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Abstract. In the present article we are interested in the analysis of nonlocal initial

boundary value problems for some medium oscillation equations. More precisely, we

investigate di¤erent types of nonlocal problems for one-dimensional oscillation equa-

tions and prove existence and uniqueness theorems. In some cases algorithms for direct

construction of the solution are given. We also consider nonlocal problem for multi-

dimensional hyperbolic equation and prove the uniqueness theorem for the formu-

lated initial boundary value problem applying the theory of characteristics under rather

general assumptions.

1. Introduction

While applying mathematical modelling to various phenomena of physics,

biology and ecology there often arise problems with non-classical boundary

conditions, which connect the values of unknown function on the boundary and

inside of the given domain. Boundary conditions of such type are called

nonlocal boundary conditions. Nonlocal initial boundary value problems are

important from the point of view of their practical application to modelling and

investigating of pollution processes in rivers, seas, which are caused by sew-

age. It is possible by nonlocal boundary conditions to simulate decreasing of

pollution under influence of natural factors of filtration and settling that causes

self-purification of the medium.

One of the first works, where nonlocal conditions were considered, is [1].

The nonlocal problem was investigated, applying the method of separation

of variables and the corresponding eigenvalues and eigenfunctions were con-

sidered. First, the systematic investigation of a certain class of spatial nonlocal

problems was carried out by A. Bitsadze and A. Samarskii in [2]. Further, in

the works [3, 4] resolution methods for such type problems in the case of rather
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general elliptic equations were suggested. In [5] for the equations of shell and

elasticity theories boundary conditions similar to Bitsadze-Samarskii ones were

considered. Under rather strict conditions the uniqueness of the solution of

the nonlocal problem for the three-dimensional models of the elasticity theory

is proved. The stated nonlocal problems were e¤ectively solved in the case

of circular plates for the Kirchho¤ model. Later, in [6–9] generalizations of

Bitsadze-Samarskii conditions were suggested. Particularly, in [6] discrete

spatial nonlocal problems were studied for rather general elliptic and parabolic

di¤erential equations. Suggested iteration procedures allow not only to prove

existence of the solution of formulated problems, but also to construct algo-

rithms for numerical resolution.

Note that theoretical study of nonlocal problems is connected with great

di‰culties. Too many things are expected to be done in this direction, though

a lot of interesting works are already devoted to these questions ([1–17]).

Complications in investigation of problems of these type are essentially caused

by the fact, that it is usually impossible to apply the classical methods of func-

tional analysis, the energetic method, the method of singular integral equa-

tions. This is the reason for existing only separate results for nonlocal initial

boundary value problems.

It must be emphasized that in the papers devoted to nonlocal problems the

cases of elliptic and parabolic equations have been mainly considered. In the

present work we study nonlocal problems for hyperbolic equations. In O 2 we

state the theorem of uniqueness for rather general discrete spatial nonlocal

problem for hyperbolic equation. In O 3 and O 4 we study in details one-

dimensional problems of the mechanics of solids with di¤erent nonlocal

boundary conditions. More precisely, in O 3 we consider the string oscillation

equation with the classical initial and discrete nonlocal boundary conditions,

which are the generalizations of Bitsadze-Samarskii conditions. In the same

section we discuss the problem with the integral nonlocal conditions. There

are proved the theorems of existence and uniqueness of the solution, which in

some cases can be constructed directly using algorithms given ibidem. In O 4

we consider the telegraph equation. As in the case of string oscillation equa-

tion we study nonlocal problems with discrete and integral nonlocal boundary

conditions.

2. Nonlocal problem for multidimensional medium oscillation equation

Let us consider the bounded domain WHRn, nb 1, x ¼ ðx1; . . . ; xnÞ,
and G be the boundary of W. Let WiðtÞ ði ¼ 1; . . . ;mÞ be the subsets of W.

Assume that boundaries GiðtÞ of WiðtÞ are di¤eomorphic images of G , i.e.

Iið�; tÞ : G ! GiðtÞ are di¤eomorphisms, and Iiðx; tÞ are continuous functions,
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G , Gi are su‰ciently smooth surfaces and that the distance between them is

positive ði ¼ 1;mÞ.

Definition. Let A : C2ðS � ½a; b�Þ ! X ðS � ½a; b�Þ be an operator, where

X is a functional space defined on S � ½a; b�, SHR l , l A N. We say, that

for the operator A the condition of localization by t A ½a; b� is valid if there

exists a class of operators Aa;b : C
2ðS � ½a; b�Þ ! X ðS � ½a; b�Þ, such that the

following is true: if ½a; b�H ½g; d�H ½a; b�, v A C 2ðS � ½a; b�Þ, w A C2ðS � ½g; d�Þ
and vðx; tÞ1wðx; tÞ, t A ½a; b�, then ðAa;bvÞðx; tÞ1 ðAg; dwÞðx; tÞ, for aa ta b,

and Aa;b ¼ A.

Let L be a strongly elliptic operator

L1
Xn
i;k¼1

aikðx; tÞ
q2

qxiqxk
þ
Xn
i¼1

biðx; tÞ
q

qxi
þ bðx; tÞ q

qt
þ cðx; tÞ;

ðx; tÞ A W� ð0;TÞ;

Xn
i;k¼1

aikxixk b gðx2
1 þ � � � þ x2

nÞ; g ¼ const > 0; Ex ¼ ðx1; . . . ; xnÞ A Rn;

where aik; bi; b; c are prescribed functions.

Consider the nonlocal problem for the hyperbolic equation

q2u

qt2

 Lu ¼ f ðx; tÞ; ðx; tÞ A QT ¼ W� ð0;TÞ;ð2:1Þ

with the classical initial conditions

uðx; 0Þ ¼ u0ðxÞ;

utðx; 0Þ ¼ u1ðxÞ;
x A W;ð2:2Þ

and the nonlocal boundary conditions

uðx; tÞ ¼
Xm
i¼1

piðx; tÞuðIiðx; tÞ; tÞ þ gðx; tÞ; ðx; tÞ A ST ¼ G � ½0;T �;ð2:3Þ

where pi, g, u0, u1 are prescribed continuous functions and uðx; tÞ is an un-

known function, which is the classical solution of equation (2.1) satisfying

conditions (2.2) and (2.3) at the same time. The following uniqueness theorem

is valid.

Theorem 2.1. If aik are continuously di¤erentiable functions and coe‰-

cients bi, b, c are continuous ði; k ¼ 1; nÞ, then the nonlocal problem (2.1)–(2.3)

has no more than one solution.
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Proof. Assume that there exist two uðx; tÞ and vðx; tÞ solutions of the

problem. Then obviously their di¤erence wðx; tÞ ¼ uðx; tÞ
vðx; tÞ is the solu-

tion of the homogeneous equation (2.1) under homogeneous initial and nonlocal

conditions. Note that

riðtÞ ¼ distðGiðtÞ;GÞ ¼ inf
x;y AG

rðIiðx; tÞ; yÞ

continuously depends on t, since Iiðx; tÞ is a continuous function and hence it is

uniformly continuous.

