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0. Introduction

Our principal objective in this paper is to solve the Belinskii ansatz for
the Einstein-Maxwell field equations [1]. For a space-time metric (ds)2 =
gtj dx* dxj and an electromagnetic potential Ai dxl, the field equations are given
as follows.

(0.0) RΪJ = -FimFjm/2 + gijFmnF
mn/Z , rmFίm = 0 ,

where Rtj is the Ricci tensor, Ftj = dtAj — djAi is the electromagnetic field and Vm

denotes the covariant differential operator.
To explain the ansatz, we introduce a 2-dimensional reduction. For a

symmetric matrix g = (#y )ι<i,y<2 e 9! (2, R[_[t9 z]]) with det g = t2 and A =
μ ι?,42)eR2[[ί,z]],weset

-(ds)2 = e2σ(-(dt)2 + (dz)2) + Σι*<j*2 9ij dxl dx* , x° = ί , x3 = z,

[ a -\- 1AA tλ~\y

 A 1 eflI(3,R[[t,z]]).

Then the following two systems of equations are equivalent [1].

(0.1) ((ds)2, At) satisfies (0.0) for some σ and FmnF
mn = 0 .

(0.2) dt(tdth'h~l) - dz(td2h'h~1} = 0 .

Moreover we assume some boundary conditions which are deduced from suit-
able physical assumptions.

(0.3)
) = ^1(0,z) = A2(0,0) = 0, 022(0,0)>0, 3,0(0, z) = 0 .

If (g, A) satisfies (0.2-3), then we call (g, A) a solution of the Belinskii ansatz.
For ttn, M31 e #[!>]] with 1̂ (0) > 0, we define u = (w0 ) ε 5L(3,

as follows.

/= l / w l l 5 α = ±xw31/,

+ cM11 with ceR if w 3 1 7 ^ 0 ,
21 (an arbitrary element of #[[x]] if w31 = 0 ,
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M1 2 = *13 *31

W 3 3 = W 3 1 W 1 3 / .

Also we define wfc e gl(3, K[[£, z]]), fceZ as Σ f c e Zw f c/l f c = exp(ί23f/2λ) x
{Wμ + 2z)diag(l+2z,α, 12)} e 8I(3, R[[ί, z, A, r1]]), and we set Wfc = w,.,,

^= (^/)/6z,j<o anc* W- = (W/Λ./<o Then an argument in K. Nagatomo
[3, §3] implies that the matrix W. is invertible and that Y= W-WΞ1 is well-

defined. From the explicit form of y0,-ι> it follows that there exists a unique
h e gl (3, Λ[[ί, z]]) such that

MO, z) =

0 0 0"

0 / + a2 a

0 1

d?h(0,z) =

8x(xu2ίf)

:=2z

and

We can now state our main

THEOREM, (i) h is decomposed as
I

and (g, A) is a solution of

the Belinskίi ansatz.

(ii) All solutions of the Belinskii ansatz are obtained through the above
procedure.

In §1, we study the solvability of the Belinskii ansatz. In §2, we con-
sider some potentials which will be associated with solutions of the Belinskii
ansatz. In §3, we prove the theorem. Then a crucial point is that our
treating equations have regular singularities along t = 0. It enables us to
control the solutions with their boundary values.

The authors would like to thank heartly Professor Kiyosato Okamoto for

his suggestions and encouragement.

1. The Belinskii ansatz

Let g e gl (2, fl[[ί, z]]) satisfy lg = g and det g = ί2, and let A e #2[[ί, z]].
As easily seen, (0.2) is equivalent to the following system:

(1.1)

(1.2)

1 = 0 , d(t*dA-g-1) = 0 ,

Here d denotes exterior differentiation and * is the Hodge operator with respect
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to the metric (dt)2-(dz)2. For φ ε RN[[t, z]] and neZ+, we define φ[n] ε
RNllzπasφ = Σn>0φ™tn.

LEMMA 1.1. Let (g, A) satisfy (0.3) and (1.1). Then (g, A) is determined by

PROOF. Let /, a and γ stand for 0[

2°2

], Aψ and g[Q respectively. Since
det g = t2, we have g[2} = I//. Letting g = det g - g~l, we can rewrite the system
(1.1) as follows:

((tdt)
2 - 2tdt)g = t2d2g + (dxg dzg - dtg dtg)g - tdfA - tdtA + t2dz*A - dzA ,

((tdt)
2 - 2tdt)A = t2d2A + (dzA dzg - dtA dtg)g .

