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Abstract. This paper deals with three test statistics for testing a linear hypothesis and

estimators of regression coe½cients in the GMANOVA model which was proposed by

Potthof and Roy (1964), without assuming normal error. The test statistics considered

include the likelihood ratio statistic, the Lawley-Hotelling trace criterion and the

Bartlett-Nanda-Pillai trace criterion, which have been proposed under normality. We

obtain asymptotic expansions of the null distributions of three test statistics up to the

order nÿ1, where n is the sample size. The results are generalizations of the formulas in

Wakaki, Yanagihara and Fujikoshi (2000). In addition, asymptotic expansions of the

distribution functions of several standardized statistics on regression coe½cients are

derived.

1. Introduction

The GMANOVA model considered is de®ned by

Y � AXX 0 � E; �1:1�
where Y � �y1; . . . ; yn�0 is an n� p observation matrix of response variables,

A � �a1; . . . ; an�0 is an n� k between-individuals design matrix of explanatory

variables with full rank k, X is a p� q within-individuals design matrix of

explanatory variables with full rank q �a p�, X is a k � q unknown parameter

matrix and E � �e1; . . . ; en�0 is an n� p error matrix. It is assumed that each

vector ej is i.i.d., i.e., independently and identically distributed with E�ej� � 0

and Cov�ej� � S. This model can be applied to analysis of growth curve data,

and hence it is also called the growth curve model.

We consider to test for a general linear hypothesis

H0 : CXD � O; �1:2�
where C is a known c� k matrix with rank c �a k�, D is a known q� d

matrix with rank d �a q� and O is a c� d matrix all of whose elements are 0.
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The GMANOVA model (1.1) with normal error was introduced by

Pottho¨ and Roy (1964) and have been extensively studied by many authors.

The maximum likelihood estimators X̂ and Ŝ of X and S, and the likelihood

ratio test statistic were obtained by Khatri (1966) and Gleser and Olkin (1970).

Fujikoshi (1974) studied properties of some test statistics, including the LR

test statistic, and gave asymptotic expansions of their non-null distributions.

Gleser and Olkin (1970) were the ®rst to derive the exact density of MLE

X̂. Asymptotic expansions of the distributions of X̂ and its linear trans-

form have been studied by Fujikoshi (1985, 1993a) and von Rosen (1997).

Various aspects of statistical inference under normality have been also discussed

in literature. For these results, see. e.g., Kariya (1985), von Rosen (1991),

Fujikoshi (1993b), Kshirsagar and Smith (1995), and Srivastava and von Rosen

(1999).

The above results are based on the assumption that the error vectors

e1; . . . ; en are independently and identically distributed as a multivariate normal

distribution with means 0 and covariance matrix S. Khatri (1988) discussed

robustness for test statistic under elliptical distribution. However, the non-

normal case has not been investigated so much, except for the case X � Ip, i.e.,

MANOVA case. For MANOVA case, Ito (1969, 1980), Chase and Bulgren

(1971) and Everitt (1979) studied robustness of certain test statistics by

simulation. Wakaki, Yanagihara and Fujikoshi (2000) obtained asymptotic

expansions of the null distributions of three test statistics in nonnormal

multivariate linear model. These results include several expansions obtained

by Kano (1995), Fujikoshi (1997b, 2001), Fujikoshi, Ohmae and Yanagihara

(1999) and Yanagihara (1999), as special cases. Our main purpose is to extend

the asymptotic expansion formulas in a multivariate linear model to the ones in

the GMANOVA model.

The present paper is organized in the following way. In O 2, we describe

three test statistics. It is shown that our test statistics can be expresses in terms

of a random matrix U , which is a kind of Studentized version of X̂. Using

this expression, we derive perturbation expansions of our test statistics. In O 3,

we give an asymptotic expansion of the distribution function of U . Further,

asymptotic expansions of other standardized statistics of X̂ are obtained in

O 4. In O 5, we obtain asymptotic expansions of the null distributions of three

test statistics, by expanding their characteristic function. Moreover, in O 6,

we discuss robustness of testing under nonnormality and derive a result on

conservativeness based on the asymptotic expansion formulas. Some applica-

tions of the asymptotic expansions of test statistics are given in O 7. In O 8,

numerical accuracies are studied for some con®dence interval of X and

asymptotic expansions of the null distributions for some test statistics under

nonnormality.
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2. Test statistics and perturbation expansion

First, we summarize typical three test criteria that have been proposed

under normality. Let Sh and Se be the variation matrices due to the hypothesis

and the error, respectively, i.e.,

Sh � �CX̂D�0�CRC 0�ÿ1�CX̂D�; Se � D 0�X 0Sÿ1X�ÿ1
D;

where

X̂ � �A 0A�ÿ1A 0YSÿ1X�X 0Sÿ1X �ÿ1;

R � �A 0A�ÿ1 � �A 0A�ÿ1A 0YfSÿ1 ÿ Sÿ1X �X 0Sÿ1X �X 0Sÿ1gY 0A�A 0A�ÿ1;

and S � Y 0�In ÿ PA�Y . Here PA is the projection matrix to the linear space

R�A� generated by the column vectors of A. Then the following three criteria

have been proposed, in particular, under normality.

(i) the likelihood ratio statistic:

TLR � ÿfnÿ k ÿ �pÿ q� � s1g log�jSej=jSe � Shj�;
(ii) the Lawley-Hotelling trace criterion:

THL � fnÿ k ÿ �pÿ q� � s2g tr�ShSÿ1
e �;

(iii) the Bartlett-Nanda-Pillai trace criterion:

TBNP � fnÿ k ÿ �pÿ q� � s3g trfSh�Sh � Se�ÿ1g;
where the constants sj's are the Bartlett corrections in the normal case, and they

are given as follows: s1 � ÿ�d ÿ c� 1�=2, s2 � ÿ�d � 1� and s3 � c. For the

special case q � p, note that three criteria are reduced to the ones in the usual

MANOVA model. Therefore, as in the MANOVA model, it may be sug-

gested to use the criteria for nonnormal models.

Under normality, the distributions of these statistics have been extensively

studied. Fujikoshi (1974) obtained asymptotic expansions of the non-null dis-

tributions for three test statistics. Under nonnormality it is easily seen that the

null distributions of these statistics converge to w2
cd as the sample size n tends to

in®nity under an appropriate regularity condition on the design matrix (see Huber

(1973)). Our main purpose is to obtain asymptotic expansions of the null

distributions of these statistics up to the order nÿ1 under a general condition.

Note that the three test statistics are invariant under the transformations

from �Y 0;X � to Sÿ1=2�Y 0;X �. Therefore, without loss of generality we may

assume S � Ip by replacing X with Sÿ1=2X . In the following, we shall do

that, and we regard X as Sÿ1=2X . We consider expressing the test statistics in

terms of

Z � �A 0A�ÿ1=2
A 0E; V � 1���

n
p
Xn

j�1

�eje
0
j ÿ Ip�: �2:1�
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Note that �nÿ1S�ÿ1 can be expanded as

1

n
S

� �ÿ1

� Ip ÿ 1

n
V � 1

n
�V 2 � Z 0Z� �Op�nÿ3=2�:

Therefore,

1

n
�X 0Sÿ1X�ÿ1

� �X 0X�ÿ1=2

�
Iq � 1���

n
p �X 0X �ÿ1=2X 0VX �X 0X�ÿ1=2

ÿ 1

n
�X 0X�ÿ1=2

X 0fV�Ip ÿ PX �V � Z 0ZgX�X 0X�ÿ1=2

�
� �X 0X �ÿ1=2 �Op�nÿ3=2�:

By using these results, we de®ne modi®ed matrices ~Se, ~X and ~R by the fol-

lowing relations, respectively.

1

n
Se

� �ÿ1

� fD 0�X 0X�ÿ1
Dgÿ1=2 ~S2

e fD 0�X 0X �ÿ1
Dgÿ1=2;

X̂ � �A 0A�ÿ1=2Z ~XX�X 0X�ÿ1=2;

�A 0A�ÿ1=2
C 0�CRC 0�ÿ1

C�A 0A�ÿ1=2 � ~RW ~R;

where

W � �A 0A�ÿ1=2C 0fC�A 0A�ÿ1C 0gÿ1C 0�A 0A�ÿ1=2:

Then, we obtain W2 � W and get rank�W� � tr�W� � c. Further, the random

matrices ~Se, ~X and ~R can be expanded as

~Se � Id ÿ 1

2
���
n
p L 0VL

� 1

2n
L 0 V Ip ÿ PX � 3

4
Q

� �
V � Z 0Z

� �
L�Op�nÿ3=2�;

~X � Ip ÿ 1���
n
p �Ip ÿ PX �V

� 1

n
�Ip ÿ PX �fV�Ip ÿ PX �V � Z 0Zg �Op�nÿ3=2�;

~R � Ik ÿ 1

2n
WZ�Ip ÿ PX �Z 0W�Op�nÿ3=2�;

�2:2�

where
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L � X �X 0X �ÿ1
DfD 0�X 0X �ÿ1

Dgÿ1=2;

Q � LL 0 � X�X 0X�ÿ1DfD 0�X 0X�ÿ1Dgÿ1D 0�X 0X �ÿ1X 0:

Using these expressions, the three test statistics can be expanded as

TG � tr�U 0WU� � 1

n
�fr1 ÿ k ÿ �pÿ q�g tr�U 0WU�

� r2 trf�U 0WU�2g� �Op�nÿ3=2�; �2:3�
where

U � ~RZ ~XL ~Se: �2:4�
Here the constants r1 and r2 are de®ned as follows;

�i� TLR : r1 � s1; r2 � ÿ1=2;

�ii� THL : r1 � s2; r2 � 0;

�iii� TBNP : r1 � s3; r2 � ÿ1:

In our derivation, ®rst we derive an asymptotic expansion of the distribution of

U . Then, using the result, we obtain an asymptotic expansion of the null

distribution of TG.

3. Edgeworth expansion of U

In this section, we obtain an asymptotic expansion of the distribution

function of U up to the order nÿ1. Without loss of generality, we assume that

S � Ip as in a previous section. So, we regard X as Sÿ1=2X in the following

expressions. Let e; e1; . . . ; en be a sequence of i.i.d. random vectors with E�e� �
0 and Cov�e� � Ip. We write a moment of e as

mi1...im � E�ei1 . . . eim �;
where ej denotes the jth element of e. Similarly, the corresponding cumulant

of e is expressed as ki1...im . Further, we use the following real matrix notation

for arguments of some characteristic functions.

T � �tab� : k � d matrix;

T1 � �t�1�ab � : k � p matrix;

T2 � ��1� dab�t�2�ab =2� : p� p matrix;

where dab is the Kronecker delta, i.e., daa � 1 and dab � 0 for a0 b.

In order to get a valid expansion for the distribution function of U up the

order nÿ1, we make some assumptions for the between-individuals design

matrix A and the distribution of e. Let ln be the smallest eigenvalue of A 0A,
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and Mn � maxfkajk : j � 1; . . . ng, where k � k denotes the Euclidean norm.

We make the following assumptions.

