
HIROSHIMA MATH. J.
29 (1999), 579-590

Enumerating embeddings of //-manifolds into complex protective

w-space

Dedicated to Professor Fuίchi Uchίda on his 60th birthday

Tsutomu YASUI
(Received November 4, 1998)

ABSTRACT. Let / : M —> N be an embedding between differentiable manifolds and set

πι(7VM,Emb(M,ΛΓ),/) - [M c= 7V]/5 where Emb(M,7\0 denotes the space of embed-

dings of M to N. Then it is known that there is a π\ (NM, /)-action on [M c N}^ such

that [M c= N}j Iπ\(NM, f ) is equivalent to the set [M c N]^ of isotopy classes of

embeddings homotopic to/. In this paper, we will study the set [Mn <= CPn]r for an n-

manifold M\ Further we will determine the sets [RPn c CPn][f] and [CPn c CP2n][f].

1. Introduction and statement of results

Throughout this paper, ^-manifolds mean ^-dimensional connected differ-
entiable manifolds without boundary and embeddings stand for differentiable

embeddings of compact manifolds to manifolds. For any map / : M —> N, we
denote by [M c= Λ/lyj the set of isotopy classes of embeddings homotopic to/.

A. Haefliger's existence theorem [3] implies that for any compact ^-manifold
Mn and any map / : Mn —» CPn (n > 2), there exists an embedding homotopic
to /. Henceforth we would like to determine the set [Mn c CPn]^γ

Set πι(7VM,Emb(M,7V),/) = [M <= N]f, where Emb(M,ΛΓ) denotes the
space of embeddings of M to N. Then it is known (cf. [2], [7], [8], [12]) that
there is a πι(7VM,/)-action on [M c= 7V]y such that

(1.1) [M ci N]f/m(NM,f) = [M c N ] [ f ] .

In this paper, we will study the set [Mn c CP"]̂  for an ^-manifold Mn

and a map / : M" -̂  CPn. Furthermore we will determine the isotopy sets of

embeddings [RPn c CPn][f] and [CPrt c CP2"]^].
The integral cohomology of CP" is given by

/Γ(CP";Z) = Z[z]/(z"+1)(degz - 2).
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THEOREM 1.1. Let Mn be a compact n-manifold (n > 3) and f : Mn — >
CPn a map. If n is even and Mn is orientable, assume that f*p2z = Q or
H\(Mn\Z] does not have Z2 as its direct summand. Then there exist the
following exact sequences:

0 -> Hn(Mn Z}/f*(z)Hn-2(Mn;Z) -* [Mn c CPn]f

-,/Γ-i(M";Z)^0, ι/ Λ = 1(2), W l(M")=0,

0 -> Hn(Mn Z2)/ΓP2(z}Hn-2(Mn Z2) -+ [M« c CP"],

-+Z0ker.V -> 0, // n = 0(2), wι(M")^0,

0 -> Hn(Mn',Z2)/f*p2(z)Hn-2(Mn;Z2) -> [M" c CPM]7

^ Hn-\Mn Z2} -> 0, otherwise,

where ρ2 is the reduction mod2 α/irf S^1 : Hn~l(Mn\Z2] -* Hn(Mn\Z2}.

COROLLARY 1.2. Lei Af Λ fte α compact n-manifold. If f : Mn — > CPn

induces an epimorphism f# : π2(Mn) — » π2(CPn) = Z, ίAe«

( Hn-\Mn Z) if n = l(2),wι(M l l)=0,

ZθkerS^1 i/ w = 0(2), wι(Mn) ^ 0,

Hn~l(Mn Z2) otherwise.

COROLLARY 1.3. 7/^M" w simply connected, then for any f : Mn — > CP",

[Mw c= CP11^ = [Mw c CP"][7]

_ ί Hn(Mn',Z)/f*(z}Hn-2(Mn;Z} for n odd,

~ \Hn(Mn Z2}/Γp2(z)Hn-2(Mn;Z2) for n even.

In particular, for n>2,

[CPn c CP2"]m - (Z/(deg/* : //2(CP2";Z) ̂  H2(CPn Z}}Z) ® Z2.

COROLLARY 1.4. If n>3, then for any f : RPn — > CPW

countably many distinct isotopy classes of embeddings homotopic to f.

REMARK. B.-H Li and P. Zhang [9] have investigated the set [Mn c TV2"^
in a different way. Some results of [9] and this paper overlap, e.g., Corollary
1.3. Combination of the results of [9] and this paper enriches the study of
[Mn c CPn}f and hence [Mn c CP"][f].

