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ABSTRACT. Let M”" be a compact convex hypersurface in R™'. 1In this paper, we
proved firstly that if the principal curvatures 4; of M" satisfy 0 < 1) <--- </, and
In < Z;;l /j, then there exist no nonconstant stable F-harmonic map between M and
a compact Riemannian manifold when (1.2) or (1.3) holds (Theorem 1). This is a
generalization or unification of the corresponding results for several varieties of har-
monic map. Then, when the target manifold is J-pinched, using a new estimate
method, we obtain the Liouville-type theorem (Theorem 2) for stable F-harmonic map,
which improves the results of M. Ara in [2].

1. Introduction

The instability for harmonic map (as well as p-harmonic map), from or
into standard unit sphere S” in Euclidean space R"*!, is well-known. For
example, there exists no nonconstant stable harmonic (or p-harmonic) map
either from S” to any Riemannian manifold [12] (or [11]), or from any compact
Riemannian manifold to S” [6] (or [3]). In this paper, for a smooth function
F:[0,00) — [0,c0) such that F'(r) >0 on te(0,00), we concern with the
instability of F-harmonic maps which is the generalization and union of the
harmonic, p-harmonic or exponentially harmonic maps, introduced by M. Ara
in [2].

M. Ara [1] proved that every stable F-harmonic map u: M — S”" is con-
stant, provided that

|du|?
2

2
+2—-n)F' @ x1 < 0.

(1.1) J |du|?{ |dul*F"
M

In contrast with this, as far as I know there is few result when the source
manifold is S”. In this paper, however, we can prove the following instability
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property of F-harmonic maps which are from or into the compact convex
hypersurfaces in Euclidean space.

THEOREM 1. Let M" = R™™ be the compact convex hypersurface. As-
suming that the principal curvatures J; of M" satisfy 0 < A <--- <2, and
dn <3000 12 Let F : [0,00) — [0,00) be a smooth function such that F'(t) >0
onte (0 oo). Then every nonconstant F-harmonic map u between M" and any
compact Riemannian manifold N is unstable if there exists a constant cp :=
inf{c > 0| F'(z)/t° is nonincreasing} such that

1 n
(12) CFr <7 1111[12][{/1[(]-21/1/2/1,')},

or, when F"(t) = F'(t) (for example F(t) =exp(t)),

(1.3) |M|<j—mm{ <zy, )}

REMARK 1. Theorem 1 obviously includes Ara’s results [1] as a special
case in a certain sense. In the case where F(f) = (Zt)f”/2 (p=2o0rd<p< ),
the constant c¢r equals (p/2) — 1, therefore, theorem 1 includes all the corre-
sponding results in [3, 6, 11, 12] as special cases.

When M" = S”, the standard unit n-sphere, then the conditions (1.2) and
(1.3) become respectively

n
(1.4) er <51,
(L.5) |du|* <n—2.

In this case, we have the following

COROLLARY 1. With the same assumptions about the function F as in
theorem 1, then every nonconstant F-harmonic map u, from S" into any compact
Riemannian manifold N or from any compact Riemannian manifold N into S", is
unstable when (1.4) or (1.5) is true.

REMARK 2. In the case of nonconstant harmonic maps or p-harmonic
maps, the condition (1.4) implies that n > 2, n > p, respectively. Therefore,
corollary 1 is an extension of [6, 12] and [3, 11] for the stability of harmonic
maps and p-harmonic maps, respectively.

REmMARK 3. In the case of nonconstant exponentially harmonic map, i.e.
F(t) = exp(¢), although the constant ¢ does not exist, the condition n —2 >
|du|* is necessary. For example, taking u: (S, go) — (S, go) be the identity
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map, where S” is the standard unit sphere with canonical metric gg, it is well-
known that u is stable, but in that case, |du|2 =n>n—2. Hence, corollary 1
is also an extension of [5] and [7] for the stability of exponentially harmonic
maps.

When the target manifolds are J-pinched, using a new estimate method,
we obtain the following Liouville theorem of stable F-harmonic map, which
improves the results of M. Ara [2].