Taking into account that distance between G and GiðtÞ is positive, we get

riðtÞ > 0 for all t A ½0;T � and consequently, there exists such a d > 0, that

riðtÞ > d, t A ½0;T � ði ¼ 1;mÞ. Therefore, for any point ðx; tÞ A WiðtÞ, the ball

of a radius d centered at x is placed entirely in a ‘‘horizontal’’ cross-section

W� ftg.
Strong ellipticity of the operator L allows to inscribe as well as to over-

draw cones respectively inside and outside of a characteristic conoid, defined by

the operator L. Tangents of angles between the axis and elements of the cones

are denoted by a and b ðaa bÞ and we call them spreads of the cones.

Note that since wðx; 0Þ ¼ wtðx; 0Þ ¼ 0, x A W, then wðx; tÞ equals to zero in

any point ðx; tÞ for which the base of the characteristic conoid, passing through

this point, lies in W [17]. Let us now consider an interval 0a ta t
, where

t
 ¼ d=b. Then for any point ðx; tÞ, which belong to the curvilinear cylinder

WiðtÞ ði ¼ 1; . . . ;mÞ base of the cone with a top in ðx; tÞ, axis parallel to the

axis t and with a spread b lies in W, as tba t
b ¼ ðd=bÞ � b ¼ d. Therefore,

wðx; tÞ ¼ 0, i.e. in any point of the curvilinear cylinders WiðtÞ ði ¼ 1;mÞ,
wðx; tÞ ¼ 0, for 0a ta t
. Taking into account that wðx; tÞ satisfies the homo-

geneous nonlocal boundary conditions, we obtain

wðx; tÞ ¼ 0; ðx; tÞ A St 
 ;

and therefore wðx; tÞ is the solution of the homogeneous equation (2.1) under

homogeneous initial and boundary conditions. Since the classical problem has

a unique solution, then

wðx; tÞ1 0; 0a ta t
:

Now take for an initial moment of time t
, i.e. change the variable t ¼
t
 t
. The function w
ðx; tÞ ¼ wðx; tþ t
Þ satisfies the following problem

w

tt ¼ Lw
; ðx; tÞ A QT
t 
 ;ð2:4Þ

w
ðx; 0Þ ¼ w

t ðx; 0Þ ¼ 0; x A W;ð2:5Þ

w
ðx; tÞ ¼
Xm
i¼1

piðx; tþ t
Þw
ðIiðx; tþ t
Þ; tÞ; ðx; tÞ A ST
t 
 :ð2:6Þ
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Repeating the proceeding reasoning, we get w
ðx; tÞ1 0, 0a ta t
, and

consequently wðx; tÞ1 0, 0a ta 2t
. Similarly wðx; tÞ1 0 for t A ½0; nt
�,
n A N up to the moment T . So wðx; tÞ1 0, ðx; tÞ A QT , which means, that

uðx; tÞ1 vðx; tÞ and the solution is unique. r

It should be noted that in the similar way we can prove a uniqueness

theorem in more general case.

Theorem 2.2. The nonlocal problem for the equation (2.1) with the initial

conditions (2.2) and the following nonlocal boundary conditions

uðx; tÞ ¼
Xm
i¼1

½AiuðIiðx; tÞ; tÞ�ðx; tÞ þ gðx; tÞ; ðx; tÞ A ST ¼ G � ½0;T �;ð2:7Þ

has no more than one regular solution, where Ai : C2ðST Þ ! C2ðSTÞ are linear

operators, and for each Ai ði ¼ 1; . . . ;mÞ the condition of localization by t is

satisfied.

Remark. If the boundaries of W and WiðtÞ ði ¼ 1; . . . ;mÞ and the given

functions are smooth enough, then not only the uniqueness theorem is true for

the problem (2.1)–(2.3), but also the theorem of existence is valid. In par-

ticular, we can find so large N, that if all the functions mentioned in The-

orem 2.1 are N-times continuously di¤erentiable and compatibility conditions

are valid, then the nonlocal problem (2.1)–(2.3) has a unique solution.

3. Nonlocal problems for the string oscillation equation

In the following two sections we study nonlocal problems for one-

dimensional hyperbolic equations. Unlike multidimensional case we formulate

the theorems of existence and uniqueness of the solutions for more general

problems with non-linear nonlocal boundary conditions and in some cases give

algorithms for direct construction of the solutions.

Let us consider the nonlocal problem for the string oscillation equation

q2u

qt2
¼ q2u

qx2
; 0 < x < l; 0 < t < T ;ð3:1Þ

with the classical initial conditions

uðx; 0Þ ¼ jðxÞ;

utðx; 0Þ ¼ cðxÞ;
0a xa l;ð3:2Þ

and the nonlocal boundary conditions
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aðtÞuð0; tÞ þ bðtÞ qu
qx

ð0; tÞ ¼
Xm
i¼1

½AiuðxiðtÞ; tÞ�ðtÞ þ f ðtÞ;

gðtÞuðl; tÞ þ yðtÞ qu
qx

ðl; tÞ ¼
Xp
j¼1

½B juðhjðtÞ; tÞ�ðtÞ þ gðtÞ;
0a taT ;ð3:3Þ

where a, b, g, y, f , g are prescribed functions, which satisfy the compatibility

conditions, Ai;B j ði ¼ 1; . . . ;m; j ¼ 1; . . . ; pÞ is the system of generally non-

linear operators C2ð½0;T �Þ ! C 2ð½0;T �Þ, satisfying conditions of localization,

xiðtÞ; hjðtÞ ði ¼ 1;m; j ¼ 1; pÞ are sliding points of the string ð0; lÞ. We say,

that uðx; tÞ is classical solution of the problem (3.1)–(3.3) if it is twice con-

tinuously di¤erentiable on D ¼ f0a xa l; 0a taTg, satisfies equation (3.1)

and conditions (3.2), (3.3). The following theorem is true.

Theorem 3.1. Assume that the following conditions are valid:

i) f ; g; a; b; g; y A C 2ð½0;T �Þ, j A C2ð½0; l �Þ, c A C1ð½0; l �Þ, aðtÞbðtÞ0 0,

gðtÞyðtÞ0 0, 0a taT;

ii) xi; hj A C2ð½0;T �Þ, 0 < xiðtÞ, hjðtÞ < l, when t A ½0;T �, i ¼ 1; . . . ;m;

j ¼ 1; . . . ; p;

iii) each of the functions bðtÞ, yðtÞ either is not equal to zero for any

t A ½0;T �, or is equal to zero identically.

Then the nonlocal problem (3.1)–(3.3) has a unique classical solution uðx; tÞ.

