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0. Introduction

Our principal objective in this paper is to solve the Belinskii ansatz for
the Einstein-Maxwell field equations [1]. For a space-time metric (ds)? =
g; dx' dx’ and an electromagnetic potential A; dx’, the field equations are given
as follows.

(0.0) R; = —F,F"/2 + g;F,,,F™/8, v,Fm=0,
where R;; is the Ricci tensor, F;; = 0,4; — 0;A; is the electromagnetic field and 7,
denotes the covariant differential operator.

To explain the ansatz, we introduce a 2-dimensional reduction. For a
symmetric matrix g = (g;);<:j<2 € 81 (2, R[[t, z]]) with detg=1¢* and 4 =
(A,, A,) € R*[[t, z]], we set

—(ds)* = e*°(—(dt)* + (d2)*) + lei,jsz gij dx'dx’, xX°=t, x}*=z

g+'AA A

oeR[[t,z]],A0=A3=0andh=[ 4 )

] e gl(3, R[[t, z]1]) .

Then the following two systems of equations are equivalent [1].
0.1) ((ds)?, A,) satisfies (0.0) for some ¢ and F,,F™ =0.
0.2) 0,(td,h-h™') — 0,(t0,h-h™*) = 0.

Moreover we assume some boundary conditions which are deduced from suit-
able physical assumptions.

0.3)
gll(oa Z) = 912(01 Z) = Al(o’ Z) = A2(Os 0) =0, gZZ(Oa 0) >0, atg(o, z)=0.

If (g, A) satisfies (0.2—-3), then we call (g, A) a solution of the Belinskii ansatz.
For uyy, u3; € R[[x]] with u;,(0) >0, we define u = (u;) € SL(3, R[[x]])
as follows.

f=1uy, a= txuy f,

auz,/2 + cuy; with ceR if wuy #0,
an arbitrary element of R[[x]] if u;; =0,

Uy =
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2 _ 2 _ 2
Uiy = XUy, Uiz = X"U3y Uy, = f+a* +uyuy,,
Uy =a+uyug,f, Uz, = a+uzug,f, usz =1+ uzu;5f.

Also we define w, € gl (3, R[[t,z]]), ke Z as Z,.,wAi* = exp(t?0,/24) x
{u(A + 2z) diag (1 + 2z/4, 1,)} € gl (3, R[[t, 2, 4, A7']]), and we set W= w;_;,
W = (Wj)icz,j<o and W_ = (W;); j<o- Then an argument in K. Nagatomo
[3, §3] implies that the matrix W_ is invertible and that Y = W-W_! is well-
defined. From the explicit form of Y, _,, it follows that there exists a unique
he gl (3, R[[t, z]]) such that

0 0 0 1 0x(xuyy f) Ox(xtzy f)
h0,2)=|0 f+a* a , 0Zh(0,2) = 2/f | * * *
0 a 1|, * * * =2z

and
to,h = (0,Y,, 1 )h .

We can now state our main

g+'44 4

4 l:l and (g, A) is a solution of

THEOREM. (i) h is decomposed as [

the Belinskii ansatz.
(i) All solutions of the Belinskii ansatz are obtained through the above
procedure.

In §1, we study the solvability of the Belinskii ansatz. In §2, we con-
sider some potentials which will be associated with solutions of the Belinskii
ansatz. In §3, we prove the theorem. Then a crucial point is that our
treating equations have regular singularities along ¢t =0. It enables us to
control the solutions with their boundary values.

The authors would like to thank heartly Professor Kiyosato Okamoto for
his suggestions and encouragement.

1. The Belinskii ansatz

Let g € gl (2, R[[t, z]]) satisfy 'g = g and det g = t%, and let A € R*[[t, z]].
As easily seen, (0.2) is equivalent to the following system:

(L.1) dtvdg-g™) + dAtxdA-g7 =0, dtxdAd-g7) =0,
1.2) *dA-g1d'A=0.

Here d denotes exterior differentiation and * is the Hodge operator with respect
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to the metric (dt)> — (dz)>. For ¢ € RV[[t,z]] and ne Z,, we define ¢ e
RV[[z]] as ¢ = 2,50 0"™t"

LemMMA 1.1. Let (g, A) satisfy (0.3) and (1.1). Then (g, A) is determined by

0] 401 4I2 2
953, AP, A% and 4.

