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ABSTRACT. The purpose of this paper is to study the extendibility and the stable
extendibility of vector bundles of real projective spaces and those of their complex-
ifications. We determine the dimension m for which the complexification of the tangent
bundle of the n-dimensional real projective space RP" is extendible to RP™ for n = 6 or
n>7, and determine the dimension n for which the square of the tangent bundle of
RP" or its complexification is extendible to RP™ for every m > n.

1. Introduction

Let X be a space and A be its subspace. A t-dimensional F-vector bundle
{ over A is called extendible (respectively stably extendible) to X, if there is a
t-dimensional F-vector bundle over X whose restriction to A is equivalent
(respectively stably equivalent) to { as F-vector bundles, where F is the real
number field R, the complex number field C or the quaternion number field H
(cf. [8] and [3]). Let R" be the n-dimensional Euclidean space, RP" be
the n-dimensional real projective space and 7(RP") be the tangent bundle of
RP".

First, we study the question: Determine the dimension m with m > n for
which a vector bundle over RP” is extendible to RP™. We have obtained the
complete answer for the tangent bundle 7(RP") in [4, Theorem 6.6].

For an R-vector bundle and a C-vector bundle over RP" we have

THEOREM 1. Let { be a t-dimensional R-vector bundle over RP". If n < t,
{ is extendible to RP™ for every m with n <m < t.

THEOREM 2. Let { be a t-dimensional C-vector bundle over RP". If
n<2t+1, { is extendible to RP™ for every m with n <m < 2t + 1.

For the complexification of the tangent bundle 7(RP"), we have
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THEOREM 3. Let ct be the complexification ct(RP") of the tangent bundle
t(RP"). Then ct is extendible to RP*"!, but is not stably extendible to RP*2
ifn=6o0orn>7 Ifn=173 or 7, ct is extendible to RP™ for every m with
m > n.

Second, we study the question: Determine the dimension n for which a
vector bundle over RP" is extendible to RP™ for every m with m >n. We
have obtained the complete answer for the normal bundle v associated to an
immersion of RP" in R*"*! in [7, Theorem A], and its complexification ¢v in [7,
Theorem 4.4]. For the square 7> = 7(RP") ® t(RP") of the tangent bundle
7(RP") and its complexification ¢z?, we have

THEOREM 4. Let 2 be the square t(RP") ® t(RP") of the tangent bundle
of RP". Then the following three conditions are equivalent:
(1) 72 is extendible to RP™ for every m with m > n,
(2) 12 is stably extendible to RP™ for every m with m > n,
(3) I<n<l6.

THEOREM 5. Let ct? be the complexification ¢(t(RP") ® t(RP")) of the
square of the tangent bundle of RP". Then the following three conditions are
equivalent:

(1) ¢t? is extendible to RP™ for every m with m > n,
(2) ¢t is stably extendible to RP™ for every m with m > n,
(3) I1<n<I7.

This note is arranged as follows. We prove Theorem 1 in §2. In §3 we
study the Whitney sum decomposition of the square of the tangent bundle of
the real projective space and prove Theorem 4. In §4 we prove Theorem 2
and the part of the extendibility of Theorem 3. In §5 we prove the part of the
non-extendibility of Theorem 3, study the Whitney sum decomposition of the
complexification of the square of the tangent bundle, and prove Theorem 5.

2. [Extendibility of an R-vector bundle over the real projective space

Let &, be the canonical R-line bundle over RP". The ring structure of
KO(RP") is determined in [1]. We recall the results which are necessary for
our proofs. We use the same letter for a vector bundle and its isomorphism
class.

(2.1) [1, Theorem 7.4]. (1) The reduced KO-group KO(RP") is isomorphic
to the cyclic group Z/2%™, generated by &, — 1, where ¢(n) is the number of
integers s such that 0 <s<n and s=0,1,2 or 4 mod 8. (2) (&,)*=1.
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Let d denote dimg F, where F = R,C or H. For a real number x, let [x]
denote the smallest integer n with x <n. The following facts are known (cf.
[2, Theorems 1.2 and 1.5, p. 99-p. 100]).

