IDELop i -1 (%, YIP dy> <Clix|*~ ""(1 +10g+|;|~> .
1y1 <1

LEMMA 3.6. If k=m—(n/p) coincides with one of the numbers1,---, m— 1, then
(i) for each multi-index o with |a|<k—1

1/p’
(J IDZK i, y)l"'dy> < Clxf*™ ' (1 +log™ x|)'/7',
1iyir21
(i) for each multi-index o with |a|=k—1

1/p
<J‘ |D‘:¢Km,k(x’ y)_DiKm,k(z, ,V)lpld)’)
1yizl



552 . Takahide KUrROKAWA

EIN
< - *x—z|+logt —— .
<Clx—z| <1+log |x—z|+log x—zl

Proor. (i) We have

) 1/p’
( f IDSK i, YIP dy)
1yir21

1/p
< ( f | DKo i (%5 y)l”’dy)
1y121,dp,0L)<1x1/2

) 1/p’
+ <J‘ ID;Km,k(xa y)lp dy)
1yrzldyl)zix1/2

= Il '+' Iz.
For I,, by (3.5) and (3.8) we see that

, 1/p’
I C(J e ylF v '“”dy)
1x=y1 <(3/2)1x)

1/p’
+Z|y| §k-1,y;aclx"v' - |a|([ |y|p'(m——n— '7')dy>

11 <(3/2)1x1

1/p’
+ Y1y =kyzaCIX['"! -'¢'<j |y|Pem=n=hdy)

11y1<3/2)1xy

=1+ 1+ 1

Since |¢)<k—1 and |y|<k—1 imply p(m—n—|a)> —n and p(m—n—|y)> —n,
respectively, we see that '

L SClx*'*' and I, <Clxf"'*.
For I, ,, it follows from p'(m—n—k)= —n that
I3 S Clxf™ 1! (1 +log* [x) 7.

Thus we have
I; S Clx[F~ ' (1+1og™ x))/7".

By Lemma 3.1 (i) we see that

, 1/p’
lylp(m—n—l—nandy éclxlk—lal’

I, = CZI:— jar +1<igk+1 lel(j

since p(m—n—I—|a|)< —n for I=k—|a|+ 1. Thus we obtain (i).
(ii) For a multi-index a with |x|=k—1, it follows from (3.8) that

1y1z1x1/2
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DaKm k(x7 y) _DaKm k(z’ y)
= DKy — ) — DK plz =) = Do (6= 2)D K (- ).

Hence we have

J

1/p
(f ID:Km,k(x’ Y)—D:Km,k(za y)!p’dy> é Jl + J2’
yr21
where
, 1/p’
= (f ID*K p(x — 2= y) = D*K p( — y) = Y= 1(x;— 2)D** ¢ K ,( — 2 — y)I? dy) ,
E;

i=1,2

with E; ={y; |z+y|Z1, d(y, I, ) <|x—2|/2} and E;={y; |z+y|21,d(y, L,-,) 2 |x
—z|/2}. For J4, it follows from (3.5) that

) 1/p
J1 éCq |x—z—yf ‘"“"""“’dy>
1x—z—=y)| <(3/2)1x—2z)
1/p’
+ C(J Iylp’(m—n—k+ l)dy)
1Y1<(3/2)1x—z)

1/p’
+ CIX_ZI (J‘ l_z_._ylp'(m_"—k)dy>
1z+y121,1y1 <(3/2)1x-2z)

=J,+J,+ 715,
Since p(m—n—k+1)> —n, we have
Jii+J, =Clx—2z|.
We have

1/p’
Juéclx—ZIG IZ+yI”'dy>
1z+y121,1y1 <(3/2)1x=-2z1,31x—21 <z

1/p’
+Clx—z|<j |z+y|‘"dy>
1z+y1 21,191 <@3/2)1x-z1,31x-z12 121

=J131 +J132-

For J,3,, since |y| <(3/2)lx—z| and 3|x —z| <|z| imply |z + y| =|z|/2, we see that
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1/p’
Ji31 SClx—z] (IZI‘"J dy> < Clx—z|.
1ytr<izi(/2

For J,3,, since |y| <(3/2) x—z| and |z| < 3|x—z| imply |z+ y| =(9/2)x —z|, we see
that

J132 = Clx—2] lz+y| "dy £ Clx—z| (1+log*|x—12|).

1s1z+y12(09/2)1x—z)

Thus we obtain
J S Clx—z| (1+log* |x—2z))!/7".

Next, we shall estimate J,. We see that
/2 é( f DK 6= 2= 3) = DKo~ 1)
Ayl _ )2z 1x-21/2 '
, 1/p’
—Yh=1lx;—z)D* T K, (— )P dJ’)

1/p’
+Clx~Z|Z?=1(f D“”me(—z—y)—D’”me(—y)I"'dy)
E;
=Jy1 + J3;.
We note that
D*K,(x—z—y) — D*K (=) — Y= 1(x;—2)D** K ,,( —y) = DiK, (X — 2, y).

Hence it follows from Lemma 3.1 (i) that

1/p’
leéczzgékﬂlx—z"(j ,ylp(m—n—l—k+1)dy>

é C|x—z|,

1yr2ix—zy/2

since 122 implies p(m—n—I—k+1)< —n. For J,,, we have
J22 = J221 + J222,
where

1/p’
Jzzi=CIX~ZIZS’=1<f ID“+eme(—Z—y)—D"”'Km(—y)I”'dy) , i=1,2
E

2i

with E,; ={yeE,; d(y, |_,)<|z|/2} and E,, ={yeE,; d(y, | ;) 2|z|/2}. We note that

D** K~ 2= ) = DK~ y) = DE K — 2, 9).



Riesz potentials, higher Riesz transforms and Beppo Levi spaces 555

Therefore it follows from Lemma 3.1 (i) that

1/p’
Jy22 S C|x“z|21 sisn Zl §l§klzll<J' [yI? (m—n—l—k)d)’> = Clx—z,

1yi21z1/2

since 1> 1 implies p(m—n—1—k)< —n. For J,,,, it follows from (3.5) that

1/p’
Ja21 = CIx—ZI<J IZ+yI""'""‘""dy>
1<1z+y123/2)012)

, 1/p’
+ Clx—z] ylPmn Ry
1X=z1/221y12(3/2)12)

1/p
= Clx—z| (1+1og* (3/2)z)*'" + C|x —z| (log+|x3f|2|>

1/p
<Clx—z 1+log+|z|+log’ri .
|x —2z|

Consequently we have

1/p
J £ Clx—¢ <1+log+|x—z|+10g+%> ,

where we used the fact that log* a<log™ b+log™* (a/b) for a, b>0.
Corresponding to Lemma 3.6 (i), we can prove

LemMa 3.7. Ifm=n, m—(n/p)=1,2,---, m—1 and k=m—(n/p), then

1/p’
(i) (j |DELpm i, y)"'dy> S Clxf*~'*' (L +loglxll) for |el<m—n,
1yir21

1/p’
(ii) ( J |DELpm,i(x, y)lp'dy> S Clx[*~ ' (1 +1og ™ |x|)'”
1y121

for m—n+1=Z|jo<k—1.

REMARk 3.8. Let m—(n/p)=0, 1,---, m—1 and k=m—(n/p). Then as an
immediate consequence of Lemma 3.1 (i) we see that for each || <k

1/p’
(J IDZK il y)l”'dy> S Clx[F e,
d(y,l )2 1x1/2

For a locally integrable function f, K, K , and L}, , are defined by

Kl(x)= me(x —NfWdy, Kj(x)= me,k(x, nfdy
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and
L (x) = jL,..,k(x, »f(y)dy

if they exist.

PROPOSITION 3.9. Let k=[m—(n/p)] and feL?. Then:

(i) In case m—(n/p)>0, x1,---, m—1, K}, \(x) exists for any x.

(i) In case m—(n/p)<0, KL (x) = KL(x) exists for almost every x.

(i) In case m—(n/p)=1, 2,---, m—1, KLy, _(x) and K}3(x) exist for any x
where f =f|19l and f,=f—fi.

(iv) Incase m—n/p)=0, Ki1_(x)= KJ1(x) and K12z(x) exist for almost every
X.

Proor. (i) By Lemma 3.2 (i), K,, «(x, y) is an L?'-function as a function of y.

Hence we obtain (i).
(i) By (3.5), |Kpulx, ) =|Kpu(x—y)| = Clx—y""" and

1/p’
f ™" )dy = ( f Iyl"""'""’dy> 1/, < 0.
1yr21 1yir21

Therefore K}, ,(x) = K#(x) exists for almost every x (cf. N. S. Landkof [11;§3 in Chap.
I0).

(i) By Lemma 3.4 (i), K,, 4 (x, y) is an L -function on B, as a function of y.
Further by Lemma 3.6 (i), K, «(x, y) is an L?"-function on B (the complement of B,)
as a function of y. Hence K} _,(x) and K/3(x) exist for any x.

(iv) Since K,, _(x, y)=K,(x—y) and f; has compact support, K}1_,(x)
= K71(x) exists for almost every x. Moreover, we have

me,o(x, W2y

= f K (x—y)f,(0)dy — f K, (—y)f2(y)dy
d(y,l, )< 1x1/2

d(y,l)<1x1/2

+ f K, o(x, ) f2(y)dy
ALz 1x 1 /2
= Il - 12 + I3 .

Obviously I, exists for almost every x. For I,, we see that

1/p’
Il < (J IKn(— )P dy) 1£2ll, < o0.
1<1y1=23/2)1x)
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For I, it follows from Remark 3.8 that

1/p’
1] = (J Ko o(x, y)IP dY> I£21l, < o0.
Al )z 1x/2

Thus K7z(x) exists for almost every x.
By Lemmas 3.3, 3.5 and 3.7, we also have

PROPOSITION 3.10. Let m=n, k=[m— (n/p)] and feL®. Then:

(i) In case m—(n/p)#1, 2,---, m—1, L}, (x) exists for any x.

(i) Incasem—(n/p)=1,2,---,m—1, LIy, _ (x) and L}2(x) exist for any x where
f1 and f, are as in Lemma 3.9.

3.2. Integral inequalities

We shall investigate integral estimates for the operators f— K/, f~K/, ,, and f
—L} .. In case m—(n/p) <0, since

IKh(x)=C f Ix—y""f()ldy,

by the Hardy-Littlewood-Sobolev theorem on fractional integration ([8], [22]) we
have

1K, < ClIfIl,
where 1/p,,=(1/p)—(m/n). This theorem was generalized by E. M. Stein and G.
Weiss [25] and D. R. Adams [1] in the following form: If m—(n/p) <0, then

(3.9) ( |x|-q(m-(n/p))-"|K£(x)|4dx)1/q <Clfl,

for pSq=<pm.

We shall give similar integral estimates for K%, and L/ ,. The following
inequality is due to G. O. Okikiolu [16; Theorem 2.1], which is useful for estimates
of integral operators.