2. Larmore's approach to [M c N]j

We recall Larmore's method [7], [8] of computing the set
πι(7VM,Emb(M, N ) , f ) = [M c 7V]7 for an embedding / : M -+ N.
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For a manifold V without boundary, let RV = (V2 - AV) (JψSV x [0,ε),
where φ : SFx(0,ε)-+ V2-AV is a map defined by ψ(υ,t) = (Qxp(tv),exp(-tv)).

Here we use a Riemannian metric on V and SV stands for the total space of
the sphere bundle associated with the tangent bundle of V. A free Z2-action
on RV is induced from the antipodal map of SV and the interchanging of
elements of V2. The spaces R*V and V* are defined as quotient spaces

R*V = RV/Z2 and F* = (V2 - ΛF)/Z2.

Then R*V is a 2«-manifold (« = dim F) with boundary PV(πSV/Z2) and
# * F - P F = F * . The pair of spaces (R*(V x ^GO),P(F x Λ00)) denotes
the inductive limit of (Λ*(F x Rk),P(V x Rk)) and R*iv : (R*V,PV) c
(Λ*(K x K*},P(V x Λ00)) denotes the natural inclusion.

For a space X, we define a space ΓX by

ΓJT = (^2 xS°°)/Z2,

where the involution on J\f2 x 5°° is given by (jc, y, v) —> (y, x, — υ). The
natural inclusion AX x S00 c A^2 x S°° induces a natural inclusion fc : Jf x

P°° c ΓJT. A homotopy equivalence ψv : (Λ*(K x ^GO),P(F x ^G0)) -> (ΓF,
FxP 0 0 ) has been constructed in [8, p. 84].

Let ζv = ψvR*iv : (Λ*K,PK) -̂  (ΓF, F x P°°). For an embedding / :
M -* N, we denote by [(R*M,PM},ζN]ζ Ry the set of homotopy classes of
homotopy liftings of ζNR*f : (R*M,PM)-+ (ΓN,N x P°°) to (R*N,PN).

THEOREM 2.1 (Larmore). 7/1 2 dim TV > 3(dimM+ 1), then for an em-
bedding / : M —> TV, there is a bijectίon

Let ΘN = ζN\R*N : R*N -> ΓN and pN = ζN\PN : PN -> N x P°° be the

restrictions of ζN to R*N and PN, respectively, and regard them as fibrations
in a standard way. Both fibrations have (n — 2)-connected fibers (n = dim TV)
[7] (or [8, §5]). Let nqθN and nqpN be sheaves of q-th homotopy groups of
fibrations ΘN and pN, respectively, (in this case, both are local systems), and
nqζN a subsheaf of πqθχ such that

f πqθN over ΓN - N x P°°,
TC C. \τ — \

I nqPN OVeΓ N X °̂°

The sheaves πq0N, nqρN, and πqζN for q = 2n — l,2n are given in [8, Lemmas
5.3.2-5.3.4]. Let Z[u] be a sheaf of coefficients, locally isomorphic to Z,

associated with u - wι(7V2 x S™ -+ ΓN} e Hl(ΓN',Z2), and Z[w]° a subsheaf
of Z[u] defined by Z[w]° = Z[u]ΓN_Nxpx.
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LEMMA 2.2 (cf. Larmore [8]). Let N = CPn (n > 3). Then

(1) π2n-\θN, τi2n-ιPN ana π2«~ιC/v ore trivial sheaves of the group Z.
(2) The natural projection n\ : Z + Z2 —> Z induces the following exact

sequences of sheaves over ΓN, which are split if n is odd:

0 -> Z2 x ΓN

0 -> Z2 x /W -

Z[κ]

Let LM(Z4-Z2,2«+1) and L M (Z,2w+l) be the fiber bundles over ΓN
with fiber K(Z + Z2,2« + 1) and /£(Z, 2« + 1) associated with the local systems
π2nθN and Z[u], respectively (see e.g., [10, §3]). The map π\ : n^nθ^ -^ Z[u] in
Lemma 2.2 induces a bundle map

(2.1) : LU(Z + Z2,2w -f-1) -> LW(Z, 2w + 1) over Γ7V.