B1. lim sup
n!y

1

n

Xn

j�1

kajk4 <y,

B2. lim inf
n!y

ln

n
> 0,

B3. For some constant d > 0, Mn � O�n1=2ÿd�,
B4. E�kek8� <y,

B5. The CrameÂr's condition for e and ee 0;

lim sup
ktk�kT2k!y

jE�expfit 0e� i tr�T2ee
0�g�j < 1;

where t is a p� 1 real vector. Here, we de®ne the norm of a matrix

T2 as kT2k � �
Pp

a�1

Pp
b�1f�1� dab�t�2�ab g2=4�1=2:

From (2.2) and (2.4), the random matrix U can be expanded as

U � U0 � 1���
n
p U1 � 1

n
U2 �Op�nÿ3=2�; �3:1�

where

U0 � ZL;

U1 � ÿ 1

2
ZfQ� 2�Ip ÿ PX �gVL;

U2 � 1

8
Z�2fQ� 2�Ip ÿ PX �gVfQ� 2�Ip ÿ PX �g �QVQ�VL

� 1

2
ZfQ� 2�Ip ÿ PX �gZ 0ZLÿ 1

2
WZ�Ip ÿ PX �Z 0WZL:

Using (3.1), the characteristic function CU�T� of U can be expanded under

the assumptions B1, B2, B3 and B4 as

CU�T� � E�expfi tr�T 0U�g�

� E�expfi tr�T 0U0�g� � 1���
n
p E�i tr�T 0U1� expfi tr�T 0U0�g�

� 1

n
E i tr�T 0U2� � i2

2
ftr�T 0U1�g2

� �
expfi tr�T 0U0�g

� �
� o�nÿ1�

� C
�0�
U �T� �

1���
n
p C

�1�
U �T� �

1

n
C
�2�
U �T� � o�nÿ1�:

Now we need to evaluate each term in the expansion of CU�T�. Here we note

that, rank�L� � d, which can be essentially done in the same way as in Wakaki,

Yanagihara and Fujikoshi (2000). The method is based on the use of dif-

ferentials for C�T1;T2�, which is de®ned by
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C�T1;T2� � E�expfi tr�T 01Z � nÿ1=2T2V�g�:
Therefore, letting T1 � TL 0 we have

C
�0�
U �T� � C�T1;O�

� exp

(
i2

2
tr�T 01T1� � i3

6
���
n
p

Xk

a 0b 0c 0

Xp

abc

t
�1�
a 0at
�1�
b 0bt
�1�
c 0cwa 0b 0c 0kabc

� i4

24n

Xk

a 0b 0c 0d 0

Xp

abcd

t
�1�
a 0at
�1�
b 0bt
�1�
c 0ct
�1�
d 0dwa 0b 0c 0d 0kabcd � o�nÿ1�

)
;

where

wa1...aj
� 1

n

Xn

i�1

Yj

l�1

wial
;

���
n
p �A 0A�ÿ1=2ai � �wi1; . . . ; wik�0: �3:2�

Further,

C
�1�
U �T� � ÿ

i

2
E�trfT 0Z�Q� 2�Ip ÿ PX �VLg expfi tr�T 0ZL��g

� ÿ i

2
E�trfT 01Z�Q� 2�Ip ÿ PX ��Vg expfi tr�T 01Z�g�

� ÿ i

2
�i�ÿ2

Xk

a 0

Xp

abc

t
�1�
a 0c�qab � 2rab�

q2

qt
�1�
a 0aqt

�2�
bc

C�T1;T2�jT2�O; �3:3�

where qab and rab the �a; b�th elements of Q and Ip ÿ PX resrpectively, andPk
a1...aj

�Pk
a1�1 . . .

Pk
aj�1. Note that

q2

qt
�1�
a 0aqt

�2�
bc

C�T1;T2�jT2�O

�
"

i2wa 0kabc � i4t
�1�
a 0a

Xk

b 0

Xp

d

t
�1�
b 0dwb 0kbcd

� 1���
n
p
(

i3
Xp

d

t
�1�
a 0d�mabcd ÿ daddbc� � i5

2
t
�1�
a 0a

Xk

b 0

Xp

de

t
�1�
b 0d t
�1�
b 0e�mbcde ÿ dbcdde�

� i5

2

Xk

b 0c 0d 0

Xp

def

t
�1�
b 0et
�1�
c 0f t
�1�
d 0dwa 0b 0c 0wd 0kaef kbcd

)#
C�T1;O� � o�nÿ1=2�:

Moreover, it holds that �Ip ÿ PX �L � 0, tr�Ip ÿ PX � � pÿ q, �Ip ÿ PX �2 �
Ip ÿ PX , L 0L � Id and Q2 � Q, in other words
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Xp

b

� rablbj � 0;
Xp

a

raa � pÿ q;
Xp

c

racrbc � rab;

Xp

a

lailaj � dij;
Xp

c

qacqbc � qab;

where lab is the �a; b�th element of L. By substituting these equations into

(3.3) and replacing t
�1�
a 0a with

Pd
j�1 ta 0j laj , we can evaluate C

�0�
U �T� and C

�1�
U �T�.

Similarly, we can evaluate C
�2�
U �T�. Therefore, we can obtain an expansion of

CU�T�, whose formal inversion yields a valid expansion of the distribution

function of U as in the following Theorem 3.1.

Some additional notations on cumulants need to be de®ned before

describing Theorem 3.1. The quantity K�l�aq�1q�1�, which depends on the third

order cumulants and the elements of L and Q is de®ned as

K�l�aq�1q�1� �
Xp

a 0b 0c 0
la 0aqb 0c 0ka 0b 0c 0 : �3:4�

In this expression, the order of indices � in K corresponds to the one of indices

in ka 0b 0c 0 . So, the l accompanying with index a 0 appears to the ®rst order of

indices in K. Similarly, the second and third order of indices in K are the

q with indices b 0 and c 0, respectively. Further, the same number in indices

expresses as the same element of symmetric matrix. Along the same line as

(3.4), we de®ne

K�l�ar�1r�2��l�br�1r�2� �
Xp

a 0b 0c 0d 0e 0f 0
la 0ald 0brb 0e 0rc 0f 0ka 0b 0c 0kd 0e 0f 0 :

Other constants are de®ned similarly.

Theorem 3.1. Suppose that the design matrix A and the error matrix E in

(1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Let u � vec�U�, then the

distribution function of U can be expanded as

P�vec�U�a x�

�
� x1

ÿy
. . .

� xkd

ÿy
fkd�u� 1� 1���

n
p R1�u� � 1

n
R2�u�

� �
du� o�nÿ1�;

where

R1�u� � ÿ 1

2

Xk

a 0

Xd

ab

wa 0 �K�l�aq�1q�1� � 2K�l�ar�1r�1��Ha 0a�u�

� 1

6

Xk

a 0b 0c 0

Xd

abc

�wa 0b 0c 0 ÿ 3wa 0db 0c 0 �K�l�al�bl�c�Ha 0a;b 0b; c 0c;d 0d�u�; �3:5�

Hirokazu Yanagihara220



R2�u� � 1

8

Xk

a 0b 0

Xd

abcd

wa 0wb 0 �K�l�aq�1q�1��l�bq�2q�2� � 3K�l�al�bq�1��q�1q�2q�2�

� 4K�l�aq�1q�2��l�bq�1q�2� � 4K�l�ar�1r�1��l�br�2r�2� � 8K�l�al�br�1��r�1r�2r�2�

� 12K�l�ar�1r�2��l�br�1r�2� � 4K�l�al�br�1��q�1q�1r�1� � 12K�l�aq�1r�1��l�bq�1r�1�

� 4K�l�al�bq�1��q�1r�1r�1� � 4K�l�aq�1q�1��l�br�1r�1��Ha 0a;b 0b�u�

� 1

2

Xk

a 0

Xd

a

f�k � 3pÿ 2q� 1� � oa 0a 0 �pÿ q�gHa 0a;a 0a�u�

� 1

24

Xk

a 0b 0c 0d 0

Xd

abcd

��wa 0b 0c 0d 0 ÿ 3da 0b 0dc 0d 0 �K�l�al�bl�cl�d �

ÿ 2wa 0b 0c 0wd 0 fK�l�al�bl�c��l�d q�1q�1� � 3K�l�al�d q�1��l�bl�cq�1�

� 2K�l�al�bl�c��l�d r�1r�1� � 6K�l�al�d r�1��l�bl�cr�1�g � 3wa 0wb 0dc 0d 0 fK�l�aq�1q�1��l�bl�cl�d �

�K�l�al�bq�1��l�cl�d q�1� � 2K�l�al�cq�1��l�bl�d q�1� � 4K�l�ar�1r�1��l�bl�cl�d �

� 4K�l�al�br�1��l�cl�d r�1� � 8K�l�al�cr�1��l�bl�d r�1�g

� 6da 0b 0dc 0d 0dacdbc�Ha 0a;a 0b; c 0c;d 0d�u�

� 1

72

Xk

a 0b 0c 0d 0e 0f 0

Xd

abcbdef

�wa 0b 0c 0wd 0e 0f 0 ÿ 6wa 0b 0c 0wd 0de 0f 0 � 9wa 0db 0c 0wd 0de 0f 0 �

�K�l�al�bl�c��l�d l�el�f �Ha 0a;b 0b; c 0c;d 0d; e 0e; f 0f �u�: �3:6�

Here fkd�u� is the probability density function of Nkd�0; Ikd� given by fkd�u� �
�2p�ÿkd=2 exp�ÿu 0u=2�, and Ha 0

1
a1; ...;a

0
j
aj
�u� is the multivariate Hermite polynomial.

In Theorem 3.1, the multivariate Hermite polynomial is de®ned by

Ha 0
1
a1; ...;a 0j aj

�u� � �ÿ1� j q j

qua 0
1
a1

. . . qua 0
j
aj

fkd�u�;

where ua 0a is the �a 0; a�th element of U . For example

Ha 0a�u� � ua 0a;

Ha 0a;b 0b�u� � ua 0aub 0b ÿ dabda 0b 0 ;
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Ha 0a;b 0b; c 0c�u� � ua 0aub 0buc 0c ÿ
X
�3�

ua 0adbcdb 0c 0 ;

Ha 0a;b 0b; c 0c;d 0d�u� � ua 0aub 0buc 0cud 0d ÿ
X
�6�

ua 0aub 0bdcddc 0d 0 �
X
�3�

dabdcdda 0b 0dc 0d 0 ;

Ha 0a;b 0b; c 0c;d 0d; e 0e; f 0f �u� � ua 0aub 0buc 0cud 0due 0euf 0f ÿ
X
�15�

ua 0aub 0buc 0cud 0ddef de 0f 0

�
X
�45�

ua 0aub 0bdcd def dc 0d 0de 0f 0 �
X
�45�

dabdcd def da 0b 0dc 0d 0de 0f 0 :

Here
P
� j� means the sum of all j possible combinations of the sets a 0i and ai,

for exampleX
�3�

da 0b 0dc 0d 0dabdcd � da 0b 0dc 0d 0dabdcd � da 0c 0db 0d 0dacdbd � da 0d 0db 0c 0daddbc:

It may be noted that we can demonstrate the validity of the expansion

by the argument similar to the one as in Wakaki, Yanagihara and Fujikoshi

(2000), which is based on the same manner as in Bhattacharya and Ghosh

(1978). Moreover, the moment condition B4 will be replaced with E�kek4� <
y as in Hall (1987).

