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ABSTRACT. Let f: M — N be an embedding between differentiable manifolds and set
i (NM Emb(M,N), f) = [M < N];, where Emb(M,N) denotes the space of embed-
dings of M to N. Then it is known that there is a 7;(N™, f)-action on [M < N], such
that [M < N],/m (N M f) is equivalent to the set [M < NJj;) of isotopy classes of
embeddings homotopic to f. In this paper, we will study the set [M" < CP"], for an n-
manifold M". Further we will determine the sets [RP" = CP"] ;) and [CP" < CPZ"][ -

1. Introduction and statement of results

Throughout this paper, n-manifolds mean n-dimensional connected differ-
entiable manifolds without boundary and embeddings stand for differentiable
embeddings of compact manifolds to manifolds. For any map f: M — N, we
denote by [M <= N] ] the set of isotopy classes of embeddings homotopic to f.
A. Haefliger’s existence theorem [3] implies that for any compact n-manifold
M" and any map f : M" — CP" (n > 2), there exists an embedding homotopic
to f. Henceforth we would like to determine the set [M" — CP"] ).

Set 7 (NM,Emb(M,N),f) =[M c N]f, where Emb(M, N) denotes the
space of embeddings of M to N. Then it is known (cf. [2], [7], [8], [12]) that
there is a 7;(N'™, f)-action on [M < N|, such that

(1.1) [M = N|;/mi(NY, f) = [M = N] ;.

In this paper, we will study the set [M" = CP"], for an n-manifold M"
and a map f: M" — CP". Furthermore we will determine the isotopy sets of
embeddings [RP" = CP"], and [CP" = CP¥] .

The integral cohomology of CP" is given by

H*(CP™;Z) = Z|2]/(z"")(degz = 2).
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THEOREM 1.1. Let M" be a compact n-manifold (n > 3) and f: M" —
CP" a map. If n is even and M" is orientable, assume that f*p,z =0 or
H{(M";Z) does not have Z, as its direct summand. Then there exist the
following exact sequences:

0— H"(M"Z)/f*(z)H"*(M";Z) — [M" = CP");
— H" Y (M",Z) — 0, if n=1(2), w(M")=0,
0— H'(M"Z)/f*p2(2)H" 2 (M"; Z5) — [M" = CP"),
— Z®kerSq' — 0, if n=0(2), w(M") #0,
0 — H"(M"2)/f*py () H"2(M"; Z2) — [M" < CP"),
— H" Y (M";Z,) — 0, otherwise,
where p, is the reduction mod?2 and Sq': H"\(M";Z,) — H"(M";Z>).

COROLLARY 1.2. Let M" be a compact n-manifold. If f:M" — CP"
induces an epimorphism f, : 1y(M") — n2(CP") = Z, then

HYY(M™2Z) if n=1Q2),w(M") =0,
Z@kerSq'  if n=0(2),w(M") #£0,
H" Y (M",Z,) otherwise.
COROLLARY 1.3. If M" is simply connected, then for any f: M" — CP",

[M" < CP"), =

| HYM™2)/f(2)H (M Z) for n odd,
H"(M";Z5)/f*p,(z2)H""2(M"; Z,) for n even.
In particular, for n > 2,

[CP" = CP”] ;= (Z/(deg f* : H}(CP™;Z) — H*(CP"; Z))Z) ® Z».

COROLLARY 1.4. If n>3, then for any f:RP"— CP" there exist
countably many distinct isotopy classes of embeddings homotopic to f.

REMARK. B.-H Li and P. Zhang [9] have investigated the set [M" = N?"| p
in a different way. Some results of [9] and this paper overlap, e.g., Corollary
1.3. Combination of the results of [9] and this paper enriches the study of
[M" = CP"|, and hence [M" = CP"| .

