HIROSHIMA MATH. J.
20 (1990), 341-350

A distortion theorem for conformal mappings with
an application to subharmonic functions

Dedicated to Professor T. Fuji'i’e on his 60th birthday

Makoto MASUMOTO
(Received June 27, 1989)

1. Introduction

Let f be a conformal mapping of a domain D, of C bounded by a finitely
many analytic curves. Our first purpose of this paper is to establish the
following relation between | f'(z)| and the Poincaré metric 4, (z) for D,.

THeOREM 1. If f(D) satisfies an exterior 0-wedge condition, then there
exists m > 0 such that

mip (2)'~°

L
'@~
for z € D,.

Here, a finitely connected domain D is said to satisfy an exterior #-wedge
condition if it is bounded and there exist p > 0 and 6 € (0, 1) such that, for
every w € dD, a closed sector of radius p and opening 70 with vertex at w lies in
C-D.

Recently, N. Suzuki has obtained the following theorem:

THEOREM (Suzuki [5, Theorem 2]). Let D be a bounded C*''-domain of C,
and denote by 0p(z) the distance between ze D and 0D. Set a(p)=1+
max {1 — p,0} for 0 <p < co. If a nonnegative subharmonic function s on D
satisfies

jj Op(2)"*Ps(z)? dx dy < +o0 , z=x+iy,
D
then s must vanish identically.

We apply Theorem I to generalize Suzuki’s theorem:

THEOREM I1. Suppose that D satisfies an exterior 6-wedge condition. Set
B(p, 0) =2 — min {1, p}/(2 — 0). If a nonnegative subharmonic function s on D
satisfies
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Jf Op(2) PP Os(z)P dx dy < +o0 ,
D
then s =0 on D.

After summarizing elementary properties of the Poincaré metric in §2, we
will give a proof of Theorem I in §3. Theorem II will be proved in §4, where
examples are also given.

2. The Poincaré metric

Let A4(a;r) denote the open disk of radius r with center at a. We set
A= 4(0; 1).

Let D be a domain of the Riemann sphere C = C U {0} whose comple-
ment C — D consists of more than two points. The universal covering surface
of D is conformally equivalent to 4. Let m: 4 — D be a universal covering
map. The Poincaré metric A,(z)|dz| for D is defined by

Ap(m(O))|7'(0)] = {ed.

1—¢1*°

Note that 4;, is a continuous function on D and does not depend on the choice

of 7.
The following properties of the Poincaré metric are well known (see, for
example, Kra [3, Proposition 1.1 in Chapter II]).

LemMma 1. (1) If f is a conformal mapping, then

Ay (SIS (2)] = Ap(2), zeD.

(i) If Dy = D,, then Ap,(2) < 4p,(2) for z€ D,.
(i) Let dp(z) = inf {|z — {||{ € OD}. Then

Ap(@2)dp(z) <1, zeD.
(iv) If D is simply connected and oo ¢ D, then
Ip(2)op(z) =%, zeD.

In this paper we are concerned with finitely connected subdomains D of C
such that every component of C — D contains at least two points. We denote

the class of such domains by ,. We need a generalization of Lemma 1 (iv) to
the case D € &,.

LemMa 2. If D € &,, then there exists m > 0 such that
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Ap(2)dp(z) = m
for zeD.

Before proving Lemma 2, we remark the following lemma.

LemMA 3. If D is simply connected and contains oo, then for each R >0
there exists m > 0 such that

Ap(2)dp(z) = m
for ze D n A4(0; R).
Proor. Let aeC—D, and set f(z)=1/z—a). If zeD — {0} and

w = f(z), then f~'(4(w;r)) contains A(z;r/|w|(jw| + r)). In particular, letting
r = d;p)(w), we have

5[(1))(“’)
wl(Iw| + d5p)(W) '

op(2) = |
We now apply Lemma 1 (i) and (iv) to obtain

B [wl
Ap(2)0p(2) = Appy(W)|W|?dp(2) > (W + 3,009 W)

Since d;p)(w) = O(|w|) as w — o because of the fact that é,,)(w) < |w — w| for

we f(D) and w e C — f(D) and since |w| > (R + |a|])™* if |z| < R, we have the
lemma.

