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Abstract. Let Mn be a compact convex hypersurface in Rnþ1. In this paper, we

proved firstly that if the principal curvatures li of Mn satisfy 0 < l1 a � � �a ln and

ln <
Pn�1

j¼1 lj , then there exist no nonconstant stable F -harmonic map between M and

a compact Riemannian manifold when (1.2) or (1.3) holds (Theorem 1). This is a

generalization or unification of the corresponding results for several varieties of har-

monic map. Then, when the target manifold is d-pinched, using a new estimate

method, we obtain the Liouville-type theorem (Theorem 2) for stable F -harmonic map,

which improves the results of M. Ara in [2].

1. Introduction

The instability for harmonic map (as well as p-harmonic map), from or

into standard unit sphere Sn in Euclidean space Rnþ1, is well-known. For

example, there exists no nonconstant stable harmonic (or p-harmonic) map

either from Sn to any Riemannian manifold [12] (or [11]), or from any compact

Riemannian manifold to Sn [6] (or [3]). In this paper, for a smooth function

F : ½0;yÞ ! ½0;yÞ such that F 0ðtÞ > 0 on t A ð0;yÞ, we concern with the

instability of F -harmonic maps which is the generalization and union of the

harmonic, p-harmonic or exponentially harmonic maps, introduced by M. Ara

in [2].

M. Ara [1] proved that every stable F -harmonic map u : M ! Sn is con-

stant, provided thatð
M

jduj2 jduj2F 00 jduj2

2

 !
þ ð2� nÞF 0 jduj2

2

 !( )
�1 < 0:ð1:1Þ

In contrast with this, as far as I know there is few result when the source

manifold is Sn. In this paper, however, we can prove the following instability
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property of F -harmonic maps which are from or into the compact convex

hypersurfaces in Euclidean space.

Theorem 1. Let Mn HRnþ1 be the compact convex hypersurface. As-

suming that the principal curvatures li of Mn satisfy 0 < l1 a � � �a ln and

ln <
Pn�1

j¼1 lj . Let F : ½0;yÞ ! ½0;yÞ be a smooth function such that F 0ðtÞ > 0

on t A ð0;yÞ. Then every nonconstant F-harmonic map u between Mn and any

compact Riemannian manifold N is unstable if there exists a constant cF :¼
inffcb 0 jF 0ðtÞ=tc is nonincreasingg such that

cF <
1

2l2n
min
1aian

li
Xn
j¼1

lj � 2li

 !( )
;ð1:2Þ

or, when F 00ðtÞ ¼ F 0ðtÞ (for example FðtÞ ¼ expðtÞ),

jduj2 < 1

l2n
min
1aian

li
Xn
j¼1

lj � 2li

 !( )
:ð1:3Þ

Remark 1. Theorem 1 obviously includes Ara’s results [1] as a special

case in a certain sense. In the case where F ðtÞ ¼ ð2tÞp=2 ðp ¼ 2 or 4a p < yÞ,
the constant cF equals ðp=2Þ � 1, therefore, theorem 1 includes all the corre-

sponding results in [3, 6, 11, 12] as special cases.

When Mn ¼ Sn, the standard unit n-sphere, then the conditions (1.2) and

(1.3) become respectively

cF <
n

2
� 1;ð1:4Þ

jduj2 < n� 2:ð1:5Þ

In this case, we have the following

Corollary 1. With the same assumptions about the function F as in

theorem 1, then every nonconstant F-harmonic map u, from Sn into any compact

Riemannian manifold N or from any compact Riemannian manifold N into Sn, is

unstable when (1.4) or (1.5) is true.

Remark 2. In the case of nonconstant harmonic maps or p-harmonic

maps, the condition (1.4) implies that n > 2, n > p, respectively. Therefore,

corollary 1 is an extension of [6, 12] and [3, 11] for the stability of harmonic

maps and p-harmonic maps, respectively.

Remark 3. In the case of nonconstant exponentially harmonic map, i.e.