4. Asymptotic expansions of the distribution functions of X̂ and its

linear combination

4.1. Two types of standardizations

In this section we consider asymptotic expansions of the distribution

functions for X̂ and its linear combination, where X̂ is the maximum like-

lihood estimator of X under normality. Related to the construction of con®-

dence intervals of X and its linear combination, we consider following two types of

standardizations.

(1) standardized X̂:

US � �A 0A�1=2�X̂ ÿ X��X 0Sÿ1X�1=2;

(2) Studentized X̂:

UT �
���
n
p �A 0A�1=2�X̂ ÿ X��X 0Sÿ1X�1=2;

(3) standardized linear combination of X̂:

USL � a 0�X̂ ÿ X�b=t;

(4) Studentized linear combination of X̂:

UTL � a 0�X̂ ÿ X�b=t̂;
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where a and b are k � 1 and q� 1 ®xed vectors, respectively, and positive

values t and t̂ are de®ned by

t2 � a 0�A 0A�ÿ1ab 0�X 0Sÿ1X �ÿ1b; t̂2 � 1

n
a 0�A 0A�ÿ1ab 0�X 0Sÿ1X �ÿ1b:

Note that these standardizations have been proposed under normality.

However, we shall see that such standardizations do work asymptotically under

nonnormality. Under normality, Fujikoshi (1987, 1993a) and von Rosen

(1997) derived asymptotic expansions of the distributions of these statistics.

Further, its error bounds were discussed in Fujikoshi (1987, 1993a).

In this section, without loss of generality, we assume that S � Ip as in

previous sections. So, X is regarded as Sÿ1=2X . Therefore, t2 is rewritten as

t2 � a 0�A 0A�ÿ1ab 0�X 0X�ÿ1b:

4.2. Asymptotic expansion of US

Let M � X �X 0X �ÿ1=2 whose �a; b�th elements of M is denoted as mab.

From (2.1), US can be expanded as

US � ZM ÿ 1���
n
p Z�Ip ÿ PX �VM

� 1

n
Z�Ip ÿ PX �fV�Ip ÿ PX � � Z 0ZgM �Op�nÿ3=2�: �4:1�

From (4.1) we can expand the characteristic function CUS
�T3� of US as

CUS
�T3� � E�expfi tr�T 03ZM�g�

ÿ i���
n
p E�trfT 03Z�Ip ÿ PX �VMg expfi tr�T 03ZM�g�

� i

n
E�trfT 03Z�Ip ÿ PX �fV�Ip ÿ PX � � Z 0ZgMg expfi tr�T 03ZM�g�

� i2

2n
E�ftr�T 03Z�Ip ÿ PX �VM�g2 expfi tr�T 03ZM�g� � o�nÿ1�;

where T3 is a k � q real matrix. Letting T1 � T3M 0, we can see that the

characteristic function can be evaluated by the same method as in Section 3.

In this case, using the relations M 0M � Iq, MM 0 � PX and �Ip ÿ PX �M � 0,

we can obtain an expansion of CUS
�T3�, whose inversion yields an asymptotic

expansion of the distribution function of US as in Theorem 4.1.

Theorem 4.1. Suppose that the design matrix A and the error matrix E in

(1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Let u � vec�US�, then the

distribution function of US can be expanded as
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P�vec�US�a x�

�
� x1

ÿy
. . .

� xkq

ÿy
fkq�u� 1� 1���

n
p RS;1�u� � 1

n
RS;2�u�

� �
du� o�nÿ1�;

where

RS;1�u� � ÿ
Xk

a 0

Xq

a

wa 0K�m�ar�1r�1�Ha 0a�u�

� 1

6

Xk

a 0b 0c 0

Xq

abc

wa 0b 0c 0K�m�am�bm�c�Ha 0a;b 0b; c 0c�u�; �4:2�

RS;2�u� � 1

2

Xk

a 0b 0

Xq

ab

��pÿ q�da 0b 0dab ÿ da 0b 0K�m�am�br�1r�1�

� wa 0wb 0 fK�m�ar�1r�1��m�br�2r�2� � 2K�m�am�br�1��r�1r�2r�2�

� 3K�m�ar�1r�2��m�br�1r�2�g�Ha 0a;b 0b�u�

� 1

24

Xk

a 0b 0c 0d 0

Xq

abcd

�12wa 0wb 0dc 0d 0K�m�am�cr�1��m�bm�d r�1�

ÿ 4wa 0b 0c 0wd 0 fK�m�am�bm�c��m�d r�1r�1� � 3K�m�am�br�1��m�cm�d r�1�g
� wa 0b 0c 0d 0K�m�am�bm�cm�d ��Ha 0a;b 0b; c 0c;d 0d�u�

� 1

72

Xk

a 0b 0c 0d 0e 0f 0

Xq

abcdef

wa 0b 0c 0wd 0e 0f 0

�K�m�am�bm�c��m�d m�em�f �Ha 0a;b 0b; c 0c;d 0d; e 0e; f 0f �u�: �4:3�
Specially, when e is distributed as Np�0;S�,

RS;1�u� � 0; RS;2�u� � 1

2
�pÿ q�

Xk

a 0

Xq

a

Ha 0a;a 0a�u�:

Therefore,

P�vec�US�a x�

�
� x1

ÿy
. . .

� xkq

ÿy
fkq�u� 1� 1

2n
�pÿ q�

Xk

a 0

Xq

a

Ha 0a;a 0a�u�
" #

du� o�nÿ1�:

This result coincides with the formula in Fujikoshi (1987).
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4.3. Asymptotic expansion of UT

Let li be the eigenvalues of X 0X and L � diag�l1; . . . ; lq�. Further, let

H be an orthogonal matrix of order q such that �X 0X� � HLH 0. Then, using

a perturbation formula (see, Okamoto and Fujikoshi (1976)), we have���
n
p �X 0Sÿ1X �1=2 � �X 0X�1=2 � 1���

n
p HS�1�H 0 � 1

n
HS�2�H 0 �Op�nÿ3=2�; �4:4�

where the �i; j�th elements of S�1� and S�2� are de®ned by

�S�1��ij �
�B�ij����

li

p � ����
lj

p ; �S�2��ij � ÿ
�S�1�2�ij����
li

p � ����
lj

p :

Here ���ij is denoted as the �i; j�th element of the matrix in the parenthesis and

the matrix B is de®ned by

B � ÿH 0X 0 V ÿ 1���
n
p �V 2 � Z 0Z�

� �
XH:

Substituting (4.4) into UT , we can represent as

UT � US � 1���
n
p US�X 0X�ÿ1=2HS�1�H 0

� 1

n
US�X 0X �ÿ1=2HS�2�H 0 �Op�nÿ3=2�: �4:5�

From (4.5), the characteristic function CUT
�T3� of UT can be expanded as

CUT
�T3� � CUS

�T3�

� i���
n
p E�trfT 03�X 0X�ÿ1=2HS�1�H 0g expfi tr�T 03US�g�

� i

n
E�trfT 03�X 0X�ÿ1=2HS�2�H 0g expfi tr�T 03US�g�

� i2

2n
E�ftrfT 03�X 0X�ÿ1=2

HS�1�H 0gg2 expfi tr�T 03US�g� � o�nÿ1�:
By computing CUT

�T3� and inverting the resultant expansion, we can obtain

an asymptotic expansion of UT as in Theorem 4.2.

Theorem 4.2. Suppose that the design matrix A and the error matrix E in

(1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Let u � vec�UT �,

hij �
1����

li

p � ����
lj

p ; nij �
hij

li
;

and hab, h
�1�
ab and h

�2�
ab denote the �a; b�th elements of H, XH and �X 0X�1=2H

respectively. Then the distribution function of UT can be expanded as
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P�vec�UT �a x�

�
� x1

ÿy
. . .

� xkq

ÿy
fkq�u� 1� 1���

n
p RT ;1�u� � 1

n
RT ;2�u�

� �
du� o�nÿ1�;

where

RT ;1�u� � RS;1�u� �
Xk

a 0

Xq

abc

Ha 0a�u�wa 0nbchacK�h�1��b h
�1�
�b h

�1�
�c �

ÿ
Xk

a 0b 0c 0

Xq

abcde

Ha 0a;b 0b; c 0c�u�wa 0db 0c 0h
�2�
cd ndehbeK�m�ah

�1�
�d h

�1�
�e �;

