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ABSTRACT. In the present article we are interested in the analysis of nonlocal initial
boundary value problems for some medium oscillation equations. More precisely, we
investigate different types of nonlocal problems for one-dimensional oscillation equa-
tions and prove existence and uniqueness theorems. In some cases algorithms for direct
construction of the solution are given. We also consider nonlocal problem for multi-
dimensional hyperbolic equation and prove the uniqueness theorem for the formu-
lated initial boundary value problem applying the theory of characteristics under rather
general assumptions.

1. Introduction

While applying mathematical modelling to various phenomena of physics,
biology and ecology there often arise problems with non-classical boundary
conditions, which connect the values of unknown function on the boundary and
inside of the given domain. Boundary conditions of such type are called
nonlocal boundary conditions. Nonlocal initial boundary value problems are
important from the point of view of their practical application to modelling and
investigating of pollution processes in rivers, seas, which are caused by sew-
age. It is possible by nonlocal boundary conditions to simulate decreasing of
pollution under influence of natural factors of filtration and settling that causes
self-purification of the medium.

One of the first works, where nonlocal conditions were considered, is [1].
The nonlocal problem was investigated, applying the method of separation
of variables and the corresponding eigenvalues and eigenfunctions were con-
sidered. First, the systematic investigation of a certain class of spatial nonlocal
problems was carried out by A. Bitsadze and A. Samarskii in [2]. Further, in
the works [3, 4] resolution methods for such type problems in the case of rather
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general elliptic equations were suggested. In [5] for the equations of shell and
elasticity theories boundary conditions similar to Bitsadze-Samarskii ones were
considered. Under rather strict conditions the uniqueness of the solution of
the nonlocal problem for the three-dimensional models of the elasticity theory
is proved. The stated nonlocal problems were effectively solved in the case
of circular plates for the Kirchhoff model. Later, in [6-9] generalizations of
Bitsadze-Samarskii conditions were suggested. Particularly, in [6] discrete
spatial nonlocal problems were studied for rather general elliptic and parabolic
differential equations. Suggested iteration procedures allow not only to prove
existence of the solution of formulated problems, but also to construct algo-
rithms for numerical resolution.

Note that theoretical study of nonlocal problems is connected with great
difficulties. Too many things are expected to be done in this direction, though
a lot of interesting works are already devoted to these questions ([1-17]).
Complications in investigation of problems of these type are essentially caused
by the fact, that it is usually impossible to apply the classical methods of func-
tional analysis, the energetic method, the method of singular integral equa-
tions. This is the reason for existing only separate results for nonlocal initial
boundary value problems.

It must be emphasized that in the papers devoted to nonlocal problems the
cases of elliptic and parabolic equations have been mainly considered. In the
present work we study nonlocal problems for hyperbolic equations. In §2 we
state the theorem of uniqueness for rather general discrete spatial nonlocal
problem for hyperbolic equation. In §3 and §4 we study in details one-
dimensional problems of the mechanics of solids with different nonlocal
boundary conditions. More precisely, in §3 we consider the string oscillation
equation with the classical initial and discrete nonlocal boundary conditions,
which are the generalizations of Bitsadze-Samarskii conditions. In the same
section we discuss the problem with the integral nonlocal conditions. There
are proved the theorems of existence and uniqueness of the solution, which in
some cases can be constructed directly using algorithms given ibidem. In §4
we consider the telegraph equation. As in the case of string oscillation equa-
tion we study nonlocal problems with discrete and integral nonlocal boundary
conditions.

2. Nonlocal problem for multidimensional medium oscillation equation

Let us consider the bounded domain Q < R", n>1, x=(x,...,X,),
and I" be the boundary of Q. Let Q;(¢) (i=1,...,m) be the subsets of Q.
Assume that boundaries 7;(r) of Q;(¢) are diffeomorphic images of I', i.e.
Ii(-,t) : I' — I'y(t) are diffeomorphisms, and [;(x,f) are continuous functions,
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I, I'; are sufficiently smooth surfaces and that the distance between them is
positive (i =1, m).

DEFINITION.  Let 4 : C*(X x [a,b]) — X(Z x [a,b]) be an operator, where
X is a functional space defined on X x [¢,b], 2 < R/, /eN. We say, that
for the operator A the condition of localization by ¢ € [a,b] is valid if there
exists a class of operators A, 5: C*(X x [a, f]) — X(Z x [, f]), such that the
following is true: if [o, 8] = [y,0] = [a,b], ve C*(X x [a,f]), we C*Z x [y,9])
and v(x, 1) = w(x, 1), teupf], then (4, p0)(x,1) = (A4,sw)(x,1), for a <t <p,
and A, = A.

