Extendibility and stable extendibility of vector bundles over real projective spaces

Teiichi Kobayashi and Kazushi Komatsu (Received April 3, 2000) (Revised June 5, 2000)

ABSTRACT. The purpose of this paper is to study the extendibility and the stable extendibility of vector bundles of real projective spaces and those of their complexifications. We determine the dimension m for which the complexification of the tangent bundle of the n-dimensional real projective space RP^n is extendible to RP^m for n = 6 or n > 7, and determine the dimension n for which the square of the tangent bundle of RP^n or its complexification is extendible to RP^m for every m > n.

1. Introduction

Let X be a space and A be its subspace. A t-dimensional F-vector bundle ζ over A is called extendible (respectively stably extendible) to X, if there is a t-dimensional F-vector bundle over X whose restriction to A is equivalent (respectively stably equivalent) to ζ as F-vector bundles, where F is the real number field R, the complex number field C or the quaternion number field C (cf. [8] and [3]). Let C be the C-dimensional Euclidean space, C be the C-dimensional real projective space and C be the tangent bundle of C of C the quaternion number field C or the quaternion number C or the quater

First, we study the question: Determine the dimension m with m > n for which a vector bundle over RP^n is extendible to RP^m . We have obtained the complete answer for the tangent bundle $\tau(RP^n)$ in [4, Theorem 6.6].

For an R-vector bundle and a C-vector bundle over $\mathbb{R}P^n$ we have

THEOREM 1. Let ζ be a t-dimensional R-vector bundle over RP^n . If n < t, ζ is extendible to RP^m for every m with $n < m \le t$.

THEOREM 2. Let ζ be a t-dimensional C-vector bundle over RP^n . If n < 2t + 1, ζ is extendible to RP^m for every m with $n < m \le 2t + 1$.

For the complexification of the tangent bundle $\tau(RP^n)$, we have

²⁰⁰⁰ Mathematics Subject Classification. Primary 55R50; secondary 55N15.

Key words and phrases. vector bundle, extendible, stably extendible, tangent bundle, tensor product, K-theory, KO-theory, real projective space.

Theorem 3. Let $c\tau$ be the complexification $c\tau(RP^n)$ of the tangent bundle $\tau(RP^n)$. Then $c\tau$ is extendible to RP^{2n+1} , but is not stably extendible to RP^{2n+2} if n=6 or n>7. If n=1,3 or 7, $c\tau$ is extendible to RP^m for every m with m>n.

Second, we study the question: Determine the dimension n for which a vector bundle over RP^n is extendible to RP^m for every m with m>n. We have obtained the complete answer for the normal bundle v associated to an immersion of RP^n in R^{2n+1} in [7, Theorem A], and its complexification cv in [7, Theorem 4.4]. For the square $\tau^2 = \tau(RP^n) \otimes \tau(RP^n)$ of the tangent bundle $\tau(RP^n)$ and its complexification $c\tau^2$, we have

THEOREM 4. Let τ^2 be the square $\tau(RP^n) \otimes \tau(RP^n)$ of the tangent bundle of RP^n . Then the following three conditions are equivalent:

- (1) τ^2 is extendible to RP^m for every m with m > n,
- (2) τ^2 is stably extendible to RP^m for every m with m > n,
- (3) $1 \le n \le 16$.

Theorem 5. Let $c\tau^2$ be the complexification $c(\tau(RP^n) \otimes \tau(RP^n))$ of the square of the tangent bundle of RP^n . Then the following three conditions are equivalent:

- (1) $c\tau^2$ is extendible to RP^m for every m with m > n,
- (2) $c\tau^2$ is stably extendible to RP^m for every m with m > n,
- (3) $1 \le n \le 17$.

This note is arranged as follows. We prove Theorem 1 in §2. In §3 we study the Whitney sum decomposition of the square of the tangent bundle of the real projective space and prove Theorem 4. In §4 we prove Theorem 2 and the part of the extendibility of Theorem 3. In §5 we prove the part of the non-extendibility of Theorem 3, study the Whitney sum decomposition of the complexification of the square of the tangent bundle, and prove Theorem 5.

2. Extendibility of an R-vector bundle over the real projective space

Let ξ_n be the canonical *R*-line bundle over RP^n . The ring structure of $KO(RP^n)$ is determined in [1]. We recall the results which are necessary for our proofs. We use the same letter for a vector bundle and its isomorphism class.

