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0. Introduction

This paper is devoted to the study of the oscillatory behavior of half-linear

functional differential equations of the type

(A) (ix'wr^w = Σ ft

which can be written as

(Ix'(t)Γ sgn x'(t)Y = Σ p((ί)|x(ft(t))Γ sgn
i = l

where α > 0 is a constant, pt: [0, oo) -• [0, oo) is a continuous function such

that sup {pi(t): t > T} > 0 for any T > a, i = 1, 2, ..., n, and 0 f : [0, oo) -• K

is a continuously differentiable function satisfying g[(t) > 0 for ί > a and

l i m ^ gff(ί) = oo, i = l , 2, ..., n.

By a solution of (A) we mean a function x e C 1 [ 7 ] c , oo), Tx>a, which

has the property |x' |α~ 1x /e C1[7]c, oo) and satisfies the equation for all suffi-

ciently large t > Tx. Our attention will be restricted to those solutions x(t)

of (A) which satisfy sup {|x(ί)|: t > T} > 0 for all T > Tx. It is assumed that

(A) does possess such a solution. A solution is said to be oscillatory if it

has a sequence of zeros clustering at t = oo; otherwise a solution is said to

be nonoscillatory.

The half-linear ordinary differential equation

(B) (Ix'WΓ'xW = PWIXWΓM*) , Pit) > 0,

to which (A) reduces when gt(t) = ί, i = 1, 2, . . ., w, is nonoscillatory in the

sense that all of its solutions are nonoscillatory; see Elbert [1]. However,

the presence of at least one deviating argument g^t) φ t in (A) may generate

oscillation of some or all of its solutions as the following example shows.

This work was done while visiting the University of Saskatchewan as a visiting Professor of
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EXAMPLE. Let Sa(t) denote the solution of the equation

(ix'wrvwy + αixwr^w = o. α > o,

satisfying the initial conditions x(0) = 0, x'(0) = 1. As was shown by Elbert

[1], Sa(t) uniquely exists on ( — oo, oo) and is periodic with period πα, where

2π

α + 1
π = -

π
sin f

Furthermore Sa(t) satisfies

Sa(t - πβ) = Sa(t + πα) = -Sa(t), t e ( - oo, oo).

It follows that SΛ(t) is an oscillatory solution of the functional differential

equations

(Ix'WΓ^W = Φ(t - πJΓ'xit - πα),

( I x W ^ W = α|x(ί + nΛ)r'x{t + πα).

In the first part of the paper we investigate the phenomena of oscillation

of solutions of (A) generated by the deviating argument g^t). As a result, it

is shown that all bounded [respectively unbounded] solutions of (A) oscillate

if one of the gt(t) is retarded [respectively advanced] and deviation |gff(ί) — t\

is large enough in some sense, and that all solutions of (A) oscillate if both

retarded and advanced arguments with sufficiently large deviations are present.

In the second part of the paper the nonoscillatory behavior of (A) is

studied in some detail. We establish criteria for the existence of both bounded

and unbounded nonoscillatory solutions with specified asymptotic properties

of the equation (A). The results developed therein show that basic aspects

of the existence of nonoscillatory solutions of the functional differential equa-

tion (A) with deviating arguments are shared with the corresponding ordinary

differential equation (B) without deviating arguments.

1. Oscillation of solutions

We begin by considering functional differential inequalities of the form

(1.1) {(Ix'Wr^W ~ pWlxteWίr'xteW)} sgn x(g(ή) > 0 ,

where α > 0 is a constant, p: [α, oo) -• [0, oo) is a continuous function such

that sup {p(ή: t > T} > 0 for any T > a and g: [α, oo) -• R is a continuously

differentiable function satisfying g'(t) > 0 for t > a and lim^^gίί) = oo.
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Let x(t) be a nonoscillatory solution of (1.1). It is easy to see that x'{t)

is eventually of constant sign, so that

(1.2) either x(t)x'(t) < 0 or x(t)x'{t) > 0 for t > T,

provided T is sufficiently large. Clearly, x(t) is bounded or unbounded ac-

cording to whether the first or the second inequality in (1.2) holds. Note

that if x(t) > 0 for t > T, then (1.1) implies that x'(t) is increasing for t > T*9

where Γ* > T is chosen so large that \imt>τ* g(t) > T, and hence x(i) is a

convex function on [T*, oo).