Let L be a strongly elliptic operator

n ~2 n
0 0 0
L= i ,t b,’ 7t7 b ,l‘* ,t,
i;ak(x )axiaxﬁ; (e 0) 4 bl 1) 3+ e, )

(x,0) e 2 x(0,T),

n

anl&iéy = p(E+-+ &), y=const >0,  VE=(&,...,¢&,) eR”,
ik=1

where ay, b;, b, c are prescribed functions.
Consider the nonlocal problem for the hyperbolic equation

o%u

(2.1) =

— Lu= f(x,1), (x,0) e Qr =02 x (0,7),

with the classical initial conditions

u(x,0) = up(x),
(2.2) X €L,
u(x,0) = up(x),

and the nonlocal boundary conditions
(23) M(x, l) :Zpi(xa t)u(b(x,t),l)—kg(x, t)a (X, l) ESTZI—'>< [Oa T}a
i1

where p;, g, up, u; are prescribed continuous functions and u(x,¢) is an un-
known function, which is the classical solution of equation (2.1) satisfying
conditions (2.2) and (2.3) at the same time. The following uniqueness theorem
is valid.

THEOREM 2.1. If ay are continuously differentiable functions and coeffi-
cients b;, b, ¢ are continuous (i,k = 1,n), then the nonlocal problem (2.1)—(2.3)
has no more than one solution.
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PrROOF. Assume that there exist two u(x,?) and v(x,t) solutions of the
problem. Then obviously their difference w(x, ) = u(x, ) —v(x,t) is the solu-
tion of the homogeneous equation (2.1) under homogeneous initial and nonlocal
conditions. Note that

pilt) = dist(1(0). 1) = inf_p(ii(x.1), )
continuously depends on ¢, since I;(x, ) is a continuous function and hence it is
uniformly continuous.

Taking into account that distance between I" and [;(¢) is positive, we get
pi(t) >0 for all 1€([0,T] and consequently, there exists such a J > 0, that
pi(t) >3, te0,T] (i=1,m). Therefore, for any point (x,?) € Q;(¢), the ball
of a radius ¢ centered at x is placed entirely in a “horizontal” cross-section
Q x {t}.

Strong ellipticity of the operator L allows to inscribe as well as to over-
draw cones respectively inside and outside of a characteristic conoid, defined by
the operator L. Tangents of angles between the axis and elements of the cones
are denoted by « and f (x < f) and we call them spreads of the cones.

Note that since w(x,0) = w,(x,0) =0, x € Q, then w(x, ) equals to zero in
any point (x,?) for which the base of the characteristic conoid, passing through
this point, lies in 2 [17]. Let us now consider an interval 0 < ¢ < ¢*, where
t*=0/f. Then for any point (X,7), which belong to the curvilinear cylinder
Qi(r) (i=1,...,m) base of the cone with a top in (¥,7), axis parallel to the
axis ¢ and with a spread f lies in Q, as 1 <t*ff = (0/p) - f =0. Therefore,
w(X,7) =0, ie. in any point of the curvilinear cylinders Q;(f) (i =1,m),
w(x,1) =0, for 0 < ¢ <t*. Taking into account that w(x, r) satisfies the homo-
geneous nonlocal boundary conditions, we obtain

w(x, 1) =0, (x,1) € Sp-,

and therefore w(x, ) is the solution of the homogeneous equation (2.1) under
homogeneous initial and boundary conditions. Since the classical problem has
a unique solution, then

w(x, 1) =0, 0<r<r.

Now take for an initial moment of time ¢*, i.e. change the variable 7 =
t—t*. The function w*(x,7) = w(x, 7+ t*) satisfies the following problem
(2.4) wh = Lw", (x,7) € Or—yv,

(2.5) w*(x,0) =w(x,0) =0, xeQ

)

m

(2.6) w(x,7) = Zpi(x,r—i-t*)w*(l,-(x,r—i—t*),r), (x,7) € ST+
i=1
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Repeating the proceeding reasoning, we get w*(x,7) =0, 0 <7 < ¢*, and
consequently w(x,¢) =0, 0<¢<2¢*. Similarly w(x,7) =0 for ¢e[0,nt"],
neN up to the moment 7. So w(x,t) =0, (x,¢) € Qr, which means, that
u(x,t) = v(x,t) and the solution is unique. []

It should be noted that in the similar way we can prove a uniqueness
theorem in more general case.

THEOREM 2.2. The nonlocal problem for the equation (2.1) with the initial
conditions (2.2) and the following nonlocal boundary conditions

m

2.7)  u(x,t) = Z[Aiu(li(x, 0, 0](x, 1) + g(x,1), (x,t)e Sy =T x[0,T],
=1

has no more than one regular solution, where A': C*(Sy) — C>(Sr) are linear
operators, and for each A" (i=1,...,m) the condition of localization by t is
satisfied.

ReMark. If the boundaries of Q and Q;(¢) (i=1,...,m) and the given
functions are smooth enough, then not only the uniqueness theorem is true for
the problem (2.1)-(2.3), but also the theorem of existence is valid. In par-
ticular, we can find so large N, that if all the functions mentioned in The-
orem 2.1 are N-times continuously differentiable and compatibility conditions
are valid, then the nonlocal problem (2.1)—(2.3) has a unique solution.

3. Nonlocal problems for the string oscillation equation

In the following two sections we study nonlocal problems for one-
dimensional hyperbolic equations. Unlike multidimensional case we formulate
the theorems of existence and uniqueness of the solutions for more general
problems with non-linear nonlocal boundary conditions and in some cases give
algorithms for direct construction of the solutions.

