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§1. Introduction

After Daniels [1] introduced a saddlepoint technique in statistics, this
method is widely discussed for deriving an accurate approximation for the
probability density function of the mean of a random sample. Reid [6] gave
an excellent review in this field, and Davison and Hinkley [3] presented a
non-parametric saddlepoint approximation. See also Jensen [4].

When we want to find an approximation for the distribution function,
several saddlepoint methods are available. Most simple method is to integrate
the approximated probability density function obtained by the saddlepoint
method. However this integration may not be easily carried out. Another
method is based on the inversion formula from the cumulant generat-
ing function to the distribution function. See Lugannani and Rice [5], and
Daniels [2] for a review on the tail probability approximations.

Recall that the saddlepoint is defined by the solution T of the equation
k'(T) = X, where k(T) is a cumulant generating function. The saddlepoint is
useful for approximating the probability density function. In this article we
consider the equation x'(T) =X + 1/(nT) of T. Its solution will be called the
quasi-saddlepoint. Using the quasi-saddlepoint, we propose an alternate ap-
proximation formula for the distribution function by evaluating the inversion
formula (2.1).

§2. Approximation for the distribution function

Let X be a random variable with a distribution function F(x). We
denote its cumulant generating function by

oo

k(T) = log E{exp(TX)} = log(J

a0

exp(Tx) dF (x)) .

Suppose that x(T) is finite for —a < T <b, where a and b are positive
constants. Our interest is to approximate the distribution function F"(x) of
the mean X, of a sample of n independent observations from F(x).
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Put the integral

c+ioo
2.1 I(c) = (2mi)™* J e"*M-=THdT/T  for —a<c<b.

c—io
Then the inversion formula for the distribution function F"(x) of X, is given by

1—1(c) ifc>0,

@2) Fr(z) = { —1I(c) ifc<O.

The latter relation of (2.2) is derived by the residue theorem. The simple
approach for evaluating I(c) is given by (i) expanding 1/T around the saddle-
point T and (ii) integrating along the path T = T + iy, where T is the unique
solution of x’(T) = X. However, this aproximation breaks down at the neigh-
borhood of the mean p = k’(0) because T is close to zero when X is near by p.
We rewrite (2.1) as
exp{nk(c+it)—nx(c+it)—log(c+it)} dt  (c>0),

— 0

2.3) 2znl(c)=
—~ exp{nx(c+it)—nx(c+it)—log(—c—it)} dt (c<0).

— o0
Our approach is based on the real solution T = ¢ of the equation

2.4) d{x(T) — XT — (log T)/n}/dT = &'(T) — X — 1/(nT) = 0.

Now we may recall that a saddlepoint is the solution of x'(T) =Xx. Hence
we say that ¢ is a quasi-saddlepoint. Put g(T)=«'(T) — 1/(nT) for —a <
T<b, T#0. Then g(T) is monotone increasing because g¢'(T)=«"(T) +
1/(nT?) and «"(T) is a variance of a conjugate exponential family. Also
lim;_,_o g(T) = 400 and limy_,,,g(T) = —oc0 imply that (2.4) has at most
two solutions. We denote the positive and. negative solutions by ¢, = ¢,(X)
and é_ = ¢_(X) respectively, if exist. Note that the saddlepoint T is indepen-
dent of n. On the other hand the quasi-saddlepoints ¢, and ¢é_ depend on
n. Further, putting u = EX = k’(0), we have

LEMMA. Suppose the equation (2.4) has positive and negative quasi-saddle-
points ¢, and ¢_, respectively, for given X. When X > pu (i.e., T > 0), then it
holds that

b.<0<T<é,, ¢ . =0m™2) and ¢, =T+0n1?).
When X < pu (i.e., T <O0), then it holds that

é.<T<0<é,, &6 =T+0(m™) and & =O0m?),
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Further ¢, is a monotone decreasing function of n and é_ is a monotone
increasing function of n.

To approximate I(c) of (2.1), we employ the Taylor expansion of the
exponent of (2.3). When X > y, then take ¢ = ¢, = T + O(n~"2). Transform-
ing t to u=t/¢, we have

nk(¢ + éiu) — nx(¢ + ¢iu) — log(1 + iu)
(2.5) = ni(@)—nxé — a2u?/2 — Biud/6 + yu*/24 + 6iu®/120 — £ub/720 + o(u®)
= nKk(&) —nxé—v2/2 — A3 iv3 /6 + A,0*/24 + A5iv®/120 — Ag0°/720 + o(n~?)
where
p=ou, a=al)={nt*" @+ 1} = Om"?),
B =ne3k>e) -2, y = né*k® @) + 6,
& = né3k(¢) — 24, e = né%x®(¢) + 120,
2.6) Js = Ay(@) = (KO — Qo> = O(n),
ha = A4(0) = {ne*% @) + 6}t = 0@,
is = A5(6) = (nE5KO@) — 28}a~5 = O(r~?),
A = Ag(0) = {neik® (@) + 120}a~6 = O(n"2).

