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1. Introduction

In the present paper sufficient conditions have been obtained for oscillation

or tending to zero of all bounded solutions of equations of the form

(1) lA(xt)Y + p(t)B(xt) = 0 ,

where xt(θ) = x(t + θ\ θ e [ — τ, 0], τ = const > 0 and the functionals A, B :

C[ — τ, 0) -> R are monotonic.

The oscillatory properties of linear and non-linear ordinary differential and

functional differential equations have been an object of investigation by many

authors [2]-[5], [8], [10]. The neutral equations of second order have

numerous applications (see for instance [1], [6]) but their oscillatory and

asymptotic properties are studied comparatively little. Some results in this

direction for the case when the function p(t) is nonnegative have been obtained

in [9], [11], [12].

2. Preliminary notes and main result

DEFINITION 1. We shall say that the function φ:Jφ^R (Jφ = [tφ,oo),

tφ e R)) is oscillating if sup {t\φ(ή = 0} = oo and sup {t\φ{ή Φ 0} = oo.

DEFINITION 2. A function x:Jx^>R will be called a solution of equation

(1) if x G C(JX)9 Λ(xt) G C2(JX + τ) and satisfies equation (1) for t£jx + τ, where

Λ + τ = { ί | ί - τ e J x } .

By Ωa'β (0 < β S α) we shall denote the set of all continuous functionals

A : C[ — τ, 0] -> R which satisfy the following conditions:

Al. For any function φ c C [ —τ, 0] with the property φ(t) Φ 0, ί e

[ —τ, 0], the following equality holds

sgn A{φ) = sgn φ(0).
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A2. For any ε > 0 there exists δ > 0 such that for any function φ e

C[ — τ, τ] with the property min[_τ τ ] |φ(ί) | > 0 the inequality max [ O t t ] 1̂ 4(̂ )1 < δ

implies the inequality \φ(0)\ < ε.

A3. For all constants bl9 b2, 0 < b1 ^b29 and any function φ e C[ — τ, α]

with the property min[_τj(X]\φ(t)\ > 0 for which the inequality bγ ^ 1̂ 4(̂ )1 ik b2,

ί e [ —τ, α], holds, there exists a measurable set β <= [ — τ, α] and a constant

fo3 > 0 such that μ ( 0 ^ /? (μ is the Lebesgue measure), |φ(ί)l ^ fr3 for ί e Q and

the following equality holds

sgn φ(t)\Q = sgn A(φt)\[Otάl.

EXAMPLE. It is immediately verified that for any α and correspondingly

chosen β the functional A defined by the equality
n

A(φ)= X fl φC-Ti),
i = l

n ^ 1, a{:> 0, 0 ^ τt ^ τ, / = 1, 2, . . ., n, belongs to the set Ωa'β.

For the function p : Jp -> R we introduce the notation

^ 0} , £ ; = {ί G Jp\p(t) ύ 0} .

By Py, γ > 0, we shall denote the set of continuous functions p:Jp-^R

satisfying the following property:

PI. There exists a number ε > 0 and a point toeJp such that for any

t ^ ί0 for which p(ή > 0 one can find an interval [ί', t"~\ a Jp with length

t" — t' ^ y + ε with the property t e [ί', ί"] c: Ep (i.e. the intervals in which the

function is positive should be large enough).

By A we shall denote the set of continuous functionals B: C[ — τ, 0] -* R

satisfying the following properties:

Bl. For any element φ e C [ - τ , 0 ] with the property mint_τ 0 ] |φ( ί ) | > 0

the following equality holds

sgn B(φ) = sgn φ(0).

B2. For any ε > 0 there exists δ > 0 such that for any element φ e

C[ — τ, 0] with the property min^ojlφίf) ! > 0 for which the inequality

|<p(0)| ^ ε holds, the inequality B(φ) ^ (5 holds as well.

B3. B(sl()) is a non-decreasing function for s e /?, where 1( ) denotes the

unit function l ( ί ) Ξ l , ί e [ - τ , 0], and the following relation holds

J o
I ds < oo .

REMARK 1. We shall note that from condition B3 it follows that no

functional B e A can be linear.
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LEMMA. Let the function h: [α, b~\ -• [0, oo) be absolutely continuous, φ e

C2\a, b~\ and let the function fe C[min φ, max φ~\ be nonincreasing.