Let us consider the nonlocal problem for the string oscillation equation

o’u  0’u

3.1 =
31 o~ ox2’

O<x<l, 0<t<T,

with the classical initial conditions

u(x,0) = p(x),
(3.2) 0<x<l,

ur(x,0) = (x),

and the nonlocal boundary conditions
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()0, + B0 20,0 = S a0, 0)(0) + 1),

5

(3.3) ) 0<t<T,
y(@u(l, 1) + 0(1) => B 1(5) +9(2),

Jj=1

where o, f5, y, 0, f, g are prescribed functions, which satisfy the compatibility
conditions, A", B/ (i=1,...,m;j=1,...,p) is the system of generally non-
linear operators C2([0, T]) — C3([0, T]), satisfying conditions of localization,
&i(n),m;(1) (i=1,m;j=1,p) are sliding points of the string (0,/). We say,
that u(x,?) is classical solution of the problem (3.1)-(3.3) if it is twice con-
tinuously differentiable on D = {0 <x <1,0 <t < T}, satisfies equation (3.1)
and conditions (3.2), (3.3). The following theorem is true.

—_

THEOREM 3.1. Assume that the following conditions are valid:

D) fg.0B0.0eCH0,T)), geC0.0), weC (0,0), «(B)#0,
y(0)0(t) #0, 0<t< T,

i) &,n e CH0,T)), 0<&(t), ni(r) <l when t€[0,T], i=1,...,m
J=1..p

iii) each of the functions B(t), 0(t) either is not equal to zero for any
te0,T], or is equal to zero identically.

Then the nonlocal problem (3.1)—(3.3) has a unique classical solution u(x,1).

Proor. Note that if the solution of the problem (3.1)—(3.3) is found, then

we get some functions on the ends of the string

M(Oﬂ t) =l (t)7
(3.4) 0<t<T,

u(la t) = ﬂz(f),
and then u(x, ) is the solution of the Cauchy-Dirichlet problem for the equa-
tion (3.1) with the initial and boundary conditions (3.2), (3.4), which has a
unique solution

o0

(3.5) u(x,l):F(x,t)—l—Zﬁ](t—an—x Z (t—2nl + x)
n=0 n=1
+> m(t— 2n+ 1) +x) - Z (t—(2n+1) - x),
n=0
where A =n/(l+1);
_ X+t
F(x,l):(p(x+t);r(p(x ’H%J W (2)do
x—t

n 0 " l
— g) ( ) sin(A(/ — x)) cos At — zgo ( ) sin Ax cos At
A7 sin Al 27 sin
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®(x) and WY(x) represent continuations of the functions ¢(x)+ ¢”(0)-
sin(A(I — x))/(A* sin ) + ¢"(I) sin Jx/(A* sin 2I) and ¥(x) respectively on the
whole axis retaining smoothness in such a way, that

D(x) + O(—x) = 29(0), Y(x)+ ¥ (—x) =2%(0),
D(l —x)+ D1+ x) =20(1), P(I—x)+P(1+x)=2¥();

(6) M(Z):{glm—<<o<0>+<o"<o>/ﬂ?>—w<o>r+<p"<o> o/, 120,

and for fi,(z) we have the corresponding expression, where 0 is replaced by /.
Thus, any classical solution of the problem (3.1)—(3.3) can be represented by
the form (3.5). If we find twice continuously differentiable functions g, (¢),
1,(1), then the problem is solved. Consequently, due to this fact under the
solution of the problem (3.1)-(3.3) we sometimes mean the couple {,,}.

Taking into account nonlocal conditions (3.3), we get that the problem
(3.1)-(3.3) will be solved, if we find the couple {y;,u,}, which satisfies the
equations

Il
AN
=
—~
)
=
=
“
=
=
2
>
+
~
—
S~—

(0)pr (1) + 0(1) (an, 0+ () +2 3 (e - 2nl)

- 2200:/1;(1 —(2n+ 1)1))
n=0

-

[B7u(n (1), D](1) + (1)
1

J

It should be mentioned, that from the above reasonings it follows that
solution of the problem is completely reduced to finding the pair {u,u,}, i.e.
existence and uniqueness of the solution u(x, ) and of the pair {g,u,} are
equivalent.

Since the functions &;(#) and 7;(f) (i=1,...,m;j=1,...,p) are contin-
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uous on [0, 7] and for all 7 € [0, T] they belong to the interval (0,/), then there
exist

g = min &t & = max ¢&(t
P gisr <i(0), ' osi<r i),
1<i<m 1<i<m
& = min 7n.(t & = max #;(t
27 0T ;7’( ), 27 ocisr ’7-/( ),
1<j<p 1<j<p

where each of the numbers ¢, &, &, & belongs to (0,/). Obviously, all
the curves ¢&;, n; are located in the stripe [¢t*,/—t*] x [0, 7], where t* =
min{81,82,l — 51,[— 52}.