2. Larmore’s approach to [M < N,

We recall Larmore’s method [7], [8] of computing the set
ni(NM, Emb(M,N), f) = [M = N], for an embedding f: M — N.
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For a manifold ¥ without boundary, let RV = (V2 — AV) Uy SV x [0,¢),
where ¢ : SV x (0,e) = V2—AV is a map defined by ¢(v, t) = (exp(tv), exp(—1v)).
Here we use a Riemannian metric on ¥V and SV stands for the total space of
the sphere bundle associated with the tangent bundle of V. A free Z,-action
on RV is induced from the antipodal map of SV and the interchanging of
elements of V2. The spaces R*V and V* are defined as quotient spaces

R'V=RV/Z, and V*=(V?>—A4V)/Z,.

Then R*V is a 2n-manifold (n = dim V) with boundary PV (~SV/Z,) and
R*V — PV =V*. The pair of spaces (R*(V x R*),P(V x R*)) denotes
the inductive limit of (R*(V x R¥),P(V x R¥)) and R*iy:(R*V,PV)c
(R*(V x R®),P(V x R*)) denotes the natural inclusion.

For a space X, we define a space I'X by

T'X = (X*x 8%)/2Z,,

where the involution on X2 x S* is given by (x,y,v) — (y,x,—v). The
natural inclusion 4X x S* < X2 x §* induces a natural inclusion k: X x
P* «cI'X. A homotopy equivalence Y : (R*(V x R*®),P(V x R*®)) = (I'V,
V' x P*) has been constructed in [8, p. 84].

Let {y =y, R*iy : (R*V,PV) — (I'V,V x P*). For an embedding f :
M — N, we denote by [(R*M,PM),(y], ., the set of homotopy classes of
homotopy liftings of {yR*f : (R*M,PM) — (I'N,N x P®) to (R*N, PN).

THEOREM 2.1 (Larmore). If 2dim N > 3(dim M + 1), then for an em-
bedding f: M — N, there is a bijection

[M = N|; = [(R"M,PM),ly]; -s-

Let Oy ={y|R*N : R*N — I'N and py ={y|PN : PN — N x P* be the
restrictions of {y to R*N and PN, respectively, and regard them as fibrations
in a standard way. Both fibrations have (n — 2)-connected fibers (n = dim N)
[7] (or [8, §5]). Let m,0n and m,py be sheaves of g-th homotopy groups of
fibrations fy and p,, respectively, (in this case, both are local systems), and
n,{y a subsheaf of m,0y such that

Ly = n,0y over I'N — N x P®,
TSN T\ mpy  over N x P*.

The sheaves 7,0y, nypy, and m,{y for ¢ =2n —1,2n are given in [8, Lemmas
5.3.2-53.4]. Let Z[u] be a sheaf of coefficients, locally isomorphic to Z,
associated with u = w; (N2 x §® — I'N) e H'(I'N;Z,), and Z[u]’ a subsheaf
of Z[u] defined by Z[u]® = Z[u],n_ype-
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LemMmA 2.2 (cf. Larmore [8]). Let N =CP" (n>3). Then

(1) 7mon_10n, mon—1py and mo,_1y are trivial sheaves of the group Z.

(2) The natural projection my:Z+Zy — Z induces the following exact
sequences of sheaves over I'N, which are split if n is odd:

0 — Zy x I'N — w0y — Z[u] — 0,

0 — Zy x I'N — monly — Z[u]® — 0.

Let L,(Z+Z5,2n+1) and L,(Z,2n+ 1) be the fiber bundles over I'N
with fiber K(Z + Z,,2n + 1) and K(Z,2n + 1) associated with the local systems
mnOy and Z[u], respectively (see e.g., [10, §3]). The map n; : m,0y — Z[u] in
Lemma 2.2 induces a bundle map

(2.1) m: Ly(Z+2Z2,2n+1) - L,(Z,2n+1) over I'N.