Hence we obtain A[1] = 0,

(n2 -

(n2 - 2n)X w = (0, a'fa

where (•••) are terms including only g[k\ A[k] with k < n, and the superscript '

denotes dz. Therefore by induction we have the lemma. Π

COROLLARY 1.2. // ( g 9 A ) is a solution of (0.3) and (1.1), then we have

g(t, z) = g(-t, z) and A(t, z) = A(-t, z).

PROOF. Clearly the equations (0.3) and (1.1) are invariant under the trans-

formation t -> — t. Π

LEMMA 1.3. // (g, A) satisfies (0.3), (1.1) and (1.2), then

(i) A^=±dzA^/2g^9 (ii) ^3,(Λ°M2J) = 0.

PROOF. Since d(t*dA-g~^) = 0 and dA^Q = 0, there exists B e #2[[£, z]]
satisfying dB = t*dA g~1 and B(0, 0) = 0. Then (1.2) means that 8tB dz*A -

dzB dt*A = 0.
We set & = B1

1

0]. Since tdtB = dzA g and tdtA = dzB-g, we obtain the

following formulas:

40] = 0 , 2/l[

1

2] = b'/f, 2B[

2

2] = a' If,

2Aψ = b'y + (a'βfϊf, 2^2] = (b'ffl'f - a'y ,
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Therefore (tStB dz'A)[2] = (a')2/f and (dzBt dt'A)[2] = (b')2/f. Thus we have (i).
Also

(tdtB 3X'Λ)I4] = -(b'/f)yaf + (α')VΛ] + ((b'/2f)')2f + (b'y + (α'/

(3,B tdfAfV = ((b'/2f)'f - a'γγ(b'/f) + (α'//)'fe'y + ((a'/2fY)2f + (Wι4ι] .

Hence (ί3,B δ,U - 3,B ί̂ )[4] = 2(a'/f)(b'/f)(fy)'. Q

THEOREM 1.4. Lei /, α, 7 e Λ[[z]] sαίΐs/y /(O) > 0, 0(0) = 0 and a(fy)f = 0.
Then there exists a unique solution (g, A) of the Belinskίi ansatz satisfying

[ι21 = ±Sza/2f.

PROOF. First, we assume that a = 0. Then the proof of Lemma 1.1
implies that ,4 = 0. Because tr (d(t * dg g~1)) — d(t * d det g det g~l\ the sys-
tem (1.1) is equivalent to the following:

011022 -(012)2 = ί 2 >

d(Γ1*dgli)'g22 - d(t~* *dg22) gu = 0 , i = 1, 2 .

Hence we obtain the following formulas:

0M + 0[ι2MΠ2-2] = «β?l, βfl, fe < n - 2, gίfl, j < n - 4» ,

n(n - 2)fl?}0S2 - (n - 2)(n - 4)βS 2-
2Wί = «fl?l, fc < n - 2, ,̂ J £ n - 4» ,

n(n - 2) l̂9[2°2] = «β?l, 9?1, * < n - 2» ,

where «g^], •••» denotes term including only gl$, •••. Hence gl"l,g["l and
g l 2 2 2 } are determined inductively.

-Γ1 ~clLO i JSecond, we consider the case fy = c e R. Set s = π Because

9[2ι = V/ and ('sfifs, As) satisfies (0.3) and (1.1), we may assume that γ = 0. It is
sufficient to prove now that there exists (g, A) satisfying (0.3), (1.1-2) and

9i2 = 0.
When g12 = 0, the equations (1.1-2) are rewritten as follows:

(1.1)" g22 dA^dA, + 0n dA2*dA2 = 0 ,

(1.2)' dAι*dA2 = Q.

We see easily that there exists a solution (g, A) of (1.1)' and (0.3). Let Be
R2[[ί, z]] satisfy dB = Γ^dA-g and β(0, 0) = 0. Then d^tdB^g^) = 0.
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Therefore Aψ = ±Bψ] implies that A2 = ±B^. Since dA1 = Γl*dBl-gii9 we
have

g22dAl*dAl=glί(*dBί)dB1 = -gildA2*dA2 and

dA2*dA! = dA2 dBίt~
ΐgiί = 0. Π

2. Potentials

Let D! = -λdz + id, + 2λdλ and D2 = -λdf + tdz. For 17 and V e gl (3,
> ZΎ\\ ώe compatibility condition of

(2.0) D1Ψ=UΨ and D2!P= F^ with Ψe gl(3, R[[ί, z, /T1]])

is

(2.1) d f l/-3 2F = 0 and ί(3zt7 - dtV) + K -f [Ϊ7, K] = 0 .