By (3.7), taking into account the definition of f,(¢), @i,(¢), we get that if
the pair {g;,u,} is the solution of the problem, then it has to satisfy the
following equalities

[Ap, - F(&i(0), 0](0) + £ (1),

hgE

() (£) = PO (1) =

i=1

YO (1) + ()1 (1)

[
M)~

B . F(n;(1),0](1) + (1),
=1

~
I

where f(1), §(t) are expressed through prescribed functions. Obviously f(7),
g(t) e C'([0,*]). Consequently, for u, () and u,(t) we get ordinary differential
equations of the first order. Assume that first of the conditions of the point iii)
in the Theorem 3.1 is true, i.e. f(¢) #0, when t€[0,7]. Then taking into
account compatibility condition g,(0) = ¢(0), for 0 < ¢ < ¢* we obtain

wo-en{[374) [ ([

(;[AS,I*F(Q(I), Nl(x) +f(f)> ﬁ(lr) dT) :

In the second case, u,(¢) can be directly expressed by the functions in the
right-hand part of the equation. Here, corresponding functions f(r) or §(z)
will be twice continuously differentiable. In both cases, as we see, y,(¢) is
equal to twice continuously differentiable function, for 0 < ¢ < t*. Therefore,
in the time interval [0, *] we can define the unknown pair of functions {y;,u,}
and, using the formula (3.5), we get the solution of the problem (3.1)—(3.3) on
[0, £*].

Now, take for the initial moment 7*. Introducing a new time variable
7 =1t—t*, the nonlocal problem for the function v(x,7) = u(x,7+ ¢*) con-
sidered in [0,/] x [0,7*] takes the following form
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(3.8) Ugr = Uy, O<x<l, 0<T<1t",
. o OV
a(t+ M)v(0,7) + p(r+ ¢ )a((), 7)
m .
= ] (&) = )T+ 1) + [T+ 1),
i=1

(3.9) 2 0<t<1,
@+ )0(l 1) + 0 + 1) == (1,7)

[
M)~

B, 5 0(n (1), 1 — )](z+ %) + gl + 1),
1

~.
Il

where the initial conditions are

v(x,0) = u(x, %),
(3.10) 0<x<l

v:(x,0) = u,(x, "),
Note that in the right-hand parts of (3.9) we mean that ¢* < ¢ < 2¢* to make
it possible to act with corresponding operators. Finally we get the function
defined on [¢*,2¢*] with the argument ¢ = 7 + ¢*, where 0 <7 <¢*. As in the
previous case we can find the solution of the nonlocal problem (3.8)—(3.10)
on [0,7*] and it will be an expansion of u(x,?) on the time interval [r*,2¢*].
Let’s show now that obtained u(x,?) is the solution of the problem (3.1)—(3.3),
when 0 <7 <2¢*. Obviously, it’s sufficient to check twice continuously dif-
ferentiability of u(x, ) at the moment 7= ¢*. Since u(x,?) is the solution of
(3.1)—=(3.3) on [0,*], then it is twice continuously differentiable by x, when
t=1t* and

lim u(x,f) =u(x,t*) =v(x,0) = lim u(x,?),
t—t*—0~ t—1*—0"

and consequently u(x,?) is continuous in the point ¢*. Analogously,

u(x,t* +0) —u(x, t*)

fig D
B Cu(x, 4 0) —u(x, 1)
) = fig TGS,
im  u(x, ) = u(x, ") = v,(x,0) = lim u,(x,1).
t—t*—0~ t—t*—0*

Therefore, u,(x,?) exists and is continuous for 7 = r*.

In the same way we can check that u,(x,¢) is continuous for 7= ¢*.
Taking into account the conditions (3.3), we can say that they are true since
the operators A’ and B/ satisfy conditions of localization (i =1,m,j=1,n).



354 David GORDEZIANI and Gia AVALISHVILI

Consequently u(x,?) is the solution of the nonlocal problem (3.1)—(3.3), when
0<t<2r.

Applying the same method, we find u(x,7) on the intervals [0,nt*]
(n=2,3,...) until the moment 7. Therefore we can find u(x, ¢) for the whole
time interval [0, 7], i.e. the solution of the problem (3.1)—(3.3) exists, is unique,
and expressed through the given functions and their integrals. [

REMARK. Let us consider particular case of nonlocal conditions (3.3):

m

u(0,¢) = Zoc,-u(fi, 1)+ f(1),
(3.11) - 0<r<T,
u(lv t) = ﬁju(njvt) +g(t)7

-

1

J

where o;, f3; are prescribed numbers, &;,7; (i = 1,m,j =1, p) are points of the
string (0,/). Then, the corresponding operators, which are in the right-hand
parts of the nonlocal conditions (3.11), satisfy the conditions of localization and
therefore according to the Theorem 3.1 nonlocal problem for the string oscil-
lation equation with the initial conditions (3.2) and the nonlocal boundary
conditions (3.11) has a unique solution, which can be found directly. The posed
problem can be interpreted as the problem of controllability by the boundary
conditions, where the boundary meanings of unknown function are required
to differ from the linear combination of its meanings in certain points by a
value given beforechand. This type of problems arises in building constructions
and generators.

It should be mentioned that the nonlocal conditions (3.3) generally are not
linear. Therefore, instead of (3.11) we can consider, for example, the following
conditions

w(0,0) =Y (& 1) + f(2),
=l 0<t<T,

u(l,1) = B (1) + g(1),
=1

where p;, ¢; (i=1,m,j=1,p) are non-negative integers. In this case the
corresponding operators satisfy conditions of localization and we get nonlinear
nonlocal initial boundary value problem which, according to the Theorem 3.1,
has a unique classical solution.