Thus we obtain the following formal expansion of I(¢) as

nk(é)—nxé (oo
I(CA) — 53 e—a2u2/2—ﬂiu3/6+yu‘/24+6iu5/5!—cu6/6!+--~ Zdu
e

— o0

[}
— A1 {(2n)—1/2 J 6—92/2 ,e—A;iv3/6+/14v4/24+).5iv5/5!—16v5/6! dD + o(n—Z)} ,

where
A, = exp{nk(¢) — nx¢}/(2na?)'?

When X < u, replacing ¢ by é_ (=T + O(n~"2)) and A4,(é) by —A4,(¢_), we
get the similar results. Further expanding the exponent and taking expecta-
tion we get

THEOREM. Suppose that the equation (2.4) has the positive solution ¢,
and/or the negative solution ¢é_. When X > u, we get

I¢y) = A, € {1 + ay(é4) + a5(é4) + o(n ™)},
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where
Ay 1 5., _ 1
a(éy) = gi‘t ﬁls =0(n™),
and
385 ., 35, 17 1, 35, _
Ay = 202 g4 20 L _ 22 22— O(n~?).
a4(84) = 1755743 ~ggFa ke T gghats — ggte T 344 = O0)

When X < u, we get
1) = —A,(){1 + ay(¢-) + a3(é-) + o(n™?)},

where a, and a; are defined in the above, and a,, a; and J; are evaluated at ¢_.

We note that the coefficients of 4; in a, and in a3, defined in the above
theorem, are the same when we approximate the density function by the
saddlepoint T. (At that time A; is defined by x“)(T)/{x"(T)}’?). When the
equation (2.4) has two solutions ¢, and é_, the distribution function of X,,
expressed by (2.2), is approximated by the following two formulae as

@) =1-4,6) Yi-1 alés) and F(X) = 4,(6-) iy a2

for each j=1, 2, 3, where a,(-)=1. From the lemma in the above we
expect that ﬁj*()_c) provides a better approximation than Fj_ (X) does when
X > p. Conversely when X < p, Fj‘ (X) may be superior to Ff (x). Also when
% is close to p, then T, é, and é_ are close to zero. In deriving the relation
(2.5), the magnitude of ¢ is important. To improve the approximation around
the mean u, we combine two formulae smoothly in the following manner.

Let 02 be the variance x”(0) of X, and let x = x, be the solution of the
equation

2.7) 6i(x) = —6_(x).

From LEMMA following (2.4), the sign of x — x, determines whether ¢, is
greater than |é_| or not when two solutions exist. If X follows a symmetric
distribution with mean pu, x, coincides with . Thus we propose the approxi-
mation formulae:

F (%) if X < xo — 0/(2n'?),
28) FX)=<(1—-0F ®+tE"® if X=x0+(—12on™, 0<t<1,

F* () if %> xo + 0/2n'?),
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for j=1, 2, 3. The validity of this strategy will be shown in the examples
listed in the section 4.

§3. Asymptotic properties

When X = «'(0) = p, quasi-saddlepoints are given by +(ng?) /2 + o(n™1?),
where 62 = k”(0) is a variance of X. In this case 4; of (2.6) is O(1).

As n tends to infinity, by the central limit theorem most of the distribu-
tion lies in the region of |X — u| < An~? where 4 is a positive constant.
Therefore we need to consider the case X = u + 6n™'2 for fixed 6. Then
the solution of k'(T)—(nT)™ —(u+dn"2)=0 is given by é,, é_ =
{6 + (6% + 40%)'?}/{26°n"?} + o(n™"2). Then 4;(é.) = O(1).

In the above two cases, 4,(¢.) are O(1). This implies that our approxima-
tion may not be good around u. However in the tail area containing lower
or upper 5% point, (2.8) works sufficiently well.