The 2-stage Postnikov tower for (y = (On,py):(R*N,PN)—
(I’'N,N x P®) (N = CP") is constructed in §4 as follows:

(2.2)
PN —S RN

Ej —

E,
k! ki
>K(Zz,2n+l) >Lu(z+zz,2n+1) M L(Z, 2+ 1)
1 1

w

Nxp®> —*, N K(Z,2n),

(2.3) W =9(1®1)e H*(I'N;Z,) in [14, §2]
(see also [18, Proposition 2.6]),

(24) mki, or m.ki € H"(E; Z[piu]), corresponds to the relation
z®1- 1®z)W=0.
Here H2(I'N;Z[u]°)=H*(I'N,NxP®; Z[u))=Z{z®1-1®z> (se¢c Lemma
4.1(2)).
By the standard spectral sequence argument, we have the following

Lemma 2.3 (cf. Larmore (8, (6.1-1)]). Let N = CP" (n>3). Then for
any embedding f: M" — N, there exists an exact sequence
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X . d N % * -
HY2(R*M; (OxR"f) ' man1Ly) ~> H*(R*M; (OxR" f) ' mauly)
— [(R*M, PM), (], gy — H" (R M; (OnR" f) ' an_1ly) — 0,

where dy is a cohomology operation associated with the Postnikov invariant of
the 2-stage Postnikov tower for (y.

3. Proofs
Before proving Theorem 1.1, we give the proofs of Corollaries 1.2-1.4.

PrOOF OF COROLLARY 1.2. If f, :m(M") — my(CP")(= Z) is surjective,
then so is f,: Hh(M";Z) — H)(CP";Z) because mny(CP") =~ H,(CP";Z).
Hence H?*(M";Z(or Z,)) has a direct summand Z{f*(z)) (or Z2{f*p,(2)D)
and so the first terms in the short exact sequences of Theorem 1.1 vanish.
Therefore, Corollary 1.2 follows. Note that when w;(M) =0, Corollary 1.2
coincides with [9, Corollary 1.3]. O

PROOFS OF COROLLARIES 1.3-1.4. In general, = ((CP")M" f)=
H?*(M x (S',%); my(CP"))(=H'(M; Z)), by the Eilenberg classification theorem
[15, p. 243]. Hence m((CPMYM" f)=0 if M" is simply connected or
M" = RP". Thus Theorem 1.1, together with (1.1), leads to Corollaries 1.3—
4. O

The rest of this section is devoted to the proof of Theorem 1.1. Theorem
2.1 for f: M" — N = CP", together with Lemmas 2.2-2.3, gives rise to an
exact sequence

(3.1 0 — cokerd, — [M = CP"|, — H*"'(R*M;Z) — 0,

where db : H"2(R*M;Z) — H¥(R*M; (ONR*f) ' 72,{y) is determined by the
Postnikov invariant k; of the Postnikov tower (2.2).

The cohomology group H*!(R*M;Z)(=H?*'(M*;Z)) is calculated by
Haefliger [4] (cf. [11, 11.9, 11.19]) as follows:

HY(M;Z) if n=1Q2),w; (M) =0,
(32)  H™'(R'M;Z2)={ Z@kerSq' if n=0(2),w (M) #0,
H"Y(M;Z,) otherwise,

where Sq' : H""\(M;Z,) — H"(M; Z,).
Let v = (OyR*f)"(u) e H'(R*M;Z,). Since R*M is a 2n-manifold with
boundary PM, the map n; in Lemma 2.2 induces isomorphisms

H™(R*M; (ONR*f) ' manly) = H™(R*M; Z[v)°) = H*(R*M, PM; Z[v))
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Hence, by (2.4) we have

(3.3) coker dy = cokermy,dy : H" *(R*M;Z) — H*(R*M,PM; Z[v)),
where

(34) mdy(x) = (VR )" (2@ 1 -1 ®z)Ux.

Let A%V (= V?/Z,) be the 2-fold symmetric product of ¥, and AV =
AV |Z,. Then A*V—AV = V* = R*V—PV. The cohomology of (4*V,4V)
has been determined by Larmore [6]. We freely use his definitions and
notations except for v =w (V2 — AV — V*)e H'(V*;Z,) (v means m in [6]).

We set Z[v]AZV = Z[v] as in [6].
There exists an excision isomorphism

(3.5) e:H*(A*V,4AV;G)~H*(R*V,PV;G) for G=Z,Z[v] and Z,.

For an n-manifold M, let H*(M;Z) = Z{(M) or = Z,{f,M’), according as
M is orientable or not, and let H"(M;Z,) = Z,{M». Then, by [6] and [17,
Proposition 5.2], we have

Lemma 3.1 (Larmore, Yasui). (1) If n=1(2), wi(M) =0, then
H™(A*M, AM; Z[v]) = Z{A(M, M);

(2) otherwise p, : H¥(A*>M, AM; Z[v)) = H¥(A*M, AM; Z)) = Z,{AMAM ) is
an isomorphism.