LEMMMA 3.11  Let (X, m,) and (Y, my) be measure spaces, let p, q, p,, u, be
positive numbers such that
1<p=gq, (1/q) + (n2/P) =1

and let K(x, y) be a measurable function on X x Y. Suppose that there are measurable
Sfunctions ¢, >0 on X, ¢,>0 on Y and constants M, >0, M, >0 such that
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(3.10 f (07 1K(x, y)2dmy(y) < MY ¢, (x),
Y

(3.11) f &1 (x)Y|K(x, y)l*1dmy(x) < M4 $,(y)*
X
for all xe X, yeY. If the operator K is defined by

Kf(x)= J K(x, y)f(y)dmy(y),

Y

then

1/q 1/p
(fle (x)l“dmx(x)) =M 1M2< j If(,V)l”dmy(Y)> :

The following Lemmas 3.12, 3.13 and 3.15 are proved by applications of
Lemma 3.11.

LEmMMA3.12. Let m>0, m—(n/p)=0 and p<q< 0. Then

(i) (ﬁxl —q(m—(n/p))—n

(1) (J(l +[log|x|[) ~9|x| ~ am = i) =n

q 1/q
dx) =Cilflp»

J Jx=y"""f(y)dy
dy,l)<i1x1/2

X

q 1/q
dx)

= Clfllp-

ProOF. We take p, and yu, such that u, >0, u, >0and (u,/q) +(u/p)=1. We
choose u, sufficiently small so that

f [x—yI™ " "|log|x — y|| f(y)dy
dy,l)<1x1/2

(3.12) (m—n)u; +n>0.
We note that m—(n/p) =0 implies
(3.13) (m—n)u, +n>0.
We choose a number a such that

(3.14) O<a<n/p'.

(i) We take (X, my)=(R", |x| 9"~ @ =ndx) and (Y, my)=(R", dy). For ¢,(x)
=|x| @t en /B WPy, (y)=|y|”* and
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|x—y™~", for d(y, L) <|x|/2,

K(x, y)= (
0, for d(y, I,) 2 |x/2,

we shall show (3.10) and (3.11). By (3.13) and (3.14) we have

J $20) K (x, y)'2dmy(y) = J |yl =27 |x — y|™~"m2dy
d

) <i1x1/2

é'xl—ap’+(m~n)u2+nj‘ |Z|—ap'
121 £3/2

— Clxl—ap’+(m—n)u2+n = C¢1 (x)p/'

(m=n)u,

dz

x
——z
Ix|

Thus we obtain (3.10). Next, by (3.12) and (3.14) we have

fdJl(X)"lK(x, YF1dmy(x)

=J /2|x|_“q_("‘—")“l_"|x—y|("'_")“1dx
d(y,ly) < 1x1

(m—=n)py
4 dz

Z_-_
¥l

élyl_““f I
1z >2/3

=Clyl™* = Co,(y)*.

Thus we obtain (3.11) and so (i) follows from Lemm 3.11.
(i) We take (X, my)=(R", (1+[log|x||) x|~ 9m=®P)=ndx) and (Y, my)=(R",
dy). For ¢, (x)=|x| =2+ (™= mu2le @)1 1 [log|x[[}"2, ¢(y)=Iy| ™ and

|x—y™ "loglx—yll,  for d(y,1l,)<Ix|/2,
K(x, y)=

for d(y, 1)z |xl/2,

»

we verify (3.10) and (3.11). By (3.13) and (3.14) we have

J¢z(y)"'lK(x, Y)F2dmy(y)

= j Y1~ 1x — y| "~ "#2]log|x — y||*2dy
dy.ly)<1x1/2

< |x| T T2+ |log]x )2

(m—n)py
X
(1 +|log|—

log| ——z

— —Z

_ X
| e
1z1 <3/2

H2
) dz

x|

x|
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= Clx| =7+ m=mh2 (1 + llog|x||}2 = Cy(x)".

Thus we obtain (3.10). Next, by (3.12) and (3.14) we have
f¢1(x)“lK(x, Y)Frdmy(x)

< j le‘“““'"”")“l—"(l + |log|x||)(‘"‘2/”"_"
1x1>21y1/3

X|x — y|™~"#1]log|x — y||*1dx
(m—n)pq ny
(1 + ) dz
=Cly|" "= C,(y)*.

Thus we obtain (3.11), and the proof of (ii) is completed by Lemma 3.11.

Y
——z

Y _,
Iyl

log
Iyl

<Clyl™ f o) ~ea ==y
1z1>2/3

LemMma 3.13. If m>0, m—(n/p)>0 and pLq< oo, then

(i) <f|x| —q(m~(n/p)) —n

(i) (f(l + log|x||) ~9x| ~4tm~ (/P =n

J ™" f(y)dy dx)”" <Clflp»

q 1/q
j [y[™~"loglyll f(y)dy dy)
1y1<ixi
< Cllfll,

Proor. Letl=n((1/p)—(1/q)). Then 0=<I<n. We take u, =u,=n/(n—1I). Then
(41/9) +(12/p) = 1. Let (X, my) =(Y, my) = (R", dx) and ¢;(x) = ¢,(x) = x| ~"*/#"a¢*=1),
(i) For

|x| 7™+ /P = (nja)|ym = for |yl <|x|,
K(x, y)=

0, for |yl =|xl,

we shall show (3.10) and (3.11). We put

I= J &0 K(x, yy'"~dy

— |x|n(l—M)/(n—l)f Iyl(m-n-(n/q))n/(n—l)dy_
1y <ixi

From m—(n/p)>0 it follows that (m—n—(n/q))n/(n—1)> —n. Hence we have

I = Clx'n(l—m)/(n—l)|x|(m—(n/p))n/(n—l) — C|x| -ntjg(n—1) _ C¢1(x)”'.
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Thus we obtain (3.10). Since m— (n/p)>0 implies —(n2/p'(n—D)+n(l—m)/(n—1)<
—n, we see that

j $1(x)K(x, y)"*~Pdx

= |y|(m—n)n/(n—l)J‘ |x|-(n2/p'(n-l))+n(l-M)/(n-l)dx
1X1>1y1

= C|y|(m—n)n/(n—l)|y|-(m-(n/p))/(n-l) = C|y| -n?jp'n~1) — C¢2(y)q_
Hence we have (3.11), and (i) is proved by Lemma 3.11.
(iij) For
(1+loglx[)) ™ x|~ /=iy ym=rmiogly|l, |yl < |x],
K(x, y)=
0, Iyl 2 Ix],
we can prove (3.10) and (3.11) in the same way as in (i).

The next lemma is a consequence of Lemma 3.13 (i).

Lemma 3.14. If m>0, m—(n/p)<0 and p<q< oo, then

<J‘|x|—q(m—(n/p))-n

Proor. Let = —m+(2n/p). Then [—(n/p)>0. If we apply Lemma 3.13 (i) to
the function f;(z)=|z|~2"?f(z/|z|?), then we obtain

<ﬁwl-q(l-(n/p))-n

Using the fact that the absolute value of the Jacobian of the transformation z = y/|y|?
is 1/]y|?", we see that the left hand side of the above inequality is equal to that in the
lemma. Moreover, it is easy to see that|| f1/l,= | fl,. Hence we have Lemma 3.14.

q

1/q
dX) < Clflp-

f (Y™~ (y)dy

q 1/q
J lz("”fl(z)dz dW) §C”f1“p~

LemMA 3.15. If p<q< oo, then
(i) for feL*(B})

(j (log|x]) =@/~ 1|x| =
1x1 21

(ii) for feL”(B,)

(J (—logl|x|)~@P)= t|x| ="
1xy <1

J vl =" f(y)dy

9q 1/q
dx) < Clfllp

) 1 1/q
J YI="7f (y)dy dx) = Cllfllp-
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Proor. We first note that (i) implies (ii). For feL?(B,), it is clear that f(z)
=|z|~2"?f(z/|z|*)eL?(B}) and |f l,=fl, Applying (i) to the function f; and
changing variables, we obtain (ii). In order to show (i), we apply Lemma 3.11. Let (X,
my)=(B3, Ix|~"(log|x|)~?"~ 'dx), (Y, my) =(BS, dy), uy >0, u, >0 and (u1/q) + (12/P)
=1. Taking O<a<l, we set ¢,(x)=(oglx|)*~" and ¢,(y)
=|y| ~11"®"D(log|y|)~"". For ¢,, ¢, and

Iyl =", 1=yl <Ixl,
K(x, y)=
0, 1=|xI=1yl,
we shall show (3.10) and (3.11). First, from a<1 we see that

J &))" K(x, y)*2dy
1yr21
=f IV ~*1"4(log|y)) ~“[y| ~#2"7 dy
1x1>1y121

B .[ Iyl ~"(log|y|)~“dy = C(log|x|)! "*=C ¢, (x)*".
1x1>1y121
Next, it follows from a>0 that

f ¢, 09K x, y)1[x|~"(loglx)) @~ dx
1x121

1X)>1y1

= Cly| 17 (log|yl) =" = C,(y)".
Hence we obtain (3.10) and (3.11), and have the lemma.

REMARK 3.16. By Lemma 3.15 (i) the following inequality holds: For fe L?(B)
q 1/q
( f (loglx))~@#) =4~ 1jx| =" dx)
1x1 21
< Clifll,-

We are now in a position to prove the main theorems in this section.

f Iyl =% (loglyl)f(y)dy

THEOREM 3.17. Let m—(n/p) #0, 1,---, m—1 and k=[m—(n/p)]. Then

1/q
( le_"""“"/””_"IKﬁ,k(X)I"dX> =Cifl,
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Jor p<q< o in case m—(n/p)>0 and for p<q<p,, in case m—(n/p)<O.

Proor. Ifm—(n/p)<0,then K/, , = K/, and hence the assertion is nothing but

(3.9). So, let m—(n/p)>0, #1, 2,---,m— 1. From the definition of K/, , and (3.5), it
follows that

1/q
( le“""“"‘"’”"‘IK#,k(x)I"dx> =CL+CL+ 15,

where

1/q
I, = ( J ||~ atm =/ "‘< f Ix—yl'"'"lf(y)ldy)“dX> ,
diyl)<i1x1/2

1/q
L=% sk(flxr“""_‘"/”""q el 7ty ""If(y)ldY)“dX> ,
diy.l)<1x1/2

1/q
I = ( J w —q<m-<n/p»—n< j 1K i, 9) f(y)ldy)"dx) :
A1)z 1%1/2

By Lemma 3.12 (i), I, £C| f||,. For I, since d(y, l,)<|x|/2 implies |y| <(3/2)|x|, we
have

q 1/q
ISy gk(ﬁxl_q(m_ "' _‘"’””’"q‘ |y[™ = "'lf(y)ldY> dX>
1y1<31x1/2

éczr)'lék”f”p:C“f”p

by Lemma 3.13 (i). Here, note that m—(n/p) >0, #1,2,---,m— 1 imply m—|y| —(n/p)
>0 for |y| k. In order to estimate I, we apply Lemma 3.1 (i) and obtain

q 1/q
I3 = C(ﬁxr“"""‘“""”’”“"q Iyl’""““"lf(y)idy> dX> .
1yir2i1xi/2

Since m—k—1—(n/p)<0, it follows from Lemma 3.14 that I;<C||f|,- Thus the
theorem is established.

Using (3.6), (3.7), Lemmas 3.1(iii), 3.12 (ii), 3.13 (ii) and 3.14, we can prove the
following theorem in the same way as Theorem 3.17.