THEOREM 2. Every stable F-harmonic map u: M — N, from compact Rie-
mannian manifold M into a compact simply-connected o-pinched n-dimensional
Riemannian manifold N, is constant, provided that there exists a constant cg =
inf{c > 0| F'(z)/t° is non-increasing} such that n and o satisfy (1.4) (or equiv-
alently 2cp+1 <n—1) and

- n, 5 20
(1.6) D, r(0) := (2¢r + 1){Zk3 (0) + k3(0) + 1} - m(n —-1)<0.

REMARK 4. M. Ara [2] proved that: every stable F-harmonic map, from
compact Riemannian manifold into n-dimensional J-pinching manifold, is con-
stant, provided that » and J satisfy n > 2(¢p + 1) and

20
140

n—+1

(1.7) @, r(6) := (2cF+1){ k32(5)+\/n+1k3(6)+1}— (n—1)<0.
Obviously, 95,1’ F(0) < @, r(d), so theorem 2 is much better than that of M. Ara
in [2]. In the case where F(r) = (21)1’/2 (p=2or 4<p< ), the constant
cr equals (p/2) — 1. So Theorem 2 is a unification and generalization of the
well-known results for harmonic maps and p-harmonic maps obtained by T.

Okayasu in [8] and H. Takeuchi in [11].

2. Preliminaries

Let F :[0,00) — [0,00) be a C-function such that F’(z) > 0 on 7 € (0, ).
For a smooth map u : (M,g) — (N,h) between compact Riemannian manifolds
(M,g) and (N,h) with Riemannian metric g and A, respectively. Following
M. Ara [1], u is F-harmonic if it represents a critical point of the F-energy
integral

2
(2.1) Er(u) = JMF<d;| >*1,

m

where |du|? is the energy density defined as 3 |du(e;)|?, m = dim M, for a local
=1

orthonormal frame field {¢;} on M, and x1 is the volume element of (M, g).
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For example, when F(1) = ¢, (26)"/*/p, (1 +26)*(o > 1,m = 2) and exp(#),
F-energy is the energy, the p-energy, the a-energy of Sacks-Uhlenbeck [10] and
the exponential energy respectively. So F-harmonic map can be viewed as
one of the unified theory for several varieties of harmonic map. On the other
hand, we can see results for harmonic maps, p-harmonic maps or exponentially
harmonic maps in a different viewpoint.

Denoted by V and V the Levi-Civita connections of M and N respec-
tively. Let u~'TN be the induced vector bundle by u over M, and I'(u"'TN)
the space of all sections of ¥ !TN. V denotes the induced connection on the
induced bundle » 'TN from V and u defined by Vy W =V, y W, here X is a
tangent vector of M and W is a section of ¥ !TN. With these symbols, then,
the Euler-Lagrange equation of the F-energy functional Er can be written

(22) rF(u) = i{ﬁei (F/ (%) M*€i> —F' (%) u*Ve;ei}
i=1
—F <|d;|2> w(u) + u*{grad <F’ (ld;|2>> },

where 7(u) is the tension field along u. From now on we use the summation
convention.

We need the following second variation formula for F-harmonic maps (cf.
[1]). Letu: M — N be an F-harmonic map. Let u;,: M — N(—&e <s,t<¢)
be a compactly supported two-parameters variation such that uy ¢ = u, and set

V== oo’ W=- o Then
52
(2.3) @EF(uSJ)‘X,I:O
_ " |du|2 7 Vi
=| F - KVV,duyXVW, duy*1
M

| 2

(190 o o NS
JrJMF <2> ~{<VV,VW>—21:h(R (V,u.e;)u.e;, W)}*l,

i=

where (-,-> is the inner product on T*M @ u~'TN and R" is the curvature
tensor of the manifold N, i.e. RY(X,Y) = [Vx,Vy] — V|x, y for vector fields X,
Y on N.

We put

(')«2

(2'4) I( v, W) = @ EF(us,t)

s,t=0
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An F-harmonic map u is called F-stable or stable if I(V,V) >0 for any
compactly supported vector field V' along u.

3. F-harmonic maps from compact convex hypersurfaces

In the following two sections, we will discuss separately when the source
manifolds or the target manifolds are compact convex hypersurfaces in Eucli-
dean space, and obtain Proposition 1 and Proposition 2 respectively. Then,
combining two Propositions, we had proved Theorem 1 at the end of section 4.