(2.1) [1, Theorem 7.4]. (1) The reduced KO-group $\widetilde{KO}(RP^n)$ is isomorphic to the cyclic group $Z/2^{\phi(n)}$, generated by ξ_n-1 , where $\phi(n)$ is the number of integers s such that $0 < s \le n$ and $s \equiv 0,1,2$ or $4 \mod 8$. (2) $(\xi_n)^2 = 1$.

Let d denote $\dim_R F$, where F = R, C or H. For a real number x, let $\lceil x \rceil$ denote the smallest integer n with $x \le n$. The following facts are known (cf. [2, Theorems 1.2 and 1.5, p. 99–p. 100]).

- (2.2). Let $m = \lceil (n+1)/d 1 \rceil$. Then every t-dimensional F-vector bundle over an n-dimensional CW-complex X is isomorphic to $\alpha \oplus (t-m)$ for some m-dimensional F-vector bundle α over X if $m \le t$, where \oplus denotes the Whitney sum and t-m denotes the (t-m)-dimensional trivial F-vector bundle over X.
- (2.3). Let $\ell = \lceil (n+2)/d 1 \rceil$. If α and β are two t-dimensional F-vector bundles over an n-dimensional CW-complex X such that $\ell \leq t$ and $\alpha \oplus k = \beta \oplus k$ for some k-dimensional trivial F-bundle k over X, then $\alpha = \beta$.

Using (2.1), (2.2) and (2.3), we prove Theorem 1.

PROOF OF THEOREM 1. It follows from (2.1)(1) that ζ is stably equivalent to $k\xi_n$ for some non-negative integer k. So there are trivial R-bundles u and v over RP^n of dimensions u and v respectively such that $\zeta \oplus u = k\xi_n \oplus v$. Let n < m. Then

$$\zeta \oplus u = i^*(k\xi_m \oplus v),$$

where $i: RP^n \to RP^m$ is the inclusion. Note that $k+v-m \ge k+v-m-u$ $= t+u-m-u = t-m \ge 0$ if $m \le t$. By (2.2) there is an *R*-vector bundle α over RP^m of dimension $m \ (= \lceil (m+1)/1 - 1 \rceil)$ such that

$$k\xi_m \oplus v = \alpha \oplus (k+v-m),$$

since $m \le t$. Hence we have

$$\zeta \oplus u = i^*(\alpha \oplus (k+v-m)) = i^*(\alpha \oplus (k+v-m-u)) \oplus u.$$

Therefore, by (2.3),

$$\zeta = i^*(\alpha \oplus (k + v - m - u)),$$

since
$$\lceil (n+2)/1 - 1 \rceil = n+1 \le t$$
.

q.e.d.

THEOREM 2.4. Let w be an integer > 1 and let τ^w be the w-fold tensor product $\tau(RP^n)^w$ of the tangent bundle $\tau = \tau(RP^n)$. Then τ^w is extendible to RP^m for every m with $n < m \le n^w$.

Proof. Since dim $\tau^w = n^w$, the result follows from Theorem 1. q.e.d.

3. Extendibility and stable extendibility of the square of the tangent bundle of the real projective space

Lemma 3.1. Let $\tau^2 = \tau(RP^n) \otimes \tau(RP^n)$ be the square of the tangent bundle $\tau = \tau(RP^n)$ of RP^n . Then the equality

$$\tau^2 = (a2^{\phi(n)} - 2n - 2)\xi_n + (n+1)^2 + 1 - a2^{\phi(n)}$$

holds in $KO(RP^n)$, where a is any integer.

PROOF. Since $\tau \oplus 1 = (n+1)\xi_n$, we have, by (2.1), $\tau^2 = (n+1)^2(\xi_n)^2 - 2(n+1)\xi_n + 1 = (a2^{\phi(n)} - 2n - 2)\xi_n + (n+1)^2 + 1 - a2^{\phi(n)}$ in $KO(RP^n)$ for any integer a.