THEOREM 3.18. Let m=n, m—(n/p)#1, 2,--,m—1, k=[m—(n/p)] and p=q
< 00. Then

1/q
(j(l + [loglx[[) ™ ¥x] """"“"”’”"‘ILi,k(X)I“dX) SClflp-

THEOREM 3.19.  If m—(n/p) coincides with one of the numbers 0, 1,"- ,m—1, k
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=m—(n/p) and p<q < o0, then

(i) for feL?(B,)

, 1/q
(j(l +log* (1/Ix[)) P~ x|~ KF 4 l(x)|qu) < Clifllp

(ii) for feLP(B9)

, 1/q
(ﬁl +log* le)““/""1|x|“"‘”"|Ki,,(x)|"dx> =Clflp-
Proor. (i) LetfeL?(B,). From the definition of K , and (3.5), it follows that
1/q
I= (ﬁl +log ™ (1/|x]))~@P) ™ Vx| "MK, 1(x)|qu) SCIL +Cl+ 15,

where

q 1/q
I = GIXI“"“"( f Px—yI™="f (y)ldy) dx) ,
dy.l)<i1x1/2
- q 1/q
=%, ém(ﬁxl """‘(f x| ym '"If(y)ldy> dx) ,
d(y,l)<1x4/2
1 ,
]3 = (J(] +1og+m>—(q/p)—llx|—qk—n

q 1/q
X (f 1Ko - 1 (%, y)f(y)ldy) dX) ;
d(y,l )z 1x1/2

in case k=0 we set 1, =0. It follows from Lemma 3.12 (i) that I, £ C|| f||,. Since m
—(n/p)=k, we have m—|y|—(n/p)>0 for |y] <k —1in case k= 1. Hence by Lemma
3.13 (i) we see that I, < C| f|| . In case k= 1, applying Lemma 3.1 (i) to I3, we have

1\ @pr)-1
13§C<J<l+log+m> x|~ ak—n
q 1/q
X ( J IxI"IyI"‘"“"If(y)ldy> dx)
a1z 1x1/2
C(J‘ <1+log+ 1 >—(q/p')—1|x|_,l
1x1£2 |x|
) q 1/q
x ( f i~ If(y)ldy) dx) .
Iyrzixi1/2,1y1 <1

IIA
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In case k=0, applying Lemma 3.1 (ii) to I; and noting that m—n= —n/p’, we have

1\ " @pr)—-1
I3§C<J <1+log+—> x| "
1x)1£2 |X|

, q 1/q
x q Iyl ~""® If(y)ldy> dx> .
1y1zix1/2,1y1 <1

Hence by Lemma 3.15 (ii) we have I;<C| fll,, and thus IZC| f], We have
completed the proof of (i).
(ii) Let feL?(B}). From the definition of K, and (3.5), it follows that

1/q
<J(1 +log™ |x|)~@P) "1y "‘"""IKﬁ,k(x)lqu> <CJ,+CJ,+Js,

q i/q
Jy= (jlxl"‘"'"q Ix—yl"‘"‘lf(y)ldy> dx) ,
d(y,l)<1x1/2
J= 2. 71 §k<ﬁ1 +log* |x|)_(q/p’)~ Yx|~ak=n
q 1/q
X q x| 7y _"If(y)ldy> dx> s
Ayl <1x1/2
q 1/q
Jy= (ﬁﬂ“‘""‘( J 1K (X, y)f(y)ldy> dX> .
diy,l)z1x1/2

It follows from Lemma 3.12 (i) that J, <C| f||,. Since m—k—n= —n/p".

' q 1/q
J2SYy ék—1<ﬁx|“’"“ ”""‘(J [ym= ‘”If(y)ldy) dX>
1y1<31x1/2

+<J (1+log™* |x[)~@P)~1|x| "
1x1>2/3

, q 1/q
X (J Iyl =""'|f (y)ldy> dX>
1y1<31x1/2,1y1>1

Since m—|y]—(n/p)>0 for |y|<k —1, it follows from Lemma 3.13 (i) that

I SCYy si-1 1fl,=Clfll,-
By Lemma 3.15 (i) we have J,, < C||f|,- By Lemma 3.1 (i) and 3.14, we have

where

=J21+J22.
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q
13§C<JIXI“’"'"(j le"“lyl"""""”lf(y)ldy> dx
d(y, L)z 1x1/2

: q 1/q
< c< j |x|q-"< f Iyl"'"‘“"'lf(y)ldy) dx) < CIf1,.
1yigixi/2

Thus we obtain the desired result.

REMARK 3.20. Letm—(n/p)=0, 1,---, m—1,k=m—(n/p) and p<q < co. Since
p <q implies (g/p)+1=q, by Theorem 3.19 we have the following inequalities:

(i) For felL?(B,)

1/q
(f(l +1og™ (1/]x)) ~%)x] ““"’”IK,’,,,k-l(x)"dx> SCifl,-

(i) For feL?(B%)

1/q
< j(l +log™ [x[) ™ %] "”""IK{.,k(x)I"dX) S ClIfll,-

Using (3.6), (3.7), Lemma 3.1 (iii), 3.12 (i) (ii), 3.14, 3.15 and Remark 3.16, we can
prove the following theorem in the same way as Theorem 3.19.

THEOREM 3.21. Let mzn, m—(n/p)=1, 2,---, m—1, k=m—(n/p) and p=q
< 0. Then

(i) for feL*(B,)
1/q
(J(l + [log|x 1) ~lx| %~ "| L 4 - 1(X)I“dX> S Cliflps
(ii) for feL”(BY)

1/q
( (1+Iloglxll)““"""""‘le“'""”ILfm,k(X)I"dX> SClfllp-

3.3 Riesz potentials of order (m, k)

As in the introduction, for a positive integer m, the Riesz kernel of order m is
defined by

[x|"™", m<n or m=n m—n odd,

(Omn—log|x))Ix|™™", m=n, m—n even,
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where
I'(m/2) 1 1 1
21"(m/2)+§(1+§+ +(——m_n)/2~‘€) logn, m>n, m—n even,
6"!," =
F'(r@_% logn, m=n
2[(m/2) 2 gn, m=

and ¥ is Euler’s constant. We note that A™(p,, ,&,,)= 0, where
{ (=)™ (n/2)—m)2~ 2™~ "2(m—1)1)"1, 2m<n or 2m=n,n odd,
pm n =
(=122 2m* g =m2(m— 1))~ Y(m—(n/2))) "%, 2m=n,n even

and ¢ is the Dirac measure at the origin (cf. [21; §10 in Chap VII]). For an integer k
<m-—1, we set

Km(X—y)— ZI 71 gk(xy/y!)Dme(_Y), 0sks=m-—1,
Km,k(x, )’) =
Km(x_y)a k é -1
For a locally integrable function f, UJ and U}, , are defined by
Un(x) = Jxm(x -Nf)dy and Uj(x)= jxm,k(x, Nfy)dy
if they exist. Applying Theorems 3.17 and 3.18 to the Riesz potentials of order (m, k),

we have

COROLLARY 3.22. Ifm—(n/p)#0,1,---,m—1 and k=[m—(n/p)], then for any
feL?, U}, exists and satisfies the following estimates:
(i) When m<n or m=n, m—n is odd,

1/q
< |xI“‘""‘"‘”’”'"IUi,k(X)I"dx> SIS,

Jor pSq< oo in case m—(n/p)>0 and for p<q<p,, in case m—(n/p)<0.
(i) When m=n and m—n is even,

1/q
(f(l + Iloglxll)“’IXI“’""”’”‘”IUﬁ,k(x)I“dx> <Clfl,

for pSg<co.
By Theorems 3.17, 3.18, 3.19 and 3.21 we also obtain

CoroLLARY 3.23.  Ifm—(n/p)=0,1,---,m—1,k=m—(n/p)andp < q< o0, then
for any feL?(B,) and any ge LP(BY), UL, -  and U?, , exist, and satisfy the following
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estimates:
(i) When m<nor m=n, m—n is odd,

1/q
( f(l +log+(1/lxl))"““’""IxI“'""“"“’”"‘IU{.,k-1(x)l"dx) SCIflps

1/q
( ¢ +log+lxl)“‘”’""1|x|“"""‘”/””‘"IU?,.,k(x)I“dx> = Cligll,-
(i) When m=n and m—n is even,

1/q
( f(l + [log|x|)) ~|x| = 4=y L 1(x)“dx> < Cllfllp

1/q
( (1+lloglxll)“‘”""“"‘IXI'“‘"‘“"’””‘”IUi’n,k(X)quX> = Clgll,-

Concerning smoothness of U, ,, we have

ProrposiTION 3.24. (i) If m—(n/p)>0, #1, 2,---, m—1, k=[m—(n/p)] and
feL?, then U, ,eC* and DPUY, (0)=0 for |B|<k.

(i) If m—(m/p)=1, 2,--, m—1, k=m—(n/p) and fel®, then Ul _,,
UZ2.eC*~! and DPU/y _ (0)=DPU}2(0)=0 for |B| <k —1, where f, andf, are as in
Proposition 3.9.

ProOF. (i) is a consequence of Lemmas 3.2 (i) and 3.3. (ii) follows from
Lemmas 3.4 (i), 3.5, 3.6 (i) and 3.7.

Finally, we discuss partial derivatives of U/, , in the sense of distribution.

ProrosiTioN 3.25. (I) Letm—(n/p)#0,1,---, m—1,k=[m—(n/p)] andfeL?.
Then for |o|<m—1

DU} u(x) = fDikm,k(x, nfdy in 2.

(II) Let m—(n/p)=0, 1,---, m—1 and k=m—(n/p). Then:
(i) For feL?(B,) and |a|<m—1

DaU#,k— (%)= JDikm,k— 106 ) f(y)dy in 2.
(ii) For feL?(B}) and |o|<m—1

D“U,f..,k(X)=fD2Km,k(x, Nfydy in 2.
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Proor. We shall give only the proof of (I), because the proof of (II) is similar.
Let |« <m—1. For fe 9, we easily see that

(3.15) DU i) = JD;Km,k(x’ NSy

for all xeR". For feL?, we take a sequence {fy}y=1,2,-- =2 such that fy converges
tofas N— oo in L?-norm. From Corollary 3.22 it follows that UJx converges to U7, ,
in 9’ as N- 0. Hence D*U/, converges to D*UL , in 9’ as N —oc0. On the other
hand, by (3.8) and (3.15) we have

DKU{,{Y‘(X) = J‘(Daxm(x—'y)_2|ﬂ|§k— 1oy (xﬁ/ﬁl) (DﬂDaKm) (—y))fN(y)dy

Since m—|a|—(n/p)#0, 1,---, m—1 and [m—|a|—(n/p)]=k—|a|, it follows from
Theorems 3.17 and 3.18 that D*UZN(x) converges to

f Dl D) Gy

in 9" as N—oo. Hence we obtain the desired result.

§4. Higher Riesz transforms
The Riesz transforms R; (j=1, 2,--+, n) are defined as follows ([24]): For feL”

. X:—V;
R;f(x)= hmwoan‘ —)C——Ly_l;')%—lf (v)dy

1 X=yt gel

with ¢, =I((n+ 1)/2)n~"* 12 The Riesz transforms are bounded operators on L?.
For feL? the Fourier transform of R;f is given by

(4.1) .7"(ij)(x)=—%f(x), j=1,2,-,n, i=./—1.