(2.2). Letm={[(n+1)/d—1]. Then every t-dimensional F-vector bundle
over an n-dimensional CW-complex X is isomorphic to o @ (t — m) for some m-
dimensional F-vector bundle o over X if m <t, where @ denotes the Whitney
sum and t —m denotes the (t —m)-dimensional trivial F-vector bundle over X.

(2.3). Let/=[(n+2)/d—1]. Ifoandf are two t-dimensional F-vector
bundles over an n-dimensional CW-complex X such that / <tand a Dk =Dk
for some k-dimensional trivial F-bundle k over X, then o = f.

Using (2.1), (2.2) and (2.3), we prove Theorem 1.

ProOF OF THEOREM 1. It follows from (2.1)(1) that { is stably equivalent
to k¢, for some non-negative integer k. So there are trivial R-bundles u and v
over RP" of dimensions u and v respectively such that (@ u=k&é, @v. Let
n<m. Then

(@u=i"(ké, ®v),

where i: RP" — RP" is the inclusion. Note that k+v—m>k+v—m—u
=t+u—-m—-u=t—m=01if m<t By (2.2) there is an R-vector bundle «
over RP™ of dimension m (= [(m+1)/1—1]) such that

kéy ®@v=0@ (k+v—m),
since m <t. Hence we have
(Bu=i"a@k+v—m)=i"(a®k+v—m—u)) Du.
Therefore, by (2.3),
(=i"(0® (k+v—m—u)),
since [(n+2)/1—-1]=n+1<1t q.e.d.

THEOREM 2.4. Let w be an integer > 1 and let t" be the w-fold tensor
product T(RP™)" of the tangent bundle T = t(RP"). Then t" is extendible to
RP™ for every m with n <m < n".

Proor. Since dim " = nr", the result follows from Theorem 1. q.e.d.

3. Extendibility and stable extendibility of the square of the tangent bundle
of the real projective space

LemMaA 3.1.  Let 2 = 1(RP") ® t(RP") be the square of the tangent bundle
7 =1(RP") of RP". Then the equality
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= (a2 —2n = 2)&, + (n+ 1) + 1 — 29"
holds in KO(RP"), where a is any integer.

PROOF. Since 1@ 1 = (n+ 1)&,, we have, by (2.1), 2 = (n+ 1)%(&,)* —
2n+1)é, + 1 = (a2™ —2n—2)&, + (n+1)> +1 — a2¢™ in KO(RP") for any
integer a. q.e.d.

THEOREM 3.2. Let t(RP")* = 1(RP") ® t(RP") be the square of the
tangent bundle of RP". Then we have the Whitney sum decompositions:

(RPY)? =1, 7(RP?)* =25, @2, t(RP3)? =

T(RP4)2 =6, @ 10, (RP)? =45@21, t(RP%)* = 256 ® 34,

7(RP7)? = 49, 7(RP®)? = 145, @50,  T(RP%)* = 12&, @ 69,

T(RP1)? = 42510 @ 58, (RP™M)? = 40¢), @ 81, T(RP'2)? =102¢), @42,
7(RP)? = 1005 @ 69, t(RP™)? = 98¢, @98, 7(RP')* =96¢,s @ 129

and T(RP'9)? = 222¢,6 @ 34.

Proor. For 2<n<8 put a=2 and for 9<n<l16, put a=1.
Then the equalities above follow from Lemma 3.1 and (2.3). The case n =1 is
clear. q.e.d.

REMARK 3.3. 7(RP')? = 476¢&,, — 187.

The following result is Theorem 4.1 in [6] which is the stably extendible
version of Theorem 6.2 in [4].

(3.4). Let { be a t-dimensional R-vector bundle over RP". Assume that
there is a positive integer ¢ such that { is stably equivalent to (t+ /)¢, and
t+¢ <29 Thenn < t+ ¢ and { is not stably extendible to RP™ for every m
with m>t+/.