ProOF. Let f, a and y stand for gi%, AY) and g¢'3, respectively. Since
det g = t?, we have g3l = 1/f. Letting § = det g-g~!, we can rewrite the system
(1.1) as follows:

((t0,)* — 2td,)g = t0%g + (3,9 0,§ — 0,9 3,§)g — 10/ A 10, A + t*0,'A-0,A,
(18,)* — 2t0,)A = 12024 + (0,A 0,§ — B,A 3,G)g -

Hence we obtain A1 =0,

0 0
(n2_2n)g[n1=|: ) . ., § : ]+(...)’
0 f'f0,9V] + 2n(2¢V3yf — g¥g¥if — g5}

(02 = )™ = O, a'fo,g] + 2n(APGGY — APGELS + AT — AT + (),

where (--*) are terms including only g'¥, A™ with k < n, and the superscript ’
denotes 0,. Therefore by induction we have the lemma. []

CoRrROLLARY 1.2. If (g, A) is a solution of (0.3) and (1.1), then we have
g(t, 2) = g(—t, z) and A(t, z) = A(—t, 2).

Proor. Clearly the equations (0.3) and (1.1) are invariant under the trans-
formation t - —¢t. [

LemMa 1.3. If (g, A) satisfies (0.3), (1.1) and (1.2), then
() 4P = 10,4924, (i) AP0.(6%)gH) =0.
PRrROOF. Since d(t*dA-g™')=0 and dA,|,—, = 0, there exists B € R?[[t, z]]
satisfying dB =t+*dA-g~! and B(0,0)=0. Then (1.2) means that §,B d,'4 —
0,B 04 =0.

We set b= B°. Since td,B = 0d,A-§ and t,A = 0,B-g, we obtain the
following formulas:

BY' =0, 24¢1=b)f, 2B =alf,
24P = by + @2 VS, 2B = (/2 )f —a'y.
4411 = 3. BEYf + bl + (@27,
4B = —(b'/2f Yy + a'gi + 0. APYS.
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Therefore (t6,B 8,/A)*' = (a')*/f and (0,Bt 64)*) = (b’)?/f. Thus we have (i).
Also

(0B A = —(b'/fya’ + (@) g + (B'/2fY)*f + (b + (@'/2fYfY (@[S,
(6B 10/ A" = (b'/2fYf — ay)(®'/f) + (@'/fYb'y + ((@'/2())’f + (b')*gY .
Hence (t9,B 0,4 — 0,B to/A)"* = 2(a’/f)(b'/f)(fy). O
THEOREM 1.4. Let f, a, y € R[[z]] satisfy f(0) > 0, a(0) =0 and a(fy) = 0.

Then there exists a unique solution (g, A) of the Belinskii ansatz satisfying
g3 =1 3=y AP =aand AP = +0,4/2f.

Proor. First, we assume that a=0. Then the proof of Lemma 1.1
implies that 4 =0. Because tr (d(t*dg-g~')) = d(t+d det g-det g™*), the sys-
tem (1.1) is equivalent to the following:

911922 — (912)° =17,
d(t™'+dgy;) gz, — d(t7' *dg;2) 91 =0, i=12.
Hence we obtain the following formulas:
gig¥d + gles ! = Kall. gt k<n—2, gl j<n—4p,
n(n —2)gtlg¥] — (n — 2)(n — 495, g = gt k<n—2, g, j<n—4»,
n(n — 2)g73g%) = &g, g% k <n -2},

where (g%, -+ denotes term including only g%, ---. Hence g%}, g¥1 and
g% % are determined inductively.

1 —
Second, we consider the case fy = ceR. Set s =[ c]. Because

0 1
g3 = 1/f and (‘sgs, As) satisfies (0.3) and (1.1), we may assume that y = 0. It is
sufficient to prove now that there exists (g, A) satisfying (0.3), (1.1-2) and

g12=0.
When g,, = 0, the equations (1.1-2) are rewritten as follows:

1.1y 911922 =1, d(t7'*dgy, g;,) +dA,t7T xdA, g, =0,
dit ™ +dA,-g,,) =d(t™ ' +dA,-g,,) =0,

(1.1)" gy, dA; xdA; + g,,dA,*dA, =0,

1.2y dA,*xdA, =0.