FðtÞ ¼ expðtÞ, although the constant cF does not exist, the condition n� 2 >

jduj2 is necessary. For example, taking u : ðSn; g0Þ ! ðSn; g0Þ be the identity
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map, where Sn is the standard unit sphere with canonical metric g0, it is well-

known that u is stable, but in that case, jduj2 ¼ n > n� 2. Hence, corollary 1

is also an extension of [5] and [7] for the stability of exponentially harmonic

maps.

When the target manifolds are d-pinched, using a new estimate method,

we obtain the following Liouville theorem of stable F -harmonic map, which

improves the results of M. Ara [2].

Theorem 2. Every stable F-harmonic map u : M ! N, from compact Rie-

mannian manifold M into a compact simply-connected d-pinched n-dimensional

Riemannian manifold N, is constant, provided that there exists a constant cF :¼
inffcb 0 jF 0ðtÞ=tc is non-increasingg such that n and d satisfy (1.4) (or equiv-

alently 2cF þ 1 < n� 1) and

~FFn;F ðdÞ :¼ ð2cF þ 1Þ n

4
k2
3 ðdÞ þ k3ðdÞ þ 1

� �
� 2d

1þ d
ðn� 1Þ < 0:ð1:6Þ

Remark 4. M. Ara [2] proved that: every stable F -harmonic map, from

compact Riemannian manifold into n-dimensional d-pinching manifold, is con-

stant, provided that n and d satisfy n > 2ðcF þ 1Þ and

Fn;F ðdÞ :¼ ð2cF þ 1Þ nþ 1

4
k2
3 ðdÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
k3ðdÞ þ 1

� �
� 2d

1þ d
ðn� 1Þ < 0:ð1:7Þ

Obviously, ~FFn;F ðdÞ < Fn;F ðdÞ, so theorem 2 is much better than that of M. Ara

in [2]. In the case where FðtÞ ¼ ð2tÞp=2 ðp ¼ 2 or 4a p < yÞ, the constant

cF equals ðp=2Þ � 1. So Theorem 2 is a unification and generalization of the

well-known results for harmonic maps and p-harmonic maps obtained by T.

Okayasu in [8] and H. Takeuchi in [11].

2. Preliminaries

Let F : ½0;yÞ ! ½0;yÞ be a C 2-function such that F 0ðtÞ > 0 on t A ð0;yÞ.
For a smooth map u : ðM; gÞ ! ðN; hÞ between compact Riemannian manifolds

ðM; gÞ and ðN; hÞ with Riemannian metric g and h, respectively. Following

M. Ara [1], u is F -harmonic if it represents a critical point of the F -energy

integral

EF ðuÞ ¼
ð
M

F
jduj2

2

 !
�1;ð2:1Þ

where jduj2 is the energy density defined as
Pm
i¼1

jduðeiÞj2, m ¼ dim M, for a local

orthonormal frame field feig on M, and �1 is the volume element of ðM; gÞ.
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For example, when F ðtÞ ¼ t, ð2tÞp=2=p, ð1þ 2tÞaða > 1;m ¼ 2Þ and expðtÞ,
F -energy is the energy, the p-energy, the a-energy of Sacks-Uhlenbeck [10] and

the exponential energy respectively. So F -harmonic map can be viewed as

one of the unified theory for several varieties of harmonic map. On the other

hand, we can see results for harmonic maps, p-harmonic maps or exponentially

harmonic maps in a di¤erent viewpoint.

Denoted by ‘ and ‘ the Levi-Civita connections of M and N respec-

tively. Let u�1TN be the induced vector bundle by u over M, and Gðu�1TNÞ
the space of all sections of u�1TN. ~‘‘ denotes the induced connection on the

induced bundle u�1TN from ‘ and u defined by ~‘‘XW ¼ ‘u�XW , here X is a

tangent vector of M and W is a section of u�1TN. With these symbols, then,

the Euler-Lagrange equation of the F -energy functional EF can be written

tF ðuÞ ¼
Xm
i¼1

~‘‘ei F 0 jduj2

2

 !
u�ei

 !
� F 0 jduj2

2

 !
u�‘ei ei

( )
ð2:2Þ

¼ F 0 jduj2

2

 !
tðuÞ þ u� grad F 0 jduj2

2

 ! !( )
;

where tðuÞ is the tension field along u. From now on we use the summation

convention.