Let i: R*M < (R*M,PM) and j: PM < R*M be the natural inclusions.
The commutative diagram below indicates that the map p in [14], and so [18,
(2.2)], is reworded as

(3.6) p=j*0L : H(I'M;Z,) — H (R*M; Z,) — H*(M*;Z).

. .
M —L R*M LN

| P

/ il

M* L (M?— AM) x 2,8 ——  T'M,

R*(M x R®)

where p’ and i’ are the natural projection and inclusion, respectively, and 6} is
determined in the diagram. Further [18, Lemma 3.3(2)] is reworded as

(3.7) i'e(AxAy) =0, (x®y+y®x+xy®1+1Q®xy) e H'(R*M; Z,).
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Sublemma. (1) If n=1Q2),wi(M)=0, let H" ' (M;Z)= > _ic,
Z{x;ymod torsion. Then

H"2(R'M;Z) = Y Z{(1/2)i%e(Axidx)y + Y Z<i"e(Axidx))

1<i<a 1<i<j<a
+ {i*e(AxAM) | x e H"*(M;Z)}mod torsion.
(2) Otherwise p,H* 2(R*M;Z) contains the subgroup
{0, (Un(x®@ 1)) | x € H™*(M; Z)} if 1= 0(2), w (M)=0,
{03,(Sq" (x @ M+ M' ®x)) | x& H™(M; Z2)} if wy(M) #0,
where Uy € H"(M?;Z,) is the Zy-Thom class of M.

Proor. The statement (1) is obtained in the same way as in the proof of
[18, Theorem 4.3] for n = 0(2), wi(M) = 0. Details are omitted. On the other
hand, (2) for n = 0(2) follows from (3.6) and [18, Lemma 2.9(2)]; while (2) for
wi(M) # 0 is obvious. [J

Let 7n: (N2 AN) — (A>N,4N) be the natural projection. By [6], the
element Ax e H*(A*V,4V;Z[v]) for x e H*(V;Z) satisfies
(Ax) =x®1 - 1@ xe HX(V?,4V;2Z).
LemMma 3.2. If V is simply connected, then for any x € H*(V;Z), we have
e(Ax) ={;(x®1 - 1® x) € HX(R*V, PV; Z[v]).

PrOOF. Let n:V?—AV — V* be the natural projection. Then, by
a simple calculation, we have =n*j*i*e(Ax)=n"j z*CV(x® 1-1®x) in
H?(V? - AV;Z). Here j* is an isomorphism. Both i* and n* are injective,
because we see easily that H!(R*V;Z[v]) — HY(PV; Z[v])(= Z>{B51)) is sur-
jective and that H!(V*; Z) = 0 by considering the cohomology spectral sequence
of V2 - AV — V* — P, respectively. This leads to the lemma. [J

Hence, for an embedding f : M" — CP", there are relations
(3.8) e(Af*(2)) = e(A’f) (4z) = (R*f)"e(Az) = ((WR* /)" (2 ® 1 - 1 ® 2).
Lemmas 3.1-3.2, (3.3)—(3.5) and (3.8) imply

(3.9)
coker d,

[ H*(R*M,PM; Z[v)) [e(Af* (2)) H" 2 (R*M; Z)  if n'=1(2),w1(M) =0,
T H?(R* M, PM; Z,)/e(Af*py(2))p, H* 2(R*M; Z) otherwise.