We see easily that there exists a solution (g, 4) of (1.1) and (0.3). Let Be
R?[[t, z]] satisfy dB=t"1+dA-§ and B(0,0)=0. Then d(t™'*dB, g,,)=0.
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Therefore AP = + BI”! implies that 4, = +B,. Since d4, =t '*dB,-g,,, we
have
922 dA1*dA; = g1,(xdB)dB, = —g,, dA,*xdA, and
dAz*dA1=dA2 dBlt_lgll=0. D

2. Potentials

Let D, = —10, + t0, + 220, and D, = —Ad, +t0,. For U and Vegl(3,
R[[t, z]]), the compatibility condition of

20) D,¥Y=UY¥ and D,¥=V¥ with Y e gl 3, R[[t, z, A7*]])
is
2.1 oU—-0,V=0 and to,U—-4oV)+V+[U,V]=0.

For ¥=1+Z%,,,¥A™" if 0,(D,;¥ ¥ ") =0,D,% ¥ ')=0, then we have
DY ¥ '!=—-0,¥, and D,¥- ¥ 1 = -3, ¥%,.

LeMMA 2.1. Let U and Vegl(3, R[[t z]]) be a solution of (2.1). Then
there exists a unique ¥ =1+ X, o ¥,A™" satisfying (2.0) and ¥(0, 0, 1) = 1.

Proor. The system (2.0) means that 0,%,,, =3, ¥, — 2n¥, — U¥, and
0¥, = to,¥ — V¥, By induction we have 0,t3,¥, —2n¥,— UY,) =
0,(to, ¥, — V¥,). O

Lemma 22. For u € GLG3,R[[x]]) and ¥ = 14+ Z,.,¥%A" €
ol 3, R[[t, 2z, A71]]), if X = ¥exp (¢20,/22) {u(A + 2z) diag (1 + 2z/A, 1,)} belongs
to gl (3, R[[t, z, A1), then 8,(D, ¥- ¥ 1) = 0,(D, ¥ - ¥ !) = 0.

Proor. Let T = exp (t?0,/24) and w = T{u(l + 2z) diag (1 + 2z/4, 1,)}.
Then [D,,T]=0, [D,,T]= —T-t0,, D;w =wdiag(—2,0,0) and D,w=0.
Therefore we have D, X = (D,¥- P 1)X + X diag(—2,0,0) and D,X =
(D,¥-¥1)X. Because X € GL(3,R[[t, z, A]]), we see that D, ¥- ¥~ and
D, ¥ %! belong to gl (3, R[[t,z, A]1nR[[t, 2z, A"*]]). O

We set w = Zyzwd", W = Wiy W = (Wyjez,j<o and W_ = (W), j<o-
Then the following result is due to K. Nagatomo [3, §3].

LEMMA 2.3. The matrix W_ is invertible and W- W is well-defined.

Proor. First we show that W_(0,z) is invertible. Since w(0,z) =
Y50 0fu(2z)A%(1 + diag (2z, 0, 0)/A)/k!, we have w(0,z) = 0 for k< -2,
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w_; (0, z) = u(2z) diag (2z, 0, 0) and w,(0, z) = dfu(2z)/k! + 0¥ 'u(2z) diag (2z, 0, 0)/
(k+ 1) for k>0. Let K=1—wy(0,2)*W_(0,z). For pe R [[z]], we set
ord p=sup {me Z;pez"R"[[z]]}. By induction we see that K";=0 if
i—j>n and that ord K"; > (n +i —j)/2 for any i, j <0. Hence Z,,,K" is
well-defined, and W_(0,2)™! = X, , K"w,(0, 2) ™.

We set W=2X,.,W(m)t*. Since W;(m) = (0,/2)"W;—i+m(0, z)/m!, we see
that Wm)=0if i—j>m+2. Let H(n, m); stand for —(K"w,(0, z)"' W_(m)); =
—Zin<p<jtm+1 K"ipwo(0, z)™ W,im), and let H(n, m)= (H(n, m)); j<o. Note
that ord H(n, m); > (n +i —j —m — 1)/2. Therefore H =13, >, H(n, mt*™ is
well-defined and W_ = W_(0, z)(1 — H).

By definition, H(n,m); =0if i —j>n+m + 1. Hence if

(*) = H(n,, ml)isz(nz’ m2)j2j3 - H(ny, my);.;

is nonzero, then i — j, <ny +m; + 1, j,—js<n,+my+ 1, -, jy—j<ny+
my + 1. Therefore, fixing i, j, (n,) and (m,), we have (*¥) =0 for almost all
indices j,, -, jy. Also ord (¥) > (Xn, —Xm, +i— j— N)/2. Hence, fixing i,
J, (m) and r >0, we see that ord (x) > r except a finite number of indices
(ny). Thus Z, .o H(ny, my) - H(ny, my) is well-defined, and so is H".