RT ;2�u�

� RS;2�u� ÿ 1

2

Xk

a 0

Xq

abcde

Ha 0a;a 0b�u�ncd had

� �2ddefK�m�bh
�1�
�c h

�1�
�c h

�1�
�d �
ÿ h

�2�
bc K�h�1��c h

�1�
�d d�1d�1�g

� 2h2
bchcehdeK�h�1��c h

�1�
�d h

�1�
�e h

�1�
�e � ÿ hcehbeK�h�1��c h

�1�
�c h

�1�
�d h

�1�
�e �

� ddef2h
�2�
bd �1� dcd�lc ÿ 2�p� 1�lcdcd ÿ 2�k � 1�h�2�bc dcd

ÿ 2h
�2�
cd ÿ hcelcldhbd�1� dcd� � 2h

�2�
bc h2

cedcd�1� dce�g�

� 1

2

Xk

a 0b 0

X
abcdef

Ha 0a;b 0b�u�wa 0wb 0ncdhad �2ddeddf fK�m�bh
�1�
�c h

�1�
�d ��h

�1�
�c r�1r�1�

� 2K�m�bh
�1�
�c r�1��h�1��c h

�1�
�d r�1� �K�m�br�1r�1��h�1��c �h�1��c h�d �

�K�m�bh
�1�
�d d�1��h�1��c h

�1�
�c d�1� �K�m�bh

�1�
�c d�1��h�1��c h

�1�
�d d�1�g

ÿ 2hcehdedef fK�m�bh
�1�
�d h

�1�
�e ��h�1��c h

�1�
�c h

�1�
�e � �K�m�bh

�1�
�c h

�1�
�e ��h�1��c h

�1�
�d h

�1�
�e �g

� nef bbf fK�h�1��c h
�1�
�c h

�1�
�d ��h

�1�
�e h

�1�
�e h

�1�
�f �
�K�h�1��c h

�1�
�d h

�1�
�e ��h�1��c h

�1�
�e h

�1�
�f �
g

ÿ 1

2

X
a 0b 0

X
abcdefgh

Ha 0a;a 0b;b 0c;b 0d�u�h�2�be nef haf

� �dfgdfhK�m�cm�d h
�1�
�e h

�1�
�f �
� h

�2�
dg nghhchK�h�1��e h

�1�
��f

h
�1�
�g h

�1�
�h �

� dfgdfhf2h�2�ce h
�2�
df � h

�2�
de h

�2�
cf � lelf �h�2�de hcf � h

�2�
df hce�g�
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ÿ 1

6

Xk

a 0b 0c 0d 0

Xq

abcdefgh

Ha 0a;b 0b; c 0c;d 0d�u�nef

� � wa 0b 0c 0wd 0dfgdfhfhdf K�m�am�bm�c��h�1��e h
�1�
�e h

�1�
�f �
� 3haf K�m�bm�ch

�1�
�e ��m�d h

�1�
�e h

�1�
�f �
g

ÿ 3wa 0wb 0dc 0d 0 f2h
�2�
de hcf dfgdfh�K�m�am�br�1��h�1��e h

�1�
�f r�1�

�K�m�ar�1r�1��m�bh
�1�
�e h

�1�
�f �
�K�m�ah

�1�
�e d�1��m�bh

�1�
�f d�1��

ÿ 2h
�2�
de heghfghcf dghK�m�ah

�1�
�e h

�1�
�g ��m�bh

�1�
�f h

�1�
�g �

� neglehcf hdgK�m�ah
�1�
�e h

�1�
�f ��m�bh

�1�
�e h

�1�
�g �

� h
�2�
dg nghhaf hch�K�m�bh

�1�
�g h

�1�
�h ��h

�1�
�e h

�1�
�e h

�1�
�f �
�K�m�bh

�1�
�e h

�1�
�f ��h

�1�
�e h

�1�
�g h

�1�
�h �
�

� h
�2�
de hghhcf hah�K�m�bh

�1�
�g h

�1�
�h ��h

�1�
�e h

�1�
�f h

�1�
�g � �K�m�bh

�1�
�e h

�1�
�f ��h

�1�
�g h

�1�
�g h

�1�
�h �
�g�

ÿ 1

6

Xk

a 0b 0c 0d 0e 0f 0

Xq

abcdefghij

Ha 0a;b 0b; c 0c; c 0d;d 0e;d 0f �u�h�2�fi nghhej

� fwa 0b 0c 0wd 0de 0f 0dgidhjK�m�am�bm�c�K�m�d h
�1�
�g h

�2�
�h �

ÿ 3wa 0wb 0dc 0d 0de 0f 0h
�2�
dg nijhchK�m�ah

�1�
�g h

�1�
�h �

K�m�1��b h
�1�
�i h

�1�
�j �
g;

and RS;1�u� and RS;2�u� are given by (4.2) and (4.3), respectively.

Specially, when X � Ip then

UT � Z
1

n
S

� �ÿ1=2

:

In this case, �Ip ÿ PX � � O, H � Ip and all the lj are 1. Therefore,

RT ;1�u� � ÿ 1

2

Xk

a 0

Xp

ab

wa 0kabbHa 0a�u�

� 1

6

Xk

a 0b 0c 0

Xp

abc

�wa 0b 0c 0 ÿ 3wa 0db 0c 0 �kabcHa 0a;b 0b; c 0c�u�;
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RT ;2�u� � 1

8

Xk

a 0b 0

Xp

abcd

wa 0wb 0 �kacckbdd � 3kabckcdd � 4kacdkbcd�Ha 0a;b 0b�u�

� 1

2
�p� k � 1�

Xk

a 0

Xp

a

Ha 0a;a 0a�u�

� 1

24

Xk

a 0b 0c 0d 0

"Xp

abcd

f�wa 0b 0c 0d 0 ÿ 3da 0b 0dc 0d 0 �kabcd � 6da 0b 0dc 0d 0dac dbdg

ÿ 2
Xp

abcde

fwa 0b 0c 0wd 0 �kabckdee � 3kadekbce�

ÿ 3wa 0wb 0dc 0d 0 �kaeekbcd � kabekcde � 2kacekbde�g
#

Ha 0a;b 0b; c 0c;d 0d�u�

� 1

72

Xk

a 0b 0c 0d 0e 0f 0

Xp

abcbdef

�wa 0b 0c 0wd 0e 0f 0 ÿ 6wa 0b 0c 0wd 0de 0f 0 � 9wa 0db 0c 0wd 0de 0f 0 �

� kabckdef Ha 0a;b 0b; c 0c;d 0d; e 0e; f 0f �u�:

This result coincides with formula in Wakaki, Yanagihara and Fujikoshi

(2000).

4.4. Asymptotic expansion of USL

Let ~a � �A 0A�ÿ1=2a and ~b � �X 0X�ÿ1=2b, then USL can be rewritten as

USL � �~a 0~a�ÿ1=2�~b 0~b�ÿ1=2~a 0US
~b:

Then we obtain E�USL� � 0 and Var�USL� � 1� o�1�. Therefore the charac-

teristic function CUSL
�t� of USL can be written as

CUSL
�t� � E�exp�itUSL�� � E�expfit tr�P 0US�g�;

where P � �~a 0~a�ÿ1=2�~b 0~b�ÿ1=2~a~b 0 � �pa 0a� is a k � q matrix. Note that an

asymptotic expansion of CUSL
�t� can be obtained from the one of CUS

�T3�
as a special case. Therefore we have the following Theorem 4.3.

Theorem 4.3. Suppose that the design matrix A and the error matrix E

in (1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Then the distribution

function of USL can be expanded as
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P�USL a x� � F�x� � 1���
n
p RSL;1�x�f�x�1� 1

n
RSL;2�x�f�x� � o�nÿ1�;

where

RSL;1�x� � c1 ÿ 1

6
c2h2�x�; �4:6�

RSL;2�x� � ÿ 1

2
c3h1�x� ÿ 1

24
c4h3�x� ÿ 1

72
c5h5�x�; �4:7�

and

c1 �
Xk

a 0

Xq

a

wa 0K�m�ar�1r�1�pa 0a;

c2 �
Xk

a 0b 0c 0

Xq

abc

wa 0b 0c 0K�m�am�bm�c�pa 0apb 0bpc 0c;

c3 �
Xk

a 0b 0

Xq

ab

��pÿ q�da 0b 0dab ÿ da 0b 0K�m�am�br�1r�1�

� wa 0wb 0 fK�m�ar�1r�1��m�br�2r�2� � 2K�m�am�br�1��r�1r�2r�2�

� 3K�m�ar�1r�2��m�br�1r�2�g�pa 0apb 0b;

c4 �
Xk

a 0b 0c 0d 0

Xq

abcd

�12wa 0wb 0dc 0d 0K�m�am�cr�1��m�bm�d r�1�

ÿ 4wa 0b 0c 0wd 0 fK�m�am�bm�c��m�d r�1r�1� � 3K�m�am�br�1��m�cm�d r�1�g
� wa 0b 0c 0d 0K�m�am�bm�cm�d �g�pa 0apb 0bpc 0cpd 0d ;

c5 �
Xk

a 0b 0c 0d 0e 0f 0

Xq

abcdef

wa 0b 0c 0wd 0e 0f 0

�K�m�am�bm�c��m�d m�em�f �pa 0apb 0bpc 0cpd 0dpe 0epf 0f :

Here f�x� and F�x� are the probability density function and distribution func-

tion of N�0; 1�, respectively. Further, hj�x� are univariate Hermite polyno-

mials, for example, h1�x� � x, h2�x� � x2 ÿ 1, h3�x� � x�x2 ÿ 3� and h5�x� �
x�x4 ÿ 10x2 � 15�.

Specially, when e is distributed as Np�0;S�, then

c1 � c2 � c4 � c5 � 0; c3 � �pÿ q�:
Therefore
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P�USL a x� � F�x� ÿ 1

2n
�pÿ q�xf�x� � o�nÿ1�:

This result coincides with formula in Fujikoshi (1987, 1993a).

4.5. Asymptotic expansion of UTL

Note that

t̂2 � 1

n
a 0�A 0A�ÿ1ab 0�X 0Sÿ1X �ÿ1b

� ~a 0~a
�

~b 0~b� 1���
n
p ~b 0M 0VM ~b

ÿ 1

n
~b 0M 0fV�Ip ÿ PX �V � Z 0ZgM ~b�Op�nÿ3=2�

�
:

Therefore, t̂ÿ1 can be expanded as

t̂ÿ1 � �~a 0~a�ÿ1=2�~b 0~b�ÿ1=2

�
1ÿ �

~b 0~b�ÿ1

2
���
n
p ~b 0M 0VM ~b� �

~b 0~b�ÿ1

2n
~b 0M 0

� V Ip ÿ PX � 3

4
Y

� �
V � Z 0Z

� �
M ~b�Op�nÿ3=2�

�

� �~a 0~a�ÿ1=2�~b 0~b�ÿ1=2 1� t̂1���
n
p � t̂2

n
�Op�nÿ3=2�

� �
; �4:8�

where Y � �~b 0~b�ÿ1M ~b~b 0M 0 is a p� p matrix whose the �a; b�th element is

yab. Substituting (4.8) into UTL yields

UTL � USL � 1���
n
p t̂1USL � 1

n
t̂2USL �Op�nÿ3=2�:

So, the characteristic function CUTL
�t� of UTL is expressed as follow.

CUTL
�t� � E�expfitUSLg� � 1���

n
p E�itt̂1USL expfitUSLg�

� 1

n
E itt̂1USL � �it�

2

2
�t̂1USL�2

( )
expfitUSLg

" #
� o�nÿ1�

� CUSL
�t� � 1���

n
p C

�1�
UTL
�t� � 1

n
C
�2�
UTL
�t� � o�nÿ1�:

In this expansion, CUSL
�t� has been derived in previous subsection. As for the

computations of C
�1�
UTL
�t� and C

�2�
UTL
�t�, we can get them by using the following

equations.
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C
�1�
UTL
�t� � t

d

dt
E�itt̂1 expfitUSLg�;

C
�2�
UTL
�t� � t

d

dt
E�itt̂2 expfitUSLg� � t2

2

d 2

dt2
E�itt̂2

1 expfitUSLg�:

After simpli®cation, we have the following Theorem 4.4.

Theorem 4.4. Suppose that the design matrix A and the error matrix E

in (1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Then the distribution

function of UTL can be expanded as

P�UTL a x� � F�x� � 1���
n
p RTL;1�x�f�x�1� 1

n
RTL;2�x�f�x� � o�nÿ1�;

where

RTL;1�x� � RSL;1�x� � 1

2
c6�1� h2�x��

� c1 � 1

2
c6 ÿ 1

6
�c2 ÿ 3c6�h2�x�;

RTL;2�x� � RSL;2�x� ÿ 1

2
c7h1�x� ÿ 1

24
c8h3�x� ÿ 1

24
c9h5�x�

� ÿ 1

2
�c3 � c7�h1�x� ÿ 1

24
�c4 � c8�h3�x� ÿ 1

72
�c5 � 3c9�h5�x�;

and

c6 �
Xk

a 0

Xq

a

wa 0K�m�ay�1y�1�pa 0a;

c7 � �pÿ q� k� � 2�K�y�1y�1r�1r�1�

� 2
Xk

a 0b 0

Xq

ab

wa 0wb 0 fK�m�ay�1y�2��m�by�1y�2� �K�m�ay�1r�1��m�by�1r�1�

ÿK�m�ar�1r�1��m�by�1y�1� ÿK�m�am�br�1��r�1y�1y�1�gpa 0apb 0b;

c8 � 6ÿ 3K�y�1y�1y�2y�2�

� 12
Xk

a 0b 0

Xq

ab

wa 0wb 0 f2K�m�ay�1y�2��m�by�1y�2� �K�m�ay�1r�1��m�by�1r�1�

ÿK�m�am�br�1��y�1y�1r�1� ÿK�m�ar�1r�1��m�by�1y�1�gpa 0apb 0b

ÿ 8
Xk

a 0b 0c 0d 0

Xq

abcd

wa 0b 0c 0wd 0K�m�am�bm�c�K�m�d y�1y�1�pa 0apb 0bpc 0cpd 0d ;
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c9 � 3
Xk

a 0b 0

Xq

ab

wa 0wb 0K�m�ay�1y�2�K�m�by�1y�2�pa 0apb 0b

ÿ 2
Xk

a 0b 0c 0d 0

Xq

abcd

wa 0b 0c 0wd 0K�m�am�bm�c�K�m�d y�1y�1�pa 0apb 0bpc 0cpd 0d :

Here RSL;1�x� and RSL;2�x� are de®ned by (4.6) and (4.7), respectively.