In the case where g(t) is a retarded argument it may happen that (1.1)

admits no bounded nonoscillatory solutions as the following theorem shows.

THEOREM 1.1. Suppose that g(t) < t for t > a and that either

(1.3) lim sup Γ p(s)(g(t) - g(s)Yds > 1
'-><» Jg(t)

or

(1.4) lim sup ( p(r)dr) ds > 1 .

Then (1.1) has no bounded nonoscillatory solutions.

PROOF. Let x(t) be a bounded nonoscillatory solution of (1.1). Without

loss of generality we may suppose that x(t) is eventually positive. Thus, there

is T > a such that x(t) > 0 and x'{t) < 0 for t > T.

Suppose first that (1.3) holds. Let T* > T be such that inϊt>τ*g(t) > T.

Since x(i) is convex on [T*, oo), we have

x(σ) > x(τ) 4- x'(τ)(σ -τ)> - x ' ( τ ) ( τ - σ), τ > σ > T* .

Substituting g(s) and g(t) for σ and τ, respectively, in the above, we obtain

x(g(s)) > -x\g(t))(g(t) - g(s)), t>s>T*,

which implies

p(s)(χ(g(s))T > (-χ'(g(tW(g(t) - g(s)T, t > s > r * .

Replace the left hand side of the above by

and integrate from g(t) to t. We then have

(-χ'(g(tW - ( - * W > (-χ'(g{tW P PWβW ~ βWds, t>T*,



552 KUSANO Takasi and B. S. LALLI

whence it follows that

(-x'(g(tw\\ p(s)(g(t) - g(s)Tds
x Γ ί' P(s)(g(t) - g(s)Tds - l l < 0 , t > T* .

LJg(t) J

But this is inconsistent with (1.3).
Suppose next that (1.4) holds. Integration of (1.1) over [σ, t] gives

(-x'(σ))* = (-x'(ί))α + I p(r)(x(g(r))Ydr

> \ p(r)(x(g(rWdr , t > σ > Γ* ,

which implies

(1.5) -x'(σ) > ( Γ p(r)(x(g(rWdrY , t > σ > Γ* .

Substituting (1.5) into

(1.6) x(s) = x(t) + {-x\σ))dσ, ί > 5 > T* ,

we have

x(s) > Γ M ' p(r)(x(g(rWdrj dσ , ί > 5 > T* .

Putting s = #(ί) in (1.6) and using the fact that x(g{t)) is decreasing, we
conclude that

- 1 I < 0 , t > Γ* ,
9(t) '

which contradicts (1.4). Thus the proof of Theorem 1.1 is complete.
A duality to Theorem 1.1 holds in the case where g(t) is an advanced

argument.

THEOREM 1.2. Suppose that g(t) > t for t> a and that either

Γg(t)

(1.7) lim sup p(s)(g(s) - giήfds > 1

or
l/α

(1.8) lim sup I ( I p(r)dr ds > 1 .
Γθit) ( Γs

lim sup I

Then (1.1) has no unbounded nonoscillatory solutions.
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PROOF. Let x(t) be an unbounded nonoscillatory solution of (1.1) which
may be assumed to be eventually positive. There is a T > a such that x(ί) > 0
and x'(t) > 0 for t > T.

Suppose that (1.7) holds. The convexity of x(t) means

x(σ) > x(τ) + x'(τ)(σ - τ) > x'(τ)(σ - τ), σ > τ > Γ* ,

where T* is as in the proof of Theorem 1.1. Letting σ = g(s)9 τ = g(t) in
the above, we see that

((x'(s))7 = P(s)(χ(g(s))T > (χ'(g(tWp(s)(g(s) - g(t)T, 5 > t > T*.

Integrating the above on [ί, g(t)~\ yields

p(s)(g(s) - g(t)fds - 1 < 0 , t > Γ* ,

which is a contradiction because of (1.7).
Suppose that (1.8) holds. Combining the inequality

x'(σ) > ( I p(r)(x(g(r)))adr ) , σ > t > T* ,

with the relation

x(s) = x(ί) + I x\σ)dσ , s > t > T* ,

we obtain

x(s) > I ( I p(r)(x(g{r)))adr I dσ , s > ί > T * .> Γ ( ί*
Putting s = #(ί) and noting that x(g{ή) is increasing, we obtain the following
contradiction to (1.8):

\ i/α η

p(r)dr) dσ-1 < 0 , ί > T* .

This completes the proof.
One of our main results now follows from the above theorems.