Moreover, relationship between partial derivatives of the Riesz potential of order 1
and the Riesz transforms is given as follows ([5; Theorem 2 in Chap. III] and [15;
Theorem 9.6]): For feL? (p<n),

DIU{=(1—n)c;1RJf; ]=1, 2""’ n.

In this section we are concerned with relationship between partial derivatives
of the Riesz potentials of order (m, k) and higher Riesz transforms. Following S. G.
Samko [19; §4], for a multi-index o with |a|=m we set
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R* = R%1..-Rqn.

We call R* (|| = m) the higher Riesz transforms of degree m (cf. [24; §3 in Chap. III]).
Since the Riesz transforms are bounded operators on L?, we see that R*feL? for
feL?. For feL?, it follows from (4.1) that

42) F(R%f) (x)=<“"‘1)“‘...<*i"")a7(x)=%f(x)

|| x|

The following lemma is easily seen by taking Fourier transform.
LEmMmA 4.1. For fel?,
2 1ar =m(m!/a)R*%f = (= 1)"f.
For functions f such that D*eL? for any |¢| =m, we set
D"f=Y . =m(m!/a!)R*Df
(cf. [19; Corollary in §4]).
LEMMA 4.2. For fe D, the following equalities hold:
i FDOm) ) =Cn)"IxI"Ax).
(i) DMM=(-1'A%1=1,2, -
(iii) (cf. [19; Theorem 7]) For a multi-index o with || =m,
R*D"f = (—1y"DY.
Proor. (i) It follows from (4.2) that

FD"f)(x) =Y, a) =m(m!/a)F (R*D’f) (x)

=3 a1 —m(mlfal) (—i)ﬁ,;(znix)“f(x)

1y 22
= 20" 4, =M%ﬂx) = 20" (%)

(ii) This follows from (i).
(ii)) It follows from (4.2) and (i) that

o X° m mey m «
F(RD"f) (x)=(— l)"‘W@n)"‘IXI F(x) = (= )"2mrix)f (x) = (= 1)"F (D) (x).
In order to given an expression of the Fourier transform of x,,, we introduce the
pseudo function Pf. |x| 7™, which is defined as follows ([21; §3 in Chap. III]): If m <n,
Pf. |x| ™=|x|™™; if m—n is a positive odd number,
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<Pf|x|™™, ¢> =lime_,0{f |x] ~™P(x)dx

11X 28

8—-m+n+2k
+ Zogkg(m—n— 1)/2HkAkﬂom}

for ¢p€2; and if m—n is a nonnegative even number,

<Pf. |x|™™ ¢> =lime_,o{f [x] "™ (x)dx

1x1 2¢€
8—m+n+2k
n I L) Sa—
Yo sksm-n-2y2 HiA —m+n+2k

+ Hyp s A™ ™2 {0)l0ge }

for ¢ D, where H,=n""222"1k\[((n/2)+ k). We note that for a homogeneous
polynomial P(x) of degree m,

e P(X)
(4.3) P(x) (Pf. |x| )=W'
The Fourier transform of the Riesz kernel «,, is given by
4.4) K(X) = VP x| 7™ in &,

where
"D (m/2)/[(n—m)/2, m<n or m=n,m—n odd,
= {
n—m+(n/2)1-v(m/2) (— 1)(m—n)/22— 1<m;n_>!, m=n, m—n even

(see [21; §7 in Chap. VII]).
Now we state a relation between the m-th partial derivative of U}, , and R%.
LEMMA 4.3. Let fe 9. For a multi-index o with |a|=m,
DU, = (— 21" ,RY.
Proor. It follows from (4.2), (4.3) and (4.4) that
F(D*UL) = F (DK f)) = (2nix)*K pf = (270ix) ) o(PE. x| ™™ f

= (_ 275)m7m,n(——|)?lTxf= (" Zn)m'ym'"gr(Raf).



572 Takahide KUROKAWA

Hence we obtain the lemma.
THEOREM 4.4. Let k=[m—(n/p)] and |a|=m.

(i) Ifm—(n/p)#0, 1,---, m—1, then D*U}, , =(—2n)"y,, ,R?f for feL?>.
(i) If m—(n/p)=0, 1,--, m—1, then D*U},,_, =(—2m)"y,, ,R%f for feL?(B,)
and D*U}, . =(—2m)™y,, ,R%g for geLP(BY).

Proor. (i) For fel?, we take a sequence {fy}y=1,, .. =2 such that || f
—fyll,—0 as N—oo. Since

UmN) =Yy, k) | D' = ) sy, k20,
UINX) =
U’SN(x), k<O,
it follows from Lemma 4.3 that
D*UjN, = D*USN = (— 27, uRfy.

By Corollary 3.22 we see that U/, tends to U7, , in 9" as N — co. Hence D*U/A, tends
to D*U}, ,in 2" as N — 0. On the other hand, R%} tends to R% as N — oo in LP-norm.
Therefore we obtain the required equality.

(i) Using Lemma 4.3 and Corollary 3.23 we can prove (ii) in the same way as
above.

By Lemma 4.1 and Theorem 4.4 we obtain

COROLLARY 4.5. Let k=[m—(n/p)].
(i) Ifm—(n/p)#0, 1,--, m—1, then DU, ,.=(2n)™y,, .f for feL".

(i) If m—(n/p)=0, 1,--, m—1, then D"U}, . =2n)"™y,, .f for feL?(B,) and
D™U;, k= Q21)"Ym,ag for geLP(B)).

§5. Primitives of higher order

In this section we discuss primitives of higher order of L?-functions. We begin
with some observations on primitives of smooth functions. Let m be a positive
integer and {/,} , 5, =m < C* be a family of functions such that D, f, = D, f; whenever
a+e;=f+e and |a|=|f|=m. Set

PO =S a0 - (m/a) f P — 1 Y,
0
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Then ¢eC*® and for each multi-index a with |«| =m, D*¢=f,. Next, let {g;};—; .. ,
< 2 be afamily of functions such that D, =D,g;forallj,k=1,---,n. Taking £ R"
with |[£|=1, we set

lp('x) =Zl§j§an éjgj(x— té)dt
0

By Stokes’ theorem we see that y(x) is independent of £ and Dy =g;for j=1,--:, n,
which shows that € 2. From this fact, we see the following: Let {g,} ,,, -m<= 2 be
family of functions such that D;g, = D,g; for a +e;=f + ¢, and |a| =|B| = m. Defining

21X =34, =m(M/a!)r Em g, (x—1E)dt,
0

we see that ye 2 and D*y =g, for any multi-index o with || = m. We note that y(x)is
independent of £. Using this fact, we see that

x(x)= a,._lj . x(x)dS(¢)

=Y 1ai=mM/ (U,.d!)J &g, (x—t&)dtdS (£)
161=140
a x—y)*
= 3 s ) (@,2) fy—,,ga(x—wdy = a0 =m/(@,21) f%g.,(y)dy.
¥l Ix—y|
Thus we obtain the following result (cf. Yu. G. Reshetnyak [18; Lemma 6.2]).

PROPOSITION 5.1. Let {f;},4, =m= 2D be a family of functions such that D;f,
=D, fs for a+e;=B+e, and |o|=|f|=m. If we set

000 = E 0wl 0,) [E22F 00,

then ¢p€2 and D*¢p=f, for any |a|=m.

Concerning a primitive of distributions, from L. Schwartz [21; §6 in Chap. IT]
we have

PROPOSITION 5.2.  Let {u,},,, =m be a family of distributions such that Dju,
= Dyug for o+ e;= B+ e, and |o| = |B| =m. Then there exists a distribution u such that
D*u=u, for any |a|=m.

The following lemma is due to S. L. Sobolev [23].

LEMMA 5.2.  Let u be a distribution such that D*ueL” for all |a| =m. Then there
exists a sequence { ¢y} = D such that D* py converges to D*u in LP-norm as N— oo for
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any |o|=m.

COROLLARY 5.4. Let {f.}, 4, =m be a family of LP-functions such that D,f,
=D, f; for a+e;=P+e, and |a|=|B|=m. Then there exists a family of functions
{Ben}rar m=1,2 - =D such that

(5.1 D@y n=Dypsn for atej=pf+e, and |o=|fl=m,

(5.2) Pun—f, as N-—-oo in LP-norm for each |o|=m.

Proor. By Proposition 5.2 there exists a distribution » such that D*u=f,eL?
for all o =m. By Lemma 5.3 there exists a sequence {@dy}y=1.2, - =2 such that
D¢y converges to D*u=f, as N— oo in L?-norm. If we set ¢, y =D*¢y, for each |a]
=m, then the family {¢, v} 2, =mn=1.2, . satisfies conditions (5.1) and (5.2).

Now we study primitives of L? -functions. For a multi-index a with |¢| =m we

put

Ku(x)= m/(a,,cx!)—;;.

x
[x

The function x,(x) is a homogeneous function of degree m —n. For an integer k<m
—1 we set
Ka(x—y)_ZWI§k(xy/y!)DyKa(_y)’ ngém—l
Ka,k(xa }’) =
K (x—y), k< —1.
First, we consider the case m— (n/p)#0, 1,---, m—1.

THEOREM 5.5. Let m— (n/p)#0,1,---,m—1 and k=[m— (n/p)]. We assume
that F={f,} 4, =m i a family of LP-functions such that D;f,= D, fy for a+e;=f+e¢,
and || =|B|=m. If we set

Vﬁ,k(x) = Zla\ =mJ\Ka,k (x, J’)ﬂ(}’)d%

then Vy,, satisfies the following conditions:

(5.3) DVE =f.,  forany l|a|=m.
1/q
(54) <J‘|X|‘q('"_("/””_"l Vi,k(x)lqu> SCY o =mllfally

for p<q<oo in case m— (n/p)>0 and for p<q=p,, in case m— (n/p)<O0.

(5.5) Vax€C* and DPVE ,(0)=0 forany |f|<k if k=0.
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Proor. By Corollary 5.4 there exists a family of functions
{@un} a) =mN=1.2, - =2 which satisfies (5.1) and (5.2). We write @y ={P, n} 4, =
We see that

VS,IX(X) = Z 1ay =mJ‘Ka,x(x’ y)¢a,N(y)dy

Z 1| =mJ‘Ka(x_y)¢a,N(y)dy - ZI y1 sk
= (Z 1| =,,,ij1€‘,(——y)qﬁ,,N(y)dy)(x’/y!), k = 05
Zlal =mjka(x—y)¢a,N(y)dya ké -1

Hence it follows from Proposition 5.1 that for any |«|=
D*V N = o

On account of Theorem 3.17 we see that V% converges to V.l in 9’ as N— 0, so
that D*V,2§ converges to D*V,f , in @° as N— 0. On the other hand, ¢, y converges
to f, as N— oo in LP-norm. Consequently we obtain (5.3). Assertions (5.4) and (5.5)
follow from Theorem 3.17 and Lemma 3.2 (i), respectively.

REMARK 5.6. The function which satisfies (5.3) and (5.4) is unique.