PROOF OF LEMMA 2. Let Cy, ..., C, be the components of C — D, and set
D; = C- Ciforj=1,...,n. We assume that 0 € C;. Since ip(z) > ip(z) by
Lemma 1 (ii), it follows from Lemma 1 (iv) and Lemma 3 that

inf  Ap(2)dp(2) >0
zeDn 4(0;R)

for each R > 0. Thus, if D is bounded, then we have done.

Assume now that D is unbounded. We can find R, > 0 such that d, (z) <
20p,(2), 2<j<n, for ze D — A(0; Ry). Then Jy(2) = min {Jp,(2), ..., Ip (2)} >
0p,(2)/2, and hence by Lemma 1 (ii) and (iv)

Ap(2)dp(2) = %10,(2)51),(2) > %
for ze D — 4(0; Ry). This completes the proof.

ReMARK. If a is an isolated point of C — D, then A,(z)dp(z)|log dp(z)| is
bounded above and bounded away from zero for z sufficiently near a. For
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general D it is known that

inf  Ap(2)0p(2)(1 + |log dp(2)]) > O

ze DN 4(0;R)

for each R > O (cf. Kra [3, Lemma 2.3 in Chapter V]).
3. Distortion theorem for conformal mappings

First we introduce subclasses &, 0 <0 <1, of §,. Let Deé&, be a bounded
domain. If there exist p > 0 and 0 € (0, 1) such that for every w € dD a closed
circular sector with vertex at w which is congruent to

S(p,0)={weCl0<|w|<p,0<argw < b}

lies in C — D, then D is said to satisfy an exterior §-wedge condition, and we
denote the set of such domains D by &,. If there exists p > 0 such that for
every w € 0D a closed disk of radius p containing w lies in C — D, then D is
said to satisfy an exterior disk condition, and we denote the set of such
domains D by &;. If each component of dD is a simple analytic curve, then D
is called regular.

It is trivial that &, > &, if 0 <60, <6, <1. A bounded Lipschitz domain
belongs to &, for some 6 € (0, 1). Also, a bounded C!'!-domain belongs to &;;
in particular, regular domains are contained in &,. If a component C of
the boundary of De &, 0 >0, is a Jordan curve, then C is rectifiable (cf.
FitzGerald-Lesley [1], [2]). Note, however, that components of the boundary
of D € &,, 0 < 0 < 1, are not necessarily Jordan curves.

Theorem I stated in the introduction is contained in the following theorem.

THEOREM 1. Let f be a conformal mapping of a regular domain D, onto a
domain D of C. If D€ &,, 0 <0 < 1, then there exists m > 0 such that

mip (2)' 7

1
o <
Lf"(2)
for z € D,.

Proor. The conformal mapping f induces a bijection between the set of
components of éD, and the set of components of C — D. Let C, be a com-
ponent of dD,, and let C be the component of C — D that corresponds to C,
under the bijection. (In this case we will simply say that C, corresponds to C
under f) Let f; be a conformal mapping of the unit disk 4 onto D, = C-cC.
We consider three cases.

Case 1: 6 =0. Assume first that oo € C. By Koebe’s distortion theorem
we can choose m; > 0 such that |f{({)|A,(()>m, for (e d. Set ¢ =f'of
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and 4, = f;'(D) = 4. Then ¢ is a conformal mapping of D, onto 4,. Since
¢ is extended to a homeomorphism of D, U C, onto 4,u d4 and both C, and
04 are analytic, we can continue ¢ conformally beyond C, by the reflection
principle. In particular, |¢'(z)| > m, > 0 in a neighborhood of C,. Hence, for
z € D, sufficiently near C,, we have by Lemma 1 (i) and (ii)

|f'(2)Apy(2) = | fi(@(2)] 19’ (2)| Ap,(2)
= [ f1(e@)¢'(2)*A 4,((2))
> m3| f(¢(2)| 4 4(¢(2))
>mm3;>0.