Proof. Note that if the solution of the problem (3.1)–(3.3) is found, then

we get some functions on the ends of the string

uð0; tÞ ¼ m1ðtÞ;

uðl; tÞ ¼ m2ðtÞ;
0a taT ;ð3:4Þ

and then uðx; tÞ is the solution of the Cauchy-Dirichlet problem for the equa-

tion (3.1) with the initial and boundary conditions (3.2), (3.4), which has a

unique solution

uðx; tÞ ¼ Fðx; tÞ þ
Xy
n¼0

m1ðt
 2nl 
 xÞ 

Xy
n¼1

m1ðt
 2nl þ xÞð3:5Þ

þ
Xy
n¼0

m2ðt
 ð2nþ 1Þl þ xÞ 

Xy
n¼0

m2ðt
 ð2nþ 1Þl 
 xÞ;

where l ¼ p=ðl þ 1Þ;

Fðx; tÞ ¼ Fðxþ tÞ þFðx
 tÞ
2

þ 1

2

ð xþt
x
t

CðaÞda


 j 00ð0Þ
l2 sin ll

sinðlðl 
 xÞÞ cos lt
 j 00ðlÞ
l2 sin ll

sin lx cos lt;
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FðxÞ and CðxÞ represent continuations of the functions jðxÞ þ j 00ð0Þ �
sinðlðl 
 xÞÞ=ðl2 sin llÞ þ j 00ðlÞ sin lx=ðl2 sin llÞ and cðxÞ respectively on the

whole axis retaining smoothness in such a way, that

FðxÞ þFð
xÞ ¼ 2Fð0Þ; CðxÞ þCð
xÞ ¼ 2Cð0Þ;

Fðl 
 xÞ þFðl þ xÞ ¼ 2FðlÞ; Cðl 
 xÞ þCðl þ xÞ ¼ 2CðlÞ;

m1ðtÞ ¼
m1ðtÞ 
 ðjð0Þ þ j 00ð0Þ=l2Þ 
 cð0Þtþ j 00ð0Þ cosðltÞ=l2; tb 0,

0; t < 0,

�
ð3:6Þ

and for m2ðtÞ we have the corresponding expression, where 0 is replaced by l.

Thus, any classical solution of the problem (3.1)–(3.3) can be represented by

the form (3.5). If we find twice continuously di¤erentiable functions m1ðtÞ,
m2ðtÞ, then the problem is solved. Consequently, due to this fact under the

solution of the problem (3.1)–(3.3) we sometimes mean the couple fm1; m2g.
Taking into account nonlocal conditions (3.3), we get that the problem

(3.1)–(3.3) will be solved, if we find the couple fm1; m2g, which satisfies the

equations

aðtÞm1ðtÞ þ bðtÞ
 
Fxð0; tÞ 
 m 0

1ðtÞ 
 2
Xy
n¼1

m 0
1ðt
 2nlÞ

þ 2
Xy
n¼0

m 0
2ðt
 ð2nþ 1ÞlÞ

!

¼
Xm
i¼1

½AiuðxiðtÞ; tÞ�ðtÞ þ f ðtÞ;

gðtÞm2ðtÞ þ yðtÞ
 
Fxðl; tÞ þ m 0

2ðtÞ þ 2
Xy
n¼1

m 0
2ðt
 2nlÞ


 2
Xy
n¼0

m 0
1ðt
 ð2nþ 1ÞlÞ

!

¼
Xp
j¼1

½B juðhjðtÞ; tÞ�ðtÞ þ gðtÞ:

0a taT ;ð3:7Þ

It should be mentioned, that from the above reasonings it follows that

solution of the problem is completely reduced to finding the pair fm1; m2g, i.e.

existence and uniqueness of the solution uðx; tÞ and of the pair fm1; m2g are

equivalent.

Since the functions xiðtÞ and hjðtÞ ði ¼ 1; . . . ;m; j ¼ 1; . . . ; pÞ are contin-
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uous on ½0;T � and for all t A ½0;T � they belong to the interval ð0; lÞ, then there

exist

e1 ¼ min
0ataT
1aiam

xiðtÞ; ~ee1 ¼ max
0ataT
1aiam

xiðtÞ;

e2 ¼ min
0ataT
1a jap

hjðtÞ; ~ee2 ¼ max
0ataT
1a jap

hjðtÞ;

where each of the numbers e1, e2, ~ee1, ~ee2 belongs to ð0; lÞ. Obviously, all

the curves xi, hj are located in the stripe ½t
; l 
 t
� � ½0;T �, where t
 ¼
minfe1; e2; l 
 ~ee1; l 
 ~ee2g.

By (3.7), taking into account the definition of m1ðtÞ, m2ðtÞ, we get that if

the pair fm1; m2g is the solution of the problem, then it has to satisfy the

following equalities

aðtÞm1ðtÞ 
 bðtÞm 0
1ðtÞ ¼

Xm
i¼1

½Ai
0; t 
F ðxiðtÞ; tÞ�ðtÞ þ ~ff ðtÞ;

gðtÞm2ðtÞ þ yðtÞm 0
2ðtÞ ¼

Xp
j¼1

½B j
0; t 
F ðhjðtÞ; tÞ�ðtÞ þ ~ggðtÞ;

0a ta t
;

where ~ff ðtÞ, ~ggðtÞ are expressed through prescribed functions. Obviously ~ff ðtÞ,
~ggðtÞ A C1ð½0; t
�Þ. Consequently, for m1ðtÞ and m2ðtÞ we get ordinary di¤erential

equations of the first order. Assume that first of the conditions of the point iii)

in the Theorem 3.1 is true, i.e. bðtÞ0 0, when t A ½0;T �. Then taking into

account compatibility condition m1ð0Þ ¼ jð0Þ, for 0a ta t
 we obtain

m1ðtÞ ¼ exp

ð t
0

aðtÞ
bðtÞ dt

� � 
jð0Þ 


ð t
0

exp 

ð t
0

aðsÞ
bðsÞ ds

� �

Xm
i¼1

½Ai
0; t 
F ðxiðtÞ; tÞ�ðtÞ þ ~ff ðtÞ

 !
1

bðtÞ dt
!
:

In the second case, m1ðtÞ can be directly expressed by the functions in the

right-hand part of the equation. Here, corresponding functions ~ff ðtÞ or ~ggðtÞ
will be twice continuously di¤erentiable. In both cases, as we see, m1ðtÞ is

equal to twice continuously di¤erentiable function, for 0a ta t
. Therefore,

in the time interval ½0; t
� we can define the unknown pair of functions fm1; m2g
and, using the formula (3.5), we get the solution of the problem (3.1)–(3.3) on