In this section, we study the instability for F-harmonic map from compact
convex hypersurfaces into a compact Riemannian manifold, and obtain the
following

ProPOSITION 1. With the same assumptions on M" and F as in Theorem 1.
Let u: M" — N be a nonconstant F-harmonic map into compact Riemannian
manifold N, if (1.2) or (1.3) holds, then u is unstable.

ProOF. In order to prove the instability of u: M" — N, we need to
consider some special variational vector fields along u. To do this, choosing
an orthogonal frame field {e;,e,.1}, i=1,...,n, of R*"! such that {¢;} are
tangent to M" < R"™', ¢,.; is normal to M" and V,ej|, =0. Meanwhile,
taking a fixed orthonormal basis E4, 4 =1,...,n+ 1, of R™ and setting

(3.1) Vi= Zvi}ei, vy = (Eq, e, it = (Eq enin),
i=1

where {-,-> denotes the canonical Euclidean inner product. Then u,V, e
I'(u'TN) and

(32) > vivh = " (Ea e Ea ey =6y,
A A
(3:3) Ve, Va = vl hye;,

(34) Ve,(Ve,Va) = —vihichye; + v (Vehy)e;,

(3.5) Ve (du(Ve, V) = —vhhichy(du(e))) + vl (Vo i) (du(e;))
+ 0" Ve ue),

where, h; denotes the components of the second fundamental form of M” in
Rn+1 )

From now on, suppose that u: M" — N is a nonconstant F-harmonic
map, we shall use the variational vector fields u. V), to prove the instability of
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u. Firstly, by using F-harmonicity condition d* (F’ (ld"‘ )du) =0 and (3.2),
we have

(3.6) ZJWF ('d‘" ><A du(Vy), du( V) ysl

A

ZJ <|du| ) gvfi(A du(e;), du(e;) y+1
J , (1duf?
_ M”F 5 <O dule;), du(e;) yx1

; o o 1duf?
= d* du,d*| F'| —— |du | )x1 =0.
M 2

It follows from Weitzenbock formula that

(3.7) =R (u,Vy,du(e;))du(e;) + u, Ric™" (V) = A du(Vy) +V? du(Vy).

With respect to the variational vector fields u, ¥, along u, it follows from (3.6)
and (3.7) that

(3.8) > IV u V)
A

J F’ <|—> Vu, Vy, dud?«l
M 2

"‘ZJW <|du| >{|V Val? + <V du(Va),u Vi
7]

— Qe Ric™ (W), u, V)l

Notice that V> =V, V, — ﬁVe[e,-a for any fixed point P e M, choose {¢;} such
that V,ej|p =0. Then

(3.9)  V2du(Vy) = V.V (du(Vy)) — 2V, (du(V, Va)) + du(V,.V., V1),

and

/ |du|2 YR v,
(3.10) J F S | VeV (du(Va), du(Va) ys1

:_JW< (du(VA))\?< (%)du(m»ﬂ
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J . o (o ((1dul?
=1 Ve, (du(V4)),Ve, | F - du(Vy) )1
2
- JW F’ (@) IV (du(Vy))| 1.

Substituting (3.9) and (3.10) into (3.8), we get therefore

2
(3.11) ZI(M*VAvu*VA):ZJ {F,/<M><ﬁu*VAadu>2
4 - 2

A

_ <\z,.(du(VA)),\Z, (F’ <|d;|2>>du(VA)>}*l

=3 ('d”' >{< 27, (@u(V. V)

+ du(V, Ve, Vi) — u, Ric™" (Vy),u, Vyd}xl

::J (1) + (D)}l
»

In the following, we shall estimate the two parts (I) and (II) in (3.11)
separately. Because trace is independent of the choice of orthonormal basis,
we can take pointwisely {e;, e,11} such that h; = 4,0;. From Gauss formula it
follows that

(3.12) Ric™" = v/, (hachy — hahy)e;.
Using (3.3), (3.4), (3.5) and (3.12), we can easily obtain

(3.13) J (H)*l :J F' (|du| )Z{<2UA zkht]u*ej UAhkkhl]u*ejvau*el>}*l
Mn M’l

d
7JM ( u|>2{< n+1th/ u*e}

1) © !
+ 205 Vo e, vy uge ) xl

dul?
= J F' (%) Qhjhju.e; — higchyjue;, u.e;yx1
Mﬂ

2 n
/[ 1dul” N ) aldul?
JMnF ( 5 ) lrilia<xn<2}v, ;Ak> Jaldul 1.