Next assume that C is bounded. Let ae C, and set h(w) = 1/(w — a) and
D, = h(D). Then f, =ho f:D,— D, is conformal, and C, corresponds to the
unbounded component of C — D, under f,. Thus, as was shown in the preced-
ing paragraph, there exists m; > 0 such that |f;(z)|Ap (z) > m; for z€ D near
C,, and hence

|f'(2)|Apy(2) = m3| f(2) — al*.
Taking distinct points a, b € C, we see that

la —bJ?

| (2)| Apy(2) = my max {|f(z) — al’, |f(2) — bI*} = m, >0
near C,.
We have shown that | f'(z)|4p,(z) is bounded away from 0 near 0D,. Since
| f'(z)|Ap,(2) is positive and continuous in D,, we obtain the desired estimate.
Case 2: 0 <0 < 1. We suppose that for each wedD a closed circular
sector S, with vertex at w which is congruent to S(p, ) lies in C — D. Fix a
conformal mapping g: 4 — C — S(p, 0), which is extended homeomorphically to
the closed disk, such that g(1) = 0. Since there exists a conformal mapping §
of a neighborhood of 1 such that g(¢{) = §({)*~%, we see that for some ms > 0

1) g A0; 1)) N A0; mg(1 — )20 =&, 0o<r<l1.

Now take ze D, sufficiently near C, so that a point we C lies on
the circle 04(w; dp(w)), where w = f(z). For an appropriate n € 04 the func-
tion g, =ng + o maps 4 conformally onto C—Sm, and g¢,(1) = w. Since
gt o fi(4) 4, it follows from Schwarz’s lemma that

f1(4(0; 1)) = g, 0 ho(4(0; 1)),

where h, is a Mobius transformation of 4 which maps 0 to ¢, = g;! o f,(0) =
g '(7(f1(0) — w)). Observe that c,, we C, stay in a compact subset of 4.
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Therefore, in view of (1) we have for some mg > 0
f14©O; 1))~ d(w; mg(1 —1)*70) = &, 0<r<1,
for all w e C. In particular, letting r = |{|, { = f;"*(w), we obtain
Op, (W) = dp(w) = me(1 — 1> ™% = m,2,(()
for all w near C. Consequently, by Lemma 1 (i) and (iii)
L A _ 1
LAOI 440 ~ 24)p,(w)

for all { near d4. Since ¢(D,) = 4 and ¢ = f;! o f is continued conformally
across C,, we have by Lemma 1

R SR ¥4 o
'@l 14O~ " 1¢'@)
j’q’(Do) (4 )1 e '11)0(2) 1-6

<m = Mg
"l *lo'@)17~°

for all z e D, near C,. Now our assertion easily follows.
Case 3: 0 = 1. The proof is quite similar to the preceding case, and may
be omitted.

<mgh () °

< mgip (2)'°

REMARK. Let D be a Jordan domain satisfying an exterior #-wedge condi-
tion, and let f:4—-D be conformal. Lesley [4] proved that the inverse
mapping f ! is then Holder continuous on D with exponent 1/(2 — 6). Also,
FitzGerald-Lesley [2] showed that 1/f’ belongs to the Hardy space HP for all
p<1/2(1 —6).

4. Application

Let a set X(D) of measurable functions on D be assigned to each sub-
domain D of C, and assume that X is conformally invariant; that is, if f : D> D’
is conformal, then X (D) = {s’ o f|s’ € X(D')}. Our problem is to find an expo-
nent y for which

2 Jj op(2)7|s(z)| dx dy = +o0 for all se X(D)— {0}.
D

THEOREM 2. Suppose that, for all regular domains D, condition (2) holds for
Y =7yo < 2, where y, does not depend on D. Then, for all domains D in &,
0 < 6 < 1, condition (2) holds for y = (y, — 20 + 2)/(2 — 6).

Proor. Let D e é,. Note that, by Lemma 1 (iii) and Lemma 2,
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Jéb(z)‘yls(z)l dxdy =+ .
J JD

if and only if

J Ap(2)’|s(z)| dx dy = +o0 .
D

o

Now D is conformally equivalent to some regular region D,; let f: D, — D be
conformal. Then Theorem 1 together with Lemma 1 (i) implies that, for each
y<2,

f J Ap(2)’|s(2)] dx dy
=JL Ap, @) Is(f1f'@)*7" dx dy

2m, jj Apy(2) TNV s(f(2))| dx dy
Do

for some m, > 0. Thus, if y = (y, — 20 + 2)/(2 - 0)(<2), then the last integral
diverges for s € X(D) — {0}, and we obtain the theorem.

Let S(D) denote the set of subharmonic functions on D, and set S™(D) =
{s e S(D)|s > 0}. Theorem 2 and Suzuki’s theorem stated in the introduction
yield the following corollary, which contains Theorem II. Recall that f(p, 6) =
2 —min {1, p}/(2 — ).