For Ψ = 1 4- Σπ>0 ^/T", if (̂D! !F Ψ~l) = βλ(D2 !̂  ίP'1) = 0, then we have

LEMMA 2.1. L^ί L7 and KE gl(3, R[[ί,z]]) be α solution of (2.1).
exϊ'5ί5 a unique Ψ = 1 + Σw > 0 Ψnλ~* satisfying (2.0) and (̂0, 0, A) = 1.

PROOF. The system (2.0) means that dzψn+1 = tdtΨn -2nΨn-UΨn and
dtψn+1 = tdzΨn-VΨn. By induction we have dt(tdtψn - 2nΨn - UΨn) =
dz(tdtΨn-VΨn). D

LEMMA 2.2. For u e GL(3,.R[[x]]) and Ψ = 1 4- Σπ>0 Ψnλ~n e
gl (3, Λ[[ί, z, A'1]]), i/ * = !Fexp (t2dz/2λ){u(λ + 2z) diag (1 + 2z/λ, 12)
to gl (3, R[[t, z, A]]), then dλ(D, Ψ- Ψ~l) = dλ(D2 ?P ίP"1) = 0.

PROOF. Let T = exp (t2dz/2λ) and w = T{w(A + 2z) diag (1 -h 2z/λ, 12)}.
Then [D!, Γ] = 0, [D2, Γ] = - T ίδz, Dx w = w diag (-2, 0, 0) and D2w = 0.
Therefore we have D^X = (D^Ψ-Ψ'^X + X diag (-2, 0, 0) and D2X =
(D2Ψ-Ψ~l)X. Because X e GL(3, Λ[[ί, z, A]]), we see that D^Ψ-Ψ'1 and
D2 Ψ- Ψ-1 belong to 8I (3, Λ[[ί, z, A]] n R[[ί, z, A'1]]). Π

We set w = Σk e zw f cλ
k, W^ = w^ W =(Wij)jeZJ<Q and P^_ = (^)u<0.

Then the following result is due to K. Nagatomo [3, §3].

LEMMA 2.3. The matrix W. is inυertible and W- W'1 is well-defined.

PROOF. First we show that VΓ_(0, z) is invertible. Since w(0, z) =
Σk>0δX2zμfc(l-hdiag(2z,0,0)/>l)//c!, we have w*(0,z) = 0 for k < -2,
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w_!(0, z) = u(2z) diag (2z, 0, 0) and wk(0, z) = d^u(2z)/kl + d$+lu(2z) diag (2z, 0, O)/

(k + 1)! for k > 0. Let K = 1 - w0(0, z)"1 W_(0, z). For p e KN[[z]], we set

ord p = sup {me Z pe zmRN[[z]]}. By induction we see that K"^ = 0 if

i — j > n and that ord KΠ

0 > (n + ί — j)/2 for any i, 7 < 0. Hence Σπ>0Xn is

well-defined, and PΓ_(0, z)'1 = Σπ>0K
πw0(0, z)"1.

We set VF = Σm>0 W(m)t2m. Since %(m) = (SΓ/2)mw7_i+m(0, z)/m!, we see

that W^m) = 0 if i - j > m + 2. Let #(n, m)0 stand for -(K"w0(0, z)'1 Wl ("»))*/ =

-2i-^J,^J+m+iX"ipWo(0,z)"1»»;7(m), and let H(n9m) = (H(n9m)IJ)ij<0. Note

that ord H(n, w)0 > (n + i -7 - m - l)/2. Therefore # = Σ^Q^^ H (n, m)ί2m is

well-defined and W_ = WΊ(0, z)(l - H).

By definition, H(n, m)/7 = 0 if ί — j > n H- m H- 1. Hence if

(*) = H(nl9 mι)iJ2H(n2, m2)J2J3 - - - H(nN, mN)JNJ

is nonzero, then ί - j2 <nl + m1 + l9 J2 - J3 < "2 + ̂ 2 + ̂  ' ' ' > JN ~ J ^ % +
?% + 1. Therefore, fixing i, 7, (nk) and (mk\ we have (*) = 0 for almost all

indices j2, , jN. Also ord (*) > (Σ nk — Σ mk + i — j — N)/2. Hence, fixing i,

7, (mfc) and r > 0, we see that ord (*) > r except a finite number of indices

(nk). Thus ΣΠf>0 H(nίy m x ) H(%, mN) is well-defined, and so is HN.

For (**) = (H(nl9 mJ- H(nN, mN))ipW_(0, z)"1^, we have ord (**) > (Σ nk -

Σmk + i — p — N)/2. Hence, fixing i, 7, (mk) and r, we see that ord (**) > r

for almost all indices (nk) and p < 0. Thus HN-W_(Q, z)"1 is well-defined.