LemMA 3.5. Define /(n) =2%" —n> —2n—2. Then /(n) >0 if n>17.

PrOOF. As is seen in the table below, the inequality /(n) > 0 holds for
integers n with 17 <n < 24 clearly.

n 17 18 19 20 21 22 23 24

=4 | i=5|i=6|i=7|i=0
21 s=2|s=2|s=2|s5=3

/(n) 187 662 623 | 1606 | 1563 | 1518 | 1471 | 3470

For larger values of n, we have /(n) > 0 by induction on s. q.e.d.
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THEOREM 3.6. 1> = t(RP") ® t(RP") is not stably extendible to RP™ for
every m with m>2%" —2n—2 if n > 17.

PrOOF. According to Lemma 3.1, 2 is stably equivalent to (20" —2n—
2)&,. Setting { =12, t =n? and £ = /(n) = 2% —n? —2n — 2 in (3.4), we see
that 72 is not stably extendible to RP™ for every m with m > 2" — 25 — 2,
since 290 —p? —2n—2>0 for n>17 by Lemma 3.5 and 2% —2n—2 <
2401), q.e.d.

ExamPLE 3.7. 12 = t(RP'7) ® t(RP"") is not stably extendible to RP™ for
every m with m > 476.

ProOF OF THEOREM 4. It is clear that (1) implies (2). The fact that (2)
implies (3) is a consequence of Theorem 3.6. Since &, and the trivial bundles
over RP" are extendible to RP™ for every m with m > n, Theorem 3.2 shows
that (3) implies (1). g.e.d.

4. Extendibility of a C-vector bundle over the real projective space

The ring structure of K(RP") is determined in [1]. We recall the result
which is necessary for our proofs.

(4.1) [1, Theorem 7.3]. The reduced K-group K(RP") is isomorphic to the
cyclic group Z /2" generated by c(&, — 1), where |n/2| denotes the integral
part of n/2.

Using (4.1), (2.2) and (2.3), we prove Theorem 2.

PrOOF OF THEOREM 2. It follows from (4.1) that { is stably equivalent to
ke, for some non-negative integer k. So there are trivial C-bundles « and v
over RP" of dimensions u and v respectively such that { @ u = k¢, ®v. Let
n<m. Then

CIC‘B u= i*(kcém ® U)7

where i: RP" — RP™ is the inclusion. Note that k+v—/>k+v—/—u
=t+u—/—u=t—/>0if /<t By (2.2) there is a C-vector bundle « over
RP™ of dimension 7/ (= [(m+1)/2—1]) such that

ke, @v=a0® (k+v—/7),
since / <t. Hence we have
(Pu=i"a®k+v-0)=i"(0®k+v—7¢—u)) Du.

The inequalities n < m < 2t + 1 show that [(n+2)/2—-1] < [(m+1)/2—-1] =
¢/ <t. Therefore, by (2.3), we obtain
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(=i"(a® (k+v—7¢—u)). q.e.d.

THEOREM 4.2. Let w be a positive integer and let ct" be the complex-
ification of the w-fold tensor product " = t(RP™)". Then ct" is extendible to
RP™ for every m with n <m <2n" + 1

ProoOF. Since dim c¢z" = n", the result follows from Theorem 2. q.e.d.

COROLLARY 4.3. ¢t = ct(RP") is extendible to RP¥*.

5. Extendibility and stable extendibility of the complexification of the square
of the tangent bundle of the real projective space

LemMA 5.1. Let ct® = ¢(z(RP") ® ©(RP")) be the complexification of the
square of the tangent bundle of RP". Then the equality

et = (B2 —2n —2)cé, + (n+1)> + 1 — p2ln/?
holds in K(RP"), where b is any integer.

Proor. Complexifying the equality 2= —2(n+ 1)&, + (n+ 1) + 1 (cf.
Lemma 3.1) and using (4.1), we have the equality above. g.e.d.