Consider now the nonlocal problem for the equation (3.1) with the con-
ditions (3.2) and the following integral nonlocal boundary conditions
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ou m_ &)
(0.0 450 50,0 =D | pit xutx )+ 10

" P jz(t)
y(Hu(l, 1) +6(¢) g—x (I,t)= Z JW q;(t, x)u(x, )dx+g(1),

where &/ (1) < & (1),n} (1) <n?(1) (i=T,m,j=1,p) are sliding points of the
string [0,/]; o, f, v, 0, pi, q;, f, g are prescribed sufficiently smooth functions.
Throughout the paper we shall use C>!([0, 7] x [0,/]) to denote the set
of continuously differentiable functions twice continuously differentiable with
respect to f.
The following statement is true.

THEOREM 3.2.  Assume that the conditions 1), iii) of the Theorem 3.1 are valid,
functions E!(1), EX(1), n () 77] 2(1) are twice continuously differentiable, p;,q; €
c21([0, T] x [0,1]) and 0< <&M <L 0<n (1) <n}(t) <L for 1€]0,T).
Then nonlocal problem (3.1), (3.2), (3.12) has a unique classical solution.

Proor. Conducting the same reasoning as in the case of the Theorem 3.1,
we get that the stated problem is equivalent to the one connected with deter-
mination of a pair {u,u,}, satisfying the equations

a0 (1) + B0 (mo, ) — (1)~ 23 (i - 2nl)

+ 2iﬁ§(z —(n+ 1)1))

n=0

=ZJ Yu(x, f)dx + (1),

(3.13)
YO () +0(2) (FXU, 0+ m () +2 @t —2nl)
n=1

i (t—(2n+1 )l))

n=0
:ZJ”” Ju(x, O + g(6),

where 0 < ¢ < 7. In order to solve this integral nonlocal problem we use the
same method which was applied in the case of discrete nonlocal problem, i.e.
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we break down time interval [0, 7] into subintervals, solve the problem sep-
arately on each of them and finally unite obtained solutions into one, which is
the solution of the problem (3.1), (3.2), (3.12).

Let’s break [0, 7] into equal intervals with the length ¢* < /. Consider the
first interval [0,7*]. On the basis of the definition of 7, (¢) and f,(¢) equations
(3.13), where u(x,?) is substituted by its expression according to the formula
(3.5), on the interval [0,¢*] take the following form

m_ &)
s () = B (0 = 3 [ e o (e = e

i=1 Y& ()
m f_lz(z)

#X ] x4
i1 J¢& (1)

- ﬂ(Z)FX(Oa Z) +f(t)’
(3.14) 0o<r<rt

P pnf)
00+ 000 =3 [ aex)m (e~ x)ax

P (1)
+ E J qi(t, x) iy (t — I + x)dx
=1 (1)

—0(F.(1,1) +4(1),

where f, § are expressed through given functions. Obviously, /, g € C2([0, r*]).
Changing variables in the integrals in the right-hand parts of (3.14), for
0<t<t* we get

—EXr)

315 am0 =g =Y [ pies s
im1 =&

m_ et—I+EX()
+ZJ pi(t,t+ 1 — )y (r)dt
im1 S ()

- BOF(0.0) + (0.
=1} (1)
(316) om0 + 000 = | gttt (@
j=1 2=
P =l (o)
+ Z J
j=1

+g(1).

g(t,7+ 1= () — O()Fo(l, 1)
=143} (1)
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Let us introduce notations & (¢) = y(r— & () (1 —¢ENr)), &) =
2= &0 =), & (0= (t—l+é( )(t—l+é,‘(t)), & () = xt =1+
END)(t—1+¢Xr) and in the same way 7 (1), 77(), 7} (1), 77 (1), where

) 1, x>0,
xX) =
X 0, x<0,

is Heaviside’s function. We denote by /#;(¢) and h,(¢) additional functions,
except py;,M,, taking part in the definition of &, and f,. Taking these nota-
tions into account, we rewrite (3.15), (3.16) as follows:

m_ )
(3.17)  a(t)u (1) = O (1) = ZJ piltyt =) (7) + i (7))de

(3.18) V(l)ﬂz(t)+9(l)/é(l)=ZJ qj(t;1 = 1) (a1 (7) + (7)) dx

where 0 < <1t*. Therefore, for the functions x;(¢#) and p,(f) we get the
system of integro-differential equations.

According to the condition iii) of the theorem, f((¢) is either equal or
unequal to zero everywhere. Due to this reason in the first case instead of
(3.17) we have a special type integral equation, and in the second one, taking
an integral from 0 to ¢, for each 0 < < ¥, we obtain an integral equation
too.