For () = (H(ny, my)--- H(ny, my));,, W_(0, 2) ™' ,;, we have ord (%) > (Zn, —
Y¥m,+i—p— N)2. Hence, fixing i, j, (m) and r, we see that ord (xx) >r
for almost all indices (n,) and p<0. Thus HY¥-W_(0,2)~! is well-defined.
By the definition, if W(m); # 0, then i—m—1 < j<O0. Therefore
W (Znso HYW_(0, z)7') is well-defined, and W' = ., HYW.(0,2)"Y. [

Applying Lemma 2.2, we have the Birkhoff decomposition of w. Letting
V=3, P M=1+4+Z,0— (W W), _;A7, we see that Pwe gl (3, R[[t, z,
A1]) because (¥_;)i<oW- + (Wo;)i<o = (¥-j)jezW =0. Also we notice that if
Pwe gl 3, R[[t, 2z, 4]]) for ¥egl(3, R[[t 2z A"*]]) with ¥(0,0,4) =1, then

=y
LEMMA 24. Let ¢ € gl (3, R[[t, z]]) satisfy
(2.2) (t,)* — 2t8,p — t20%¢ + [t0,0, 0,01 =0,
P9 =2z, o' =0 i=1,23, j=23 and =0,
2]

Then ¢ is determined by @3, a; = @), ¢/? and ¢4 i, j =2, 3. Moreover if
tr o1 = 0, then tr ¢ = 2z.

Proor. We note that (n? — 2n)o™ — 82" 4+ %, ., _. [ko™, 6,0!™] = 0.
Let @ stand for [ne™, 8,¢!°]. Then we have &,; = —2nol i=23, &,, =
neia, + nelfles, &5 = —aiel] 2<ij<3 and &, = 20} + nolla, +
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nellay —aing i=2,3. Also we see that n(n—2) tr " =02 tr "2 There-
fore, by induction we have the lemma. []

3. A linearization of the Belinskii ansatz
g+'A4 'A
A 10

U=toh-h™* and V =td,h-h™*. Since U and V satisfy (2.1), we have a solu-
tion Y=1+4+ZX,.,%4" with ¥(0,0,)) =1 of (2.0. Because U(0,z) =

Letting (g, A) be a solution of the Belinskii ansatz, we set h =[

2 00
* 0 O, we can set
*+ 0 0
2z 00
—-¥%0,z2)=|a, 0 O], o; € R[[z]] i=273.
ay 0 O

For ue GL(3, R[[x]]), we set w = exp (£20,/24) {u(4 + 2z) diag (1 + 2z/4, 1,)} and
X = Pw.

LemMmA 3.1. X(0,z, A) e gl (3, R[[z, A]]) if and only if

(3.1 oy 1(22) = 2zu;,(22) and u;(0)=0 i=273
2 00

Proor. Putting t = 0, we have (— A0, + 240,)%¥ =|a, O O |¥Y. Hence
ay 0 0

MA+2) 0 0
P(0,2,4) =| —op/(A+22) 1 0[and
—oy/(A+22) 0 1

X110,2, ) =u;;(A+22), X0,z 4) = Au; (A + 22)/(4 + 22),
Xi10, 2, A) = (—ouy 1 (A + 22) + 2zu; (4 + 22))/4 + uy; (4 + 22),
X;;0, z, 2) = —oquy (A + 22)/(A + 22) + uy(A + 22), 2<i,j<3.

The lemma is now clear. [
We set f =g, a=AY, v=AP and 4; = u, uy; — u;u,;, 2 <i, j < 3.

LEMMA 3.2. Let u satisfy (3.1). Then 02X(0, z, 2) € gl (3, R[[z, A]]) if and
only if
(3:2) (fu;,) =0, (ads; — 43) =0 and

a'd,; —aa'dy; = (f43) i=23.



522 Hideo Dor and Ryuichi SAWAE
ProoF. Note that ow = td,w/i, X = O¥'w + 20,¥-to,w/h +
w-5,t0,w)/4 and ¥(t,z) = ¥(—t,2). Since §,D,¥(0,z) = —2¥,(0,2)- ¥, 2),
we have 02¥(0, z) = (0, P(0, z) + 82 ¥, (0, z)- Y(0, z))/A. Therefore
0X =(0,X +0?¥,-X))JA ont=0.