We need the following second variation formula for F -harmonic maps (cf.

[1]). Let u : M ! N be an F -harmonic map. Let us; t : M ! Nð�e < s; t < eÞ
be a compactly supported two-parameters variation such that u0;0 ¼ u, and set

V ¼ qus; t
qt

���
s; t¼0

, W ¼ qus; t
qs

���
s; t¼0

. Then

q2

qsqt
EF ðus; tÞjs; t¼0ð2:3Þ

¼
ð
M

F 00 jduj2

2

 !
h~‘‘V ; duih~‘‘W ; dui�1

þ
ð
M

F 0 jduj2

2

 !
� h~‘‘V ; ~‘‘Wi�

Xm
i¼1

hðRNðV ; u�eiÞu�ei;WÞ
( )

�1;

where h� ; �i is the inner product on T �Mn u�1TN and RN is the curvature

tensor of the manifold N, i.e. RNðX ;Y Þ ¼ ½‘X ;‘Y � � ‘½X ;Y � for vector fields X ,

Y on N.

We put

IðV ;WÞ ¼ q2

qsqt
EF ðus; tÞ

����
s; t¼0

:ð2:4Þ
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An F -harmonic map u is called F -stable or stable if IðV ;VÞb 0 for any

compactly supported vector field V along u.

3. F -harmonic maps from compact convex hypersurfaces

In the following two sections, we will discuss separately when the source

manifolds or the target manifolds are compact convex hypersurfaces in Eucli-

dean space, and obtain Proposition 1 and Proposition 2 respectively. Then,

combining two Propositions, we had proved Theorem 1 at the end of section 4.

In this section, we study the instability for F -harmonic map from compact

convex hypersurfaces into a compact Riemannian manifold, and obtain the

following

Proposition 1. With the same assumptions on Mn and F as in Theorem 1.

Let u : Mn ! N be a nonconstant F-harmonic map into compact Riemannian

manifold N, if (1.2) or (1.3) holds, then u is unstable.

Proof. In order to prove the instability of u : Mn ! N, we need to

consider some special variational vector fields along u. To do this, choosing

an orthogonal frame field fei; enþ1g, i ¼ 1; . . . ; n, of Rnþ1, such that feig are

tangent to Mn HRnþ1, enþ1 is normal to Mn and ‘ei ejjP ¼ 0. Meanwhile,

taking a fixed orthonormal basis EA, A ¼ 1; . . . ; nþ 1, of Rnþ1 and setting

VA ¼
Xn
i¼1

viAei; viA ¼ hEA; eii; vnþ1
A ¼ hEA; enþ1i;ð3:1Þ

where h� ; �i denotes the canonical Euclidean inner product. Then u�VA A
Gðu�1TNÞ and

X
A

viAv
j
A ¼

X
A

hEA; eiihEA; eji ¼ dij ;ð3:2Þ

‘eiVA ¼ vnþ1
A hijej ;ð3:3Þ

‘eið‘eiVAÞ ¼ �vkAhikhijej þ vnþ1
A ð‘ei hijÞej ;ð3:4Þ

~‘‘eiðduð‘eiVAÞÞ ¼ �vkAhikhijðduðejÞÞ þ vnþ1
A ð~‘‘ei hijÞðduðejÞÞð3:5Þ

þ vnþ1
A hij ~‘‘u�ei u�ej;

where, hij denotes the components of the second fundamental form of Mn in

Rnþ1.

From now on, suppose that u : Mn ! N is a nonconstant F -harmonic

map, we shall use the variational vector fields u�VA to prove the instability of
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u. Firstly, by using F -harmonicity condition d� F 0 jduj2
2

� �
du

� �
¼ 0 and (3.2),

we have

X
A

ð
Mn

F 0 jduj2

2

 !
hs duðVAÞ; duðVAÞi�1ð3:6Þ

¼
X
A

ð
Mn

F 0 jduj2

2

 !
viAv

j
Ahs duðeiÞ; duðejÞi�1

¼
ð
Mn

F 0 jduj2

2

 !
hs duðeiÞ; duðeiÞi�1

¼
ð
Mn

d� du; d� F 0 jduj2

2

 !
du

 !* +
�1 ¼ 0:

It follows from Weitzenböck formula that

�RNðu�VA; duðeiÞÞduðeiÞ þ u� RicM
nðVAÞ ¼s duðVAÞ þ ~‘‘2 duðVAÞ:ð3:7Þ

With respect to the variational vector fields u�VA along u, it follows from (3.6)

and (3.7) thatX
A

Iðu�VA; u�VAÞð3:8Þ

¼
X
A

ð
Mn

F 00 jduj2

2

 !
h~‘‘u�VA; dui

2�1

þ
X
A

ð
Mn

F 0 jduj2

2

 !
fj~‘‘u�VAj2 þ h~‘‘2 duðVAÞ; u�VAi

� hu� RicM
nðVAÞ; u�VAig�1:

Notice that ~‘‘2 ¼ ~‘‘ei
~‘‘ei � ~‘‘‘ei

ei , for any fixed point P A M, choose feig such

that ‘ei ejjP ¼ 0. Then

~‘‘2 duðVAÞ ¼ ~‘‘ei
~‘‘eiðduðVAÞÞ � 2~‘‘eiðduð‘eiVAÞÞ þ duð~‘‘ei

~‘‘eiVAÞ;ð3:9Þ

and ð
Mn

F 0 jduj2

2

 !
h~‘‘ei

~‘‘eiðduðVAÞÞ; duðVAÞi�1ð3:10Þ

¼ �
ð
Mn

~‘‘eiðduðVAÞÞ; ~‘‘ei F 0 jduj2

2

 !
duðVAÞ

 !* +
�1
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¼ �
ð
Mn

~‘‘eiðduðVAÞÞ; ~‘‘ei F 0 jduj2

2

 ! !
duðVAÞ

* +
�1

�
ð
Mn

F 0 jduj2

2

 !
j~‘‘ðduðVAÞÞj2�1:

Substituting (3.9) and (3.10) into (3.8), we get therefore

X
A

Iðu�VA; u�VAÞ ¼
X
A

ð
Mn

(
F 00 jduj2

2

 !
h~‘‘u�VA; dui

2ð3:11Þ

� ~‘‘eiðduðVAÞÞ; ~‘‘ei F 0 jduj2

2

 ! !
duðVAÞ

* +)
�1

þ
X
A

ð
Mn

F 0 jduj2

2

 !
fh�2~‘‘eiðduð‘eiVAÞÞ

þ duð‘ei‘eiVAÞ � u� RicM
nðVAÞ; u�VAig�1

:¼
ð
Mn

fðIÞ þ ðIIÞg�1:

In the following, we shall estimate the two parts (I) and (II) in (3.11)

separately. Because trace is independent of the choice of orthonormal basis,

we can take pointwisely fei; enþ1g such that hij ¼ li dij . From Gauss formula it

follows that

RicM
n ¼ viAðhkkhij � hilhjlÞej:ð3:12Þ

Using (3.3), (3.4), (3.5) and (3.12), we can easily obtainð
Mn

ðIIÞ�1 ¼
ð
Mn

F 0 jduj2

2

 !X
A

fh2vkAhikhiju�ej � viAhkkhiju�ej ; v
l
Au�elig�1ð3:13Þ

�
ð
Mn

F 0 jduj2

2

 !X
A

fhvnþ1
A ð‘ei hijÞu�ej

þ 2vnþ1
A hij ~‘‘u�ei u�ej ; v

l
Au�elig�1

¼
ð
Mn

F 0 jduj2

2

 !
h2hilhiju�ej � hkkhlju�ej ; u�eli�1

a

ð
Mn

F 0 jduj2

2

 !
max
1aian

2li �
Xn
k¼1

lk

 !
lijduj2�1:

227Liouville theorems of stable F -harmonic maps



In order to estimate part (I) in (3.11), a straightforward computation then

shows

X
A

~‘‘eiðduðVAÞÞ; ~‘‘ei F 0 jduj2

2

 ! !
duðVAÞ

* +
ð3:14Þ

¼
X
A

F 00 jduj2

2

 !
~‘‘ei

jduj2

2

 !
hvnþ1

A hiku�ek þ vkA
~‘‘u�ei u�ek; v

j
Au�eji

¼ F 00 jduj2

2

 !
h~‘‘ei du; dui

2;

and

X
A

F 00 jduj2

2

 !
h~‘‘u�VA; dui

2ð3:15Þ

¼
X
A

F 00 jduj2

2

 !
hvnþ1

A hiku�ek þ vkA
~‘‘u�ei u�ek; u�eii

2

¼ F 00 jduj2

2

 !
fhikhjlhu�ek; u�eiihu�el ; u�eji

þ 2h‘u�ei u�ek; u�eiih‘u�ej u�ek; u�ejig

¼ F 00 jduj2

2

 !
fliljhu�ei; u�eiihu�ej; u�ejiþ h~‘‘ei du; dui

2g:

Then, it follows from (3.14) and (3.15) thatð
Mn

ðIÞ�1 ¼
ð
Mn

F 00 jduj2

2

 !
liljhu�ei; u�eiihu�ej ; u�eji�1:ð3:16Þ

By the assumption in Theorem 1, if F 00ðtÞ ¼ F 0ðtÞ, then (3.16) leads to the

inequality ð
Mn

ðIÞ�1a
ð
Mn

F 0 jduj2

2

 !
l2n jduj

4�1;ð3:17Þ

if there exists a constant cF such that F 0ðtÞ=tcF is non-increasing, it follows that

F 00ðtÞta cFF
0ðtÞ on t A ð0;yÞ, thus (3.16) impliesð

Mn

ðIÞ�1a
ð
Mn

2cFF
0 jduj2

2

 !
l2n jduj

2�1:ð3:18Þ

Finally, substituting (3.13), (3.17) or (3.18) into (3.11), we obtain
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X
A

Iðu�VA; u�VAÞð3:19Þ

a

ð
Mn

F 0 jduj2

2

 !
jduj2 l2n jduj

2 þ max
1aian

2li �
Xn
k¼1

lk

 !
li

( )
�1;

or X
A

Iðu�VA; u�VAÞð3:20Þ

a

ð
Mn

F 0 jduj2

2

 !
jduj2 2cFl

2
n þ max

1aian
2li �

Xn
k¼1

lk

 !
li

( )
�1;

either of which implies that
P
A

Iðu�VA; u�VAÞ < 0 if u is nonconstant and (1.2)

or (1.3) holds. Therefore, there exists at least one Vi A fV1; . . . ;Vnþ1g such

that

Iðu�Vi; u�ViÞ < 0:

That is, F -harmonic map u is not stable. This completes the proof of the

Proposition 1.

4. F -harmonic maps into compact convex hypersurfaces

In this section, we study the instability for F -harmonic map from any com-

pact Riemannian manifold N into compact convex hypersurface Mn HRnþ1,

and obtain the following

Proposition 2. With the same assumptions on Mn and F as in Theorem 1.

Let u : N ! Mn be a nonconstant F-harmonic map from m-dimensional compact

Riemannian manifold N, if (1.2) or (1.3) holds, then u is unstable.

Proof. Denoted by ~‘‘ the induced connection on u�1TMn (notice that,

we use the same symbol ~‘‘ as in proposition 1, but di¤erent meaning). Taking

the same vector fields VA, A ¼ 1; . . . ; nþ 1, as in proposition 1. A straight-

forward computation similar to Theorem 5 in [9], we obtain

X
A

IðVA;VAÞ ¼
ð
N

8<
:F 00 jduj2

2

 ! X
a; i

liu
2
ai

 !2
ð4:1Þ

þ F 0 jduj2

2

 !X
a; i

li 2li �
Xn
j¼1

lj

 !
u2ai

9=
;�1;
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where
P
a; i

u2ai ¼ jduj2. According to the assumptions on the function F , if

F 00ðtÞ ¼ F 0ðtÞ, then we get from (4.1)X
A

IðVA;VAÞð4:2Þ

a

ð
N

F 0 jduj2

2

 !
jduj2 l2n jduj

2 � min
1aian

Xn
j¼1

lj � 2li

 !
li

( )
�1;

or, if there exists a constant cF such that F 0ðtÞ=tcF is non-increasing, then we

obtain from (4.1)X
A

IðVA;VAÞð4:3Þ

a

ð
N

F 0 jduj2

2

 !
jduj2 2l2ncF � min

1aian

Xn
j¼1

lj � 2li

 !
li

( )
�1:

Now, if u : N ! Mn is a nonconstant F -harmonic map and (1.2) or (1.3) holds,

then we have from (4.2) or (4.3),

X
A

IðVA;VAÞ < 0;

which implies that there exists at least one Vi A fV1; . . . ;Vnþ1g such that

IðVi;ViÞ < 0;

so, F -harmonic map u : N ! Mn is unstable. This completes the proof of

Proposition 2.

Proof of Theorem 1. Combining Proposition 1 (in section 3) and Prop-

osition 2 (in section 4), Theorem 1 had been proved immediately.

5. F -harmonic maps into d-pinched manifolds

Proof of Theorem 2. From now on, we assume that ðN; hÞ is a compact

simply-connected d-pinched Riemannian manifold (i.e. its sectional curvature

kN satisfy d < kN a 1). Deform the Riemannian metric h of N conformally

to 1þd
2 � h (also denoted by h). We can set the sectional curvature equal to 2d

1þd
.

Let E denote the Whitney sum E ¼ TNl �ðNÞ of the tangent bundle TN and

the trivial line bundle �ðNÞ ¼ N � R with the canonical metric. Let e be a

cross-section of unit length in �ðNÞ. We define a metric connection ‘ 00 on E

as follows:
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‘ 00
XY ¼ N‘XY � hðX ;YÞe;

‘ 00
Xe ¼ X ;

where X and Y are vector fields on N. According to the results in [4], there

exists a flat connection ‘ 0 such that

k‘ 0 � ‘ 00ka 1

2
k3ðdÞ;ð5:1Þ

where the distance of two connections ‘ 0, ‘ 00 defined by

k‘ 0 � ‘ 00k ¼ maxfk‘ 0
XY � ‘ 00

XYk;X A TN; kXk ¼ 1;Y A GðEÞ; kYk ¼ 1g;

and

k1ðdÞ ¼
4ð1� dÞ

3d
1þ

ffiffiffi
d

p
sin

1

2
p
ffiffiffi
d

p� ��1
" #

;

k2ðdÞ ¼
1

2
ð1þ dÞ

	 
�1

� k1ðdÞ;

k3ðdÞ ¼ k2ðdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� 1

24
p2ðk1ðdÞÞ2

� ��2
s

:

Taking a cross-section W of E and denoting WT the TN-component of

W . Then, with the orthonormal frame field feigm
i¼1, m ¼ dim M, we obtain

IðWT ;WTÞð5:2Þ

¼
ð
M

F 00 jduj2

2

 !Xm
i¼1

h~‘‘eiW
T ; u�eii

2�1

þ
ð
M

F 0 jduj2

2

 !
�
Xm
i¼1

fj~‘‘eiW
T j2 � hðRNðWT ; u�eiÞu�ei;WTÞg�1

a

ð
M

F 00 jduj2

2

 !
jduj2 þ F 0 jduj2

2

 !( )Xm
i¼1

j~‘‘eiW
T j2�1

�
ð
M

F 0 jduj2

2

 !Xm
i¼1

hðRNðWT ; u�eiÞu�ei;WTÞ�1

a

ð
M

F 0 jduj2

2

 !Xm
i¼1

fð2cF þ 1Þj~‘‘eiW
T j2

� hðRNðWT ; u�eiÞu�ei;WT Þg�1;
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where we have used in the last inequality the assumption which says that

F 0ðtÞ=tcF is non-increasing, i.e. F 00ðtÞta cFF
0ðtÞ on t A ð0;yÞ.