Specially, when e is distributed as Np�0;S�, then

c6 � c9 � 0; c7 � �pÿ q� k� � 2; c8 � 6:

Therefore

P�UTL a x� � F�x� ÿ 1

4n
f2�2pÿ 2q� 2� k�x� x�x2 ÿ 3�gf�x� � o�nÿ1�:

The corresponding results in the case when

t̂2 � 1

nÿ k
a 0�A 0A�ÿ1ab 0�X 0Sÿ1X �ÿ1b;

was derived by Fujikoshi (1993a).

5. Asymptotic expansion of the null distribution of TG

In this section, we derive an asymptotic expansion of the null distribution

of TG up to the order nÿ1. Without loss of generality, we may replace E by

ESÿ1=2 and X by Sÿ1=2X , in the expressions of TG. Then E�vec�E�� � 0 and

Cov�vec�E�� � In p

Suppose that the design matrix A and the distribution of e satisfy the

assumptions B1, B2, B3, B4 and B5. Note that TG is a smooth function of

U . As rank�L� � d and L 0L � Id , by the same way as in Wakaki, Yanagihara

and Fujikoshi (2000) and Bhattacharya and Rao (1976), it can be shown that

TG has a valid expansion up to the order nÿ1 under the assumptions B1, B2,

B3, B4 and B5. In the following, we will ®nd an asymptotic expansion of

the characteristic function of TG up to the order nÿ1, which can be inverted

formally. From (2.3), we can write the characteristic function of TG as

CTG
�t� � C0�t� � 1

n
C1�t� � o�nÿ1�; �5:1�

where

C0�t� � E�expfit tr�U 0WU�g�;

C1�t� � itE�f�r1 ÿ k ÿ �pÿ q�� tr�U 0WU� � r2�tr�U 0WU��2g expfit tr�U 0WU�g�:
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As a method for computing each term in (5.1), we consider to use the results in

Theorem 3.1.

By using the integrand function in Theorem 3.1, C0�t� can be given by

C0�t� �
�
R kd

expfit tr�U 0WU�g

� fkd�u� 1� 1���
n
p R1�u� � 1

n
R2�u�

� �
du� o�nÿ1�;

where u � vec�U�, and R1�u� and R2�u� are de®ned by (3.5) and (3.6), res-

pectively. Let j � �1ÿ 2it�ÿ1 and G � Ik � �jÿ 1�W. Then note that

expfit tr�U 0WU�g exp ÿ 1

2
tr�U 0U�

� �
� exp ÿ 1

2
tr�U 0Gÿ1U�

� �
:

Using the transformation from U to U � � Gÿ1=2U and the equation u �
vec�G 1=2U �� � �Id nG 1=2�u�, where u� � vec�U ��, C0�t� is expressed as the

expectation with respect to U �, that is

C0�t� � EU � 1� 1���
n
p R1��Id nG 1=2�u�� � 1

n
R2��Id nG 1=2�u��

� �
� o�nÿ1�: �5:2�

Here the expectation may be taken with respect to U � whose columns are

independently distributed as Nd�0; Id�. Let W � G 1=2U �, it is seen that w �
vec�W�@Nkd�0; Id nG�. Therefore the expansion (5.2) can be rewritten as

C0�t� � jcd=2EW 1� 1���
n
p R1�w� � 1

n
R2�w�

� �
� o�nÿ1�: �5:3�

Applying a similar method to C1�t� yields

C1�t� � 1

2
�1ÿ jÿ1�jcd=2EW

� �f�r1 ÿ k ÿ �pÿ q�� tr�W 0WW� � r2ftr�W 0WW�g2g� � o�1�: �5:4�

Through the calculations of (5.3) and (5.4), we use the following identities

which are expectations of the Hermite polynomials, and some relations among

the elements of W. As for the former, let the �a; b�th elements of W and G be

denoted by oab and gab, respectively. Note that gab � dab � �jÿ 1�oab and

EW �Ha 0a�w�� � 0; EW �Ha 0a;b 0b�w�� � �jÿ 1�oa 0b 0dab;

EW �Ha 0a;b 0b; c 0c�w�� � 0;
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EW �Ha 0a;b 0b; c 0c;d 0d�w�� � �jÿ 1�2
X
�3�

oa 0b 0oc 0d 0dabdcd ; �5:5�

EW �Ha 0a;b 0b; c 0c;d 0d; e 0e; f 0f �w�� � �jÿ 1�3
X
�15�

oa 0b 0oc 0d 0oe 0f 0dabdcd def :

As for the latter, using the property that W is an idempotent matrix,

Xk

c 0
oa 0c 0ob 0c 0 � oa 0b 0 ;

tr�W� �
Xk

a 0
oa 0a 0 � c; tr�W2� �

Xk

a 0b 0
o2

a 0b 0 � c; �5:6�

tr�W3� �
Xk

a 0b 0c 0
oa 0b 0ob 0c 0oa 0c 0 � c; tr�W4� �

Xc

a 0b 0c 0d 0
oa 0b 0ob 0c 0oc 0d 0oa 0d 0 � c:

Substituting (5.5) and (5.6) into both of (5.3) and (5.4) yields

CTG
�t� � jcd=2 1� 1

n

X3

j�0

bjj
j � o�nÿ1�

" #
; �5:7�

where

b0 � a1k
�1�
41 ÿ fa2 � a4 ÿ 2a5 � �cÿ 2��c� 1�a6gk�1�31

ÿ fa3 ÿ �c� 1�a4 ÿ �cÿ 2�a5 ÿ �cÿ 2�a6gk�2�31

ÿ 2f3a4 ÿ 2�2c� 1�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2ca6gk�2�321

ÿ 2f3a5 ÿ 2�c� 1�a6gk�2�322 ÿ 4a6f3k
�1�
33 � 2k

�2�
331 � k

�2�
332g

� 1

4
cdf�cÿ d ÿ 1� ÿ 2r1g;

b1 � ÿ2a1k
�1�
41 � f3a2 ÿ 6a5 � �3c2 � cÿ 6�a6gk�1�31

� f3a3 ÿ �3c� 4�a4 ÿ �3cÿ 2�a5 � �c� 6�a6gk�2�31

� 4f3a4 ÿ �4c� 5�a6gk�1�32 � 4fa4 � a5 ÿ 2�c� 1�a6gk�2�321

� 4f3a5 ÿ �2c� 3�a6gk�2�322 � 4a6f3k
�1�
33 � 2k

�2�
331 � k

�2�
332g

ÿ 1

2
cdfcÿ r1 � r2�c� d � 1�g;
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b2 � a1k
�1�
41 ÿ f3a2 ÿ 3a4 ÿ 6a5 � �c� 2��3cÿ 1�a6gk�1�31

ÿ f3a3 ÿ �3c� 5�a4 ÿ �3c� 2�a5 � 5�c� 2�a6gk�2�31

ÿ 2f3a4 ÿ 4�c� 2�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2�c� 2�a6gk�2�321

ÿ 2f3a5 ÿ 2�c� 2�a6gk�2�322 �
1

4
cd�c� d � 1��1� 2r2�;

b3 � fa2 ÿ 2a4 ÿ 2a5 � �c� 1��c� 2�a6gk�1�31

� fa3 ÿ �c� 2�a4 ÿ �c� 2�a5 � 3�c� 2�a6gk�2�31 ;

�5:8�

and

a1 � 1

24

Xk

abcd

wabcd

X
�3�

oabocd ÿ 1

8
c�c� 2�;

a2 � 1

72

Xk

abcdef

wabcwdef

X
�6�

0
oadobeocf ;

a3 � 1

72

Xk

abcdef

wabcwdef

X
�9�

0
oabocdoef ; �5:9�

a4 � 1

12

Xk

abcd

wabcwd�oabocd � oacobd�;

a5 � 1

12

Xk

abcd

wabcwdoadobc; a6 � 1

8

Xk

ab

wawboab:

Here wa1...am
is de®ned by (3.2). Further k

�1�
41 , k

�1�
31 , k

�2�
31 , k

�1�
32 , k

�2�
321, k

�2�
322, k

�1�
33 ,

k
�2�
331 and k

�2�
332 are de®ned by

k
�1�
41 �

Xp

abcd

qabqcdkabcd ; k
�1�
31 �

Xp

abcdef

qadqbeqcf kabckdef ;

k
�2�
31 �

Xp

abcdef

qabqcdqef kabckdef ; k
�1�
32 �

Xp

abcdef

radqbeqcf kabckdef ;

k
�2�
321 �

Xp

abcdef

rabqcdqef kabckdef ; k
�2�
322 �

Xp

abcdef

qabrcdqef kabckdef ;

k
�1�
33 �

Xp

abcdef

qadrbercf kabckdef ; k
�2�
331 �

Xp

abcdef

qabrcdref kabckdef ;
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k
�2�
332 �

Xp

abcdef

rabqcdref kabckdef :

Moreover,
P 0
�6� oadobeocf and

P 0
�9�oabocdoef mean the following summations.X

�15�
oabocdoef �

X
�6�

0
oadobeocf �

X
�9�

0
oabocdoef ;

X
�6�

0
oadobeocf � oadobeocf � oadobf oce � oaeobdocf

� oaeobf ocd � oaf obdoce � oaf obeocd :

Finally, by inversing for (5.7), we have the following Theorem 5.1.

Theorem 5.1. Under the Assumptions B1, B2, B3, B4 and B5, the null

distribution of TG can be expanded as

P�TG a x� � Gcd�x� � 1

n

X3

j�0

bjGcd�2j�x� � o�nÿ1�; �5:10�

where Gf is the distribution function of a central chi-squared distribution with f

degrees of freedom and the coe½cients bj are given by (5.8).

Note that the ®nal result depends on the cumulants up to the fourth

order. By the same way as in the multivariate t-statistic, it is expected that the

assumption B4 may be weakened to E�kek4� <y.