½0; t
�.
Now, take for the initial moment t
. Introducing a new time variable

t ¼ t
 t
, the nonlocal problem for the function vðx; tÞ ¼ uðx; tþ t
Þ con-

sidered in ½0; l � � ½0; t
� takes the following form
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vtt ¼ vxx; 0 < x < l; 0 < t < t
;ð3:8Þ

aðtþ t
Þvð0; tÞ þ bðtþ t
Þ qv
qx

ð0; tÞ

¼
Xm
i¼1

½Ai
t 
;2t
vðxiðtÞ; t
 t
Þ�ðtþ t
Þ þ f ðtþ t
Þ;

gðtþ t
Þvðl; tÞ þ yðtþ t
Þ qv
qx

ðl; tÞ

¼
Xp
j¼1

½B j
t 
;2t 
vðhjðtÞ; t
 t
Þ�ðtþ t
Þ þ gðtþ t
Þ;

0a ta t
;ð3:9Þ

where the initial conditions are

vðx; 0Þ ¼ uðx; t
Þ;

vtðx; 0Þ ¼ utðx; t
Þ;
0a xa l:ð3:10Þ

Note that in the right-hand parts of (3.9) we mean that t
 a ta 2t
 to make

it possible to act with corresponding operators. Finally we get the function

defined on ½t
; 2t
� with the argument t ¼ tþ t
, where 0a ta t
. As in the

previous case we can find the solution of the nonlocal problem (3.8)–(3.10)

on ½0; t
� and it will be an expansion of uðx; tÞ on the time interval ½t
; 2t
�.
Let’s show now that obtained uðx; tÞ is the solution of the problem (3.1)–(3.3),

when 0a ta 2t
. Obviously, it’s su‰cient to check twice continuously dif-

ferentiability of uðx; tÞ at the moment t ¼ t
. Since uðx; tÞ is the solution of

(3.1)–(3.3) on ½0; t
�, then it is twice continuously di¤erentiable by x, when

t ¼ t
, and

lim
t
t
!0


uðx; tÞ ¼ uðx; t
Þ ¼ vðx; 0Þ ¼ lim
t
t
!0þ

uðx; tÞ;

and consequently uðx; tÞ is continuous in the point t
. Analogously,

lim
d!0


uðx; t
 þ dÞ 
 uðx; t
Þ
d

¼ utðx; t
Þ

¼ vtðx; 0Þ ¼ lim
d!0þ

uðx; t
 þ dÞ 
 uðx; t
Þ
d

;

lim
t
t 
!0


utðx; tÞ ¼ utðx; t
Þ ¼ vtðx; 0Þ ¼ lim
t
t 
!0þ

utðx; tÞ:

Therefore, utðx; tÞ exists and is continuous for t ¼ t
.

In the same way we can check that uttðx; tÞ is continuous for t ¼ t
.

Taking into account the conditions (3.3), we can say that they are true since

the operators Ai and B j satisfy conditions of localization ði ¼ 1;m; j ¼ 1; nÞ.
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Consequently uðx; tÞ is the solution of the nonlocal problem (3.1)–(3.3), when

0a ta 2t
.

Applying the same method, we find uðx; tÞ on the intervals ½0; nt
�
ðn ¼ 2; 3; . . .Þ until the moment T . Therefore we can find uðx; tÞ for the whole

time interval ½0;T �, i.e. the solution of the problem (3.1)–(3.3) exists, is unique,

and expressed through the given functions and their integrals. r

Remark. Let us consider particular case of nonlocal conditions (3.3):

uð0; tÞ ¼
Xm
i¼1

aiuðxi; tÞ þ f ðtÞ;

uðl; tÞ ¼
Xp
j¼1

bjuðhj; tÞ þ gðtÞ;
0a taT ;ð3:11Þ

where ai, bj are prescribed numbers, xi; hj ði ¼ 1;m; j ¼ 1; pÞ are points of the

string ð0; lÞ. Then, the corresponding operators, which are in the right-hand

parts of the nonlocal conditions (3.11), satisfy the conditions of localization and

therefore according to the Theorem 3.1 nonlocal problem for the string oscil-

lation equation with the initial conditions (3.2) and the nonlocal boundary

conditions (3.11) has a unique solution, which can be found directly. The posed

problem can be interpreted as the problem of controllability by the boundary

conditions, where the boundary meanings of unknown function are required

to di¤er from the linear combination of its meanings in certain points by a

value given beforehand. This type of problems arises in building constructions

and generators.

It should be mentioned that the nonlocal conditions (3.3) generally are not

linear. Therefore, instead of (3.11) we can consider, for example, the following

conditions

uð0; tÞ ¼
Xm
i¼1

aiu
piðxi; tÞ þ f ðtÞ;

uðl; tÞ ¼
Xp
j¼1

bju
qj ðhj; tÞ þ gðtÞ;

0a taT ;

where pi; qj ði ¼ 1;m; j ¼ 1; pÞ are non-negative integers. In this case the

corresponding operators satisfy conditions of localization and we get nonlinear

nonlocal initial boundary value problem which, according to the Theorem 3.1,

has a unique classical solution.

Consider now the nonlocal problem for the equation (3.1) with the con-

ditions (3.2) and the following integral nonlocal boundary conditions
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aðtÞuð0; tÞþbðtÞ qu
qx

ð0; tÞ ¼
Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞuðx; tÞdxþ f ðtÞ;

gðtÞuðl; tÞþyðtÞ qu
qx

ðl; tÞ ¼
Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

qjðt; xÞuðx; tÞdxþgðtÞ;

0ataT ;ð3:12Þ

where x1
i ðtÞa x2

i ðtÞ; h1
j ðtÞa h2

j ðtÞ ði ¼ 1;m; j ¼ 1; pÞ are sliding points of the

string ½0; l �; a, b, g, y, pi, qj, f , g are prescribed su‰ciently smooth functions.

Throughout the paper we shall use C2;1ð½0;T � � ½0; l �Þ to denote the set

of continuously di¤erentiable functions twice continuously di¤erentiable with

respect to t.

The following statement is true.

Theorem 3.2. Assume that the conditions i), iii) of the Theorem 3.1 are valid,

functions x1
i ðtÞ, x2

i ðtÞ, h1
j ðtÞ, h2

j ðtÞ are twice continuously di¤erentiable, pi; qj A
C 2;1ð½0;T � � ½0; l �Þ and 0ax1

i ðtÞax2
i ðtÞa l, 0ah1

j ðtÞah2
j ðtÞa l, for t A ½0;T �.

Then nonlocal problem (3.1), (3.2), (3.12) has a unique classical solution.

Proof. Conducting the same reasoning as in the case of the Theorem 3.1,

we get that the stated problem is equivalent to the one connected with deter-

mination of a pair fm1; m2g, satisfying the equations

aðtÞm1ðtÞ þ bðtÞ
 
Fxð0; tÞ 
 m 0

1ðtÞ 
 2
Xy
n¼1

m 0
1ðt
 2nlÞ

þ 2
Xy
n¼0

m 0
2ðt
 ð2nþ 1ÞlÞ

!

¼
Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞuðx; tÞdxþ f ðtÞ;

gðtÞm2ðtÞ þ yðtÞ
 
Fxðl; tÞ þ m 0

2ðtÞ þ 2
Xy
n¼1

m 0
2ðt
 2nlÞ


 2
Xy
n¼0

m 0
1ðt
 ð2nþ 1ÞlÞ

!