IA
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In order to estimate part (I) in (3.11), a straightforward computation then
shows

= |du|?
(3.14) zA:< V.. (du(Vy)),V., ( ( 5 ))du(VA)>

d d 7 '
- ZF/ (l u| ) <| u| ><vn+1hlku*ek + Uﬁvu*ez‘”*ek’ Uiu*€j>

F”('d”| ><VL, du, dud?,

and

2
(3.15) ZF”('d; ><\?u* Vi, duy?
A

du -
= ZF <| | " e + 08V, e, w00
y

(5
[

> {hachji{user, use;yluse, u.ejy

+ 24V e tte, u*ei><7u*¢fu*e/c, u.e;)}

|du|

) {Didi<user, use;yuses, use;y + Ve, du, dup?}.
Then, it follows from (3.14) and (3.15) that

(3.16) J n(I)*l = JM” F”('d;{| )liﬂvj<u*ei,u*ei><u*e]‘,u*ej>>c<1.

By the assumption in Theorem 1, if F”(¢f) = F'(¢), then (3.16) leads to the
inequality

(3.17) J (D)+1 < J F’ <|d”| >/12|d 441,

if there exists a constant ¢y such that F'(z)/¢F is non-increasing, it follows that
F"(t)t < cpF'(t) on te(0,00), thus (3.16) implies

2
3.18 D+l < 2cpF' Iduf” 22| du| 1.
2 n

Finally, substituting (3.13), (3.17) or (3.18) into (3.11), we obtain
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(3.19) > (. Va,u.Vy)
A
|d”| 52 2 ~
< F' |d| 2,|du|” + max 2/1i—ZAk Ai p*1,
Mn 1<i<n =
or
(320) > I(u.Va,u.Va)

A
<| F ‘d”| Idul?{ 2¢ 25— 0 s
< FA + max | 24, Zik Ai pxl,
n 1<i<n —l

either of which implies that Y I(u, V4, u.V,) < 0 if u is nonconstant and (1.2)
4

r (1.3) holds. Therefore, there exists at least one V;e {Vy,...,V,11} such
that

HuVi,uV;) < 0.

That is, F-harmonic map u is not stable. This completes the proof of the
Proposition 1.

4. F-harmonic maps into compact convex hypersurfaces

In this section, we study the instability for F-harmonic map from any com-
pact Riemannian manifold N into compact convex hypersurface M" < R"*!,
and obtain the following

PROPOSITION 2. With the same assumptions on M" and F as in Theorem 1.
Let u: N — M" be a nonconstant F-harmonic map from m-dimensional compact
Riemannian manifold N, if (1.2) or (1.3) holds, then u is unstable.

ProOF. Denoted by V the induced connection on u~'TM”" (notice that,
we use the same symbol V as in proposition 1, but different meaning). Taking
the same vector fields V4, A=1,...,n+ 1, as in proposition 1. A straight-
forward computation similar to Theorem 5 in [9], we obtain

(41) ZI(VA’ VA) = JN F,,<|du > (Z A oa)

()Pl e
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where " u2 = |du|>. According to the assumptions on the function F, if

F"(1) :}7’([), then we get from (4.1)

42 I

< JNF ('d“ >|d | {/12|du| - m13n<zﬂ,—2z>ﬂ,}*1

or, if there exists a constant ¢y such that F'(f)/t" is non-increasing, then we
obtain from (4.1)

43) > I(Va, Va)
A

< JNF <|d”| >|du| {m ¢ — min <Z,1 )i,}*l.

Now, if u: N — M" is a nonconstant F-harmonic map and (1.2) or (1.3) holds,
then we have from (4.2) or (4.3),

S (V4 Va) <0
A

which implies that there exists at least one V;e{Vi,...,V,.1} such that
1(Vi, Vi) <0,

so, F-harmonic map u: N — M" is unstable. This completes the proof of
Proposition 2.

ProOOF OF THEOREM 1. Combining Proposition 1 (in section 3) and Prop-
osition 2 (in section 4), Theorem 1 had been proved immediately.