586 Tsutomu YAsul

The following lemma, together with (3.1)—(3.2) and (3.9), implies Theorem 1.1.
LemMMA 3.3. Under the assumption of Theorem 1.1,
H>(R*M,PM; Z[v]) [e(Af* (2))H*"*(R"M; Z)
= H'"(M;2)/f*()H"(M;Z)  if n=1(2),m(M) =0,
H>(R*M,PM; Zy)/e(Af " py(2))p,H" *(R*M; Z)
~ H"(M;2Z,) /1" py(2) H" *(M; Z3) otherwise.
Proor. Case 1: n=1(2),w;(M)=0. Since H*(R*M,PM;Zv])) =Z

by Lemma 3.1, it is sufficient to calculate (eAf*(z))(H?*"~2(R*M;Z)/torsion).
By [6, Theorem 14], we have the following relations

(Ax,-ij)Af*(Z) =0 fOI' 1 < i < ] < o,
(AxAM)Af*(2) = £ A(xf"(z), M) for x e H"2(M;Z) of order infinite.
Hence e(Af*(z))H* 2(R*M;Z) = f*(z)H"2(M; Z).

Case 2: wi(M)#0. If f*p,(z)=0, then the lemma is obvious.
Therefore we assume that f*p,z#0. For xe H"*(M;Z,), we have, by
(3.7) and [6, Theorem 11],
0:,(S¢' (x® M'+M' ® x))e(Af*py(z)) = i*e(ASG' xAM'+ AxAM )e(Af *p,(2))

= e(Axf*py(z) AM).
Since f*p,(z)H"%(M;Z,) = H"(M;Z,) by the assumption f*p,(z) #0, we
have the lemma in case w;(M) # 0.

Case 3: n=0(2),w;(M)=0. If f*p,(z) =0, then the lemma follows
immediately. We may assume that f*p,(z) # 0. In this case (Sg' + wi(M)) -
H"2(M;Z,) = 0 by the assumption of Theorem 1.1. Therefore, by [18, (2.5)
and Proposition 2.6], Uy(x ® 1) € H*2(I'M; Z;) for x € H""*(M; Z,) can be
described as

Un(x®@1)=(M@x+x@M)+> (¥ ®x"+x" ®x)

for some x', x" € H"'(M; Z,) with x' # x". Using (3.7) and [6, Theorem 11],
we have

03 (Un(x ® 1)e(Af*py(2))) = e((AMAx + ZAx’Ax")Af*pz(z))
e(AMAxf"py(2)),

thereby completing the proof of the case 3. [

Thus we have Theorem 1.1.
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4. Construction of the Postnikov tower

In this section, N stands for CP". We use the results in [14, §2] on
H*(I'N; Z,) freely. Let 85 be the Bockstein operator associated with the exact
sequence 0 — Z[u] — Z[u| — Z, — 0 for ue H'(I'N; Z;).

LemMa 4.1. Let N = CP". Then
(1) the reduction mod?2 induces an isomorphism

py HIN; Zu) = Y Zo(Byu® @ (2/)*) = HO(I'N : Z,),

0<i,0<j<n

(2) the natural inclusion q: N> = I'N induecs an isomorphism

q* : H""(I'N; Z[u]) — Z ZE @2 -2 @z,
0<igj<n
(3) the natural inclusion induces an isomorphism H?*(I'N,N x P%;Z[u]) =~
H*(I'N; Z[u),
(4) 65 : H(I'N; Z[u]) — H°®(R*N;Z[v)) is surjective.

ProOF. The E,-term of the cohomology spectral sequence for N2 c
I'N — P* is given by E," = H*(P*;H'(N% Z);), where H'(N*Z); is the
local system associated with ¢ : 7 (P®) = Z,<{a)y — Aut(H'(N?;Z)) defined as
follows: Let ¢ : n1(P®) — Aut(Z) be a non-trivial map and T : N> — N2 be
the switching map. Then @(a) = T*#(a), : H'(N%; Z) iGN H!(N%z)
H!(N%;Z). By [5, §3], we have

HS(P°°;ZZ<zi®zj—zj®zi,zi®zj>¢;)
0 if s#0,i# ],
B ZZ Rz -2 @z if s=0,i# j;