COROLLARY 1. Let De &, 0 <0< 1. If seS*(D) satisfies
pr Sp(2) P O5(2)P dx dy < 400
for some p € (0, o), then s = 0.
Also, we obtain the following result (cf. Suzuki [5, Theorem 2]).

COROLLARY 2. Let De 8, 0< 60 < 1. If se S(D) satisfies

Jj Op(2) P9\ s(z)|P dx dy < +0
D
for some p € (0, 1/2), then s = 0.

ExaMpPLE 1. Let D = A4(0;2) — {0} and s(z) = max {—log|z|,0}. Then
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s€ S*(D) — {0} and
ff Oop(2)7?s(z)f dx dy < +0
D

for y < 2. This example shows that in the above corollaries the assumption
that every component of C — D is a continuum is essential.

REMARK. In [6] Suzuki has shown that for any proper subdomain D of C

Jf Sp(2)72Is(z)|P dx dy = +o0
D

forallse S(D)— {0} and 0 <p < 1.

ExamMpPLE 2. For each §€[0,1] we construct a Jordan domain D, as
follows. We set D, = 4. For 0€ [0, 1), the exponential function maps the
circular arc |z + = tan (n6/2) — =i| = n sec (n0/2), Re z > 0, onto a Jordan curve
through 1. We let D, be the domain bounded by the Jordan curve. Clearly,
D, belongs to &,. Let fo: 4 — D, be a conformal mapping such that f,(1) = 1.
It is easy to see that there exists m; = m,(0) > 0 such that

A3) 1fo O <my|l —1]'7°
for { e 4.

Consider the domains U, = 4(c; ry) N 4(Cy; ry), where ¢, = (1 +i cot my)/2,
ry =(cscmy)/2 and 0 < < 1/2. The inner angle of U, at 1 is 2my. The
function g,({) = (1 — w)/(1 + w), w*¥ = (1 — {)/{, maps U, conformally onto -
4. Let P,=Pog,, where P(w)=(1— [w|?)/lw — 1|2, Then P, is a posi-
tive harmonic function of U, vanishing continuously on dU, — {1}. We set
P, =0 for {e 4 — U, to obtain a nonnegative subharmonic function on 4.
Thus P, o f;™' € S*(Dy). Note that

) Py(0) <my|L —1712Y

for { € 4.
Let 0<p<1 and y=2—-(1—yY)p/Yy(2—0). Then y<p(p,0) and
lim,_,,y = B(p, ). Making use of (3) and (4), we have

Jf Ap,(2) [(Py o fy )(2)]P dx dy
Dy
= jj A4 PP S5 (D277 dé dn

4

< m, f J AAEYIE — 1[C7P0-072RY g dy
Uy
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<m, JJ [ — 1‘—v+(2—v)(1—0)—p/2¢ d¢ dn
4

=m, Jj [{ — 1724720024 g dpn < +o00 .
4

This example shows that in Corollary 1 we cannot replace B(p, ) by any
smaller number when 0 < p < 1.

Finally, we consider nonnegative harmonic functions. Let H*(D) denote
the set of nonnegative harmonic functions on D. The following result is a
corollary to Theorem 2 and Suzuki [5, Remark 2].

COROLLARY 3. Let De &, 0 <0 <1, and set

min {1, max {p, 1 — p}}

(p, 0) =2 20

If s e H*(D) satisfies
Jj Op(2) 7P O5(2)P dx dy < +0
D
for some p € (0, o0), then s = 0.

The next example shows that in the above corollary we cannot replace
y(p, 6) by any smaller number when (2 — 0)/(3 —0) <p < 1.

EXAMPLE 3. Let Dy, f, and P be as in Example 2. Then P o f;' € H*(Dy),
and

JJD Ap @V [(P o f5')(2)]” dx dy
= JL AQPEYIf Q1P dE dn

<m, f J 2aQ)7PIE = 1172 G dy
a4
Now it is easy to verify that, for each g < — 1,

2n
f [re* — 117dt = O((1 — r)**?)
0

as rTl. If 2—6)/3—0)<p<1 and 2-2p—-1)/(1—-0)<y<y(p,0)=
2 —p/(2 —0),then —2p + (2 — y)(1 — ) < —1 so that
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fj Ap(2)'[(P o £y 1)(2)1? dx dy
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