LEMMA 5.7. Let {f,} ., =m be a family of LP-functions. A necessary and
sufficient condition that D;f,= D, fy for a+e;=f+ e, and |x|=|B|=m is that there
exists an LP-function f such that f,= R*f for any |a|=m. In this case, the function f is
given by

f= (-l)mZuxl =m(m!/a!)Rafa'

Proor. First we assume that there exists an LP-function f'such that f,= R*f
for any |o| =m. We take a sequence { fy}n=1.2, . =2 suchthatfytendstofas N— oo
in LP-norm. For each multi-index « with |a| = m we put f, y = R* fy. Then we sce that

)mﬁ

F (Djfan) (x)= 27U'x Tulx)= 2nl(—l)"‘ fN(X)

|x|™

Hence for o +e;=f + ¢, and |a| =|B| =m we have D; f, y= D, f 5. Letting N— 0o, we
getD;f, =‘Dkfﬁ. Next we assume that D;f, = D, f; for a +e;= f+ e, and |a| = || =
By Corollary 5.4 there exists a family of functions {@, x} 4, =mn=1.2, - ©2 which
satisfies (5.1) and (5.2). It follows from (5.1) and Proposition 5.1 that there is a
function ¢ye2 such that D*¢y = ¢, y for any Joa| =m. If we put

S=(=1)"E 5, =m(ml/BHRE S,
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then f belongs to L”. Since
(—1)"D"py = (= 1)L g, =m (MY BORCDP by = (= 1)"% s, = (m!/BYR -

it follows from (5.2) that (— 1)"D™ ¢, tends to fas N— oo in LP-norm. By Lemma 4.2
(iii), for each multi-index « with |a|=m we have

(=1)"R* D" ¢y = (—1)*"D*py = Py -
Since (—1)"R*D™ ¢y tends to R*fand ¢, y tends to f, as N— co in L¥-norm, we have
Rf=f,.

THEOREM 5.8. Let m— (n/p)#0, 1,---, m—1 and k=[m— (n/p)].

() Let feL? and F={R*f} 4, = Then U’ .= (=20 VE i.

(i) Let F={f.} 4, =m be a family of LP-functions such that D,f,= D, f; for «
+e;=P+e and |o|=|p|=m. If we set f=(—1)"Y,,, —m(m!/a})R*f,, then U} ,=
(_275 )mym,n an,k

Proor. (i) Itfollowsfrom Theorems 4.4 (i)and 5.5 that for any multi-index a
with |a|=m.

D*UL = (= 20)" Y R = (= 200)"p n D"V 1 i

Hence U}, — (—2n)™,, Vi is a polynomial P of degree m—1. Moreover by
Corollary 3.22 and Theorem 5.5 we see that

f(l +[loglx||)~7lx] ~™P|P(x)[Pdx < co.

This implies P(x)=0.
(i) Using Lemma 5.7 we obtain (ii) from (i).

CoroLLARY 5.9 (cf. Corollary 3.22). If m—(n/p)#0, 1,---, m—1, k=[m
—(n/p)] and |p|=m—1, then

1/q
(flxl“""" th1 =P =n pb U#,k(x)l"dX> S IfIl,

for p<qg< o in case m— (n/p)>0 and for p<q=p,, in case m— (n/p)<0.

Proor. Ifwe put F={Rf} ,, = then by Theorems 5.8 and 3.17 we see that
l/q
<J|x|—q(m— 181 —(n/p))—n|DﬂU£ k(x)|qu>

1/q
= C(Jlxl ~q(m= 181 —(n/p) _"lD’? Vﬁ,k (x)|"dx>
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SCY o =nll RS, < Clf

REMARK 5.10. Let m—n<0 and fe2. Then, from Theorem 4.4, Proposition
5.1 and Theorem 5.8 it follows that ULe2 if and only if R*fe2 for all |¢|=m.

Next we shall discuss the case m— (n/p)=0, 1.---, m—1.

THEOREM 5.11.  Let m— (n/p)=0, 1,---, m—1 and k=m— (n/p).
() Let F={f,} 2, =m<L?(B,) be a family of functions such that D;f,= D, f,
for a+e;=f+e, and |o|=|B|=m. Then V[, _, satisfies the following conditions:

) D*VE i =f, forany laj=m.
1/q
(i1) <J(1+10g+(1/Ix|)"“”"’“1le"""‘"|V£,k_1(X)I"dx> SCYiai=mllfall,

for p£g< 0.

(i) VSii-.€C* ! and D*VE,_1(0)=0 for any |f|<k—1ifk=1.

(IT) Let F={f.} o, =m<=L?(B}) be a family of functions such that D,f,= D, f;
for a+e;=p+e, and |o|=|p|=m. Then V[ satisfies the folléwing conditions:

(i) DVE.=f, forany |o=m.
1/q
(i) <J‘(1+log+lx])""/”"‘llxl“”“"]Vﬁ,k(x)lqu) SCY ai=mlfall, for p

<g<oo.
(iil) V£ ,eC*"' and DPVE (0)=0 forany |B|Sk—1 (k21).

Proor. We will only give the proof of (I). By Corollary 5.4 there exists a family
of functions {@, n} «) =mn=1.2, ~ =2 which satisfies (5.1) and (5.2). We put @y
={¢un} a) =m” Moreover we denote ¢, y= ®0.nlp, and Gin=Pun— Pun We set

Vak-1(0)=Y 4, =...Jrca,k-1 (%, P)Pun )y = Vi + Vi + VR,
where
VN=Xa =m<f'€a(x—y)¢i,~(Y)dy—Z| yisk—1 (7/71) Dyka(—y)cbi,n(y)dy),
i=1,2, and

VI\? =Zra| =mZ|7| =k(xy/'y!)J‘DyKa(_Y)¢a2z,N(y)dy-
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Since Pa.n.f2€ LP(B,) and || @} y—f,l ,—~0as N— oo, by Theorem 3.19 (i) we see that
Vitendsto V) ,_,in 2 as N->oo. Since ¢ yeL?(B{) and | §Z x| ,—~0as N— oo, it
follows from Theorem 3.19 (ii) that ¥'2—0in 2’ as N—co. Hence for any |o| =m we
have

DV _, =DVL+DVi—DVE, ., in @

as N—oo. On the other hand, D*Vgy,_, = ¢, y tends to f, as N—oo in LP-norm.
Hence D*V ) ., =f,, which shows (i). Assertions (ii) and (iii) follow from Theorem
3.19 (i) and Lemma 3.4 (i), respectively.

Incase m— (n/p)=0,1,---, m— 1, it still remains to discuss primitives of a family
{f.} «, =m of LP-functions on the whole space R" such that D;f, =D, fs for o+ e;=f
+e¢, and |a|=|f|=m. We need the following lemma.

LEMMA 5.12 ([2; Theorem 4.147]). Let m be a positive integer. Suppose that
D*uel? for any |a|=m. Then for a multi-index B with |B|<m—1 and r >0, we have

(f (Dou(x) lpdx)‘/”§C<< f lu(x)”dx>1/p+z.a.=m< f ID“u(x)Il’dx>”p>,
Br Br B

THEOREM 5.13. Let m—(n/p)=0, 1,--, m—1 and k=m—(n/p). If F
={f} 12\ =m s a family of LP-functions such that D, f,= D, f; for a +e;= B+ e, and |o]
=|f|=m, then there exists a function v which satisfies the following conditions:

(5.6) D*v=f,  forany |o=m.

1/q
(5.7) <f(1 + [log|x|| )_(‘”"')_1|x!—qk-"|0(x)|qu> SCY oy =mllfally
(5.8) veC*™ ' and DPo(0)=0 forany |Bl<k—1 if k=1.

ProoF. Weputf=(—1)"Y ,, =m(m!/a")R* [, f1 =flp, and f, =/—f,.If we set
u= ULy _ + Ulz, then it follows from Theorem 4.4 (ii) and Lemma 5.7 that for any
le|=m

D*u= ( —2n )mym,n (Rafl + RafZ) = ( -2 )m‘ym,nRaf= (Zn )mym,nf;z .

We take functions ¢, and ¢, such that ¢,,¢,eC®, ¢, =20, $,=0, ¢, + p,=1, @, (x)
=0 for |x| =22 and ¢,(x)=0 for |x|<1/2. We put u;= u and f; ,= (2r) ™™y, s D°u;
for each multi-index a with |a|=m and i=1, 2. It is easily seen that f; ,eL?(B,),
S2..ELP(B)2): f10t+f20=fsand D;f, ,=D\f1 g, D;f2 =D, f, g for a+e;=p+e and
|e| =|Bl=m. We shall show

(5.9) 1fiall, £ CYryi=m Il i=1,2.
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By Leibniz’s formula we have

Jia= DP(ut) = zaé,(;‘)m-wimu, =12

Hence using Lemma 5.12

Wialp szq |D“u(x)|vdx>”" + ( ﬁo«u(xwx)””
By

i/p
< C((J iu(x)l”dx> +X iy =m Iifyllp)
By '

Since u= ULy _, + U3, it follows from Corollary 3.23 that

1/p 1/p 1/p
( !u(x)l”dX> = < |Unb— 4 (X)l"dx> + ( IU,{,,%C(x)I"dx>
B, By B,

2 Cfl,+ A1) = ClA, SCZ. y=m IR Ll = CF oy =m 155

Thus we obtain (5.9). If we set Fy={f] .} ¢ cmF2={/2.0} 1«) =m and V=VF1_|
+ V£, then by Theorem 5.11 and (5.9), v satisfies the conditions (5.6), (5.7) and (5.8).

REMARK 5.14. The function which satisfies (5.6) and (5.7) is unique up to a
homogeneous polynomial of degree k. In fact, if v, and v, satisfy (5.6) and (5.7), then
v, —v, is polynomial P satisfying

J(l +|log|x|) ~?1x| T " P(x)[Pdx < co.

Hence v, —v, must be of the form P(x)=Y" ,, -,a,x". Moreover we note that for the
uniqueness of v condition (5.7) can be replaced by

j(l +[log|x||)~@P) =471 x| ¢k~ "1p(x)|%dx < 0.
PropOSITION 5.15 (cf. Corollary 3.23). If m— (n/p)=0, 1,---, m—1, k=m
—(n/p) and p< g < 0, then
() for feL?(B,) and |p|l=m—1
1/q
(J(l +llog|x||) ~@P0 x| Tam T b “""’”"‘ID"UL,R—I(X)I“dX> = Clifllp

(ii) for geL?(BY) and |f|l=m—1

1/q
<J(l + [log|x||)~@/P0 = x| ~atm =1 A _"‘/””"‘ID”Ui’n,k(X)I"dx> = Cligll,-
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Proor. We give only the proof of (i), because the proof of (ii) is similar. Let
feL?(B,) and F={R*f},,, =,» By Theorem 5.13 there exists a function v which
satisfies

(5.10) D'v=Rf  for any |u|=m,
1/q
(5.11) ( 1+ Iloglxll)"’IXI_"""""'“’”'"lv(X)“dX> SCIA,

On the other hand, by Corollary 3.23 and Theorem 4.4 the function u=
(=2m) "™y LUS - also satisfies (5.10) and (5.11). Hence by Remark 5.14 we have
u(x)—v(x)=Y,,, =« (a,/y")x". Since D’'u— D’v=a, for any multi-index y with || =k,
it follows from Lemma 5.12 and (5.10) that

1/p
la,| = w; 1/p<f |ay]”dx>
By
1/p 1/p
< C<f |D”u(x){”dx) + C(f |D7v(x)[’dx> S Clifll,-
By By

Therefore in view of the proof of Theorem 5.13 and Theorem 3.19 we have

, 1/q
(ﬁl +Iloglxll)—("/”’—1|x|“"('"" 181 _("/p»_"lDﬂUi,kq(x)lqu>
§ C(f(l + Iloglxll )-(q/P’)- llxl —q(m— g1 “(n/p))-nlDﬁv(x)lqu)l/q

1/q
+ CZ: 171 =kla7'<f(1 + ﬂOgle )—(q/p')— llxl_"dx>

SCIN+CEy =l =Clf N

Thus we obtain (i).