(P2 @y = {72 10 ol

0 if s is even.
Thus H*(I'N;Z[u]) has no odd torsion. In H*(I'N;Z,), we have
PP ¥ ® (21)°) = (Sq' +u)(w¥ ® (z")%) = u?! ® (z')* and pyB;(I") =0 by
[1, Lemma 11] (see also [18, p. 563]). Hence (1) follows immediately. This
implies that all differentials in the spectral sequence are trivial and so (2)
follows. A simple calculation yields that H'(I'N; Z[u]) =~ H'(N x P*;Z[u]) =
Z,{B5(1)y and H?(N x P®;Z[u]) =0, and so (3) follows. In the same way
as in (1), we see that H*(R*M;Z[v]) has no odd torsion. H°#(R*N;Z,) =
vH®"(R*N;Z,) because of H°Y(I'N;Z,) = uH®*"(I'N;Z,) and the sur-
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jectivity of Oy :H*(I'N;Z;) — H*(R*N;Z,). Hence H°%(R*N;Z[v]) =
BYHEN(R* N Z,) = 04, B4H®"(I'N; Z5). Thus (4) follows. []

Construction of the Postnikov tower for {y. Let F be the homotopy fiber of
Oy : R*N — I'N and ir € H*""(F; Z)(= Z, see §2) the fundamental class of F.
Then iF is transgressive. We denote t(ir) = W e H*'(I'N; Z) Nker@y,. Since
0y is surjective on Z-cohomology [14, §2], we have p, W # 0 and therefore

(4.1) P (W) =o(1®1).

The first stage Postnikov tower for @y is the principal fibration p; : Ey — I'N
with classifying map W and there is a homotopy lifting ¢; : R*N — E; of Oy.

Let F' be the homotopy fiber of ¢q;. Then F’ is also the homotopy
fiber of 1f : F — K(Z,2n —1). Further F’ is (2n — 1)-connected and n,(F’) =
non(F) =Z + Z,. The m(E;)-action on m5,(F’) is induced from the 7, (I'N)-
action on my,(F). The fundamental class iz € H*"(F'; Z + Z,) of F' is trans-
gressive, e.g., [10, Theorem 4.1]. To calculate cokerd, in (3.1), the equality
(3.3) indicates that it is sufficient to determine n1,7(1r') € H**1(Ey; Z[pju]) N
kerg;. Consider the diagram (cf. [13, Lemma 4])

V

R*N x K(Z,2n—1)

N %, K(Z,2n).

LEmMMA 4.2. kerOy N H>"*Y(I'N; Z[u]) < kerp;.

Proor. We see that ker@y NH?"'(I'N;Z,) = Zy(p(u® 1)) by [14]
(see [18, §2]) and p(u® 1) =p,f79(1 ®1) by a simple calculation, while
using the relation on Sg'(u’'® x?) [1, Lemma 11] (see also [18, p. 563].
Thus ker 0y N H*(I'N; Z[u]) = Z,{B5p(1 ® 1)) by Lemma 4.1. On the
other hand £y¢p(1 ® 1) = f5p,(W) e kerp; by (4.1). O

As in [13, Property 5], Lemmas 4.1(4) and 4.2 lead to an exact sequence
0 — H™V(Ey; Z[piu]) - H*™(R*N x K(Z,2n - 1); Z[1] ® Z)
=5 H(I'N; Z[u)).
Here H**(R*N x K(Z,2n —1); Z[v] ® Z) = H**'(R*N;Z[1)) ® Z{Oy(z®

1-1®2z)xn-1) by Lemma 4.1 and the fact that Oy is (2n—2)-
equivalence, and 7;(0y(z®1-1®z)x1y1)=(z®1-1®z)W. Since
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Ox(W) =0 implies i*¢*(W)=0 for i: N> — AN < N2, the element ¢*(W)
can be described as ¢*(W) = mUy for some m, where Uy denotes the inte-
gral Thom class of N. Hence (z® 1 - 1® z)g*(W) =0 because (x® 1)Uy =
(1®x)Uy, and so (z®1-1®z)W =0 by Lemma 4.1(2). Further there
exists a unique element k; € H*"*!(Ey; Z|pju]) satisfying the two conditions
H>»V(Ey; Z[piu)) Nkergp = Z<ky ) and vi(ky) = (2 @1 — 1 ® z)izp-1.

Summing up the argument, we get the Postnikov tower for Oy. The
Postnikov tower for (y = (On,py): (R*N,PN)— (I'N,N x P®), which is
used in §2, is induced from that of fy.
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