Then the following inequality holds

f h(t)φ"(t)f(φ(t)) dt ^ h(b)φ'(b)f(φ(b)) - h(a)φ'(a)f(φ(a))

- Γ h'(t)φ'(t)f(φ(t)) dt.

Ja

PROOF. If/ is of class C1, then the assertion of the lemma is proved by an

integration by parts and in the case when / is of class C — by means of a

uniform approximation of/ by non-increasing functions of class C1.

THEOREM. Let for equation (1) numbers α, β (0 < β ^ α) exist such that the

following conditions be fulfilled:

1. AeΩΛβ.

2. p ε Pa+τ.

3. Be A.

4. For any constant a > 0 the following relation holds

B(φ)
sup <oo /or φ e C [ - τ , τ ] wiί/i 0

β(Λ((/>)l( ))

5. There exists a locally absolutely continuous function h : Jp —• (0, oo) with

the properties Var [ f tt]h = 0(ί) for t -> oo, Var [ t fO0)h' < oo, for which the follow-

ing relation holds

(2) f h{t)\p(t)\dt < oo .

6. There exists a number ε > 0 /or which the following inequality is

satisfied

lim sup μ{s ε [ί, ί + α + τ]|/i(s)p(s) ^ ε} < β .
f->oo

ΓΛ^π eαc/i bounded solution of equation (1) either oscillates or tends to zero

for t -• oo.

PROOF. Let x : J x -• /? be a bounded solution of equation (1) which is not

identically equal to zero for sufficiently large values of ί.

Without loss of generality we can assume that x(t) > 0 for t e Jx.

Multiplying both sides of equation (1) by the expression h(t)/B(A(xt)l(-))

and integrating from tί = tx + τ to t > tx we obtain the equality

B(A(xs)l( ))
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Applying to the first integral the lemma and integrating once more from ίx

to t > tί9 we obtain the inequality

h(s)[A(xs)J A h(tl)lA(xt)J\t=tiU ^ χ

tiB(A(xs)l(.))dS (t h )

f
Jo

Taking into account the properties of the function h(t) and setting φ(t) =

- we obtain for t -> oo the following relations

)') °ί ds = h(s) dφ(A(xs)) = h(t)φ(A(x,)) - h(t

-[ φ(A(x,))dh(s) =

(4) J

„', :'/t ds = h'(s) dφ(A(xs)) = h'(t)φ(A(xt)) - h'(tl)φ(A(xh))

- φ(A(xa))dh'(s) =

From inequality (3), in view of relations (2), (4) and condition 4 of the
theorem, we obtain for t -> oo the relation

Γ ( ί h^P^ B(I(x)\n)dy) ds = 0{t)'(5)

We shall prove that the following relation holds

J[[ί!,oo)n£+

which obviously contradicts relation (5).
From condition A2 it follows that limsup^^^x,) > 0, so let us set

c = limsup,^ A(xt). On the other hand, from equation (1) it follows that the
function A(x) is concave (convex) in any interval belonging to {Jx + τ} n
Ep({Jx + τ} nE~). In view of condition 6 of the theorem we conclude
that sup Ep = oo, hence there exists a sequence {ίt } c Ep~ with the property
limi_+Q0(ίi+1 — ίf) = ex) such that lim^^ A(xt.) = c. From condition PI it fol-
lows that there exists a sequence of disjoint intervals {/J, tt e lh with length
α + τ such that the inequality inf̂ min^ A(xt) > 0 holds.
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Then by condition A3 there exist measurable sets Q( a lt with the property

β, i = 1, 2, . . . , such that the inequality inϊimmteQix(t)>0 holds.

From the last inequality and condition B2 it follows that infiniteQiB(xt) > 0,

hence the following inequality holds

(7) inf inf ? ( X ?f »/.?x?/ x, > °
QiB(A(Xt)l('))

From condition 6 of the theorem it follows that there exist sets β cz Q.

for which liminf^^ μ(β'j) > 0 and the inequality

(8) liminf inf h(t)p(t) > 0
i-oo L ίeQί J

holds. Inequalities (7) and (8) immediately imply relation (6).

REMARK 2. If, moreover, it is given that the function p(t) ^ 0, then each

bounded solution which for sufficiently large values of t is not identically zero

oscillates. In this case, if x(ή ^ 0 for t ^ tx, then the function A(x) for t ^ tx

is concave, hence x(t) may tend to zero for t -> oo only if it is identically zero

for t > tr.
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