Similarly we conclude that the equation (3.18) can be reduced to a
special type integral equation. We consider only the case where the func-
tions f(¢), 6(¢) are equal to zero everywhere since all the rest cases can be
considered without any significant changes. In this case o(¢),y(z) #0, for
0 <7< r*. Dividing the above expressions by (), p(z) respectively, for
0<t<t we get
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(319w =3[ pileln( + s

P (1,20 =1 = 0)(pp(2) + ha())de +—=

3 r”f*<'> , 10
Efl*(’) ’ OC(Z) ’

HO)
6200w =Y [ 0w+

=120
- g9(1)
—|—ZJ~1 (1, 2t—l—T)(ﬂ2(1)+h2(T)dT—|—m,
where pj(t,7) = p'(”4), q:(t,7) :m Note that all the functions
(1) ’ 7(1)

in the system (3.19), (3.20) are continuous. Now we prove that the operator
K : C([0,%]) x C([0,2*]) — C([0,2*]) x C([0,2*]) is compact, K = (K;, K>),

~l

( ) iLz pi(t, ) dr—i-ZJ p; (8,2t — 1 — )w(t)dr,

i=1 i(

(3.21)

~l

K2< >iL g (t,7)v dT+ZJn_ [q/ 1,2t — | — 7)w(z)dx.

Jj=1 / ;i

Indeed, let 4 = C([0,¢*]) x C([0,2*]) be a bounded set, i.e.

(3.22) v( U) €A,

w

v
= [l + 1wl < ¢,

Vilc(o, )< (o)

where by || -|| we denote a norm in C([0, ¢*]).

To show, that K is a compact operator, it is sufficient to prove, that
both components Kj, K> : C([0,7*]) x C([0,7*]) — C([0,¢*]) of the operator K
are compact. By the Ascoli-Arzela Theorem, the operator K; is compact
whenever K;(A) is uniformly bounded and equicontinuous. From (3.21) we
have

Therefore, as A4 is bounded, K;(4) and analogously K,(A4) are uniformly
bounded. Furthermore, since all the functions &!, ¢ are twice continuously
differentiable, it is easy to see that Eil, 5,2, fll, 512 are Lipschitz continuous
n [0,7*] and consequently

v
K < C\ T C = t
()] = cmmtia =, 6= max dnceosol.
1<i<m
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(3.23) ‘Kl (:;) (h) — K, (;) (1)

m

< Y [GlIoll(1E] (2) = & (01)] + 1 (12) = E (1))

i=1

+ CLlwl (€} (22) = & ()] +1& (12) = & (1))

< Y ICIeI(C] + E) + Ciwl(CF + C)le2 — nil,
i=1

where C!, C2, C!", C*" are Lipschitz constants corresponding to the functions &,
& El & (3.22) and (3.23) imply that K;(A4) is equicontinuous set of functions
and thus K is a compact operator. By the similar discussion we can deduce that
the operator K, is compact too.

So, the operator K is compact and therefore the alternative of Fredholm
is true for the system (3.19), (3.20), i.e. the system has a unique solution only if
the homogeneous system has only the trivial one. Though, using the method
of mathematical induction we can prove the validity of the following inequal-
ities for any n e N:

n—1sn " n—1sn 1" *
(3:24)  max{|m (0], ()} <271l + 2" S|, 0 <<,
where ¢ = max{mC,,pCy}, C,= max {lg;(¢,x)/y(¢)]}. From the
[0,2]x[0,1];1<j<p

(3.24), tending n — oo, we get that the homogeneous system has only the trivial
solution. Therefore, system (3.19), (3.20) has a unique solution.

To show that the pair {4,u,} is a solution of the nonlocal problem, it
is sufficient to prove that u,,u, € C*([0,1*]). According to the continuity of
(1) and u,() it is obvious that f7,(¢) and f,(z) are also continuous. Then
from (3.14) where f(f) = 6(r) = 0 we get that the right-hand parts of the equa-
tions are continuously differentiable, since & (1), &,(2),n,(2),1,(1) € C3([0,£*]),
and consequently s, 1, € C'([0,¢]). It is not difficult to check that 7,7, €
C'([0,*]). Repeating the above reasoning, we similarly obtain that u,u, €
C?([0,¢*]). Substituting this pair into the formula (3.5), we get the solution
u(x,t) of the problem (3.1), (3.2), (3.12) for z€ [0, *].

Taking for the initial moment of time ¢*, i.e. changing time variable ¢ by
7 =1t—1t* for the function v(x,7) = u(x,7+ t*) we get the following nonlocal
problem

v ot

3= g 0<x<l, 0<t<T—1",
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ov

o7+ 1)0(0,7) + e+ 17) o=

(0,7)

m & (r+t*)
— ZJ pi(t + 15, x)v(x,7)dx + f(t +1*),

=1 J& (T+7)
0<t<T-1t",

it + )l ) + 0z + t*)%(l, 7)

P (che?)
J gi(t+ 1", x)v(x, t)dx + g(r + "),

=1 I} (r+7)

with the initial conditions

v(x,0) = u(x, %),
0<x<l,
v:(x,0) = u,(x, "),

where the function u(x, ) is already defined on the interval [0,7*]. Analogous
to the above we can find the function v(x,7) (0 <7 < ¢*), which is the expan-
sion of u(x,t) on the set [0,/] x [¢*,2¢*]. Repeating the reasoning conducted
in the proof of the Theorem 3.1 it is easy to check that the function u(x,?)
obtained by such a way is the solution of the formulated problem on [0,2¢*].
Analogously the function u(x,7) can be determined for 7 € [0,n¢*], n € N until
the moment of time 7 and consequently the nonlocal problem (3.1), (3.2),
(3.12) has a unique solution. []

4. Nonlocal problems for the telegraph equation

As in the case of string oscillation equation in this section we consider
nonlocal problems with discrete and integral nonlocal conditions for the tele-
graph equation. However, in contrast to the case of string oscillation, here the
main method of solution constructing is the application of a special type poten-
tial, which allows to reduce posed nonlocal problems to integral equations.
Here we also use corresponding notations of the §3.