¼
Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

qjðt; xÞuðx; tÞdxþ gðtÞ;

ð3:13Þ

where 0a taT . In order to solve this integral nonlocal problem we use the

same method which was applied in the case of discrete nonlocal problem, i.e.
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we break down time interval ½0;T � into subintervals, solve the problem sep-

arately on each of them and finally unite obtained solutions into one, which is

the solution of the problem (3.1), (3.2), (3.12).

Let’s break ½0;T � into equal intervals with the length t
 < l. Consider the

first interval ½0; t
�. On the basis of the definition of m1ðtÞ and m2ðtÞ equations

(3.13), where uðx; tÞ is substituted by its expression according to the formula

(3.5), on the interval ½0; t
� take the following form

aðtÞm1ðtÞ 
 bðtÞm 0
1ðtÞ ¼

Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞm1ðt
 xÞdx

þ
Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞm2ðt
 l þ xÞdx


 bðtÞFxð0; tÞ þ f̂f ðtÞ;

gðtÞm2ðtÞ þ yðtÞm 0
2ðtÞ ¼

Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

qjðt; xÞm1ðt
 xÞdx

þ
Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

qjðt; xÞm2ðt
 l þ xÞdx


 yðtÞFxðl; tÞ þ ĝgðtÞ;

0a ta t
;ð3:14Þ

where f̂f ; ĝg are expressed through given functions. Obviously, f̂f ; ĝg A C2ð½0; t
�Þ.
Changing variables in the integrals in the right-hand parts of (3.14), for

0a ta t
 we get

aðtÞm1ðtÞ 
 bðtÞm 0
1ðtÞ ¼

Xm
i¼1

ð t
x1
i ðtÞ

t
x2
i ðtÞ

piðt; t
 tÞm1ðtÞdtð3:15Þ

þ
Xm
i¼1

ð t
lþx2
i ðtÞ

t
lþx1
i ðtÞ

piðt; tþ l 
 tÞm2ðtÞdt


 bðtÞFxð0; tÞ þ f̂f ðtÞ;

gðtÞm2ðtÞ þ yðtÞm 0
2ðtÞ ¼

Xp
j¼1

ð t
h1
j ðtÞ

t
h2
j
ðtÞ

qjðt; t
 tÞm1ðtÞdtð3:16Þ

þ
Xp
j¼1

ð t
lþh2
j ðtÞ

t
lþh1
j
ðtÞ

qjðt; tþ l 
 tÞm2ðtÞdt
 yðtÞFxðl; tÞ

þ ĝgðtÞ:
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Let us introduce notations ~xx1
i ðtÞ ¼ wðt
 x1

i ðtÞÞðt
 x1
i ðtÞÞ, ~xx2

i ðtÞ ¼
wðt
 x2

i ðtÞÞðt
 x2
i ðtÞÞ, ~xx1 


i ðtÞ ¼ wðt
 l þ x1
i ðtÞÞðt
 l þ x1

i ðtÞÞ, ~xx2 


i ðtÞ ¼ wðt
 lþ
x2
i ðtÞÞðt
 l þ x2

i ðtÞÞ and in the same way ~hh1
j ðtÞ, ~hh2

j ðtÞ, ~hh1 

j ðtÞ, ~hh2


j ðtÞ, where

wðxÞ ¼ 1; xb 0,

0; x < 0,

�

is Heaviside’s function. We denote by h1ðtÞ and h2ðtÞ additional functions,

except m1; m2, taking part in the definition of m1 and m2. Taking these nota-

tions into account, we rewrite (3.15), (3.16) as follows:

aðtÞm1ðtÞ 
 bðtÞm 0
1ðtÞ ¼

Xm
i¼1

ð ~xx1
i ðtÞ

~xx2
i ðtÞ

piðt; t
 tÞðm1ðtÞ þ h1ðtÞÞdtð3:17Þ

þ
Xm
i¼1

ð ~xx2

i ðtÞ

~xx1

i ðtÞ

piðt; tþ l 
 tÞðm2ðtÞ þ h2ðtÞÞdt


 bðtÞFxð0; tÞ þ f̂f ðtÞ;

gðtÞm2ðtÞ þ yðtÞm 0
2ðtÞ ¼

Xp
j¼1

ð ~hh1
j ðtÞ

~hh2
j
ðtÞ
qjðt; t
 tÞðm1ðtÞ þ h1ðtÞÞdtð3:18Þ

þ
Xp
j¼1

ð ~hh2

j ðtÞ

~hh1

j

ðtÞ
qjðt; tþ l 
 tÞðm2ðtÞ þ h2ðtÞÞdt


 yðtÞFxðl; tÞ þ ĝgðtÞ;

where 0a ta t
. Therefore, for the functions m1ðtÞ and m2ðtÞ we get the

system of integro-di¤erential equations.

According to the condition iii) of the theorem, bðtÞ is either equal or

unequal to zero everywhere. Due to this reason in the first case instead of

(3.17) we have a special type integral equation, and in the second one, taking

an integral from 0 to t, for each 0a ta t
, we obtain an integral equation

too.

Similarly we conclude that the equation (3.18) can be reduced to a

special type integral equation. We consider only the case where the func-

tions bðtÞ; yðtÞ are equal to zero everywhere since all the rest cases can be

considered without any significant changes. In this case aðtÞ; gðtÞ0 0, for

0a ta t
. Dividing the above expressions by aðtÞ; gðtÞ respectively, for

0a ta t
 we get
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m1ðtÞ ¼
Xm
i¼1

ð ~xx1
i ðtÞ

~xx2
i ðtÞ

p

i ðt; tÞðm1ðtÞ þ h1ðtÞÞdtð3:19Þ

þ
Xm
i¼1

ð ~xx2

i ðtÞ

~xx1

i ðtÞ

p

i ðt; 2t
 l 
 tÞðm2ðtÞ þ h2ðtÞÞdtþ

f̂f ðtÞ
aðtÞ ;

m2ðtÞ ¼
Xp
j¼1

ð ~hh1
j ðtÞ

~hh2
j
ðtÞ
q

j ðt; tÞðm1ðtÞ þ h1ðtÞdtð3:20Þ

þ
Xp
j¼1

ð ~hh2

j ðtÞ

~hh1

j

ðtÞ
q

j ðt; 2t
 l 
 tÞðm2ðtÞ þ h2ðtÞdtþ

ĝgðtÞ
gðtÞ ;

where p

i ðt; tÞ ¼

piðt; t
 tÞ
aðtÞ , q


j ðt; tÞ ¼
qjðt; t
 tÞ

gðtÞ . Note that all the functions

in the system (3.19), (3.20) are continuous. Now we prove that the operator

K : Cð½0; t
�Þ � Cð½0; t
�Þ ! Cð½0; t
�Þ � Cð½0; t
�Þ is compact, K ¼ ðK1;K2Þ,

K1
v

w

� �
¼
Xm
i¼1

ð ~xx1
i ðtÞ

~xx2
i ðtÞ

p

i ðt; tÞvðtÞdtþ

Xm
i¼1

ð ~xx2

i ðtÞ

~xx1

i ðtÞ

p

i ðt; 2t
 l 
 tÞwðtÞdt;

K2
v

w

� �
¼
Xp
j¼1

ð ~hh1
j ðtÞ

~hh2
j
ðtÞ
q

j ðt; tÞvðtÞdtþ

Xp
j¼1

ð ~hh2

j ðtÞ

~hh1

j

ðtÞ
q

j ðt; 2t
 l 
 tÞwðtÞdt:

ð3:21Þ

Indeed, let AHCð½0; t
�Þ � Cð½0; t
�Þ be a bounded set, i.e.