The 2-stage Postnikov tower for ζN = (θN,ρN) : (R*N,PN)
(ΓN,N x P°°) (TV = CPn] is constructed in §4 as follows:

(2.2)

PN R*N

E2

\*ί
\ TS~ ( >~~7 ^> t f Z 2 , 2 n -

P\

NxP™ — —

4-1)

* 77

(2.3)

w

Z2,2«+1) LU(Z,2«

K(Z,2n),

in [14, §2]
(see also [18, Proposition 2.6]),

(2.4) n\k\, or π\tk\ e H2n+l(E\ Z[p^u}), corresponds to the relation
(z<x> 1- l®z)^ = 0.

Here H2(ΓN;Z[u}0)=H2(ΓN,NxPcc ,Z[u}) = Z(
4.1(2)).

By the standard spectral sequence argument, we have the following

-l ® z> (see Lemma

LEMMA 2.3 (cf. Larmore [8, (6.1-1)]). Let N = CP" (n>3). Then for
any embedding f : Mn — > TV, there exists an exact sequence
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H2"~2(R*M; (θNR*fΓlπ2n-ιζN) -^ H2n(R*M; (ΘNR* fγ

—> [(R*M, PM),ζN}ζNR,f — > if 2"-' (Λ'M; (θNR*fΓlπ2n-lζN) — > 0,

where d2 is a cohomology operation associated with the Postnikov invariant of
the 2-stage Postnikov tower for ζN.

3. Proofs

Before proving Theorem 1.1, we give the proofs of Corollaries 1.2-1.4.

PROOF OF COROLLARY 1.2. If f# : π2(Mn) -» π2(CP")(= Z) is surjective,
then so is /* : H2(M"-,Z) -> H2(CP"',Z) because n2(CPn) ^ H2(CP";Z).
Hence //2(M";Z(or Z2)) has a direct summand Z</*(z)> (or Z2</V2(z)»
and so the first terms in the short exact sequences of Theorem 1.1 vanish.
Therefore, Corollary 1.2 follows. Note that when wι(Λf) =0, Corollary 1.2
coincides with [9, Corollary 1.3]. Π

PROOFS OF COROLLARIES 1.3-1.4. In general, π\((CPn)M\ f ] =
H2(Mx(S1,*); π2(CP"))(^Hl(M',Z}), by the Eilenberg classification theorem
[15, p. 243]. Hence πl((CPn)M\f) = Q if Mn is simply connected or
Mn = RPn. Thus Theorem 1.1, together with (1.1), leads to Corollaries 1.3-

1.4. Π

The rest of this section is devoted to the proof of Theorem 1.1. Theorem
2.1 for / : Mn — » TV = CPn, together with Lemmas 2.2-2.3, gives rise to an
exact sequence

(3.1) 0 -> coker d2 -> [M c CPn]f -* ^r2"~1(^*M;Z) -̂  0,

where d2 : H2"-2(R*M',Z) -> H2n(R*M; (ΘNR* fylπ2nζN} is determined by the
Postnikov invariant k\ of the Postnikov tower (2.2).

The cohomology group H2n-l(R*M',Z)(^H2"-l(M*',Z)) is calculated by
Haefliger [4] (cf. [11, 11.9, 11.19]) as follows:

(H»-l(M',Z) if Λ Ξ l ( 2 ) , w ι ( M ) = 0 ,

(3.2) H2n~\R*M Z}= \ Zθker^1 if ' n = 0(2),wι(M) Φ 0,

(Hn-l(M',Z2) otherwise,

where Sql : Hn~l(M',Z2) -> Hn(M Z2}.
Let v = (θNR*fY(u) εHl(R*M-,Z2). Since R*M is a 2n-manifold with

boundary PM, the map π\ in Lemma 2.2 induces isomorphisms

H2n(R*M; (θNR*fΓlπ2nζN) *£ H2n(R*M;Z[v}°) * H2n(R*M,PM',Z[v})
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Hence, by (2.4) we have

(3.3) cokerί/2 = cokerπu</2 : H2n~2(R*M',Z) -> H2n(R*M,PM;Z[v}),

where

(3.4) πu<feM = (ζNR*fΓ(z® 1 - 1 ® z)Ux.

Let Λ2F(= F2/Z2) be the 2-fold symmetric product of F, and zfF =

zfF/Z2. Then A2V-ΔV = F* = R*V-PV. The cohomology of (A2V,ΔV]

has been determined by Larmore [6]. We freely use his definitions and

notations except for v = w\(V2 — ΔV — > V*) e //1(F*;Z2) (i; means m in [6]).