Let us consider the nonlocal problem for the telegraph equation

Pu Pu

(41) W:@-f—cu, 0<X<I,O<I<T,

with the initial conditions

(4.2) u(x,0) = p(x), u(x,0) = (x), 0<x<l
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and the nonlocal boundary conditions

m

o(0u(0,0) + B(0) 24 (0.1) = > JAul& 0,010 + 1)

=1

y(@u(l, 1) + 6(1) = B 1() +9(1),

Jj=1

where 0 # ¢ = const is a real or an imaginary number, and u(x,f) is an
unknown function, twice continuously differentiable on [0,/] x [0, T'], satisfying
the equation (4.1) and conditions (4.2), (4.3).

The following theorem is true.

THEOREM 4.1. If all the conditions of the Theorem 3.1 are valid, then the
nonlocal problem (4.1)—(4.3) has a unique solution.

Proor. Note that if we find the solution u(x,7) of the problem (4.1)-
(4.3), then it takes certain meanings on the boundary and, consequently, it is
the solution of the telegraph equation with classical Dirichlet conditions on the
boundary. In this case we can show that

(x,8) = G(x,1) + % LY (I ((1— 1) = x2))dr
t—Il+x
+J 1o ({1 =) — (I — x)z))dT],
(4.4) 0
6w =5, 5| 1 = =2

0 1 ~
where I(z) = > W G) S, @, Y are continuations of the functions ¢, ¥ on the
s=0 (S°

whole axis retaining smoothness, vi,v, € C%([0,T]), vi(z) = v2(z) =0, for
7 < 0. Therefore solution of the problem (4.1)—(4.3) is uniquely defined by the
functions v, v, and due to this fact resolution of the posed problem is reduced
to determination of functions v;(¢) and v,(¢). For definiteness we consider the
case when f(r) #0, 0(r) #0 for 0 <t < T. All other cases can be treated
similarly.

Substituting formula (4.4) into the first condition (4.3), we get an equation
for v;(7) and v,(¢)
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t=&i(1)
— ZJ vi(2)e2E(O (A (1 — ‘c)z — flz(t)))df +wn(t—1+&(1)

t=1+&(1)
w2 @R - G (E =0 = (= G0 )| (0 + £ (0).
0

We may obtain the similar equation from the second boundary condition (4.3).
As in the proof of the Theorem 3.1 we consider the same time interval [0, 7]
for which we have

t

—a(t)vi (1) + B(0)vi (1) — B(2) J vi(@h(t—7)de

0

I
Ms

[, - (G(&(1), 0)](1) — (1) G(0, 2) = B(1)Gx(0, 1) + £ (1),

Il
—_

(4.5) ' ,
P(0)va () + 0(2)vy (1) — H(f)J v ()i (1 — 7)dt

0

Mu

[B3 .- (Gl (1), )D)(1) = p())G(1, 1) — B(0)Gx(1,1) + (1),

1

~.
I

where (1 — 1) = 2¢2I'(3(t — 7)?), and denoting the right-hand parts of the
equations (4.5) by f*(¢) and g*(¢) respectively, we obtain

vl(l)Zthsvl(T) (s — )drds+Jl () @)dwjtf*(f) dr,

(4.6) " otﬂ@ f ﬁ*(f)
n(t) = Jo Jo va(2) i (s — 7)dtds — Jo 3;&31,2(1)611 + JO QH((TT)) dr,

for 0 <t <t
Both equations (4.6) are integral equations of the same type. Due to this
fact we consider the first for v(z). Let’s introduce the following operator

Kv(r) = L L V(@) (s — o)deds + L ﬁE;

Then the first equation (4.6) takes the following form
(47) v = Kvy +f**,

v(1)dr, Vv e C([0,17]).
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@
where f**(7) L 00
K is a compact operator from C([0,7*]) to C([0,#*]). Let us consider the
bounded set 4 = C([0,*]) and prove that the closure of K(A) is compact in
C([0,¢*]). By the Ascoli-Arzela Theorem, we have to check uniform bounded-
ness and equicontinuity of K(A4). Indeed, if we denote a norm in C([0,7*]) by
-1, we get

dz and obviously /** € C?([0,¢*]). Let’s prove now that

IKV|| < T*Ci|v| + TG lvl|,  VveA,
where C) = I[})la)]( |1 (?)|, Cy = i a)]( loe(2)/B(2)], and since ||v|| is bounded, K(A4) is
N N

uniformly bounded. Also

|Kv(t)) — Kv(t;)| =

J: J: v(o)Ii (s — 1)dzds + J: Z%v(f)dr

<ty = t|(TC|v|| + Cav]])

and, consequently, K(A) is equicontinuous. This implies that K is compact.
Taking the latter into account for equation (4.7) the Fredholm theorems are
true. Hence, if we prove, that the homogeneous equation has only a trivial
solution, the equation (4.7) has a unique solution. Let’s consider the homo-
geneous equation

v=Kv
or
v(t) = Jz JS v(t) I (s — 7)dtds + Jl (1) v(t)dr.
0Jo 0A(7)
Let’s show that v(z) satisfies the following estimate
8) vl = Yo chere M
S (n+k)!