E
v

w

� �
A A;

v

w

����
����
Cð½0; t 
�Þ�Cð½0; t 
�Þ

¼ kvk þ kwka c;ð3:22Þ

where by k � k we denote a norm in Cð½0; t
�Þ.
To show, that K is a compact operator, it is su‰cient to prove, that

both components K1;K2 : Cð½0; t
�Þ � Cð½0; t
�Þ ! Cð½0; t
�Þ of the operator K

are compact. By the Ascoli-Arzela Theorem, the operator K1 is compact

whenever K1ðAÞ is uniformly bounded and equicontinuous. From (3.21) we

have

K1
v

w

� �����
����aC1Tmðkvk þ kwkÞ; C1 ¼ max

½0; t 
��½0; l �
1aiam

fjpiðt; xÞ=aðtÞjg:

Therefore, as A is bounded, K1ðAÞ and analogously K2ðAÞ are uniformly

bounded. Furthermore, since all the functions x1
i , x2

i are twice continuously

di¤erentiable, it is easy to see that ~xx1
i ,

~xx2
i ,

~xx1 


i , ~xx2 


i are Lipschitz continuous

on ½0; t
� and consequently
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K1
v

w

� �
ðt2Þ 
 K1

v

w

� �
ðt1Þ

				
				ð3:23Þ

a
Xm
i¼1

½C1kvkðj~xx1
i ðt2Þ 
 ~xx1

i ðt1Þj þ j~xx2
i ðt2Þ 
 ~xx2

i ðt1ÞjÞ

þ C1kwkðj~xx1 


i ðt2Þ 
 ~xx1 


i ðt1Þj þ j~xx2 


i ðt2Þ 
 ~xx2 


i ðt1ÞjÞ�

a
Xm
i¼1

½C1kvkð ~CC1
i þ ~CC2

i Þ þ C1kwkð ~CC1 


i þ ~CC2 


i Þ�jt2 
 t1j;

where ~CC1
i ,

~CC2
i ,

~CC1 


i , ~CC2 


i are Lipschitz constants corresponding to the functions ~xx1
i ,

~xx2
i ,

~xx1 


i , ~xx2


i . (3.22) and (3.23) imply that K1ðAÞ is equicontinuous set of functions

and thus K1 is a compact operator. By the similar discussion we can deduce that

the operator K2 is compact too.

So, the operator K is compact and therefore the alternative of Fredholm

is true for the system (3.19), (3.20), i.e. the system has a unique solution only if

the homogeneous system has only the trivial one. Though, using the method

of mathematical induction we can prove the validity of the following inequal-

ities for any n A N:

maxfjm1ðtÞj; jm2ðtÞjga 2n
1cn
tn

n!
km1k þ 2n
1cn

tn

n!
km2k; 0a ta t
;ð3:24Þ

where c ¼ maxfmC1; pC2g, C2 ¼ max
½0; t 
��½0; l �;1ajap

fjqjðt; xÞ=gðtÞjg. From the

(3.24), tending n ! y, we get that the homogeneous system has only the trivial

solution. Therefore, system (3.19), (3.20) has a unique solution.

To show that the pair fm1; m2g is a solution of the nonlocal problem, it

is su‰cient to prove that m1; m2 A C2ð½0; t
�Þ. According to the continuity of

m1ðtÞ and m2ðtÞ it is obvious that m1ðtÞ and m2ðtÞ are also continuous. Then

from (3.14) where bðtÞ1 yðtÞ1 0 we get that the right-hand parts of the equa-

tions are continuously di¤erentiable, since x1ðtÞ; x2ðtÞ; h1ðtÞ; h2ðtÞ A C2ð½0; t
�Þ,
and consequently m1; m2 A C1ð½0; t
�Þ. It is not di‰cult to check that m1; m2 A
C 1ð½0; t
�Þ. Repeating the above reasoning, we similarly obtain that m1; m2 A
C 2ð½0; t
�Þ. Substituting this pair into the formula (3.5), we get the solution

uðx; tÞ of the problem (3.1), (3.2), (3.12) for t A ½0; t
�.
Taking for the initial moment of time t
, i.e. changing time variable t by

t ¼ t
 t
, for the function vðx; tÞ ¼ uðx; tþ t
Þ we get the following nonlocal

problem

q2v

qt2
¼ q2v

qx2
; 0 < x < l; 0 < t < T 
 t
;
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aðtþ t
Þvð0; tÞ þ bðtþ t
Þ qv
qx

ð0; tÞ

¼
Xm
i¼1

ð x2
i ðtþt 
Þ

x1
i ðtþt 
Þ

piðtþ t
; xÞvðx; tÞdxþ f ðtþ t
Þ;

gðtþ t
Þvðl; tÞ þ yðtþ t
Þ qv
qx

ðl; tÞ

¼
Xp
j¼1

ðh2
j
ðtþt 
Þ

h1
j
ðtþt 
Þ

qjðtþ t
; xÞvðx; tÞdxþ gðtþ t
Þ;

0a taT 
 t
;

with the initial conditions

vðx; 0Þ ¼ uðx; t
Þ;

vtðx; 0Þ ¼ utðx; t
Þ;
0a xa l;

where the function uðx; tÞ is already defined on the interval ½0; t
�. Analogous

to the above we can find the function vðx; tÞ ð0a ta t
Þ, which is the expan-

sion of uðx; tÞ on the set ½0; l � � ½t
; 2t
�. Repeating the reasoning conducted

in the proof of the Theorem 3.1 it is easy to check that the function uðx; tÞ
obtained by such a way is the solution of the formulated problem on ½0; 2t
�.
Analogously the function uðx; tÞ can be determined for t A ½0; nt
�, n A N until

the moment of time T and consequently the nonlocal problem (3.1), (3.2),

(3.12) has a unique solution. r

4. Nonlocal problems for the telegraph equation

As in the case of string oscillation equation in this section we consider

nonlocal problems with discrete and integral nonlocal conditions for the tele-

graph equation. However, in contrast to the case of string oscillation, here the

main method of solution constructing is the application of a special type poten-

tial, which allows to reduce posed nonlocal problems to integral equations.