§6. Beppo Levi spaces
For a positive integer m and p> 1, the space 7, is defined by

&P ={ueP’; D°uecL? for any |o|=m}.
We call £, a Beppo Levi space and elements of £ Beppo Levi functions. Beppo
Levi functions are locally integrable. First, we give potential representations of

Beppo Levi functions.
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THEOREM 6.1. Let m— (n/p)#0, 1,:--,m—1 and k=[m— (n/p)]. Then ue L%,
can be represented as

(6.1) U=y, cm-18,X"+ Uhy  with f=(2n) ™y, s\D™uel?.

Moreover, for p<q< o in case m— (n/p)>0 and for p< q<p,, in case m— (n/p) <0

(6.2) (ﬁXP am=e g, k(x)lqu> =21 =mlD%ull,

and for [y|Sm—1

i/p
(6.3) Iavl§C<< !u(y)l”dy> +Z.a.=mllD“uH,>-
B1

Furthermore, if k=0, then ue C* and for |y|<k

Dyu,(o)éc«f lu(y)l"dy)w+2.a.=m<f |D“u(y)|vdy>w>.
y' B1 B1

Proor. By Lemma 5.3 there is a sequence {@y}y=1.2, .. =2 such that D*¢y
converges to D*u as N— oo in LP-norm for all |¢|=m. By Lemma 4.2 (iii) we have
R*D"¢y=(—1)"D*@y. Letting N> oo, we get (2n)™y,, ,R*f=(—1)"D*u. On the
other hand, by Theorem 4.4 (i) we have D*U/, , = (—2n)"y,, ,R*f. Therefore D*u
=D*U},, for all |j=m. Hence u—UL,;=Y,, <m-1a,x". If k20, then from
Proposition 3.24 it follows that U7, ,e C* and D’U,f,,,k(O) 0 for any |y| £ k. Hence we
see that ue C* and a,=D"u(0)/y! for |y|<k. Assertion (6.2) follows from Corollary
3.22 (i) and Corollary 5.9. We shall show (6.4). We take a function 7€2 such that
n(x)=1for |x| < 1/2 and n(x) =0 for |x| = 1. Since A™(p,,, ,K2,) =9 (sc€ §3.3), we have

6.4) la,|=

(65) o= Am((l —"n)pm,nKZm) + Am(npm,nKZM)'

Obviously, {=A"(1—1)ppk2,)€C® and supp {={|x|<1}. Moreover, taking a
function ¢e2 such that 0< ¢<1 and ¢(x)=1 for |x| < 1, we put v=¢u. By (6.5) we
see that for |y|<k

D= DY+, (/o)) D7 (10 3)* D0

Since D?u(y) =D*v(y)for |y|<1 and any multi-index B,

ID’M(O)Iéf ID’C(—y)v(V)IdY+CZ.a.=mf ID?* % (0 m K 2m) (—y)D*0(p)ldy
By

By
< c( f |u(y)|?dy)”p

1
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1/p’ 1/p
+CZ.4.=m<f ID“"‘(npm,.,xz...)(—y)l"'dy> (j lD“u(y)l"dx> .
By By

Since
j |D7+a('7pm.nk'2m) (—)’)V"dy <
By
for |y| <k, we obtain (6.4). Finally we show (6.3). By (6.4) it suffices to show (6.3) for k

+1=|y|Sm—1. First, let k+1<[|y]=m—1. By (6.1) and Proposition 3.25 (I) we
have

D'u(x)=a,+ D'Uj, \(x) = a, + f Dk (%, y)f )dy.

Hence we obtain

la,| < C(( f ID’u(x)I”dx>1/p
By
(]
By

It follows from Lemma 5.12 that

11§C(< f 1u(x)1pdx)1/p+z.a.=m< f |D“u(x)|ﬂdx)”p).
B B

1 1
Since [y|2k+1, Dikyi(x, ¥)=(D’k,) (x—y) and D’k,(x) is homogeneous of
degree m—n—|y|=1—n. Since k#m— 1 implies p<n,

fzéc(flxl'”

Therefore we obtain (6.3) for |y|=m — 1. Repeating the above procedure for [y|=m
—2,m—3,---, k+1, we obtain (6.3), which completes the proof of Theorem 6.1.

r 1/p
fDZJcm,k (x, ¥)f O)dy dX> >= I+ 1.

14 1/p
dx> SCIf, S CY ay =ml Doull,.

jDva(x_y)f )y

COROLLARY 6.2. Let m— (n/p)#0, 1,---,m—1 and k=[m— (n/p)]). If ue £,
then u can be represented as

u =ZIY| ém—layxy + Vﬁ,k:
where F={D"u} ., =

Proor. This corollary is an immediate consequence of Theorem 5.8 (ii) and
the above theorem.
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THEOREM 6.3. Letm—(n/p)=0,1,---,m—1andk=m— (n/p). Then ue £*, can
be represented as

(6.6) U=Y 2 sm-18%" + Uph_y + Upa
with f= (2r) ™™y, sD™ueL? where f, =f|31 and f, =f—f,. Moreover, for p<g< oo
1/q
(j(l+l10g|x||)““’/”"_1|xl—""_"IU£}k-1(x)|"dx> SCY o =mlD%ull,
6.7)
, 1/q
( ( +|10g|x||)—“’“’"‘le—""“"lUﬁ?k(x)I“dx) S CY o) =m | D%ull,

and for [y|<m—1

. 1/p
(6.8) la,| = C((J Iu()’)l”d}’) +Yai=m "D“u"p)-
By

Furthermore, if k21, then ue C*~! and for |y| <k —1

1/p 1/p
§C<<I iu(y)l"dJ’> +Z|a|=m<j |D"u(y)|"dJ’> )
B By

PrOOF. Assertions (6.6), (6.8) and (6.9) can be proved in a way similar to the
proofs of (6.1), (6.3) and (6.4). Assertion (6.7) follows from Proposition 5.15.

D"u(0)
P!

6.9) la,|=

1

For ue #?, write

i/p
[Ulm,p =3 a) =ml|D*ull, and |l «Z’,‘;II=< L Iu(x)l”dX) + [tlm,p-
1

We shall say that uy—0 in %% as N— oo if uy—0in 2’ and |uy|, ,—0 as N—co.

PROPOSITION 6.4.  For {uy} = £2, uy—0 in £2 as N—>co if and only if |uy;
LP|| -0 as N—oo.

Proor. The “if” part is easily seen by Theorems 6.1 and 6.3. We shall show
the “only if” part. Let 0 <r, <r,. We take a function ne2 such that n(x)=1 for |x|
<r, and n(x)=0 for |x| = r,. Moreover, taking a function ¢€2 such that ¢(x)=1
for |x| <1+r,, we put vy = ¢uy. As in the proof of Theorem 6.1,

Un =C*UN+ Z| al =m(m!/a!)Da(’1pm,nK2m)*Da UN

with {€ C*. Since uy—0in 9" as N— o0, we see that vy—0in & as N— oo, and hence
{*vy—0 in & as N—> oo (L. Schwartz [21; §4 in Chap. VI]). In particular, we have
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J [{xvy(x)|PdXx >0 (N—>o0).
By

Since  D*(NPpmnkK2m)* D0y (x)=D* (NP mnK2m)*D*uy(x) for |x|<1, by Young’s
inequality we have

1/p
(f Da(r’pm,nKZm )* DEUN(x) |pdx>
By

1/p
=C (L ID“(npm,nxzmJ*=D“uN(x)|de> < ClIDuyl, 50 (N—c0).
1
Hence we see that

1/p 1/p
(f luN(x)l"dx>/ =<j Ivn(x)l"dx> -0 (N-oo).
By By

The proof of the proposition is completed.

Henceforth, we consider %2 as a normed space equipped with the norm
|l.; £2|l. The space £7 is a Banach space.

The following lemma is an improvement of P. I. Lizorkin [12; Theorem 3].

LemMA 6.5. If ue ¥ and

(6.10) J(log (e+1x))~2(1 +|x]) "™ |u(x)|Pdx < o0,

then for max (0, k+1)<|f|=m—1
1/p

( x|~ m—1B0P lD"u(x)l”dx) < Clutlm,p

and for 0=Z|B| <Lk

1/p
< (14 |x])~tm= "’"”ID”u(x)l"dx) = Cllu; Z2|
Mm_(n/p)¢09 1""9 m_l’
(J(log(e+|x|))“”(1+|x|)_‘"'_ 'P 0P| DPy(x)|Pdx )P < ||u; L5

if m—(n/p)=0,1,---, m—1.

Proor. Let m—(n/p)#0,1,---, m—1. By Theorem 6.1 and (6.10) we see that
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ueC* and
u(x) =Z| 71 skayxv + U{n,k(x)’

where a,=Du(0)/y! and f=(2n) ™y, 1D™u. For max(0, k+1)S|f|sm—1 we
obtain DPu(x)=DPUY, ,(x). Hence by Proposition 3.25 (I) and Theorem 3.17 we

have
1/p 1/p
(J"x, —(m— B "’lD”u(x)l”dx) = <f|x| —(m— 1B "’lDﬂUQ,k(x)Ipdx>

S CIfll, = Clulm,p-
For 0<Z|f| <k we obtain
DPu(x) =3y, skyzp (Du(0)/(y—B))x?~# + DPU, 1 (x).

By Proposition 3.25 (I), Theorem 3.17 and Corollary 5.9 we have

1/p
(J])d“"" 18 1P| pP U#,k(x)l”dx) SCISflp = Clul,p-

Moreover, we see that
1/p
<f(1 +ix|)~mm ARy gk,ygﬂ(D’u(O)/(v—ﬂ)!)x”"l"dX>

1/p
=X gk,y;plD’u(O)ld(l +1x]) =™ ”""dx) S Cllu; Z3

by (6.4). In case m— (n/p)=0, 1,---,m—1, using Theorem 3.17, Proposition 3.25 (II),
Proposition 5.15 and Theorem 6.3 we obtain the required inequalities. The proof of
the lemma is completed.

The following lemma is proved in [10]. See also V. G. Maz’ya [13; Lemma 2.4
in Kapitel 6].

LEMMA 6.6. There exists a sequence { fy}y=, 3, .. which satisfies the following
conditions:
() fve?, 0= fy<1, fylx)=1 for x|<N and fy(x)=0 for |x| Z N°.
@ If
f(log (e+1x])™P(1 +|x|) " ™Plu(x)Pdx < oo,

then |uD® fy| ,—0 as N— oo for |a|=m.
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We denote by LZ the closure of 2 in &2, The following theorem gives

characterizations of this space.