Putting t = A =0, we have Xy =uy;, X;; =0, X;; = — ol +u;; 2<i,j <3,
where #,; = u;;(2z)/2z. Also we see that

=f'lf 0 0
- =VW=|yf—fy+a'f—ady f/f+adlf —af|f-d’a/f +a
v'f —ay alf —aa'lf

If ,X + 8*%,- X =0o0nt=4=0, we have

—(f'/Nuy = duy,,
(f'+ a' a4y + (—of —a*a’ + a'f)d5, = (45f)
a'dy; —aa'dy; = (45, f) .

These imply (3.2). Also we note that if (fu,;) =0, then (0,X + 02¥,; - X);; =0,
i=230nt=4=0. Hence (3.2) implies 62X (0, z, A) e gl 3, R[[z, A]]). O

LEMMA 3.3. Assume (3.1-2). If 6#X,;(0,z, ) e R[[z,A]],i=2,3, then
(3.3) Sug (fiy)" = {(0z — @30) 43 + (230° + 03 f — a,0)45,}" .

PrOOF. Note that 62w = d,w/A, o}w =302w/A? and 83D, ¥ = — 0}V, ¥ —

302%,-0?% on t =0. Therefore 3*X = O*¥-w + 602 ¥-9,w/A + 3¥o2w/A* and
A0} =3020,9 + O}, W + 30?W,-0*P ont = 0. After a calculation, we have

O X = 3{02X + 0,(02 ¥, X) + 02, - 0,X + (02W,)2X}/A* + 0*W, - X/Aont=0.

Also it is easily seen that 9,X,;(0,2z,0) = #,;, VI = (f'/f*)y +yf + va'lf,
Vi3l = —Vidla +of /f + 0,

Res;— /X0, z, A)/3 = (fuy,)'/f — RVPIX)y,, i=23 and
FPu (VBX)y, = {() + va'f} 4y + {—(fyYa — va'fa + (fo)f} 43
={(/Mdy — ady) + vf *4,,} .

Using 2fy = oy — aa, 2fv = oy and (3.2), we have 2{(fy)(42i— ads) + vf*4,;}
= {0y(d;; — ady) + as(—ady + (@ + f)4y)}. O
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ProposITION 34. Let u € GL(3, R[[x]]) satisfy (3.1-2-3). Then Pwe
gl (3, R[[t, z, A]1]).

Proor. By Lemma 2.3, we have ¥Y“egl (3, R[[t, z, A"']]) satisfying P*w e
ol (3, R[[t, 2, A]]) and ¥*(0,0,2)=1. Then the uniqueness of the Birkhoff
decomposition implies that ¥*(0,z,4) = W¥(0,z 4). Therefore 02%,(0,z) =
—8,X(0,20)- X(0, 2,07 = §2%¥(0, z) and (*%,(0, z)- X(0, z, 0)),;; = —3 Res;_,
{02X + 0,(02%1-X) + 07, 0.X + (7¥1)’X} /A% = (3FP1(0,2) X(0, 2, 0))y;.

*x 0 0
Since X(0,2,0)=| * * =« |, we have det (X0, z, 0)),; j<3 € R[[z]]*. Thus
* * *

o},(0, 2),; = 6,940, 2),;, i = 2,3. Applying Lemmas 2.4 and 2.1, we see that
Y,.=Prand ¥=Y" O

ProoF OF THEOREM. Let u be defined as in §0. We set f(z) = 1/u,,(22),
o(2) = 2zu;,22)f i =2,3, -a(z) = +a3(z) and y = (¢, — aa}y)/2. Using Theorem
1.4, we have a solution (g, 4) of the Belinskii ansatz. Since u satisfies (3.1-2-3),
Proposition 3.4 implies that ¥, = —(W-W_1), _;.

If toh= —0,%,-h for hegl (3, R[[t, z]]), then nh™ = —g,POlpM —
2 00
2 < 0, PP MpM - Note that —0,¥,(0,z)=|«, 0 O |. Therefore h is deter-
ay 0 0
t t
mined by h® and A3 i=1,2,3. Thus we see that h = [g +AAA f:|

ExXaMPLE. Let u;, =1, u3; = 2B and u,, = +2B%x + 7, with B #0, ye R.
Then we have

o=+ 28222 "
pr2 (1 4 2B2%t2)* + 922 |’

A =2B(1 + 2B%3)71(t2, +2z(1 + 2B%t?) + yt2).
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