THEOREM 1.3. (i) All bounded solutions of (A) are oscillatory if there
is an i e {1, 2 , . . . , n} such that gι{t)<t for t>a and one of the following
inequalities holds:

lim sup
ί-*00 J9i

(1.9) lim sup pt{s){gt(t) - g^fds > 1
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Γt / Γt \l/α

(1.10) lim sup pt(r)dr I ds > 1 .

(ii) All unbounded solutions of (A) are oscillatory if there is a j e {1, 2 , . . . , n}

such that gj(t) > t for t > a and one of the following inequalities holds:

(1.11) lim sup \9λt)

 Pj(s)(gj(s) - gj(t))*ds > 1
f->00 Jί

Γgjit) ( Γs \i/«

(1.12) limsup Pj(r)dr\ ds > 1 .
ί-αo Jf \Jί /

(iii) All solutions of (A) are oscillatory if there are i and j € {1, 2 , . . . , ή] such

that gi(t) and gj(t) satisfy the conditions of (i) and (ii) respectively.

PROOF, (i) Suppose to the contrary that (A) has a bounded nonoscil-

latory solution x(ί). Then, from (A) we see that x(ί) satisfies the differential

inequality

(1.13) {flx'WΓMOy - ftWIxίftWίr'xίΛW)} sgn x ^ ) ) > 0 ,

for all sufficiently large t. This, however, is impossible, because the possibility

of the existence of bounded nonoscillatory solutions for (1.13) is excluded by

Theorem 1.1.

(ii) An unbounded nonoscillatory solution x(t) of (A), if exists, satisfies

the differential inequality (1.13) with i replaced by j for sufficiently large t.

But this is impossible because of Theorem 1.2, and so every unbounded

solution of (A) must be oscillatory.

(iii) The final statement of Theorem 1.3 is an immediate consequence

of (i) and (ii).

EXAMPLE 1.1. Consider the equations

(1.15) (Ix'Wr'x'W)' = l\x(t + T)rxx(t + τ),

(1.16) (Ix 'WΓ'xW = fc|x(ί - σ)Γxx{t - σ) + l\x(t + τJΓ^xίί + τ),

where α, fe, /, σ and τ are positive constants. The conditions of (i) of Theorem

1.3 are satisfied if

(1.17) feσα+1 > α + 1 or fc1/ασ(α+1)/α > °^A,
cc

so that all bounded solutions of (1.14) are oscillatory. Similarly, from (ii) of

Theorem 1.3 it follows that all unbounded solutions of (1.5) are oscillatory if
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or
α

The last statement of Theorem 1.3 implies that all solutions of (1.17) are

oscillatory provided both (1.17) and (1.18) are satisfied.

EXAMPLE 1.2. Consider the equations

x[tβ

-1/2

X\ΘJ'

= Γ3'2\x(θt)\-ίl2x(θt),

ΛJ) y\X \l)\ X I

.L\j) \\X [l)\ X

where θ > 1 is a constant, which are special cases of (A) with i = 1, α = ̂ ,

p.(t) = ί~3/2 and ^ ( ί ) = - o r ^rx(ί) = θt. In the case of g^t) = - we have

Λί /Λί \l/α Λί / Γt \2

Pl(r)dr ds= r-3/2dr ds = 4(ln θ + 40"1 / 2 - 0"1 - 3),
Jgι(t) \Js ) Jt/θ\Js /

and in the case of g^t) = θt we have

P l (° ( I' Pdήdrjds = Γ ( Γ r-3/2dr) ds = 4(ln 0 + 0 - 401/2 + 3).

Since the above integrals tend to oo as 0-+ oo the conditions (1.10) and (1.12)

of Theorem 1.3 are satisfied provided 0 is taken sufficiently large. It follows

that all bounded solutions of (1.19) and all unbounded solutions of (1.20) are

oscillatory if 0 is sufficiently large. It can be shown that, for sufficiently

large values of 0 > 1 and θ' > 1, all solutions of the equation

(1.21) (|x'(ί)Γ
-1/2

t-3/2 |x(0'ί)Γ1/2x(0'ί)

are oscillatory.