5. F-harmonic maps into J-pinched manifolds

PROOF OF THEOREM 2. From now on, we assume that (N, /) is a compact
simply-connected J-pinched Riemannian manifold (i.e. its sectional curvature
ky satisfy § < ky <1). Deform the Riemannian metric 4 of N conformally
to ”(’ - h (also denoted by /). We can set the sectional curvature equal to lzf(;.
Let E denote the Whitney sum E = TN @ ¢(N) of the tangent bundle TN and
the trivial line bundle ¢(N) = N x R with the canonical metric. Let ¢ be a
cross-section of unit length in ¢(N). We define a metric connection V” on E

as follows:
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ViY = VyY —h(X,Y)e;
Vie=X,

where X and Y are vector fields on N. According to the results in [4], there
exists a flat connection V' such that

(5.1) V' =Vl < 5ks(9),

NI*—‘

where the distance of two connections V', V" defined by
V' =V"| =max{|[VyY - VyY[; X e TN, | X[ =1, Y e ['(E), | Y| = 1},

and

-2
k3(0) = kz(é)\/l + (1 - inzaq (5))2) .

Taking a cross-section W of E and denoting W7 the TN-component of
W. Then, with the orthonormal frame field {e;};",, m = dim M, we obtain

(52) 1wt wh

:J F//<|d | >Z<Ve,WT u*e> %1
M

( i=1
F" | |d”| alr T2
g |du|® + F’ > Ve w1
i=1

<|du > Zh (RY(W T u.e;)u.e;, WT)x1

=

) Z{|V W2 —h(RY(W T, u.e)u.e;, wT)}«l

|du| - T2
< {2cr +1 V w
| F ( RCERATE

—hRY(WT  uer)u.er, W)},
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where we have used in the last inequality the assumption which says that
F'(r)/tF is non-increasing, i.e. F"(¢)t < cpF'(f) on t€ (0, 00).
Meanwhile, we observe that

vwl =%, wT

=V’ WT W7 uede

u.e;

=V (W —<W,ede) +<{WT u.ede

u.e;

=" W) — (W, eduse,.

u.e;

Then, we have

(5:3) Y WewT? ZI Vi o W) 1P+ W, €)% |dul?

i1
—2Z<W eV W ue).
Since N is d-pinched, so

(54) WRYWT ue))ue;, W) > {|WT\2\ il — W ued?).

_1+6

Substituting (5.3) and (5.4) into (5.2), we obtain

T T /<|d”|2>
(5.5) W w )gJ ) oy,
M 2
where
(5.6) q(W) = (2cr + 1){ Z (V0 )T+ <, e)?|dul?
i=1

=2 KW, eV W, u*ei>}
i=1

1+5Z{‘WT| |u*e,| _<WT u*€,> }

Let # :={W el'(E);V'W =0}, then % with natural inner product
is isomorphic to R""!. Define a quadratic form Q on % by Q(W):=

Ju F' (ld"‘ ) -q(W)x1. Taking an orthonormal basis {W, Wa,..., W,, W1}
of #" with respect to its natural inner product, from (5.5), we obtain
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n+1 T n+1 . |du|2
ZI (W Z O(W;) = trace Q = JMF 5 (trace(q))=1.

Since trace(q) is independent of the choice of orthonormal basis on
each fibre of E, at each point x € M, we can choose an orthonormal basis
{W, Wy, ..., Wy, Wyi1} of #° with respect to a natural inner product, such
that W, W,,..., W, tangent to N. Then, at point x € M, we have from (5.1)
and (5.6)

trace(q) = (2cr + 1 {Z Z| VoW,

n+1 n+l m

+ Y W e dul? = 2> S (W eV, W,-T,u*e,»>}
j=1 j=1 i=1

n+l m

1+5ZZ{|WT e —<WT u.e;»’}

n+1

+

= (2¢p + 1){ VY Wi, Wi»? + |dul®
1

m
1 i=1 k=

J

m

25 ,
_2Z<V n+17u*el>} 1+5(n_1)|du|

i=1 k=

20
140

(n — 1)|dul?

< {(2cF +1) Ek?(&) +ka(0) + 1] - lz_fé(n - 1)}|du|2

= @, ;(0)|dul’.

Hence,

n+1 2
T T /|y = 2
(57)  wace =3 I(WT,W, )SJMF ( - >.¢H7F(5).|du| .

=

If u is F-stable, then trace I >0, when @, »(5) <0, from (5.7), we must have
|du| =0, i.e. u is constant, which completes the proof of theorem 2.
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