By the definition, if W(w)0 Φ 0, then i - m - 1 < j < 0. Therefore

W- (ΣN>0 H
N^_(0, z)-1) is well-defined, and WΓ1 = ΣN>0 H

NW_(Q, z)'1. D

Applying Lemma 2.2, we have the Birkhoίf decomposition of w. Letting

Ψ = ΣjeZ Ψ_jλj = 1 + Σ,.>0 - (W WJl)o9-jλ-J

9 we see that Ψw e gl (3, Λ[[t, z,

/I]]) because (y.^oWl + (»ί,Λ<o = (ψ-j)jeZW = 0. Also we notice that if

ftveβl(3,K[[ί,z,4]]) for ^6 gl(3, Λ[[ί, z, r1]]) with (̂0, 0, /ί) = 1, then
Ψ= Ψ.

LEMMA 2.4. Let φ E gl (3, #[[ί, z]]) sαίis/j

(2.2) (ίδf)
2φ - 2ίδf φ - t2d2

zφ + [ί5rφ, 5zΦ] = 0 ,

φ[°} = 2z , φ^] = 0 i = 1, 2, 3 , 7 = 2, 3 and φ[1] = 0 .

Then φ is determined by φ(2^ ^ = φl®\ φ\2] and φl£] i, j = 2, 3. Moreover if

tr φ[2] = 0, then tr φ = 2z.

PROOF. We note that (n2 - 2n)φ[n] - d2φ[n~2} + Σk+m=n [_kφ{k\ dzφ
[m}] = 0.

Let Φ stand for [nφ{n\ dzφ
lQ}]. Then we have Φu = -2nφl$ ί = 2, 3, ΦX 1 =

nqf?l*'2 + nφflα'a, Φ0 - -αίφfj 2 < ϊ, 7 < 3 and Φα = 2φfϊ] + nφ[$<*'2 +
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P;3lα3 -^in(P [ιι i = 2, 3. Also we see that n(n-2) tr φ[n] = d2 tr φ[n~2]. There-
fore, by induction we have the lemma. Π

3. A linearization of the Belinskii ansatz

Letting (α, A) be a solution of the Belinskii ansatz, we set h =

U = tdth'h~^ and V=tdzh'h~i. Since U and V satisfy (2.1), we have a solu-
tion Ψ = 1 + Σπ>0 Ψnλ~n with (̂0, 0, λ) = 1 of (2.0). Because 17(0, z) =

2 0 0

, we can set* 0 0

* 0 0

= 2,3.

For weGL(3,
X = Ψw.

2z 0 0"

α2 0 0

α3 0 0

we set w = exp (t2dz/2λ){u(λ + 2z) diag (1 + 2z/Λ, 12)} and

LEMMA 3.1. ΛΓ(0, z, A) £ gl (3, K[[z, A]]) */ and on/y i

(3.1) aίu11(2z) = 2zwfl(2z)

PROOF. Putting t = 0, we have (- λdz + 2A5λ) Ψ =

λ/(λ + 2z) 0 0"

α2/μ + 2z) 1 0

u1£(0) = 0 i = 2, 3 .

2 0 0 "

αr

2 0 0

αr 0 0

Hence

and

α3/μ + 2z) 0

*n(0, z, A) = W l l (A + 2z), (̂0, z, λ) = λun(λ + 2z)/(A + 2z),

^ (̂0, z, A) = (-α^^μ + 2z) + 2zun(λ + 2z))//l + wa(/l + 2z),

Xv(0, z, A) = -α^/l + 2z)/(A + 2z) 4- uϋ(λ + 2z), 2 < i , 7 < 3 .

The lemma is now clear. Π

(3.2)

We set / = 0[

2

0

2

], a = A[£\ v = A[2} and Atj = u^u^ - utlulp 2 < i, < 3.

LEMMA 3.2. Let u satisfy (3.1). Then 32X(Q, z, λ) e gl (3, #[[z, λ]]) if

a'A2i-aa'A3i = (fA^f, i = 2, 3 .
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PROOF. Note that δ,w = tdzw/λ, d?X = d?Ψ-w + 2dtΨ tdz\v/λ +
Ψ- dt(tdzw)/λ and Ψ(t, z) = Ψ( - ί, z). Since dtD2 (̂0, z) = - 3r

2 ̂  (0, z) (̂0, z),
we have δ,2 ̂ (0, z) = (3Z !̂ (0, z) + δ2 ̂  (0, z) !P(0, z))/λ. Therefore

3f

2X = (dzX + d*Ψι X)lλ on ί = 0 .