As examples of (A) to which the criteria (1.9) and (1.11) easily apply we

give the equations

x ^ x ^

(|x'(ί)|xW = Γ3|x(0ί)|x(0ί),

t

θ

REMARK 1.1. The above theorems extend the results of Ladas, Ladde

and Papadakis [4] for the linear delay equation
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χ"(t) = Σ ft(ί)χ(ft(t))

as well as the second order versions of the basic results of Koplatadze and

Canturija [2], Kusano [3], Ladas, Lakshmikantham and Papadakis [6] con-

cerning higher order linear functional differential equations with deviating

arguments.

2. Nonoscillation of solutions

We are now interested in the existence and asymptotic behavior of non-

oscillatory solutions of (A). If x(t) is a nonoscillatory solution of (A), then

there is a ί0 > a such that either

(2.1) x(t)x'(t)>0 for t>t0,

or

(2.2) x(t)x'(t) < 0 for t > t0 .

If (2.1) holds, then x(ή is unbounded and the limit x'(oo) = l i m , ^ x'(t\ either

finite or infinite, exists; if (2.2) holds, then x(t) is bounded and the finite limit

x(oo) = l im^^x^) exists.

In what follows we need only to consider eventually positive solutions of

(A), since if x(t) satisfies (A), then so does -x(ί). Let x(t) be an eventually

positive solution of (A) satisfying (2.1) and having a finite limit x'(oo) =

l i m , ^ x'(t) > 0. Two integrations of (A) then yields

(2.3) χ(t) = x(tx) + Γ (V(oo))α - Γ t ds , t > tx,

where t1 > t0 is chosen so that inϊt>tιg^t) > ί0, ί = 1, 2, . . . , n. Let x(t) be

an eventually positive solution of (A) satisfying (2.2). Then, we have

Γoo / Γoo „

Jί VJs *=1
(2.4) x(t) = x(o)) + I ( I Σ Pt(r)(x(gt(r)))dr ΐ"ds , t > tx ,

after integrating (A) twice from t to oo.

Based on these integral representations (2.3), (2.4) we can prove the follow-

ing existence theorems.

THEOREM 2.1. The equation (A) has a nonoscillatory solution x(t) such

x(t)
that l im^^ = constant Φ0 if and only if

I Λ(0(&'(2.5) Pi(t)(9t(t)rdt < oo , ί=h 2, . . . , n.
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THEOREM 2.2. The equation (A) has a nonoscίllatory solution x(t) such
that l im^^ x(ή = constant φO if and only if

Λoo / Λoo \l/α

(2.6) J ( J ( Pi(s)dsJ at < oo , i = 1, 2, ..., n .

PROOF OF THEOREM 2.1. (The "only if" part) Let x(ί) be a nonoscillatory
x(ί)

solution of (A) satisfying l i m , ^ — = c> 0. Then from (2.3) we see that

ί 00

ί

Σ Pi(t)(x(9i(tWdt < oo .
i ί

This, combined with the relation l im^^— ι —— = c, i = 1, 2, ..., n, immediately
0)

implies (2.5).
(The "if" part) Suppose that (2.5) holds. Let k> 0 be fixed arbitrarily

and take T > a so large that

(2.7) T*

and

n fαo
Pi(t)(9i(t)Tdt < -

Consider the set X a C[T^ oo) and the mapping F: X -• C[T^ oo) defined
by

X = <x e C[TV oo): -{t - T) < x(ί) ̂  k(t -T),t> T; x(t) = 0,T*<t<T

a n d

( F x ) ( ί ) = fea- v P i W ^ ί f f i W ) ) " ^ </s, t > τ ,

Jr \ Js »=i /
(Fx)(ί) = 0, T*<t<T.

It is clear that X is a closed convex subset of the Frechet space C[T, oo) of
continuous functions on [T+, oo) with the usual metric topology and that F
is well defined and continuous on X. It can be shown without difficulty that
F maps X into itself and F(X) is relatively compact in C[T^ oo). Therefore,
by the Schauder-Tychonoff fixed point theorem, F has a fixed element x in
X, which satisfies
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x(t) = £ (k* - j°° Σ Pi(r)(x(gi(r))fdrJads , ί > T.

Differentiation shows that x(t) satisfies (A) for t > T and lim,

PROOF OF THEOREM 2.2. The truth of the "only if" part follows readily
from (2.4).

To prove the "if" part, suppose that (2.6) is satisfied. Choose T > a so
that (2.7) holds and

J,oo / fco

and define Y c C[T^ oo) and G: Y^>C[T^ oo) by

k > 0 being a fixed constant, and

(Gy)(ί) = k + ( J PiWiyigfrWdr) ds , ί > T,

(Gy)(ί) = (Gy)(T), T* < ί < Γ.