THEOREM 3.2. Let $\tau(RP^n)^2 = \tau(RP^n) \otimes \tau(RP^n)$ be the square of the tangent bundle of RP^n . Then we have the Whitney sum decompositions:

$$\begin{array}{lll} \tau(RP^1)^2 = 1, & \tau(RP^2)^2 = 2\xi_2 \oplus 2, & \tau(RP^3)^2 = 9, \\ \tau(RP^4)^2 = 6\xi_4 \oplus 10, & \tau(RP^5)^2 = 4\xi_5 \oplus 21, & \tau(RP^6)^2 = 2\xi_6 \oplus 34, \\ \tau(RP^7)^2 = 49, & \tau(RP^8)^2 = 14\xi_8 \oplus 50, & \tau(RP^9)^2 = 12\xi_9 \oplus 69, \\ \tau(RP^{10})^2 = 42\xi_{10} \oplus 58, & \tau(RP^{11})^2 = 40\xi_{11} \oplus 81, & \tau(RP^{12})^2 = 102\xi_{12} \oplus 42, \\ \tau(RP^{13})^2 = 100\xi_{13} \oplus 69, & \tau(RP^{14})^2 = 98\xi_{14} \oplus 98, & \tau(RP^{15})^2 = 96\xi_{15} \oplus 129 \end{array}$$
 and
$$\tau(RP^{16})^2 = 222\xi_{16}^2 \oplus 34.$$

PROOF. For $2 \le n \le 8$, put a = 2 and for $9 \le n \le 16$, put a = 1. Then the equalities above follow from Lemma 3.1 and (2.3). The case n = 1 is clear.

Remark 3.3.
$$\tau (RP^{17})^2 = 476\xi_{17} - 187$$
.

The following result is Theorem 4.1 in [6] which is the *stably extendible* version of Theorem 6.2 in [4].

(3.4). Let ζ be a t-dimensional R-vector bundle over RP^n . Assume that there is a positive integer ℓ such that ζ is stably equivalent to $(t+\ell)\xi_n$ and $t+\ell<2^{\phi(n)}$. Then $n< t+\ell$ and ζ is not stably extendible to RP^m for every m with $m \geq t+\ell$.

Lemma 3.5. Define
$$\ell(n) = 2^{\phi(n)} - n^2 - 2n - 2$$
. Then $\ell(n) > 0$ if $n \ge 17$.

PROOF. As is seen in the table below, the inequality $\ell(n) > 0$ holds for integers n with $17 \le n \le 24$ clearly.

n	17	18	19	20	21	22	23	24
8s + i	i = 1 $s = 2$	i = 2 $s = 2$	i = 3 $s = 2$	i = 4 $s = 2$	i = 5 $s = 2$	i = 6 $s = 2$	i = 7 $s = 2$	i = 0 $s = 3$
$\ell(n)$								

For larger values of n, we have $\ell(n) > 0$ by induction on s. q.e.d.

Theorem 3.6. $\tau^2 = \tau(RP^n) \otimes \tau(RP^n)$ is not stably extendible to RP^m for every m with $m \ge 2^{\phi(n)} - 2n - 2$ if $n \ge 17$.

PROOF. According to Lemma 3.1, τ^2 is stably equivalent to $(2^{\phi(n)} - 2n - 2)\xi_n$. Setting $\zeta = \tau^2$, $t = n^2$ and $\ell = \ell(n) = 2^{\phi(n)} - n^2 - 2n - 2$ in (3.4), we see that τ^2 is not stably extendible to RP^m for every m with $m \ge 2^{\phi(n)} - 2n - 2$, since $2^{\phi(n)} - n^2 - 2n - 2 > 0$ for $n \ge 17$ by Lemma 3.5 and $2^{\phi(n)} - 2n - 2 < 2^{\phi(n)}$.

Example 3.7. $\tau^2 = \tau(RP^{17}) \otimes \tau(RP^{17})$ is not stably extendible to RP^m for every m with $m \ge 476$.

PROOF OF THEOREM 4. It is clear that (1) implies (2). The fact that (2) implies (3) is a consequence of Theorem 3.6. Since ξ_n and the trivial bundles over RP^n are extendible to RP^m for every m with m > n, Theorem 3.2 shows that (3) implies (1).

4. Extendibility of a C-vector bundle over the real projective space

The ring structure of $K(RP^n)$ is determined in [1]. We recall the result which is necessary for our proofs.

(4.1) [1, Theorem 7.3]. The reduced K-group $\tilde{K}(RP^n)$ is isomorphic to the cyclic group $\mathbb{Z}/2^{\lfloor n/2 \rfloor}$, generated by $c(\xi_n - 1)$, where $\lfloor n/2 \rfloor$ denotes the integral part of n/2.

Using (4.1), (2.2) and (2.3), we prove Theorem 2.