As for a special case, we assume that X � Ip and D � Ip. Then Q � Ip

and �Ip ÿ PX � � O. Therefore, k
�1�
32 , k

�2�
321, k

�2�
322, k

�1�
33 , k

�2�
331 and k

�2�
332 are 0 and

k
�1�
41 , k

�1�
31 and k

�2�
31 are turned out the multivariate kurtosis and skewnesses

(see, Mardia (1970) and Isogai (1985)) which are de®ned by

k
�1�
4 �

Xp

ab

kaabb; k
�1�
3 �

Xp

abc

k2
abc; k

�2�
3 �

Xp

abc

kaabkbcc:

So, the coe½cients bj are rewritten as

b0 � a1k
�1�
4 ÿ fa2 � a4 ÿ 2a5 � �cÿ 2��c� 1�a6gk�1�3

ÿ fa3 ÿ �c� 1�a4 ÿ �cÿ 2�a5 ÿ �cÿ 2�a6gk�2�3

� 1

4
cpf�cÿ pÿ 1� ÿ 2r1g;
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b1 � ÿ2a1k
�1�
4 � f3a2 ÿ 6a5 � �3c2 � cÿ 6�a6gk�1�3

� f3a3 ÿ �3c� 4�a4 ÿ �3cÿ 2�a5 � �c� 6�a6gk�2�3

ÿ 1

2
cpfcÿ r1 � r2�c� p� 1�g;

b2 � a1k
�1�
4 ÿ f3a2 ÿ 3a4 ÿ 6a5 � �c� 2��3cÿ 1�a6gk�1�3

ÿ f3a3 ÿ �3c� 5�a4 ÿ �3c� 2�a5 � 5�c� 2�a6gk�2�3

� 1

4
cp�c� p� 1��1� 2r2�;

b3 � fa2 ÿ 2a4 ÿ 2a5 � �c� 1��c� 2�a6gk�1�3

� fa3 ÿ �c� 2�a4 ÿ �c� 2�a5 � 3�c� 2�a6gk�2�3 :

These results are corresponding with the formula in Wakaki, Yanagihara and

Fujikoshi (2000).

Before concluding this section, we state the next corollary which is an

alternative of Theorem 5.1.

Corollary 5.1. Under the same assumptions as in Theorem 5.1, the

asymptotic expansion (5.10) can be written as

P�TG a x�

� Gcd�x� ÿ 2x

ncd
gcd�x�

�
b1 � b2 � b3 � �b2 � b3�x

cd � 2
� b3x2

�cd � 2��cd � 4�
�

� o�nÿ1�; �5:11�

where gf �x� is the density function of a central chi-squared distribution with f

degrees of freedom and the coe½cients bj are given by (5.8).

6. Robustness and conservativeness

6.1. Transformation of TG

In this section, we consider certain conditions, which imply robustness

and conservativeness of test statistics on e¨ects of nonnormality. Under the

condition that n is large enough, our test statistics can be regarded as robust

for nonnormality because the limiting distributions in both of normal and

nonnormal cases are the same. However, if n is not large enough, we can not
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regard test statistics as robust for nonnormality, because there are test statistics

which can not be ignored an e¨ect of nonnormality like the Hotelling's T 2

test statistic (see, e.g., Chase and Bulgren (1971) and Everitt (1979), etc). Our

aim is to get theoretical tendencies of e¨ects for nonnormality as well as

numerical ones. On the other side, there is an important investigation on

e¨ect of heteroscedastic distribution (see, e.g., Ito (1969, 1980) and Yanagihara

(2000)), but this paper is not taken a matter of such case.

We consider the Cornish-Fisher expansion for TG, which is used as an

approximation of the true percentage point. Let t�u� and u denote the true

percentage point of TG and the percentage point of its limiting distribution,

respectively, that is

P�TG a t�u�� � P�w2
cd a u�;

where w2
cd is a variate of central chi-squared distribution with degrees of

freedom cd. Then from (5.11), t�u� can be expanded as

t�u� � u� 2u

ncd

�
b1 � b2 � b3 � �b2 � b3�u

cd � 2
� b3u2

�cd � 2��cd � 4�
�
� o�nÿ1�

� tE�u� � o�nÿ1�: �6:1�
Through this section, when a correction term for nonnormality in the approx-

imation tE�u� is su½ciently small, we regard test statistics as robust for non-

normality.

First, we consider improved transformations on chi-squared approxima-

tions under normality (see, e.g., Fujikoshi (1997a, 2000), Kakizawa (1996) and

Fujisawa (1997)). For example, for THL and TBNP,

~THL � cd � 2

c� d � 1
n� 1

2
�d ÿ cÿ 1�

� �
log 1� c� d � 1

n�cd � 2�THL

� �
;

~TBNP � TBNP ÿ c� d � 1

2�n� d� 1ÿ 1

cd � 2
TBNP

� �
TBNP:

Under normality, the transformed test statistics satisfy

P� ~THL a x� � Gcd�x� � o�nÿ1�; P� ~TBNP a x� � Gcd�x� � o�nÿ1�:
It is without saying that under normality,

P�TLR a x� � Gcd�x� � o�nÿ1�:
For these transformed statistics, the tE�u� in (6.1) is represented as

tEN�u� � u� 1

n
D�u; k3; k

�1�
41 �;
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where k3 � �k�1�31 ; k
�2�
31 ; k

�1�
32 ; k

�2�
321; k

�2�
322; k

�1�
33 ; k

�2�
331; k

�2�
332�0. Note that D�u; k3; k

�1�
41 � �

0, when k3 � 0 and k
�1�
41 � 0. So, we can regard test statistics as robust under

nonnormality, when D�u; k3; k
�1�
41 � is su½ciently small. If D�u; k3; k

�1�
41 �a 0, then

tEN�u�a u. Therefore, t�u� is expected to be smaller than u. So, the test with

a critical point u may be conservative more precisely, neglecting the terms of

o�nÿ1�,
P� ~TG b u�aP� ~TG b t�u��:

6.2. The case k3 � 0

We consider the special case, k3 � 0. Then tEN�u� can be expressed as

tEN�u� � uÿ 2a1

ncd
k
�1�
41 f1�u�; �6:2�

where a1 is de®ned by (5.9) and

f1�u� � u 1ÿ u

cd � 2

� �
:

Therefore,

D�u; k3; k
�1�
41 � � D�u; k

�1�
41 � � ÿ

2a1

cd
k
�1�
41 f1�u�:

In a testing problem, since percentage points used are in the tail of distri-

bution, for instance upper 10%, 5% and 1% points, so through the following

arguments we assume that ub cd � 2, equivalently f1�u�a 0. Actually, as

for 10% points, if the degrees of freedom cd greater than 1, ub cd � 2. On

the other hand, ub cd � 2 always holds in 5% and 1% points. From these

equations, D�u; k
�1�
41 �a 0 holds in the following two cases.

�i� k
�1�
41 b 0 and a1 a 0;

�ii� k
�1�
41 < 0 and a1 > 0:

First, we consider the case k
�1�
41 b 0 and a1 a 0. For example, when TG is

the one-way MANOVA test statistics for testing an equality of mean vectors of

k populations with each sample size ni �1a ia k�, a1 becomes

a1 � 1

8

Xk

a�1

n

na
ÿ k2 ÿ 2k � 2

 !
: �6:3�

Then a1 a 0 is equivalent to
Pk

a�1 n=na a k2 � 2k ÿ 2. It means that each

sample size is not di¨erent extremely. If k
�1�
41 and a1 satisfy the condition (i),
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tEN�u�a u. Therefore, we can expect that true percentage point t�u� have a

tendency of t�u�a u, i.e.,

P� ~TG b u�aP� ~TG b t�u��:
It means that our test statistics may be conservative if k

�1�
41 b 0.

Next, we consider the case k
�1�
41 < 0 and a1 > 0. Then, by the same

condition as in the case k
�1�
41 b 0 and a1 a 0, roughly we have, neglecting the

terms of o�nÿ1�
P� ~TG b u�aP� ~TG b t�u��:

However, since k
�1�
41 has a lower bound, the region of k

�1�
41 is narrower than the

one in the case k
�1�
41 b 0 and a1 a 0. For a univariate case, ÿ2a k4, where k4

is the univariate fourth cumulant.

The results of the simulations are shown in Table 6.1. A test statistic

considered is simple, that is the one-way ANOVA test. In this case, a1 is

given by (6.3) and k
�1�
41 is k4. We examine several k4 and a1. From Table

6.1, it notes that this test statistics has robustness and conservativeness under

Table 6.1: Actual test sizes of the one-way ANOVA test for several a1 and k4

Each value of a1

ÿ0.5 ÿ0.43 ÿ0.25 ÿ0.05 0.06 0.42 1.03

k4

Nominal

test sizes Actual test sizes

10% 10.3 10.2 9.8 9.8 10.1* 9.9* 9.1*

ÿ1.2 5% 5.3 5.2 5.2 5.2 5.0* 4.9* 4.1*

1% 1.2 1.2 1.2 1.0 0.9* 0.8* 0.6*

10% 10.1* 10.3* 9.5* 9.4* 9.7 10.1 10.2

1.5 5% 4.6* 5.0* 4.8* 4.6* 4.8 5.1 5.1

1% 0.8* 0.9* 1.0* 1.1* 1.0 1.1 1.1

10% 9.7* 9.9* 9.7* 9.9* 9.7 10.2 10.6

6.0 5% 4.5* 5.0* 4.5* 4.9* 5.0 5.2 5.6

1% 0.9* 0.9* 0.9* 1.1* 1.0 1.1 1.3

10% 7.3* 8.3* 8.7* 10.6* 11.4 12.8 14.3

43.2 5% 2.4* 3.3* 3.8* 4.8* 5.6 6.9 9.3

1% 0.2* 0.2* 0.7* 0.9* 1.2 1.6 2.7

10% 4.1* 5.3* 8.5* 11.2* 14.1 17.5 17.1

730.16 5% 1.1* 1.7* 2.8* 4.0* 5.0 10.7 13.5

1% 0.1* 0.1* 0.5* 0.8* 1.2 1.5 5.2

* indicates a test with a critical point to be conservativeness asymptotically.
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condition a1 a 0 and k4 b 0. Moreover, the cases of a1 > 0 and k4 < 0 are

similarly.

As mentioned above, if k3 � 0, a1 a 0 and k
�1�
41 b 0, then our test statistics

have a tendency of robustness and conservativeness. Further it is similar for

the case that a1 > 0 and k
�1�
41 < 0.

6.3. The case k3 0 0

In this subsection, we consider the case k3 0 0. However, in general

form, as there are many factors to determine for a size of D�u; k3; k
�1�
41 �, it is

di½cult to obtain a simple condition for D�u; k3; k
�1�
41 �a 0.