As in the proof of Theorem 2.1 one can verify that G maps Y into a relatively
compact subset of Y, so that there exists a y e Y such that

(J Σί 1/α

(J Σ^W(^ W)W <fe, t>τ.Differentiating this equation twice, one sees that y(ί) satisfies (A) for t > T.
Since y(t) -+k as t -• oo, y(ί) is a solution of (A) with the desired asymptotic
property. This completes the proof.

It remains to discuss the existence of an unbounded nonoscillatory solu-

tion x(ή of (A) with the property l im^^—— = oo and of a bounded solution

x(t) of (A) with the property lim^^ x(t) = 0. This is a difficult problem and
there seems to be no general criteria for the existence of such solutions. Below
we confine our attention to the case where at least one of the ^(ί) is retarded
and show that some sufficient conditions can be derived under which (A) has
a nonoscillatory solution tending to zero as t -• oo. (Such solution is often
referred to as a decaying nonoscillatory solution.) Our derivation is based
on the following theorem which is essentially due to Philos [7].
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THEOREM 2.3. Suppose that there is an ί0 e {1, 2 , . . . , ή] such that

(2.8) gφ) < t and pφ) > 0 for t>a.

Suppose, in addition, that there exists a positive decreasing function φ(t) on

[ί 0 , oo) satisfying

> f °(2.9) φ(t) > f ( J t Pi(r)(Φ(gi(rWdrJ ds , ί > ί0 ,

where t0 is chosen so that inff^togff(ί) > a, ί = 1, 2, ..., n. Then (A) Λαs α

nonoscillatory solution tending to zero as ί->oo.

PROOF. Let Z denote the set

Z = {zeClt0, co):0 <z<φ(t), t>t0}.

With each z e Z we associate the function zsC[a, oo) defined by

(210) 2(ί) = ί z ( ί ) f o r ί > ί 0 ;
y > U Wo) + l>(t) - ^(t0)] for α < t < t0 .

Define the mapping ί/: Z -> C[t 0 , oo) by

- ί (I ,§M(Hz)(t) = I ( I Σ Pi(r)(z(gi(rWdr Ϋ*ds , ί > ί0 .

Then ί ί is shown to be a continuous mapping which sends Z into a relatively

compact subset of Z. It follows therefore that there exists a z e Z such that

z = Hz, i.e.,

fαo / foo n

-ί (I ,?/'< ds , ί > ί0 .

Differentiating the above twice shows that

n

( - ( - z f ( t ) γ y = Σ Pi(t)(z(Qi(t))Y 9 t > t 0 ,

which, in view of (2.10), implies that z(t) is a solution of (A) for all sufficiently

large t. That z(t) > 0 for t > t0 can be verified exactly as in Philos [7:

p. 170], and so the details are omitted. This completes the proof.

In order to apply Theorem 2.3 to construct decaying nonoscillatory solu-

tions of (A) we distinguish the three cases:

foo n foo /foo „ \l/α

(2.ii) Σ Pi(*)Λ < °° a n d Σ Pi(s)ds d t < °°
J i=l J VJί i=l /
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Γco n Λoo / Λoo n \l/«

(2.12) I |;Λ(f)Λ<oo b u t J (I Σ Λ ( # ) Λ = O O ;

(2.13)

The condition (2.11), which is nothing else but (2.6), always guarantees

the existence of a decaying nonoscillatory solution of (A).

THEOREM 2.4. Suppose that (2.8) holds for some i0 e {1, 2,..., n}. If (2.6)

is satisfied, then (A) possesses a nonoscillatory solution tending to zero as ί -• oo.

PROOF. Let t0 be large enough so that min,- {inff^ίo #,-(*)} > max {α, 1}

and

(2.14)
fαo / foo «

Σ P . C
Jίo \J* *=1

Choose φ(t) = 1 + - . Using (2.14), we see that φ(t) satisfies (2.9):

J, (J. S""^****) H , (J. S""(i+s«)*) "s

^ 2 Γ (Γ ΣPi(r)dr)'ds < 1 < flί), ί > ί0 .

The conclusion follows from Theorem 2.3.

We now state existence theorems of decaying nonoscillatory solutions

which are applicable to the cases (2.12) and (2.13).