We set Z[υ]Λ2v = Z[υ] as in [6].
There exists an excision isomorphism

(3.5) e\H*(Λ2V,AV G}^H*(R*V,PV G) for G = Z,Z[u] and Z2.

For an ^-manifold Λf, let Hn(M;Z] = Z<M> or = Z2<^2^
/>, according as

Λf is orientable or not, and let Hn(M Z2) = Z2<M>. Then, by [6] and [17,
Proposition 5.2], we have

LEMMA 3.1 (Larmore, Yasui). (1) I f n = l(2), wι(Af) = 0, then

H2n(Λ2M,AM Z[v\) =

(2) otherwise p2 : H2n(Λ2M,ΔM',Z[v\) -̂  7/2λίμ2M,zlM;Z2) = Z2<^M^M> is

α« isomorphism.

Let i : ̂ *M c (R*M,PM) and y : PM c: ^*M be the natural inclusions.

The commutative diagram below indicates that the map p in [14], and so [18,

(2.2)], is reworded as

(3.6) p = j*θ*M : /Γ(ΓM;Z2) - #*(**M;Z2) -̂  7/*(M*;Z2).

M* — ̂  tf*M -̂ -̂  RMxR™

M* ^— (M2 - zIM) x z25°° —^ ΓM,

where p' and /' are the natural projection and inclusion, respectively, and Θ'N is

determined in the diagram. Further [18, Lemma 3.3(2)] is reworded as

(3.7) Γe(AxΛy) = θ*M(x ®y+y®x + xy®l + l®xy}e 7T (** M; Z2).
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Sublemma. (1) // n=\(2),Wl(M) = Q, let
Z<x, >mod torsion. Then

H2n~2(RtM]Z) =
!</<α

+ (i*e(ΛxΛM) \ x e Hn~2(M Z)} mod torsion.

(2) Otherwise p2H
2n~2(R*M;Z) contains the subgroup

{θ*M(UM(x®\)}\xEHn-2(M',Z2)} if Λ = 0(2),ιvι(M)=0,

{θlί(Sq\x®M' + M'®x)}\xeHn-2(M Z2)} if

UM€Hn(M2;Z2) is the Z2-Thom class of M.

PROOF. The statement (1) is obtained in the same way as in the proof of
[18, Theorem 4.3] for n = 0(2), w\(M) = 0. Details are omitted. On the other
hand, (2) for n = 0(2) follows from (3.6) and [18, Lemma 2.9(2)]; while (2) for
wι (M) φ 0 is obvious. Π

Let π:(N2,AN)-*(Λ2N,ΔN) be the natural projection. By [6], the
element Ax e H 2 ( Λ 2 V , Δ V ] Z ( υ } } for xeH2(V;Z] satisfies

π*(Λx) =x® 1 - 1 ® xεH2(V2,AV;Z}.

LEMMA 3.2. If V is simply connected, then for any x e H 2 ( V ] Z), we have

e(Λx) = Cv(x ® 1 - 1 ® x) e H2(R* V, PV Z[v}).

PROOF. Let n\V2 — AV -* V* be the natural projection. Then, by
a simple calculation, we have π*j*i*e(Λx) — π*j*i*ζy(x® 1 - 1 ® x) in
H2(V2 — AV Z). Here j* is an isomorphism. Both /* and π* are injective,
because we see easily that H l ( R * V ; Z [ v } ) -^ H λ ( P V ; Z [ v \ } ( = Z2<βv

2iy) is sur-
jective and that H 1 ( F*; Z) = 0 by considering the cohomology spectral sequence
of V2 - AV -» K* -̂  P°°, respectively. This leads to the lemma. Π

Hence, for an embedding / : Mn — » CPn, there are relations

(3.8) e(Λf*(z)) = e(A2fΓ(Λz) = (R*fYe(Λz) = (ζNR*fY(z® 1 - 1 ® z).

Lemmas 3.1-3.2, (3.3)-(3.5) and (3.8) imply

(3.9)

coker d^

( H2n(R*M,PM ,Z[v\)/e(ΛΓ(z}}H2n-2(R*M]Z} if n = l(2),wι(M) = 0,
=\ H2n(R*M, PM; Z2)/e(Λf* :p2(z)}p2H

2"-2(R*M', Z) otherwise.
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The following lemma, together with (3. l)-(3.2) and (3.9), implies Theorem 1.1.