THEOREM 6.7. Assume that ue £,

(I) Letm—(n/p)*0, 1, -, m—1 and k=[m— (n/p)]. Then the following four
conditions are equuivalent:

(i) wueLk.

(ii) There exist an LP-function f and real numbers a,(|y| k) such that

u =Z| 71 Skayxy + Ui,,k
(iii)
J(l + |x]) " ™P|u(x)|Pdx < o0.

(iv)
J(log (e+1x]))"P(1 +|x|)~™P|u(x)Pdx < c0.
(II) Let m— (n/p)=0, 1,---,m—1 and k=m— (n/p). Then the following three
conditions are equivalent:
(i) wueLk.
(i) There exist an LP-function f and real numbers a,(|y| <k) such that

u=2|7|skavxy+ Urfn,lk—l + Uﬁ‘k

where f1=f\p, and f,=f—f}.

(iii) j(log (e+1x1)) "P(1 +|x]) ~™|u(x)Pdx < oo.

Proor. We only give the proof of (I). First we prove (i)=(ii). By the
assumption, there exists a sequence {uy}y- 5, .. =2 such that uy converges to u as
N— o in £5. Let fy= (2m) ™™y, .D™uy. Then fy converges to f= (2n) ™y, 1D™u as
N—- oo in LP-norm. Since

J(l +|x]) ™| USN (x)Pdx < o0

by Corollary 5.9, we see from the proof of Lemma 6.5 that.

un(x) =3, ,, <k (Duy(0)/y!)x" + UZN (x).
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By Theorem 6.1, we see that ue C* and D?uy(0)— D?u(0) and UIN,— UY, , in #% as N
— 0. Consequently by Proposition 6.4, uy—u in #? and

u(x) =Y, sk (Du@)y)x* + Uf i (x).

The implication (ii)=>(iii) is clear by Corollary 3.22 (i) and Corollary 5.9. The
implication (iii)=>(iv) is trivial. Finaly we shall show (iv)=-(i). It is enough to show
that u can be approximated by a sequence of functions in .#?2, which have compact
support. Taking a sequence { fy}y=1.,, .. Which satisfies the conditions in Lemma
6.6, we put uy=fyu. It is clear that

[ e —uteypas =0
By
For |a|=m, by Leibniz’s formula we have

1/p
Iy= (JID"(u(X)— uN(X))l”dx>

/p

1/p 1
= (jl(l —fN(X))D“u(X)l"dx> + zm(;)(jw“‘ﬂ ¢ -—fN(X))D”u(X)I"dX>

< ( J |D“u(x)lpdx>”p + &(Z)( f |D“-ﬂfN(x)Dﬁu(x)de)w.
1x1 2N

By the assumption and Lemma 6.5 we have
J(l +|x|) == 18P DBy (x)|Pdx < 0.

Hence it follows from Lemma 6.6 (ii) that /y—0 as N— co. Therefore uy converges to
u as N-oo in &%, Thus we obtain (I).

ReMARK 6.8. P. I. Lizorkin [12] proved the equivalence of (i) and (iii) in
Theorem 6.7 (I).

REMARK 6.9. (i) Let m— (n/p)<0. By Theorem 6.7 (I) we have L% ={U/;
feLP}. If u= Ul eL?, then f=(2rn)~™y,, 1D™u. Hence by Corollary 3.22 (i) we have

1/p 1/p
<f Iu(X)"’dx> §<IIXI”’””IU£(x)|”dX> S Clfll, = Clul,p-

Consequently for ueL?, we see that
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tlm,p < lu; Ll < Cluly,p-

Also we see that for ueL?,

1/p
C™lw; 2’5.Il§< (log(e+lxl))“’(1+|xI)"""Iu(x)I"dx> + [t m,p

1/
< ( f 1+ le)"""lu(x)l"dx) ", < Clu; 22).

(i) Letm—(n/p)>0, #1,---,m—1and k=[m— (n/p)]. From Theorems 6.1
and 6.7 (I) it follows that for ueL?

1/p
C™ .%:ug( (1+10g(e+|x|)"’(1+|x|)""”lu(x)"dx> + [tlm,p

y
= <j(1 + IXI)"""Iu(X)I"dx> T+ |tlm,p = Cllu; L7

Moreover, for ueLE, we shall show

(6.11) C™Hu; LEISY 1 <l DO + |tlm,, < Cllu; L1

By the proof of Theorem 6.7 (I), ueLZ can be represented as
u=y,, s«@u@)/)x’ + UL,  f=(@2n) ™y, iD"u.

Hence by Corollary 3.22 (i) and Corollary 5.9 we have

1/p 1/p 1/p
(f Iu(x)l”dx) S sk |Dyu(0)/y!|<f [x]' 7 ”dx> + (J Uh(x)l”dx)
B1 By By

1/p
SCYy «lDu(0) + (f |x] """IUi,k(x)l”dx>
By

SCY,, sk DuO) + Cllfll, = CE,\y, kI Du(0)] +ulm,p)-

Hence, together with (6.4) we obtain (6.11).
(iii) Let m—(n/p)=0, 1,-*, m—1. Then it follows from Theorems 6.3 and 6.7

(IT) that for ueLp,
1/p
C™Hu, Lhl < ( (log(e+|x]))~*(1+ IXI)""‘”Iu(X)I”dX> + [tlm,p < Cllu; L7

REMARK 6.10. Let uel? and |f|=j with 0<j<m. By Lemma 6.5 and
Theorem 6.7 we have D?ueL _; and

I1DPu; L%, Il < Cllu; L4
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where #5 and L5 mean L”. Namely, the differential operator D is a bounded
operator from L} to L5 _ .

Now, as a consequence of Theorem 6.7 (I), we obtain a potential representation
of a solution of the equation (1.1) for arbitrary positive integer /.

THEOREM 6.11 (1) If2]— (n/p)#0,1,---,2]—1,k=[2]— (n/p)] andfe L?, then
we have AIUéz.k= (— 1)’(273)21V21,nf-

() If 2I—(n/p)=0, 1,---, 21—1, k=2I—(n/p) and felP®, then we have
A(Ufti- 1+ ULp) = (= 1Y 2n)*'y,, o f where f, =f15, and f,=f~ 1.

Proor. We only give the proof of (i). Since U¥, ,€L3, by Theorem 6.7 (I), from
Lemma 4.2 (ii) it is easily seen that D*'U{, , = (—1)'A'U4, . Hence the conclusion
follows from Corollary 4.5 (i).

§7. Embedding and interpolation theorems

In this section we are concerned with embedding and interpolation theorems
for the spaces LE. First we establish an embedding theorem for L2.

THEOREM 7.1. Let k=[m— (n/p)]. If max(k+1, 0)<I/<m, then LE, cLfm-1
and whenever uel?,

lu; Lpm-t] = Cllu; Z71.

Proor. Thecase/=mis trivial. Let max (k+1,0)</<m— 1. First we assume
that m— (n/p)#0, 1,---,m— 1. Let ueL?. Then by the proof of Theorem 6.7 (I) u can
be represented as

u=ZI)‘I ékavxv + Uﬁ,k

where f=(2n) "™y, »D™u. For |B|=1, it follows from Proposition 3.25 (I) that
DPu(x)= DU}, (x) = jD”Km(x—y)f(y)dy-

Since |f| 2 max (k+ 1, 0), D?x,,(x) is homogeneous of degree m —[—n. Since m—1
—(n/p)Em—k—1—(n/p)<0, it follows from Theorem 3.17 that

|D*ull, _ < CIfll,< Clilp-
Therefore we have ue #£Pm-1 and

lull,pm -1 é Clulm,p'

Moreover, we have
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1/Pm—
([

1/Pm—1
= Zl 71 gk"%l(J‘(I + x| )0 —’)”m—ldx>

1/Pm—
+(ﬁxl‘“’m—l|U£,k(x)|”m—ldx> =1, +1,.
Since
J(l +|x])" 7 TPPm-1dx < 00

for 0<|y| <k, it follows from (6.3) that I, < Cllu; £2||. Since —Ip,,—;= —Pm-1(m
—(n/p))—nand p,,_, = p, by Theorem 3.17 and Corollary 5.9, we obtain I, <C|| f1|,
< Clu|,n,,- Noting that /— (n/p,,_;)=m— (n/p)#0, 1,---, m—1, by Theorem 6.7 (I)
and Remark 6.9 (i), (ii) we have ueLm-! and

lu; LPm-1| = Cllu; L7l
Next let m— (n/p)=0, 1,---, m—1 and ueL?. By Theorem 6.7 (II) we have

u(x) = 21 Y1 gkay'xy + Ui,lk—l(x) + U,{,,zk(X),

where f=(2n)™ "y, D™, f =flp, and fy=f—fi. For |B|=1 it follows from
Proposition 3.25 (II) that

Dfu(x) = DPUpy 1 (x) + DP U (x) = fD"Km(x—y)f(V)dy-
Since m—1I— (n/p) <0, by Theorem 3.17 we have
1DPu), = ClIfll, < Clu,,.

We note that /— (n/p,,—;)=0, 1,---, m—1. In order to show ueL{m-1, in view of
Theorem 6.7 (IT) it is enough to prove

1/Pm—1
(7.1) J= <j(log (e+|x])) Pm-1(1+ le)""m—llu(x)l"m—ldx> < 0.
We have

1Py -y
TELin é*'“y'q“% (e-+1x]))~Pm-1(1 4 )17 "”’"‘"d")
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1/pp—1
+| | (1 +loglx|l)™Pm=1]x| ~'Pm-1| UL, _; (x)|Pm=tdx

1Py —
+ (J(l +loglx||)™Pm=1|x| ~"Pm—1] Uia‘(x)l"m-'dx> l

=J1+J2+J3.

Since (Jy| = )p,- 1< —nfor |y|<k and p,,_,> 1, it follows from (6.8) that J, < C|u,
2P |. Moreover, since Ip,, _;=p,,—,(m— (n/p))+nand p,,_, = p, by Proposition 5.15
we see that J, < C|| f;,< Clul,,,- Similarly, we have J; < Clul,, ,. Thus we obtain
(7.1). Hence ueLfm-1 and Remark 6.9 gives

lu; LPm=1| = Cllu; L.
We have completed the proof of Theorem 7.1.

Next we establish an interpolation theorem for L. We cite here two known
results as lemmas.

LEmMMA 7.2 ([7; Theorem9.3]). If O<l<m, p,, p,>1 and 1/p=(1/p,)
(1—(/m)) + (1/p2) (/m), then for $p€2 and |u|=1

1D*Bll, < CI By, +Blmp).

For a nonnegative measurable function w on R", we put

1/p
L2 W)= {5 1/ llpow = (ﬁf(x)l"w(x)dx> < oo0}.