THEOREM 2.5. Suppose that (2.8) holds for some i0 e {1, 2,. . . , n) and that

(2.15) limsup £ Pt(r)dr) ds<-9

gjψ) = minf g^t). Then (A) possesses a nonoscillatory solution tending

to zero as t -• oo.

PROOF. We put

F w-(Γ,§pH""
and choose ί0 > 0 so that inf,a(o0*(O > α and

f 1
(2.16) /»»„:= sup P(s)ds<-.

t>t0 J g^(t) &

Define
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/ l f

φ(t) = exp I — —

Since, for ί = 1, 2, . . ., n,
φ(9i(t)) = exp (i- Γ Pis)*) exp (-L P

< e exp I - — P(s)ds 1 = ^ ( ί ) , t > t0 ,

we have, in view of (2.16),

Γ ( Γ Σ Pt(r)(Φ(0i(rWdrJΛds < e

= β Γ P(s) exp ̂ - i - | S P(r)dλds < ePtQ exp ̂ - i - Γ P(s)ds^J

= ePtoφ(ή < φ(t), t > t0 .

From Theorem 2.3 it follows that (A) has a decaying nonoscillatory solution.

THEOREM 2.6. Suppose that (2.8) ZioZds /or some i0 e {1, 2,. . . , n}. Further,

suppose that there exists a to> a such that infίΞ>ίo #„<(*) > α,

(2.17) Pto := inf P(ί) > 0 and sup X p(s)ds < - ^ l - ^
ί>ίo ί>*o Jg+it) i=l e \ α /

(A) possesses a nonoscillatory solution tending to zero as t -+ oo.

PROOF. Put

Qίo = sup £ Pi(s)ds and ^(ί) = exp I —

We see that

^(^(0) < e x p ( )^(ί), ί > t0, i = 1, 2, . . . , n ,

and hence that

Γ Σ Pi^^ίg^s)))^ < βα+1 f °° (t Pi(s))(φ(s)yds
it ί=l it \i = l /

+1 f00 » / α+ 1 fs " \
= <? Σ Pi(s) e χ p — 7 ί — Σ Pi( r) d r M5

It i=l \ Ot ]* i=l 1

α + l f ' Λ , . Λ
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Consequently, we obtain

( ζ
I/a

Pi(r)(Φ(9i(rWdr ds

1/α

where (2.17) has been used. This establishes the existence of a strictly de-

cre sing function φ(t) > 0 satisfying (2.9), and so the proof is complete via

Theorem 2.3.

REMARK 2.1. Theorem 2.4 and Theorem 2.6 extend slightly the second

order version of Proposition 3 and Proposition 1, respectively, of Philos [7;

pp. 172-175].

EXAMPLE 2.1. Consider the equation

(2.18) = t~λ

x[θ x[θ

where λ > 1, θ > 1 are constants. This is a special case of (A) in which

α = 2, n = 1, Pi(ί) = r Λ and gi(t) = - .

( i ) Let λ > 3. Then, both (2.5) and (2.6) hold for (2.18), and so by Theorem

2.1 and Theorem 2.2, (2.18) has nonoscillatory solutions xx(ί) and x2(t)

x (t)

such that l im,^—^— = const, φ 0 and lim ί_o ox 2( ί) = const, φ 0 regard-

less of the values of θ > 1.

(ii) Let λ = 3. An easy computation shows that (2.15) is satisfied for (2.18)

V5if 1 < θ < exp I ̂ — I, since

ft /foo \l/α Γt /Λoo \-l/2

PiWdr ds = \ r~3dr ds = 2" 1 / 2 In 0 .

From Theorem 2.5 it follows that, for such a 0, (2.18) possesses a non-

oscillatory solution tending to zero as ί->oo.

(iii) Let 1 < λ < 3. Then the condition (2.17) is satisfied for (2.18) since

R = 1 and

f Pl(s)ds = [' 1 - l)tί~λ ^ 0 as ί -> oo .
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Therefore there exists a decaying nonoscillatory solution of (2.18) by

Theorem 2.6.

EXAMPLE 2.2. Consider again the equation (1.14) given in Example 1.1.

The condition (2.17) applied to (1.4) reduces to

o,

It would be of interest to compare (2.19) with the condition (1.17) rewritten as

(2.20) k > (α + i)V(«+Dk-i/(«+i> O r k

which guarantees the nonexistence of bounded nonoscillatory solutions for

(1.14). It is not an easy task to bridge the gap between (2.19) and (2.20).
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