LEMMA 3.3. Under the assumption of Theorem 1.1,

H2n(R*M, PM Z[υ})/e(ΛΓ(z)}H2n-2(R*M Z)

^Hn(M Z}/Γ(z}Hn-2(M Z] if n = 1(2), w,(M) = 0,

H2"(R*M, PM Z2)le(ΛΓp2(z}}p2H
2n-2(R^M Z)

* Hn(M Z2)lf*p2(z}Hn-2(M Z2) otherwise.

PROOF. Case 1: n = 1(2), wι(Λf) = 0. Since H2n(R*M,PM;Z(υ\) = Z
by Lemma 3.1, it is sufficient to calculate (eΛf * (z))(H2n~2 (R *M;Z) /torsion).
By [6, Theorem 14], we have the following relations

(ΛxiΛxj)Λf*(z) = 0 for 1 < i < j < α,

(ΛxΛM)Λf*(z) = +Λ(jc/*(z),Af) for xeHn-2(M;Z) of order infinite.

Hence e(Λf*(z}}H2n-2(R*M Z] ^ Γ(z}Hn~2(M Z}.
Case 2: wι(M)/0. If f*p2(z)=Q, then the lemma is obvious.

Therefore we assume that f*p2z^Q. For x e Hn~2(M;Z2], we have, by
(3.7) and [6, Theorem 11],

θ*M(Sql(x®M'+M'®x))e(Λf*p2(z)) = Γe(ΛSqlxΛMf+ΛxΛM)e(Λf*p2(z))

= e(Λxf*p2(z)ΛM}.

Since Γp2(z}Hn-2(M Z2) = H"(M;Z2) by the assumption f*p2(z) / 0, we
have the lemma in case w\(M) ^ 0.

Case 3: n = 0(2), wι(Λf) = 0. If />2(z) = 0, then the lemma follows

immediately. We may assume that f*p2(z) Φ 0. In this case (&/1 + w\(M))
Hn-2(M;Z2) = 0 by the assumption of Theorem 1.1. Therefore, by [18, (2.5)

and Proposition 2.6], UM(x®l) e H2n~2(ΓM]Z2) for Λ: e Hn~2(M',Z2} can be
described as

) - (M ® x + Λ: ® M) + (Λ:' ® x" + x/; ® Jc7)

for some x',^'7 e Hn~l(M;Z2) with xx ^ Jc/x. Using (3.7) and [6, Theorem 11],
we have

θ*M(UM(x®l)e(Λf*P2(z))) =

= e(ΛMΛxf*p2(z)),

thereby completing the proof of the case 3. Q

Thus we have Theorem 1.1.
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4. Construction of the Postnikov tower

In this section, N stands for CPn. We use the results in [14, §2] on

//*(/W;Z2) freely. Let β% be the Bockstein operator associated with the exact

sequence 0 -> Z[u] -> Z[u] -> Z2 -» 0 for u e Hl(ΓN; Z2).

LEMMA 4.1. Let N = CPn. Then

(1) the reduction mod 2 induces an isomorphism

odd 2'' y 2 -= oddp2 : Hodd(ΓN Z[u}) = Σ Z2<^2(»2'' ® (zy)2> -=+ Hodd(ΓN : Z2),
0<ι,0<y</ι

(2) the natural inclusion q : N2 c 7W induecs an isomorphism

q* :Heven(ΓN Z[u}) -̂

(3) //ze natural inclusion induces an isomorphism H2(ΓN, N x P°°;Z[w]) =

7/2(Γ7V;Z[t/]),

(4) 6>^ : Hodd(ΓN Z[u]) -+ Hodd(R*N]Z[v]) is surjective.

PROOF. The E^ -term of the cohomology spectral sequence for TV2 c

ΓN-tP™ is given by ̂  - /P(P°°;#'(#2;Z)^), where 7/r(7V2;Z)^ is the

local system associated with ^ : πι(P°°) = Z2<α> -» Aut(// f(Λ^2;Z)) defined as

follows: Let ^ : πι(P°°) -> Aut(Z) be a non-trivial map and T : TV2 -* N2 be

the switching map. Then φ(a) = T*φ(a)^ : ̂ r(7V2;Z) -̂ 1> H'(N2;Z) -^-+

^?(7V2;Z). By [5, §3], we have

0 if ^ is even.