Therefore, for simplicity, the one-way ANOVA test is taken up. In this

case, tEN�u� in (6.1) has a simple form as

tEN�u� � u� 1

n
a2k2

3 ÿ a1k4 � u

�k � 1� �a1k4 ÿ 2a2k2
3� �

u2a2k2
3

�k � 1��k � 3�
� �

� u� 2u

n�k ÿ 1�D�u; k3; k4�;

where k3 and k4 are the third and fourth cumulants in the univariate case, a1 is

given by (6.3) and

a2 � 1

24
5
Xk

a�1

n

na
ÿ 3k2 ÿ 6k � 4

 !
:

Let

f1�u� � 1ÿ u

k � 1
; f2�u� � 1ÿ 2u

k � 1
� u2

�k � 1��k � 3� ;

then the correction term D�u; k3; k4� can be expressed as

D�u; k3; k4� � 2u

k ÿ 1
fa2 f2�u�k2

3 ÿ a1 f1�u�k4g:

From the same reason in the previous subsection, we assume that ub k � 1,

equivalently f1�u�a 0. For the condition D�u; k3; k4�a 0, the following two

cases are considered.

�1� f2�u�a 0;

�2� f2�u� > 0:
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First, we consider the case f2�u�a 0. In this case, from a2 b 0 and

k2
3 b 0 the maximum value of the correction term becomes

Dmax � maxfD�u; k3; k4�g � 2u

k ÿ 1
fÿa1 f1�u�k4g:

If a1 a 0 and k4 b 0 or a1 > 0 and k4 < 0, then Dmax a 0, equivalently

tEN�u�a u. Therefore, we can expect that the true percentage point t�u�
have a tendency of t�u�a u under condition

�i� k4 b 0; a1 b 0 and f2�u�b 0;

�ii� k4 < 0; a1 < 0 and f2�u�b 0:

Next, we consider the case f2�u� > 0. By using inequality k2
3 a k4 � 2,

the maximum value of D�u; k3; k4� can be written as

Dmax � 2u

k ÿ 1
fa2 f2�u��k4 � 2� ÿ a1 f1�u�k4g

� 2u

k ÿ 1
f�a2 f2�u� ÿ a1 f1�u��k4 � 2a2 f2�u�g:

Therefore, tEN�u�a u holds under the following conditions.

�iii� k4 b
2a2 f2�u�

a1 f1�u� ÿ a2 f2�u�
; a2 f2�u� ÿ a1 f1�u�a 0 and f2�u� > 0;

�iv� k4 <
2a2 f2�u�

a1 f1�u� ÿ a2 f2�u�
; a2 f2�u� ÿ a1 f1�u� > 0 and f2�u� > 0;

Then, we can roughly say that the test statistic is conservative. However k4

has a lower bound, ÿ2a k4, the region k4 in condition (4) is narrower than the

ones in other conditions.

Table 6.2 shows actual test sizes of the one-way ANOVA test statistic in

several a1, a2, k3 and k4 by simulation studies. From Table 6.2, it is seen that

this test tends to be robust and conservative. However, robustness and

conservativeness are not kept in the tail side of percentage points under the

conditions which are not included ones (1)@(4), that is k4 > 0, a1 > 0 and

f2�u�a 0.

In this section, we have seen that the coe½cients of asymptotic expansion

is useful for deciding a robustness and conservativeness of certain test statistics.

For detailed simulation results in the one-way ANOVA and MANOVA test,

see Fujikoshi, Ohmae and Yanagihara (1999) and Fujikoshi (2001) respectively.
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7. Some applications

7.1. Testing for equality on gradients

In this section, we obtain asymptotic expansions of the null distribution for

several test statistics by applying Theorem 5.1.

First, we consider testing for equality on gradients. We assume that all

the means of k populations are restricted to be linear with respect to time tj,

that is

mij � xi1 � xi2tj �1a ia k; 1a j a p�;

Then consider testing for the null hypothesis

H0: x12 � � � � � xk2:

In other words, this hypothesis means to test for the equality on gradients in

the mean structure.

Let ni be sample size of ith population, n �Pk
i ni,

A �

1n1
0 . . . 0

0 1n2
. . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1nk

266664
377775 �n� k matrix�;

Table 6.2: Actual test sizes of the one-way ANOVA test for several a1, a2, k3 and k4

Each value of f2�u�
�ÿ0:42 �10%�; ÿ 0:50 �5%�; ÿ 0:66 �1%��

k3 � 1:0 k3 � 2
���
2
p

k3 � 6:18

k4 � 1:5 k4 � 12:0 k4 � 110:97

Nominal sizes Nominal sizes Nominal sizes

a1 a2 10% 5% 1% 10% 5% 1% 10% 5% 1%

ÿ0.50 0.17 10.0* 4.9* 1.0* 8.7* 3.7* 0.7* 8.1* 3.6* 0.6*

ÿ0.43 0.29 9.8* 4.8* 1.0* 8.9* 4.3* 0.8* 8.3* 3.5* 0.6*

ÿ0.25 0.58 9.6* 5.2* 1.1* 8.7* 4.1* 1.0* 9.0* 4.4* 1.0*

ÿ0.05 0.91 9.3* 4.8* 1.0* 8.7* 4.6* 1.1* 9.7* 4.8* 1.2*

0.06 1.10 9.7 4.7 1.1 9.1 5.1 1.3 9.9 5.1 1.5

0.42 1.70 9.7 4.9 1.2 9.5 5.8 1.9 9.8 5.7 2.0

1.03 2.72 9.6 5.2 1.3 10.2 6.7 2.7 11.8 8.1 3.1

* indicates a test with a critical point to be conservativeness asymptotically.
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X �
x11 x12

..

. ..
.

xk1 xk2

264
375 �k � 2 matrix�; X �

1 t1

..

. ..
.

1 tp

264
375 �p� 2 matrix�; �7:1�

C �
1 . . . 0 ÿ1

..

. . .
. ..

. ..
.

0 . . . 1 ÿ1

264
375 �k ÿ 1� k matrix�; D � 0

1

� �
;

where 1n is an n-dimensional vector all of whose elements are 1. In this case,

W � Ik ÿ
n1=n . . .

���������
n1nk
p

=n

..

. . .
. ..

.���������
nkn1
p

=n . . . nk=n

2664
3775:

Noting that

���
n
p

A�A 0A�ÿ1=2 �

����������
n=n1

p
1n1

0 . . . 0

0
����������
n=n2

p
1n2

. . . 0

..

. ..
. . .

. ..
.

0 0 . . .
����������
n=nk

p
1nk

266664
377775;

we can derive easily that

wa �
����������
na=n

p
; wabc �

����������
n=na

p �a � b � c�
0 (otherwise)

(
;

wabcd �
n=na �a � b � c � d�
0 (otherwise)

�
:

�7:2�

Further, using oab � dab ÿ ���������
nanb
p

=n, we have

a1 � 1

8

Xk

a�1

n

na
ÿ k2 ÿ 2k � 2

 !
;

a2 � 1

12

Xk

a�1

n

na
ÿ 3k � 2

 !
; �7:3�

a3 � 1

8

Xk

a�1

n

na
ÿ k2

 !
; a4 � a5 � a6 � 0:

Next, we consider the assumptions B1, B2 and B3. It is easily shown that

all kajk � 1, nÿ1
Pn

j�1 kajk4 � 1 and n=nj a n=ln. Therefore the assumptions
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B1, B2 and B3 are replaced by

n=ni � O�1� �i � 1; 2; . . . ; k�: �7:4�
These results imply an asymptotic expansion.

P�TG a x� � Gkÿ1�x� � 1

n

X3

j�0

bjGkÿ1�2j�x� � o�nÿ1�;

where

b0 � a1k
�1�
41 ÿ �a2k

�1�
31 � a3k

�2�
31 � �

1

4
�k ÿ 1��k ÿ 3ÿ 2r1�;

b1 � ÿ2a1k
�1�
41 � 3�a2k

�1�
31 � a3k

�2�
31 � ÿ

1

2
�k ÿ 1�fk ÿ 1ÿ r1 � r2�k � 1�g;

b2 � a1k
�1�
41 ÿ 3�a2k

�1�
31 � a3k

�2�
31 � �

1

4
�k ÿ 1��k � 1��1� 2r2�;

b3 � a2k
�1�
31 � a3k

�2�
31 :

For the special case S � Ip, Q becomes to

Q � �s�2��ÿ1

�pt1 ÿ s�1��2 . . . �pt1 ÿ s�1���ptp ÿ s�1��
..
. . .

. ..
.

�ptp ÿ s�1���pt1 ÿ s�1�� . . . �ptp ÿ s�1��2

2664
3775;

where

s�1� �
Xp

a

ta; s�2� � p2
Xp

a

t2
a ÿ p�s�1��2:

Therefore, k
�1�
41 , k

�1�
31 and k

�2�
31 can be rewritten more simple form as

k
�1�
41 � �s�2��ÿ2

Xp

abcd

�pta ÿ s�1���ptb ÿ s�1���ptc ÿ s�1���ptd ÿ s�1��kabcd ;

k
�1�
31 � k

�2�
31 � �s�1��ÿ3

Xp

abcdef

�pta ÿ s�1���ptb ÿ s�1��

� �ptc ÿ s�1���ptd ÿ s�1���pte ÿ s�1���ptf ÿ s�1��kabckdef :

7.2. Testing for e¨ect on quadratic

Secondly, we assume that the mean structure is quadratic, that is

mij � xi1 � xi2tj � xi3t2
j �1a ia k; 1a j a p�:
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Then consider to test for the null hypothesis

H0: x13 � � � � � xk3 � 0:

Let the design matrix A be the same as (7.1) and

X �
x11 x12 x13

..

. ..
. ..

.

xk1 xk2 xk3

264
375 �k � 3 matrix�;

X �
1 t1 t2

1

..

. ..
. ..

.

1 tp t2
p

2664
3775 �p� 3 matrix�;

C � Ik; D �
0

0

1

24 35:
From (7.2) and W � Ik, we have

a1 � 1

8

Xk

a�1

n

na
ÿ k2 ÿ 2k

 !
; a2 � 1

12

Xk

a�1

n

na
;

a3 � 1

8

Xk

a�1

n

na
; a4 � k

6
; a5 � k

12
; a6 � 1

8
:

These results imply an asymptotic expansion.

P�TG a x� � Gk�x� � 1

n

X3

j�0

bjGk�2j�x� � o�nÿ1�;

where

b0 � a1k
�1�
41 ÿ fa2 � a4 ÿ 2a5 � �cÿ 2��c� 1�a6gk�1�31

ÿ fa3 ÿ �k � 1�a4 ÿ �k ÿ 2�a5 ÿ �k ÿ 2�a6gk�2�31

ÿ 2f3a4 ÿ 2�2k � 1�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2ka6gk�2�321

ÿ 2f3a5 ÿ 2�k � 1�a6gk�2�322 ÿ 4a6f3k
�1�
33 � 2k

�2�
331 � k

�2�
332g

� 1

4
kf�k ÿ 2� ÿ 2r1g;
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b1 � ÿ2a1k
�1�
41 � f3a2 ÿ 6a5 � �3k2 � k ÿ 6�a6gk�1�31

� f3a3 ÿ �3k � 4�a4 ÿ �3k ÿ 2�a5 � �k � 6�a6gk�2�31

� 4f3a4 ÿ �4k � 5�a6gk�1�32 � 4fa4 � a5 ÿ 2�k � 1�a6gk�2�321

� 4f3a5 ÿ �2k � 3�a6gk�2�322 � 4a6f3k
�1�
33 � 2k

�2�
331 � k

�2�
332g

ÿ 1

2
kfk ÿ r1 � r2�k � 2�g;

b2 � a1k
�1�
41 ÿ f3a2 ÿ 3a4 ÿ 6a5 � �k � 2��3k ÿ 1�a6gk�1�31

ÿ f3a3 ÿ �3k � 5�a4 ÿ �3k � 2�a5 � 5�k � 2�a6gk�2�31

ÿ 2f3a4 ÿ 4�k � 2�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2�k � 2�a6gk�2�321

ÿ 2f3a5 ÿ 2�k � 2�a6gk�2�322 �
1

4
k�k � 2��1� 2r2�;

b3 � fa2 ÿ 2a4 ÿ 2a5 � �k � 1��k � 2�a6gk�1�31

� fa3 ÿ �k � 2�a4 ÿ �k � 2�a5 � 3�k � 2�a6gk�2�31 :

Like a previous subsection, we can rewrite the assumptions B1, B2 and B3

as (7.4).