PROOF OF THEOREM 2. It follows from (4.1) that ζ is stably equivalent to $kc\xi_n$ for some non-negative integer k. So there are trivial C-bundles u and v over RP^n of dimensions u and v respectively such that $\zeta \oplus u = kc\xi_n \oplus v$. Let n < m. Then

$$\zeta \oplus u = i^*(kc\xi_m \oplus v),$$

where $i: RP^n \to RP^m$ is the inclusion. Note that $k+v-\ell \ge k+v-\ell-u$ $= t+u-\ell-u = t-\ell \ge 0$ if $\ell \le t$. By (2.2) there is a *C*-vector bundle α over RP^m of dimension ℓ (= $\lceil (m+1)/2 - 1 \rceil$) such that

$$kc\xi_m \oplus v = \alpha \oplus (k+v-\ell),$$

since $\ell \le t$. Hence we have

$$\zeta \oplus u = i^*(\alpha \oplus (k+v-\ell)) = i^*(\alpha \oplus (k+v-\ell-u)) \oplus u.$$

The inequalities $n < m \le 2t + 1$ show that $\lceil (n+2)/2 - 1 \rceil \le \lceil (m+1)/2 - 1 \rceil = \ell \le t$. Therefore, by (2.3), we obtain

$$\zeta = i^*(\alpha \oplus (k + v - \ell - u)).$$
 q.e.d.

Theorem 4.2. Let w be a positive integer and let $c\tau^w$ be the complexification of the w-fold tensor product $\tau^w = \tau (RP^n)^w$. Then $c\tau^w$ is extendible to RP^m for every m with $n < m \le 2n^w + 1$

PROOF. Since dim $c\tau^w = n^w$, the result follows from Theorem 2. q.e.d. Corollary 4.3. $c\tau = c\tau(RP^n)$ is extendible to RP^{2n+1} .

5. Extendibility and stable extendibility of the complexification of the square of the tangent bundle of the real projective space

Lemma 5.1. Let $c\tau^2 = c(\tau(RP^n) \otimes \tau(RP^n))$ be the complexification of the square of the tangent bundle of RP^n . Then the equality

$$c\tau^{2} = (b2^{\lfloor n/2 \rfloor} - 2n - 2)c\xi_{n} + (n+1)^{2} + 1 - b2^{\lfloor n/2 \rfloor}$$

holds in $K(RP^n)$, where b is any integer.

PROOF. Complexifying the equality $\tau^2 = -2(n+1)\xi_n + (n+1)^2 + 1$ (cf. Lemma 3.1) and using (4.1), we have the equality above. q.e.d.

THEOREM 5.2. Let $c\tau(RP^n)^2 = c(\tau(RP^n) \otimes \tau(RP^n))$ be the complexification of the square $\tau(RP^n) \otimes \tau(RP^n)$. Then we have the Whitney sum decompositions:

$$\begin{array}{lll} c\tau(RP^1)^2 = 1, & c\tau(RP^2)^2 = 4, & c\tau(RP^3)^2 = 9, \\ c\tau(RP^4)^2 = 6c\xi_4 \oplus 10, & c\tau(RP^5)^2 = 25, \\ c\tau(RP^6)^2 = 2c\xi_6 \oplus 34, & c\tau(RP^7)^2 = 49, \\ c\tau(RP^8)^2 = 14c\xi_8 \oplus 50, & c\tau(RP^9)^2 = 12c\xi_9 \oplus 69, \\ c\tau(RP^{10})^2 = 42c\xi_{10} \oplus 58, & c\tau(RP^{11})^2 = 40c\xi_{11} \oplus 81, \\ c\tau(RP^{12})^2 = 102c\xi_{12} \oplus 42, & c\tau(RP^{13})^2 = 100c\xi_{13} \oplus 69, \\ c\tau(RP^{14})^2 = 98c\xi_{14} \oplus 98, & c\tau(RP^{15})^2 = 96c\xi_{15} \oplus 129, \\ c\tau(RP^{16})^2 = 222c\xi_{16} \oplus 34 & and & c\tau(RP^{17})^2 = 220c\xi_{17} \oplus 69. \end{array}$$

PROOF. Since $\lfloor n/2 \rfloor \le \phi(n)$, complexifying the equalities in Theorem 3.2, we have the equalities above except for n=2,5 and 17. Considering the relations $2c\xi_2-2=0$ for $n=2,4c\xi_5-4=0$ for n=5 and $256c\xi_{17}-256=0$ for n=17 (cf. (4.1)) and using (2.3), we have the equalities above from those in Theorem 3.2 and Remark 3.3.