Thus H*(ΓN;Z[u}} has no odd torsion. In 7/*(Γ7V;Z2), we have

ft&V7' ® (^O2) = (Sql + w)(w2^' ® (zO2) - w2^+1 ® (zO2 and /?2)52

M(/*) - 0 by
[1, Lemma 11] (see also [18, p. 563]). Hence (1) follows immediately. This

implies that all differentials in the spectral sequence are trivial and so (2)

follows. A simple calculation yields that Hl(ΓN;Z[u]) ^ Hl(N x P°°;Z[w]) =

Z2<^2(1)> and H2(N x P°°;Z[w]) = 0, and so (3) follows. In the same way

as in (1), we see that H*(R*M;Z[υ]) has no odd torsion. Hodd(R*N',Z2) =

vHeven(R*N;Z2) because of #odd(Γ7V;Z2) = w7/even(/W;Z2) and the sur-
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jectivity of Θ*N : #*(/W; Z2) -> H*(R*N; Z2). Hence Hodd(R*N; Z[v}) =

βυ

2H
even(R*N ,Z2}=θ*Nβ%Heven(ΓN]Z2). Thus (4) follows. Π

Construction of the Postnikov tower for ζN. Let F be the homotopy fiber of

ΘN : R*N -> 7W and ZF e H'2n-l(F',Z)(= Z, see §2) the fundamental class of F.

Then ιF is transgressive. We denote τ(ιF] = W e H2n(ΓN\Z) Πker0^. Since

# r̂ is surjective on Z2-cohomology [14, §2], we have p2W^Q and therefore

(4.1) p2(W) = φ(l®l).

The first stage Postnikov tower for ΘN is the principal fibration p\ : E\ — > 7"W

with classifying map W and there is a homotopy lifting q\ : /£*7V — > £"1 of ΘN.

Let F' be the homotopy fiber of q\. Then F' is also the homotopy

fiber of ιF : F -> #(Z, 2n - 1). Further F1 is (2?ι - l)-connected and π2n(F') =

π2n(F) — Z + Z2. The πι(£Ί)-action on U2n(F') is induced from the π\(ΓN)-

action on π2n(F). The fundamental class IF> e H2n(F';Z + Z2) of F7 is trans-

gressive, e.g., [10, Theorem 4.1]. To calculate coker d2 in (3.1), the equality

(3.3) indicates that it is sufficient to determine π\*τ(ιF ) e H2n+l(Eι;Z\plu}) Π

Consider the diagram (cf. [13, Lemma 4])

R*NxK(Z,2n-

Pi

—^ K(Z,2n).

LEMMA 4.2. ker Θ*N ΠH2n+l (ΓN; Z[u}) c ker/^f.

PROOF. We see that ker6^n//2"+1(ΓΛΓ;Z2) ' = Z2<^(w® 1)> by [14]

(see [18, §2]) and φ(u ® I) = p2β%φ(l ® I) by a simple calculation, while
using the relation on Sql(ul®x2) [1, Lemma 11] (see also [18, p. 563].

Thus keτθ*NΠH2n+l(ΓN',Z[u])=Z2(βϊφ(l®l)y by Lemma 4.1. On the

other hand β$φ(l ® 1) = β2ρ2(W) e ker/>ί by (4.1). Π

As in [13, Property 5], Lemmas 4.1(4) and 4.2 lead to an exact sequence

]) X H2n+l(R*N x AΓ(Z,2« - l);Z[t;] ® Z)

Here H2n+l(R*N x AΓ(Z,2« - l);Z[t?] ®Z) =

1 - 1 (x) z) x /2«-ι> by Lemma 4.1 and the fact that ^ is (2n - 2)-

equivalence, and τ\ (θ^(z ® 1 - 1 (x) z) x /2«-ι) = (z ® 1 - 1 ® z) WΓ. Since
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=0 implies i*q*(W)=0 for i:N2-ΔN^N2, the element q*(W)
can be described as q*(W) = mU^ for some m, where UN denotes the inte-
gral Thorn class of N. Hence (z ® 1 - 1 ® z)q*(W] = 0 because (x®l)UN =

(1 ®jc)t/jv, and so (z(x) 1 - 1 ® z)J^ = 0 by Lemma 4.1(2). Further there
exists a unique element k\ ε H2n+l(Eι;Z[plu]) satisfying the two conditions

#^+1(£ι;Z[/>jM)nker0f =Z<£ι> and v*(kι) = (z® 1 - 1 ®z)/2«-ι
Summing up the argument, we get the Postnikov tower for ΘN The

Postnikov tower for ζN = (θN,pN) : (R*N,PN) -> (Γ7V,ΛΓ x P°°), which is

used in §2, is induced from that of 0#.
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