§4. Examples
To check our procedure we give two examples.
Example 1. A gamma distribution with density f(x) =¢e¢™ (x > 0)

Let X follow a gamma distribution with density f(x) =e™* Then its
cumulant generating function x(T) is given by —log(l1 — T), T< 1. For X >
0, the saddlepoint and the quasi-saddlepoints are, respectively, given by T =
1—1/x and ¢, ¢_ = {u + (u* + 4nX)"?}/(2nX), where u=nx —n— 1. Also
the equation (2.7) has the unique solution x, =1+ 1/n.

In the TABLE 1, we examine the behaviour of the approxima-
tion. EDGEWORTH denotes an edgeworth series with two terms, and Q'®
and Q'R are calculated by Daniels [2]. The definitions of Q'® and of Q'*
are, respectively, given by (3.11) and (4.9) of Daniels [2]. Our proposed
formulae Fj(J—c) (j=1, 2, 3) are defined in (2.8).

Example 2. The standard normal distribution

Let X follow the standard normal distribution. Then x(T) = T?/2.
Hence the saddlepoint is given by T = X. Further the quasi-saddlepoints are
given by ¢,, é_ = {nx £+ (n*x* + 4n)"?}/(2n). In this case (2.7) has the solution
xo =0. However when we put X = n"*2y for fixed y, ¢ can be rewritten as
{y £ (y* + 9'2}/(2n*?). Referring a and 4, of (2.6), we know that our approx-
imation for F"(X) = Pr{n'?X < n'?x = y} = &(y) does not depend on n be-
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TABLE 1. Approximation for the distribution function of the n-sample mean from the gamma
distribution with density f(x) =e™ (x > 0)

n=1
nx EXACT EDGEWORTH Q® QLR F(®) F®) E(%)
0.5 3935 13983 3923 3957 4091 3934 3932
1.0 6321 6325 6330 6330 6537 6325 6329
3.0 9502 9384 9490 9500 9503 9489 9508
5.0 92326 98031 92323 92319 92294 92321 92331
70 93088 98931 93092 93074 93029 93088 93092
9.0 93877 99205 93878 93874 93878 93877 93877
n=>5
1 00366 100102 100365 .00365 .00371 100366 .00366
3 .1847 .1875 .1844 .1844 .1859 .1852 .1846
5 .5595 .5595 .5595 .5595 5525 .5615 .5622
10 9707 9686 9707 9707 9712 9705 9709
15 93143 93682 93143 93142 93142 93141 93144
20 94831 94999 94831 94831 94829 94830 94831
25 95733 1.0000 95733 95732 95729 95733 95733
n=10
5 0318 0319 0318 0318 0320 0319 0318
10 5421 .5445 5421 5421 5270 .5448 .5454
15 9301 9086 9301 9301 9323 9293 9304
20 92500 97646 92500 92500 92503 92499 92501
25 93779 98929 93778 93778 93778 93778 93779
30 95288 99256 95288 95287 95284 95288 95288

TABLE 2. Approximation for the standard normal distribution

function
x P(x) F(x) Fy(x) Fy(x)
-30 .001350 .001344 .001351 .001350
—-2.5 1006210 006170 006219 006207
-20 1022750 .022815 1022815 022726
—-1.5 066807 065634 067166 066680
—-1.0 158655 153982 .160095 158313
-0.5 .308537 293877 312187 309022
0.0 .500000 .500000 .500000 .500000
0.5 691463 706123 687813 690978
1.0 841345 .846018 839905 841687
1.5 933193 934366 932834 933320
20 977250 977488 977185 977274
2.5 993790 993830 993781 993793

30 .998650 998655 998649 .998650
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cause k(T)=1 and k®(T)=0(k=3,4, 5, ...). Also x(T) is an even func-
tion. Hence it holds F*(x) — ®(x) = — {F,(—x) — &(—x)}.

References

[1] H. E. Daniels, Saddlepoint approximations in statistics, Ann. Math. Statist. 25 (1954),
631-650.

[2] H. E. Daniels, Tail probability approximations, Internat. Statist. Rev. 55 (1987), 37-48.

[3] A. C. Davison and D. V. Hinkley, Saddlepoint approximations in resampling methods,
Biometrika 75 (1988), 417-431.

[4] J.L.Jensen, Uniform saddlepoint approximations, Adv. Appl. Prob. 20 (1988), 622-634.

[5] R. Lugannani and S. Rice, Saddle point approximation for the distribution of the sum of
independent random variables, Adv. Appl. Prob. 12 (1980), 475-490.

[6] N. Reid, Saddlepoint methods and statistical inference, Statist. Sci. 3 (1988), 213-238.

Faculty of Integrated Arts and Sciences,
Hiroshima University