Meanwhile, we observe that

~‘‘eiW
T ¼ N‘u�eiW

T

¼ ‘ 00
u�ei

W T þ hWT ; u�eiie

¼ ‘ 00
u�ei

ðW � hW ; eieÞ þ hWT ; u�eiie

¼ ð‘ 00
u�ei

WÞT � hW ; eiu�ei:

Then, we have

Xm
i¼1

j~‘‘eiW
T j2 ¼

Xm
i¼1

jð‘ 00
u�ei

WÞT j2 þ hW ; ei2jduj2ð5:3Þ

� 2
Xm
i¼1

hW ; eih‘ 00
u�ei

W T ; u�eii:

Since N is d-pinched, so

hðRNðWT ; u�eiÞu�ei;WTÞb 2d

1þ d
fjWT j2ju�eij2 � hWT ; u�eii

2g:ð5:4Þ

Substituting (5.3) and (5.4) into (5.2), we obtain

IðWT ;WTÞa
ð
M

F 0 jduj2

2

 !
� qðWÞ�1;ð5:5Þ

where

qðWÞ ¼ ð2cF þ 1Þ
(Xm

i¼1

jð‘ 00
u�ei

WÞT j2 þ hW ; ei2jduj2ð5:6Þ

� 2
Xm
i¼1

hW ; eih‘ 00
u�ei

W T ; u�eii

)

� 2d

1þ d

Xm
i¼1

fjWT j2ju�eij2 � hWT ; u�eii
2g:

Let W :¼ fW A GðEÞ;‘ 0W ¼ 0g, then W with natural inner product

is isomorphic to Rnþ1. Define a quadratic form Q on W by QðWÞ :¼Ð
M
F 0 jduj2

2

� �
� qðWÞ�1. Taking an orthonormal basis fW1;W2; . . . ;Wn;Wnþ1g

of W with respect to its natural inner product, from (5.5), we obtain
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Xnþ1

j¼1

IðWT
j ;WT

j Þa
Xnþ1

j¼1

QðWjÞ ¼ trace Q ¼
ð
M

F 0 jduj2

2

 !
ðtraceðqÞÞ�1:

Since traceðqÞ is independent of the choice of orthonormal basis on

each fibre of E, at each point x A M, we can choose an orthonormal basis

fW1;W2; . . . ;Wn;Wnþ1g of W with respect to a natural inner product, such

that W1;W2; . . . ;Wn tangent to N. Then, at point x A M, we have from (5.1)

and (5.6)

traceðqÞ ¼ ð2cF þ 1Þ
(Xnþ1

j¼1

Xm
i¼1

jð‘ 00
u�ei

WjÞT j2

þ
Xnþ1

j¼1

hWj; ei
2jduj2 � 2

Xnþ1

j¼1

Xm
i¼1

hWj; eih‘
00
u�ei

W T
j ; u�eii

)

� 2d

1þ d

Xnþ1

j¼1

Xm
i¼1

fjWT
j j2ju�eij2 � hWT

j ; u�eii
2g

¼ ð2cF þ 1Þ
(Xnþ1

j¼1

Xm
i¼1

Xn
k¼1

h‘ 00
u�ei

Wk;Wji
2 þ jduj2

� 2
Xm
i¼1

h‘ 00
u�ei

Wnþ1; u�eii

)
� 2d

1þ d
ðn� 1Þjduj2

a ð2cF þ 1Þ
Xm
i¼1

Xn
k¼1

j‘ 00
u�ei

Wkj2 þ jduj2 þ k3ðdÞjduj2
( )

� 2d

1þ d
ðn� 1Þjduj2

a ð2cF þ 1Þ n

4
k2
3 ðdÞ þ k3ðdÞ þ 1

	 

� 2d

1þ d
ðn� 1Þ

� �
jduj2

¼ ~FFn;F ðdÞjduj2:

Hence,

trace I ¼
Xnþ1

j¼1

IðWT
j ;WT

j Þa
ð
M

F 0 jduj2

2

 !
� ~FFn;F ðdÞ � jduj2�1:ð5:7Þ

If u is F -stable, then trace I b 0, when ~FFn;F ðdÞ < 0, from (5.7), we must have

jduj ¼ 0, i.e. u is constant, which completes the proof of theorem 2.
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