Here we also use corresponding notations of the O 3.

Let us consider the nonlocal problem for the telegraph equation

q2u

qt2
¼ q2u

qx2
þ c2u; 0 < x < l; 0 < t < T ;ð4:1Þ

with the initial conditions

uðx; 0Þ ¼ jðxÞ; utðx; 0Þ ¼ cðxÞ; 0a xa l;ð4:2Þ
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and the nonlocal boundary conditions

aðtÞuð0; tÞ þ bðtÞ qu
qx

ð0; tÞ ¼
Xm
i¼1

½AiuðxiðtÞ; tÞ�ðtÞ þ f ðtÞ;

gðtÞuðl; tÞ þ yðtÞ qu
qx

ðl; tÞ ¼
Xp
j¼1

½B juðhjðtÞ; tÞ�ðtÞ þ gðtÞ;
0a taT ;ð4:3Þ

where 00 c ¼ const is a real or an imaginary number, and uðx; tÞ is an

unknown function, twice continuously di¤erentiable on ½0; l � � ½0;T �, satisfying

the equation (4.1) and conditions (4.2), (4.3).

The following theorem is true.

Theorem 4.1. If all the conditions of the Theorem 3.1 are valid, then the

nonlocal problem (4.1)–(4.3) has a unique solution.

Proof. Note that if we find the solution uðx; tÞ of the problem (4.1)–

(4.3), then it takes certain meanings on the boundary and, consequently, it is

the solution of the telegraph equation with classical Dirichlet conditions on the

boundary. In this case we can show that

uðx; tÞ ¼ Gðx; tÞ þ q

qx

" ð t
x
0

n1ðtÞIðc2ððt
 tÞ2 
 x2ÞÞdt

þ
ð t
lþx
0

n2ðtÞIðc2ððt
 tÞ2 
 ðl 
 xÞ2ÞÞdt
#
;

Gðx; tÞ ¼ q

qt

1

2

ð xþt
x
t

Iðc2ðt2 
 ða
 xÞ2ÞÞ~jjðaÞda
� 


þ 1

2

ð xþt
x
t

Iðc2ðt2 
 ða
 xÞ2ÞÞ ~ccðaÞda;

ð4:4Þ

where IðzÞ ¼
Py
s¼0

1

ðs!Þ2
z

4

� �s
, ~jj, ~cc are continuations of the functions j, c on the

whole axis retaining smoothness, n1; n2 A C2ð½0;T �Þ; n1ðtÞ ¼ n2ðtÞ ¼ 0, for

ta 0. Therefore solution of the problem (4.1)–(4.3) is uniquely defined by the

functions n1; n2 and due to this fact resolution of the posed problem is reduced

to determination of functions n1ðtÞ and n2ðtÞ. For definiteness we consider the

case when bðtÞ0 0, yðtÞ0 0 for 0a taT . All other cases can be treated

similarly.

Substituting formula (4.4) into the first condition (4.3), we get an equation

for n1ðtÞ and n2ðtÞ
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aðtÞuð0; tÞ þ bðtÞ qu
qx

ð0; tÞ

¼
Xm
i¼1

Ai

"
GðxiðtÞ; tÞ 
 n1ðt
 xiðtÞÞ


 2

ð t
xiðtÞ

0

n1ðtÞc2xiðtÞI 0ðc2ððt
 tÞ2 
 x2
i ðtÞÞÞdtþ n2ðt
 l þ xiðtÞÞ

þ 2

ð t
lþxiðtÞ

0

n2ðtÞc2ðl 
 xiðtÞÞI 0ðc2ðt
 tÞ2 
 ðl 
 xiðtÞ2ÞÞdt
#
ðtÞ þ f ðtÞ:

We may obtain the similar equation from the second boundary condition (4.3).

As in the proof of the Theorem 3.1 we consider the same time interval ½0; t
�
for which we have


aðtÞn1ðtÞ þ bðtÞn 01ðtÞ 
 bðtÞ
ð t
0

n1ðtÞI1ðt
 tÞdt

¼
Xm
i¼1

½Ai
0; t 
 ðGðxiðtÞ; tÞÞ�ðtÞ 
 aðtÞGð0; tÞ 
 bðtÞGxð0; tÞ þ f ðtÞ;

gðtÞn2ðtÞ þ yðtÞn 02ðtÞ 
 yðtÞ
ð t
0

n2ðtÞI1ðt
 tÞdt

¼
Xp
j¼1

½B j
0; t 
 ðGðhjðtÞ; tÞÞ�ðtÞ 
 gðtÞGðl; tÞ 
 yðtÞGxðl; tÞ þ gðtÞ;

ð4:5Þ

where I1ðt
 tÞ ¼ 2c2I 0ðc2ðt
 tÞ2Þ, and denoting the right-hand parts of the

equations (4.5) by f 
ðtÞ and g
ðtÞ respectively, we obtain

n1ðtÞ ¼
ð t
0

ð s
0

n1ðtÞI1ðs
 tÞdtdsþ
ð t
0

aðtÞ
bðtÞ n1ðtÞdtþ

ð t
0

f 
ðtÞ
bðtÞ dt;

n2ðtÞ ¼
ð t
0

ð s
0

n2ðtÞI1ðs
 tÞdtds

ð t
0

gðtÞ
yðtÞ n2ðtÞdtþ

ð t
0

g
ðtÞ
yðtÞ dt;

ð4:6Þ

for 0a ta t
.

Both equations (4.6) are integral equations of the same type. Due to this

fact we consider the first for n1ðtÞ. Let’s introduce the following operator

KnðtÞ ¼
ð t
0

ð s
0

nðtÞI1ðs
 tÞdtdsþ
ð t
0

aðtÞ
bðtÞ nðtÞdt; En A Cð½0; t
�Þ:

Then the first equation (4.6) takes the following form

n1 ¼ Kn1 þ f 

;ð4:7Þ
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where f 

ðtÞ ¼
ð t
0

f 
ðtÞ
bðtÞ dt and obviously f 

 A C2ð½0; t
�Þ. Let’s prove now that

K is a compact operator from Cð½0; t
�Þ to Cð½0; t
�Þ. Let us consider the

bounded set AHCð½0; t
�Þ and prove that the closure of KðAÞ is compact in

Cð½0; t
�Þ. By the Ascoli-Arzela Theorem, we have to check uniform bounded-

ness and equicontinuity of KðAÞ. Indeed, if we denote a norm in Cð½0; t
�Þ by

k � k, we get

kKnkaT 2C1knk þ TC2knk; En A A;

where C1 ¼ max
½0; t 
�

jI1ðtÞj, C2 ¼ max
½0; t 
�

jaðtÞ=bðtÞj, and since knk is bounded, KðAÞ is

uniformly bounded. Also

jKnðt1Þ 
 Knðt2Þj ¼
					
ð t2
t1

ð s
0

nðtÞI1ðs
 tÞdtdsþ
ð t2
t1

aðtÞ
bðtÞ nðtÞdt

					
a jt2 
 t1jðTC1knk þ C2knkÞ

and, consequently, KðAÞ is equicontinuous. This implies that K is compact.