Indeed, (4.8) is obvious for » = 1. Assume that the above estimate is true
for n and let it show for n+ 1,

1

MMsaﬂﬁwmwm+@mem

n+1 ; . - Z}’l-‘rl-‘rk
= ck ckemtik
||V|| kz:; nt+1~1 2 (I’l +1 —I—k)'
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Therefore the inequality (4.8) is true for any ne N. (4.8) implies, that

n n+k " el

n t
(D) < [PII(C1 + Ca) ;m < |VI(Cy + Cy) T 0

as n— oo for ¢t€[0,7*] and therefore v(f) =0 on [0,7%].

So, the first equation (4.6) has a unique continuous solution. However,
as in the proof of the Theorem 3.2 the form of the equation provides twice
continuously differentiability of v; on [0,7*]. Similarly we can check existence
and uniqueness of the function v,(¢). Thus, we conclude that the pair {v, .}
is uniquely defined and, consequently, the stated problem (4.1)—(4.3) has a
unique solution on [0, *].

Now, consider the time interval [¢*,2¢*]. Here we also obtain equations
similar to (4.6), where f* and g* are changed by combinations of the func-
tions vy () and v, (#), already defined on [0, #*], since t* < &(¢), #,;(t) <! —t* and
consequently for ¢* <t < 2¢*,

" =1 <t —&(r) < 17, 2" =1 <t—1+n(t) <17,
2t —I<t—1+&() <t 2 —I<t—m) <1

Repeating above reasoning for these equations we determine v;(¢) and v,(¢)
for t € [¢*,2¢*]. Tt is not difficult to show that the obtained functions v (z) and
v,(t) are twice continuously differentiable on [0,2¢*]. Therefore u(x, ) solution
of the posed problem is uniquely found on [0,2¢*]. Similarly, we can define
u(x,r) on [0,nt*], ne N until the moment 7. []

ReMARK. It should be pointed out that the operators 4’, B/ in nonlocal
boundary conditions in general are neither linear nor continuous. However, if
we do not consider the operators as continuous, nonlocal problem might be
incorrect. In the case of continuity of the operators it is easy to show that
solution u(x,t) continuously depends on initial data. Consequently, in any
case, a solution of the nonlocal problem (4.1)—(4.3) exists and is unique, but
depending on continuity of the operators the posed problem will either be
correct or incorrect. Similar reasoning is true for the problem (3.1)-(3.3).

Let us consider now integral nonlocal problem for the telegraph equation
(4.1), with the initial conditions (4.2) and the nonlocal boundary conditions

ou m_ &)
00,040 50,0 = 3| et s+ 10,
i=1 J¢ (7

(4.9) " 0<t<T,
y(t)u(l, ) +0(t)2—i(l, 1) = ZJ ' qi(t, x)u(x, t)dx+g(1),

J=1
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where the given functions satisfy all conditions required in the Theorem 3.2.
Under these conditions the following theorem is correct.

THEOREM 4.2.  The nonlocal problem (4.1), (4.2), (4.9) has a unique solution
u(x, ), which is twice continuously differentiable on [0,1] x [0, T], satisfies the
equation (4.1) and conditions (4.2), (4.9).

Proor. As for the proceeding theorem, even in this case solution of the
problem (4.1), (4.2), (4.9) is equivalent to determination of a pair of twice con-
tinuously differentiable functions {v;,v,}. In order to simplify the following
discussions we assume, that (¢) = 0(¢) =0 for 1 € [0, T]. Then, using the prop-
erties of vi,v,, from (4.9) we obtain the following equations

—a(t)v (1)
&) .
= Z L,‘(r) pi(t, x) (G(x7 1) —vi(t—x)— J vi(2) (¢, T, x)dt

i=1

t—Il+x

+V2(t—l+x)+J

w(t)hL(t,t,] — x)dr) dx
0

—a(0)G(0,1) + f(1),
y(O)va(2)

P enf0) t—x
= ZJ g;(1,x) (G(x7 1) —vi(t—x)— J vi(7)hL(t, 7, x)dt

0

t—Il+x

+V2(l—l+x)+J

w(t)hL(t,t,] — x)dr) dx
0

-G, 1) +9(1),
for 0 < ¢ < t*, where ¢* is an arbitrary positive real number * </, L(t,7,x) =
2¢2xI'(2((t — 7)* — x2)) and consequently we get a system of integral equa-
tions for which we can show that there exists a unique twice continuously dif-
ferentiable solution and therefore, vi(¢) and v,(¢) are defined on [0, 7*].

As in the proof conducted for the previous theorem, considering time
interval [¢*,2¢*] we get equations similar to those of (4.10) from which we
define the functions vi, v, on [t*,2¢*], twice continuously differentiable con-
tinuations of vi(7), v2(¢). Consequently, the pair {v;,v;} is found on [0,27*].
Similarly, v; and v, can be defined for all 7€ [0,7]. Therefore, the integral
nonlocal problem (4.1), (4.2), (4.9) has a unique solution. []
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