LemMA 7.3 ([4; Theorem 5.5.1]). Assume that p,,p,>1,0560=1and 1/p=(1
—0)/p,+0/p,. If for nonnegative measurable functions w,, w, we set w(x)
=w, (x)PA~OP1y, (x)P0/P2, then we have

LP1(wy)NLP2(w,) = LP(w)
and whenever feLP1(w,)NLP2(w,),

1/ Dpw S CUL Ny + 1S -

THEOREM 7.4. (i) Let m;, m, and m be nonnegative integers such that m; <m
<m,, my#m,, and let py, p,>1. If we set 0=(m—m,)/(my—m,) and 1/p=(1
—0)/py +0/p, then we have Li3 NLj2 =L}, and whenever ueLji NL72,

lu; Lol < Clllu, LR8Nl + llu; Z721).

(ii) Let m be anonnegative integer and 1 <p, <p,. Then for p; <p <p, we have
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L2inLP2 = LP and whenever ueLi1NL52,
lu; Zol < Cllu; LR+ llu; L7211

ProoF. Firstletm; =0<m<m,. ForueL”1(L}z,asin the proof of Theorem

6.7 we can find a sequence {Py}y=1,, .. =2 such that ¢y tends to u as N— oo in L1
and D’ ¢, tends to Dfuas N— oo in LP2 for | | =m,. Hence by Lemma 7.2 we see that

uel? and for |a|=m

1D%ull, < CCluly, + lulm,.p,)-

1/p 1/pq 1/py
<f lu(x)l”dx) =< C<<f [u(x)|? ldx> + (J lu(x)[”2dx> ),
Bl Bl Bl

(cf. Lemma 7.3), we have ||u; £2( < C(Ilulll,1 + |u; .?!;,22 ). Next,let 1 <m, <m=m,,
my #m, and ue Li‘,ﬂL%- For |f|=m, and my=m,—m,, we easily see (cf. Remark
6.10) that DueLf2 and

Since

IDPu; Lr21| < Cllu; L3

Consequently D?uel?1 NL72. Let my=m—m,. Then by the argument in the first
case we see that L"1NLj2 = L7, since 1/p=(1/p,) (1 —(m4/m3))+ (1/p,) (ma/m3),
and whenever vEL"1NL72,

I 28,11 < Cllloll,, + 0 Z221).
Thus D"*ueL;4 and
\Dul,,, , < C(I1D%ull,, + lu; L22),
so that ue % and

[t p < Cllu; L3N+ 11 L7211

Let w; = (log(e+|x]))"P1(1 +|x[)"™1P1, w, = (log (e +|x|)) "P2(1 +|x|)"™2"2 and w
= (log(e+|x|)~P(1 +|x|)~™P. Then, since wi* ~OP1yE¥/P2 =y Temma 7.3 implies
that ue L1 (w,)NL?2(w,)=L?(w) and

luw; Lol £ Cllullpw + [tlm,p < Clllu; LR8N+ llu; L721)

on account of Remark 6.9. Hence by Theorem 6.7 we see that ueLZ,
(ii) This follows from Lemma 7.3, Theorem 6.7 and Remark 6.9.

REMARK 7.5. Let m,, m,, m be nonnegative integers such that m, <m<m,,
my #m,, and let p,, p,>1, 0= (m—m,)/(m;—m,), 1/p=(1—0)/p, +0/p,. Assume
that m; — (n/p,)<0 and m, — (n/p,)<0. Then m— (n/p) <0. Hence by Remark 6.9
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(i) and Theorem 7.4 (i) we see that for ue L,’j,l1 mL,’;,z2

Iulm,p é C(lulml,pl + |u|m2,p2)‘

REMARK 7.6. Let m;, m,, m be nonnegative integers such that m, <m=<ms,,
my #m,, and let p,, p,>1, 0=(m—m,)/(my—m,), 1/Jp=(1—0)/p, +6/p,. Assume
that m,— (n/p,)<m. If we put 1/g=1/p,— (m,—m)/n, then for p<r<q we have
LanLiz <Ly, Indeed, by Theorem 7.4 (i) we have L7t NL72 =L7. Moreover, it
follows from Theorem 7.1 that L7z =Lj. Hence by Theorem 7.4 (ii) we see that
LainLiz < LanLi Lo

For any nonnegative integer m and any p> 1, the Sobolev space W2, is defined
by

W, ={ue?'; |ullmp =3 a\ <m I D°ull ,< o0}

The following corollary is an improvement of Sobolev’s embedding theorem [2;
Theorem 5.4].

COROLLARY 7.7. Let k=[m— (n/p)]. If max(k+1, 0)<I<m, then LENLE _,
< WPm-1 and whenever ueLLNLE _,,

”u”l‘pm—l é C(lulm,p + 'ulm-l,p)'
Proor. By Theorem 7.4 (i) we have
LNl = Nj=m-iLf-

Since max (k + 1, 0) < /< m, the condition m— /< j<m implies that max ([j— (n/p)]
+1,0)<j— (m—I[)<j. Hence by Theorem 7.1 we see that

NPT - — — — 1 -7 — -
Ni=m-1LF € NfemLFihi=m = = Nfom i LimGlyy = j=oLfm—t = Wim-1.

Consequently we have LENL?2 _,c WPm-1, Furthermore, it follows from Theorems
7.1 and 7.4 (i) that

Null,p, S Yosjsilles Lim=1ll S CYm-1<jemll; L5
S Clu; Lol + llu; £5,-il1).
Since /= max (k+ 1, 0) implies m—[— (n/p) <0, by Remark 6.9 (i) we have
lw, Lol + s Ll £ Cllulm,p+ |tlm—1,p)-
The proof of Corollary 7.7 is completed.

Finally, we establish smooth function space embeddings. Let m be a
nonnegtive integer. We define spaces B™ and E™ by
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B™ = {U€C™; (Ul =21 a1 =m SUPxcg"| D*u(x)| < 00},
E" = {ueC™; |[tllmw =Y. «) <mSUPxer"|Du(x)| < o0}
and write
lw: B =35 sm—1D"u(0)] + [tlm, o -
Moreover, for a positive and nonintegral number r, we define spaces B” and E" by

|Dmuy—wan<w}

T

B = {ueCI'],' Ul =2 =(r1SUPxxy
E = {ueC; |lull,,0 =Y a1 sir1SUPxer? | D*u(xX)| + |l o < 00}
and write
lu; Bl =255 [D"u(0)|+ul,, -

THEOREM 7.8. Let m—(n/p)>0, #1,---, m—1. Then LLcB™ ®P qgnd
whenever ueLb,

lu; B"~@P| < Cllu; L1

PrOOF. Let k=[m—(n/p)] and ueL?. By Theorem 6.1, ueC* and by
Theorem 6.7 (I) we see that

u(x)=Y,, sk (D'u0)/y))x" + Ul 4 (x)

where f= (21) "™ (V.») ~ D™u. Hence it follows from Lemma 3.2 (ii) and Theorem 5.8
that for |f|=k

|D?u(x)— DPu(y)| = |DP U}, i (x) — DP UL )| £ Clx— 1™~ P74 £l
Therefore we obtain

|DPu(x)— DPu(y)
Iulm—(n/p),oo = Z|ﬂ| =k:supx¢y Ix_ylm—('l/p)—k é C”f”p § Clu[m,p'

Furthermore, by Theorem 6.1 we see that

”ur' Bm_("/p)” = Z[ y|§k|Dyu(0)| + |ulm—(n/p),oo
= Clllu; Lol +ulm,p) < Cllu; L4

Thus we obtain the theorem.
The proof of the following lemma is found in [6; Proposition 5.23].

LEMMA 7.9. Let 0<h<1. Then B*n\L? =B and whenever ue B"nL?,
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ltlo, 0 = Cllulp, o + llull 5)-

The following corollary is an improvement of the smooth function space

embedding theorem for the Sobolev spaces ([2; Theorem 5.4]).

CoroLLARY 7.10. Let m—(n/p)>0+#1,---, m—1 and k=[m— (n/p)]. Then

L2NLE . <E™ " "P and whenever ueLENLE _, _,,

”u”m—(n/p),oo é C(lulm,p+ |u|m~k— l,p)'

PrOOF. First we show that if ueL?_;NL? and m—k < j<m, then ueB/~®/»

and

(72) DPulo o + 1D s gy -0 S Clllt; L5111+ s L31)
for |B|=[j— (n/p)]. We see from Theorem 7.8 that

DfyeBi—®P)—li-®/p] — gm—m/p)—k 454 |Dﬁu|m—(n/p)—k <Cllu; 35—1"-
On the other hand, Theorem 7.1 implies that

L}y e Lf=gph oo < Limgnt  and  lu; Lingiptl = Cllu; £7-4]l-
Hence, by Lemma 7.9 we see that DfueB™~ P ~knLPm-k-1<B° and

IDﬂulo.w é C(IDﬂulm—(n/p)-k,oo + ”Dﬂu“pm_k_l)
S Cllws L3N+ llw £5-41),

which yields (7.2).
By (7.2) and Theorem 7.4 we see that

LoNLE k- 1= Nm-ksjsm(LZ_;L?) = E™~ /P
and

k
Nl = wjpy,00 = =0l j, 00 + [Ulm - /), 0
SO (lw Lo+ llu, LE_11) £ Clltln,p+ 1t —g—1,p)-

The proof of the corollary is completed.

To consider the case m— (n/p)=1,2,---,m— 1, we introduce the space B™" for a

nonnegative integer m and r>0, which is defined by

B"™ = {ueC™;
logR)~" |D%u(x)— D*u()|
|ll|m’,.,‘:,O = Z|G| =m SupRze( og ) Supx,yeBR,x#ylx _yl (1 + |10g‘x _.y“ )r
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with the norm [lu; B™"|| =Y 4, <m|Du(0)+ [l s, -

THEOREM 7.11. Let m—(n/p)=1, 2,---, m—1 and k=m— (n/p). Then L}
< B LVP gnd whenever uel?, |lu; B¥~ 2P| < Cllu; L.

ProOF. Let ueL?. By Theorem 6.7 (II) we have
u(x)= ZI y |§.kayxy + U{l,lk— 1(x)+ U#?k(x),

where f= 2) ™" (Ym.) " ‘D™, f; =fls, and f, =f—f,. For any multi-index f with | §|
=k—1, we see that

IDPu(x) — DPu(y) £ 3,5, =ilayllx =y + 1DPULL 1 (x) = DPUp -, )]
+|DPUL3(x) — D Upa (%)

Hence in view of Lemmas 3.4, 3.6, Proposition 3.25 (II) and Remark 5.14 we have
1 1/p
|DPu(x)— DPu(y)| £ Y, 5, =kla)lIx—yl + Cllfllplx—yl<1 +10g+m>
I\
+ Cllfll lx—yl{ 1+log* |x—y|+log"——] .
|x—yl
Therefore using (6.9), we have
sup [Dbu(x)— DPu(y)
PR x — yI(1+ loglx — y )7

1+log*|x—yl+log* (Iyl/Ix—yl ))”‘"}
1+ [loglx—y||

é C”u; gi’;l”{l +supx,yeBR,x$y<
S Clu; Z5)(1+1logR)!7".

Consequently we have

1+4+1logR
- 1.1, < Cllu; z’;usupxge( £

1/p’ Y
e = . 14 P’
logR ) Cllu; ZE|247.

Since ¥, ,, <k-11D"u(0)| £ Cllu; Z%|, we obtain the theorem.
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