Putting ί = λ = 0, we have Jf^ = wn, Xu = 0, AΓ0 = - α fw 1 7 + MO 2 < i, 7 < 3,
where M l 7 = w l 7 (2z)/2z. Also we see that

-/'// 0 0
Ϋf-f'y + aΌ'f-aa'y f ' / f + a a ' / f -af'/f - a2a'/f + a'

v'f-a'γ a'/f -aa'/f

If dzX + dfΨΊ-X = 0 on ί = λ = 0, we have

(/' + α'α)Λ2ί + (-of' - αV + α'/)/f3f = (Λ2i/)' ,

α'zf2ί - αα'J3ί = (Λ3ί/)' .

These imply (3.2). Also we note that if (/Un)' = 0, then (d2X + d^Ψ^X)^ = 0,
i = 2, 3 on ί = 1 = 0. Hence (3.2) implies δ,2X(0, z, A) e gl (3, R[[z, A]]). Π

LEMMA 3.3. Assume (3.1-2). // 3%,.(0, z, λ) e R[[z, A]], i = 2, 3, then

(3.3) /UnC/Ui. )" = {(α2 - x3a)A2i + (α3α
2 + α3/

PROOF. Note that δ,2w = θz w/λ, d*w = 3δ>/l2 and 8?D2 Ψ = - δ? Ψ1 Ψ -
3δ2 Ψt d?Ψont = 0. Therefore 5t

4ΛΓ = d?Ψ w + 6d? Ψ dzw/λ + 3 Ψδj w/λ2 and
λd? Ψ = 3d2Bz Ψ+d?Ψ1 Ψ+ 3δ? Ψ^ d2Ψont = 0. After a calculation, we have

d?X = 3{d2X + 8z(d2Ψ1 X) + d2Ψί dzX + (dfΨtfX}/!2 + d^ X/λont = 0.

Also it is easily seen that d,,Xlt(0, z, 0) = ϋ l i( Vg] = (f'/f2)γ + γ'f + va'/f,

ResΛ=0 #Xlt(Q, z, λ)β = (βuγif - (2V^X)lί , i = 2, 3 and

i, = {(ffϊ + va'f}J2l + {-(fyy a - va'fa

Using 2/y = α'2 - α'3α, 2fv = α'3 and (3.2), we have 2{(fy)(Λ2ί- α^3ί) + vf2A3ί}
= {α2(Λ2ί - α^3i) + ̂ (-aΔ2i + (a2 + f)A3ί )}'. D
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PROPOSITION 3.4. Let u E GL(3, #[[*]]) satisfy (3.1-2-3). Then Ψw e

PROOF. By Lemma 2.3, we have ^"egl (3,#[[ί, z, A"1]]) satisfying Ψuw e
gl(3, K[[ί, z, A]]) and "̂(0, 0, λ) = 1. Then the uniqueness of the Birkhoff
decomposition implies that Ψu(Q,z,λ) = Ψ(Q, z, λ). Therefore ^^(O, z) =
-dzX(Q, z, 0) AΓ(0, z, OΓ1 = 3f

2ίP7(0, z) and (3*^(0, z) AΓ(0, z, 0))lt = -3 ResΛ=0

{32X + dtffΨi X) + δ2^;

~* 0 0"

, we have det (J^/O, z, 0))2<ί>J-<3 e K[[z]]x. ThusSince AΓ(0, z, 0) = * * *

* * *
3*^(0, z)tί = 3,̂ 7(0, z)lf, i = 2,3. Applying Lemmas 2.4 and 2.1, we see that
Ψi = Ψl and Ψ=ΨU. Π

PROOF OF THEOREM. Let w be defined as in §0. We set /(z) = l/M11(2z),
αf(z) = 2ztία(2z)/ i = 2,3, a(z) = ±α3(z) and 7 = (α'2 — αα'3)/2. Using Theorem
1.4, we have a solution (0,^4) of the Belinskii ansatz. Since u satisfies (3.1-2-3),
Proposition 3.4 implies that Ψ± = —(W- WJ1)0f-l.

If tdth=-dzΨl-h for h e gl (3, K[[ί, z]]), then nft[n] = -<

" 2 0 0 "

fc < „ dz Ψ[n-k]h[k\ Note that - dz Ψ1 (0, z) = α'2 0 0

α3 0 0

. Therefore h is deter-

[/7 _L *A A tΔ~\

. D

EXAMPLE. Let u11 = 1, M31 = 2j8 and M2ι = ±202x 4- y, with β Φ 0, 7 e R.
Then we have

= 2j5(l + 2β2t2Γ1(t2, ±2z(l + 2j?2ί2) + yt2).
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