THEOREM 5.2. Let c¢t(RP")* = ¢(t(RP") ® t(RP")) be the complex-
ification of the square T(RP") ® t(RP™). Then we have the Whitney sum
decompositions:

ct(RPY? =1, ct(RP)? =4, c1(RP?)* =09,

ct(RPH)? = 6¢£4 @ 10, ct(RP%)? = 25,

ct(RPS)? = 2¢&6 @ 34, ct(RP7)? = 49,

ct(RP®)? = 14¢és @ 50, ct(RP%)? = 12¢89 @ 69,
ct(RP')? = 42¢,, ® 58, ct(RPM)? = 40¢&), @ 81,
ct(RP'2)? = 102¢&), @ 42, ct(RP')? = 100¢é3 @ 69,
ct(RP'™)? = 98¢, ® 98, ct(RP'5)? = 96¢&15 @ 129,
ct(RP)? = 222¢&16 ® 34 and  ct(RP'T)? = 220¢&,; @ 69.

Proor. Since |n/2]| < ¢(n), complexifying the equalities in Theorem 3.2,
we have the equalities above except for n =2,5 and 17. Considering the
relations 2¢é, —2 =0 for n =2, 4¢{5s —4 =0 for n =15 and 256¢&;; — 256 =0
for n =17 (cf. (4.1)) and using (2.3), we have the equalities above from those in
Theorem 3.2 and Remark 3.3. g.e.d.

The following result is Theorem 2.1 in [6] which is the stably extendible
version of Theorem 4.2 for d =1 in [5].
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(5.3). Let { be a t-dimensional C-vector bundle over RP". Assume that
there is a positive integer ¢ such that { is stably equivalent to (t + ¢)c&, and t + £
<202 Then |nj2| < t+¢ and { is not stably extendible to RP™ for every m
with m > 2t + 2/.

THEOREM 5.4. Let ct = ct(RP") be the complexification of the tangent
bundle T(RP"). If n=6 or n> 17, ct is not stably extendible to RP™ for every
m with m > 2n + 2.

Proor. Putting {=ct(RP"), t=n and /=1, we have the result
from (5.3), since ct(RP")® 1= (n+1)c&, and n+1<2"2 if n=6 or
n>"7. q.e.d.

ProorF OF THEOREM 3. The first part follows from Corollary 4.3 and
Theorem 5.4. The second part is a consequence of the fact that t(RP") is
trivial for n=1,3 and 7. g.e.d.

LEMMA 5.5. Define /(n) =202 —n> —2n—2. Then n*+/(n) < 21"/?,
and if n > 18, /(n) > 0.

Proor. Since 212 —n? — /(n) = 2n+2 >0, we have n® + /(n) < 21"/2,
The inequality /(n) > 0 holds for n = 18 and 19 clearly. For larger values of
n, we have /(n) >0 by induction. q.e.d.

THEOREM 5.6. ¢t = ¢(7(RP") ® t(RP")) is not stably extendible to RP™
for every m with m > 2"2+" —4n — 4 if n > 18.

PrOOF. According to Lemma 5.1, ¢7? is stably equivalent to (2U/2 — 2n —
2)cé,. Setting { =ct?, t=n? and £ = /(n) = 2" —n? —2n—2 in (5.3), we
see that cr? is not stably extendible to RP” for every m with m > 2l"/2+!1
—4n — 4, since /(n) >0 and ¢+ /(n) < 21"/2 then by Lemma 5.5. q.e.d.

ExAMPLE 5.7. ¢t = ¢(t(RP'®) ® t(RP'®)) is not stably extendible to RP™
for every m with m > 948.

PrOOF OF THEOREM 5. It is clear that (1) implies (2). The fact that (2)
implies (3) is a consequence of Theorem 5.6. Since ¢&, and the trivial bundles
over RP" are extendible to RP™ for every m with m > n, Theorem 5.2 shows
that (3) implies (1). q.e.d.
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