The following result is Theorem 2.1 in [6] which is the *stably extendible* version of Theorem 4.2 for d = 1 in [5].

- (5.3). Let ζ be a t-dimensional C-vector bundle over RP^n . Assume that there is a positive integer ℓ such that ζ is stably equivalent to $(t+\ell)c\xi_n$ and $t+\ell < 2^{\lfloor n/2 \rfloor}$. Then $\lfloor n/2 \rfloor < t+\ell$ and ζ is not stably extendible to RP^m for every m with $m > 2t + 2\ell$.
- THEOREM 5.4. Let $c\tau = c\tau(RP^n)$ be the complexification of the tangent bundle $\tau(RP^n)$. If n = 6 or n > 7, $c\tau$ is not stably extendible to RP^m for every m with $m \ge 2n + 2$.
- PROOF. Putting $\zeta = c\tau(RP^n)$, t = n and $\ell = 1$, we have the result from (5.3), since $c\tau(RP^n) \oplus 1 = (n+1)c\xi_n$ and $n+1 < 2^{\lfloor n/2 \rfloor}$ if n=6 or n > 7.
- PROOF OF THEOREM 3. The first part follows from Corollary 4.3 and Theorem 5.4. The second part is a consequence of the fact that $\tau(RP^n)$ is trivial for n=1,3 and 7.
- Lemma 5.5. Define $\ell(n) = 2^{\lfloor n/2 \rfloor} n^2 2n 2$. Then $n^2 + \ell(n) < 2^{\lfloor n/2 \rfloor}$, and if $n \ge 18$, $\ell(n) > 0$.
- PROOF. Since $2^{\lfloor n/2\rfloor}-n^2-\ell(n)=2n+2>0$, we have $n^2+\ell(n)<2^{\lfloor n/2\rfloor}$. The inequality $\ell(n)>0$ holds for n=18 and 19 clearly. For larger values of n, we have $\ell(n)>0$ by induction.
- Theorem 5.6. $c\tau^2 = c(\tau(RP^n) \otimes \tau(RP^n))$ is not stably extendible to RP^m for every m with $m \ge 2^{\lfloor n/2 \rfloor + 1} 4n 4$ if $n \ge 18$.
- PROOF. According to Lemma 5.1, $c\tau^2$ is stably equivalent to $(2^{\lfloor n/2 \rfloor} 2n 2)c\xi_n$. Setting $\zeta = c\tau^2$, $t = n^2$ and $\ell = \ell(n) = 2^{\lfloor n/2 \rfloor} n^2 2n 2$ in (5.3), we see that $c\tau^2$ is not stably extendible to RP^m for every m with $m \geq 2^{\lfloor n/2 \rfloor + 1} 4n 4$, since $\ell(n) > 0$ and $t + \ell(n) < 2^{\lfloor n/2 \rfloor}$ then by Lemma 5.5. q.e.d.
- Example 5.7. $c\tau^2 = c(\tau(RP^{18}) \otimes \tau(RP^{18}))$ is not stably extendible to RP^m for every m with $m \ge 948$.
- PROOF OF THEOREM 5. It is clear that (1) implies (2). The fact that (2) implies (3) is a consequence of Theorem 5.6. Since $c\xi_n$ and the trivial bundles over RP^n are extendible to RP^m for every m with m > n, Theorem 5.2 shows that (3) implies (1).

References

- [1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] D. Husemoller, Fibre Bundles, Second Edition, Graduate Texts in Mathematics 20, 1975, Springer-Verlag.

- [3] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999), 237–279.
- [4] T. Kobayashi, H. Maki and T. Yoshida, Remarks on extendible vector bundles over lens spaces and real projective spaces, Hiroshima Math. J. 5 (1975), 487–497.
- [5] T. Kobayashi, H. Maki and T. Yoshida, Extendibility with degree d of the complex vector bundles over lens spaces and projective spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 1 (1980), 23–33.
- [6] T. Kobayashi, H. Maki and T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999), 631–638.
- [7] T. Kobayashi, H. Maki and T. Yoshida, Stable extendibility of normal bundles associated to immersions of real projective spaces and lens spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 20 (2000), 31–38.
- [8] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19–21.

T. Kobayashi Asakura-ki 292-21 Kochi, 780-8066 Japan kteiichi@lime.ocn.ne.jp

K. Komatsu
Kochi University
Department of Mathematics
Faculty of Science
Kochi, 780-8520 Japan
komatsu@math.kochi-u.ac.jp