Taking the latter into account for equation (4.7) the Fredholm theorems are

true. Hence, if we prove, that the homogeneous equation has only a trivial

solution, the equation (4.7) has a unique solution. Let’s consider the homo-

geneous equation

n ¼ Kn

or

nðtÞ ¼
ð t
0

ð s
0

nðtÞI1ðs
 tÞdtdsþ
ð t
0

aðtÞ
bðtÞ nðtÞdt:

Let’s show that nðtÞ satisfies the following estimate

jnðtÞja knk
Xn
k¼0

Ck
n C

k
1 C

n
k
2

tnþk

ðnþ kÞ! :ð4:8Þ

Indeed, (4.8) is obvious for n ¼ 1. Assume that the above estimate is true

for n and let it show for nþ 1,

jnðtÞjaC1

ð t
0

ð s
0

jnðtÞjdtdsþ C2

ð t
0

jnðtÞjdt

¼ knk
Xnþ1

k¼0

Ck
nþ1C

k
1 C

nþ1
k
2

tnþ1þk

ðnþ 1 þ kÞ! :
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Therefore the inequality (4.8) is true for any n A N. (4.8) implies, that

jnðtÞja knkðC1 þ C2Þn
Xn
k¼0

tnþk

ðnþ kÞ! a knkðC1 þ C2Þn
et




n!
! 0

as n ! y for t A ½0; t
� and therefore nðtÞ1 0 on ½0; t
�.
So, the first equation (4.6) has a unique continuous solution. However,

as in the proof of the Theorem 3.2 the form of the equation provides twice

continuously di¤erentiability of n1 on ½0; t
�. Similarly we can check existence

and uniqueness of the function n2ðtÞ. Thus, we conclude that the pair fn1; n2g
is uniquely defined and, consequently, the stated problem (4.1)–(4.3) has a

unique solution on ½0; t
�.
Now, consider the time interval ½t
; 2t
�. Here we also obtain equations

similar to (4.6), where f 
 and g
 are changed by combinations of the func-

tions n1ðtÞ and n2ðtÞ, already defined on ½0; t
�, since t
 a xiðtÞ; hjðtÞa l 
 t
 and

consequently for t
 a ta 2t
,

2t
 
 la t
 xiðtÞa t
; 2t
 
 la t
 l þ hjðtÞa t
;

2t
 
 la t
 l þ xiðtÞa t
; 2t
 
 la t
 hjðtÞa t
:

Repeating above reasoning for these equations we determine n1ðtÞ and n2ðtÞ
for t A ½t
; 2t
�. It is not di‰cult to show that the obtained functions n1ðtÞ and

n2ðtÞ are twice continuously di¤erentiable on ½0; 2t
�. Therefore uðx; tÞ solution

of the posed problem is uniquely found on ½0; 2t
�. Similarly, we can define

uðx; tÞ on ½0; nt
�, n A N until the moment T . r

Remark. It should be pointed out that the operators Ai;B j in nonlocal

boundary conditions in general are neither linear nor continuous. However, if

we do not consider the operators as continuous, nonlocal problem might be

incorrect. In the case of continuity of the operators it is easy to show that

solution uðx; tÞ continuously depends on initial data. Consequently, in any

case, a solution of the nonlocal problem (4.1)–(4.3) exists and is unique, but

depending on continuity of the operators the posed problem will either be

correct or incorrect. Similar reasoning is true for the problem (3.1)–(3.3).

Let us consider now integral nonlocal problem for the telegraph equation

(4.1), with the initial conditions (4.2) and the nonlocal boundary conditions

aðtÞuð0; tÞþbðtÞ qu
qx

ð0; tÞ ¼
Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞuðx; tÞdxþ f ðtÞ;

gðtÞuðl; tÞþyðtÞ qu
qx

ðl; tÞ ¼
Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

qjðt; xÞuðx; tÞdxþgðtÞ;

0a taT ;ð4:9Þ
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where the given functions satisfy all conditions required in the Theorem 3.2.

Under these conditions the following theorem is correct.

Theorem 4.2. The nonlocal problem (4.1), (4.2), (4.9) has a unique solution

uðx; tÞ, which is twice continuously di¤erentiable on ½0; l � � ½0;T �, satisfies the

equation (4.1) and conditions (4.2), (4.9).

Proof. As for the proceeding theorem, even in this case solution of the

problem (4.1), (4.2), (4.9) is equivalent to determination of a pair of twice con-

tinuously di¤erentiable functions fn1; n2g. In order to simplify the following

discussions we assume, that bðtÞ ¼ yðtÞ ¼ 0 for t A ½0;T �. Then, using the prop-

erties of n1; n2, from (4.9) we obtain the following equations


aðtÞn1ðtÞ

¼
Xm
i¼1

ð x2
i ðtÞ

x1
i ðtÞ

piðt; xÞ
 
Gðx; tÞ 
 n1ðt
 xÞ 


ð t
x
0

n1ðtÞI2ðt; t; xÞdt

þ n2ðt
 l þ xÞ þ
ð t
lþx
0

n2ðtÞI2ðt; t; l 
 xÞdt
!
dx


 aðtÞGð0; tÞ þ f ðtÞ;

gðtÞn2ðtÞ

¼
Xp
j¼1

ð h2
j ðtÞ

h1
j
ðtÞ

gjðt; xÞ
 
Gðx; tÞ 
 n1ðt
 xÞ 


ð t
x
0

n1ðtÞI2ðt; t; xÞdt

þ n2ðt
 l þ xÞ þ
ð t
lþx
0

n2ðtÞI2ðt; t; l 
 xÞdt
!
dx


 gðtÞGðl; tÞ þ gðtÞ;

ð4:10Þ

for 0a ta t
, where t
 is an arbitrary positive real number t
 < l, I2ðt; t; xÞ ¼
2c2xI 0ðc2ððt
 tÞ2 
 x2ÞÞ and consequently we get a system of integral equa-

tions for which we can show that there exists a unique twice continuously dif-

ferentiable solution and therefore, n1ðtÞ and n2ðtÞ are defined on ½0; t
�.
As in the proof conducted for the previous theorem, considering time

interval ½t
; 2t
� we get equations similar to those of (4.10) from which we

define the functions n1, n2 on ½t
; 2t
�, twice continuously di¤erentiable con-

tinuations of n1ðtÞ, n2ðtÞ. Consequently, the pair fn1; n2g is found on ½0; 2t
�.
Similarly, n1 and n2 can be defined for all t A ½0;T �. Therefore, the integral

nonlocal problem (4.1), (4.2), (4.9) has a unique solution. r
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