7.3. Testing for hierarchical structure

Thirdly, we consider to divide X as

X � X11 X12

X21 X22

� �
�k � q matrix�;

where X11 is a k1 � �qÿ q1� matrix, X12 is a k1 � q1 matrix, X21 is a �k ÿ k1��
�qÿ q1� matrix and X22 is a �k ÿ k1� � q1 matrix. Related to a hierarchical

structure of mean matrix, we are interested to test for the null hypothesis

H0: X12 � O:

Let

C � �Ik1
;Ok1;kÿk1

� �k1 � k matrix�;

D � Iq1

Oqÿq1;q1

� �
�q� q1 matrix�;
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where Ok1;k2
is a k1 � k2 matrix all of whose elements are 0, then the null

hypothesis can be rewritten as CXD � O.

In order to be simple form on the coe½cient aj, suppose that the design

matrix A is the same as (7.1). Then an asymptotic expansion is as follow.

P�TG a x� � Gk1q1
�x� � 1

n

X3

j�0

bjGk1q1�2j�x� � o�nÿ1�;

where

b0 � a1k
�1�
41 ÿ fa2 � a4 ÿ 2a5 � �cÿ 2��c� 1�a6gk�1�31

ÿ fa3 ÿ �k1 � 1�a4 ÿ �k1 ÿ 2�a5 ÿ �k1 ÿ 2�a6gk�2�31

ÿ 2f3a4 ÿ 2�2k1 � 1�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2k1a6gk�2�321

ÿ 2f3a5 ÿ 2�k1 � 1�a6gk�2�322 ÿ 4a6f3k
�1�
33 � 4k

�2�
331 � k

�2�
332g

� 1

4
k1q1f�k1 ÿ q1 ÿ 1� ÿ 2r1g;

b1 � ÿ2a1k
�1�
41 � f3a2 ÿ 6a5 � �3k2

1 � k1 ÿ 6�a6gk�1�31

� f3a3 ÿ �3k1 � 4�a4 ÿ �3k1 ÿ 2�a5 � �k1 � 6�a6gk�2�31

� 4f3a4 ÿ �4k1 � 5�a6gk�1�32 � 4fa4 � a5 ÿ 2�k1 � 1�a6gk�2�321

� 4f3a5 ÿ �2k1 � 3�a6gk�2�322 � 4a6f3k
�1�
33 � 2k

�2�
331 � k

�2�
332g

ÿ 1

2
k1q1fk1 ÿ r1 � r2�k1 � q1 � 1�g;

b2 � a1k
�1�
41 ÿ f3a2 ÿ 3a4 ÿ 6a5 � �k1 � 2��3k1 ÿ 1�a6gk�1�31

ÿ f3a3 ÿ �3k1 � 5�a4 ÿ �3k1 � 2�a5 � 5�k1 � 2�a6gk�2�31

ÿ 2f3a4 ÿ 4�k1 � 2�a6gk�1�32 ÿ 2fa4 � a5 ÿ 2�k1 � 2�a6gk�2�321

ÿ 2f3a5 ÿ 2�k1 � 2�a6gk�2�322 �
1

4
k1q1�k1 � q1 � 1��1� 2r2�;

b3 � fa2 ÿ 2a4 ÿ 2a5 � �k1 � 1��k1 � 2�a6gk�1�31

� fa3 ÿ �k1 � 2�a4 ÿ �k1 � 2�a5 � 3�k1 � 2�a6gk�2�31 ;

and
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a1 � 1

8

Xk1

a�1

n

na
ÿ k2

1 ÿ 2k1

 !
; a2 � 1

12

Xk1

a�1

n

na
;

a3 � 1

8

Xk1

a�1

n

na
; a4 � k1

6
; a5 � k1

12
; a6 � 1

8
:

Then like the previous subsection, we can rewrite the assumptions B1, B2

and B3 as (7.4).

7.4. Generalized Hotelling's T 2 test

Finally, the model considered is de®ned by

yi � Xm� ei �1a i a n�;

where m is a q� 1 unknown parameter vector. Then we deal with a testing for

the null hypothesis

H0 : C�mÿ m0�0D � 0 0;

where

C � 1; D � Id

Oqÿd;d

� �
:

This hypothesis means that some elements of an unknown parameter vector m

are equal to certain values as the elements of m0. In this case, if the design

matrix A � 1n and X � �mÿ m0�0, we can test for such hypothesis by using a

test statistic as

TG � �nÿ 1ÿ p� q� tr�ShSÿ1
e �:

Without saying, when q � p and D � Iq, then its test statistic becomes to the

basic Hotelling's T 2 test statistic

TG � n�yÿ m0�0
1

nÿ 1
S

� �ÿ1

�yÿ m0�;

where y � nÿ1
Pn

j yi. As W � 1, so wa1...aj
� 1. Therefore

a1 � ÿ 1

4
; a2 � 1

12
; a3 � 1

8
;

a4 � 1

6
; a5 � 1

12
; a6 � 1

8
:
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Using these coe½cients aj's, we can obtain bj 's as

b0 � ÿ 1

4
k
�1�
41 �

1

6
k
�1�
31 �

1

2
k
�1�
32 ÿ

3

2
k
�2�
322 ÿ

3

2
k
�1�
33 ÿ k

�2�
331 ÿ

1

2
k
�2�
332 ÿ

1

4
d 2;

b1 � 1

2
k
�1�
41 ÿ

1

2
k
�1�
31 ÿ

5

2
k
�1�
32 ÿ k

�2�
321 ÿ

3

2
k
�2�
322 �

3

2
k
�1�
33 � k

�2�
331 �

1

2
k
�2�
332 ÿ

1

2
d;

b2 � ÿ 1

4
k
�1�
41 ÿ

1

2
k
�2�
31 � 2k

�1�
32 � k

�2�
321 � k

�2�
322 �

1

4
d�d � 2�;

b3 � 1

3
k
�1�
31 �

1

2
k
�2�
31 :

So, the asymptotic expansion based on these ones is given by

P�TG a x� � Gd�x� � 1

n

X3

j�0

bjGd�2j�x� � o�nÿ1�:

Specially, when q � p and D � Iq, then

b0 � ÿ 1

4
k
�1�
4 �

1

6
k
�1�
3 ÿ

1

4
p2; b1 � 1

2
k
�1�
4 ÿ

1

2
k
�1�
3 ÿ

1

2
p;

b2 � ÿ 1

4
k
�1�
4 ÿ

1

2
k
�2�
3 �

1

4
p�p� 2�; b3 � 1

3
k
�1�
3 �

1

2
k
�2�
3 :

These coe½cients bj's correspond to the ones in Kano (1995) and Fujikoshi

(1997b).

8. Numerical accuracies

8.1. Case of con®dence interval

Numerical accuracies are studied on con®dence intervals of a 0Xb and the

null distribution of two test statistics.

First, the con®dence intervals are taken up. Kabe (1980) proposed a

con®dence interval for a 0Xb based on t-distribution. As we consider the non-

normal case, so it is necessary to consider di¨erent method in the normal

case. Actually, in the nonnormal case, we use the Cornish-Fisher expansion as

an approximation of the true percentage point. Let za be the a-level standard

normal quantile, given by F�za� � a and wS�za� and wT �za� denote the true

percentage points of USL and UTL, respectively. In other words,

P�USL awS�za�� � F�za�;
P�UTL awT�za�� � F�za�:
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From Theorems 4.3 and 4.4, wS�za� and wT�za� can be expanded as

wS�za� � za � 1���
n
p cS;1�za� � 1

n
cS;2�za� � o�nÿ1�

� wS;E�za� � o�nÿ1�;

wT�za� � za � 1���
n
p cT ;1�za� � 1

n
cT ;2�za� � o�nÿ1�

� wT ;E�za� � o�nÿ1�;
where

cS;1 � ÿQSL;1�za�

� ÿc1 � 1

6
c2h2�za�;

cS;2 � QSL;1�za�Q 0SL;1�za� ÿ 1

2
zaQSL;1�za�2 ÿQSL;2�za�

� ÿ 1

3
c2za c1 ÿ 1

6
c2h2�za�

� �
ÿ 1

2
za c1 ÿ 1

6
c2h2�za�

� �2

� 1

2
c3h1�za� � 1

24
c4h3�za� � 1

72
c5h5�za�;

cT ;1 � ÿQTL;1�za�

� ÿc1 ÿ 1

2
c6 � 1

6
�c2 ÿ 3c6�h2�za�;

cT ;2 � QTL;1�za�Q 0TL;1�za� ÿ 1

2
zaQTL;1�za�2 ÿQTL;2�za�

� ÿ 1

3
�c2 ÿ 3c6� c1 � 1

2
c6 ÿ 1

6
�c2 ÿ 3c6�h2�za�

� �

ÿ 1

2
za c1 � 1

2
c6 ÿ 1

6
�c2 ÿ 3c6�h2�za�

� �2

� 1

2
�c3 � c7�h1�za� � 1

24
�c4 � c8�h3�za� � 1

72
�c5 � 3c9�h5�za�:

Therefore, one-side a level intervals are given by

I1 � �ÿy; a 0X̂bÿ twS;E�z1ÿa��;

J1 � �ÿy; a 0X̂bÿ t̂wT ;E�z1ÿa��:

Asymptotic expansions in nonnormal GMANOVA model 251



Similarly, two-side intervals can be expressed as

I2 � �a 0X̂bÿ twS;E�z�1�a�=2�; a 0X̂bÿ twS;E�z�1ÿa�=2��;

J2 � �a 0X̂bÿ t̂wT ;E�z�1�a�=2�; a 0X̂bÿ t̂wT ;E�z�1ÿa�=2��:

In actual use, we use Î1, Î2, Ĵ1 and Ĵ2, which are de®ned from I1, I2,

J1 and J2 by replacing unknown parameters by their estimators, respectively.

Let ŵS;E��� and ŵT ;E��� be the ones de®ned from wS;E��� and wT ;E��� by

replacing kabc and kabcd by their estimators. Moreover, t has to be replaced

by t̂ in ŵS;E . Then

Î1 � �ÿy; a 0X̂bÿ t̂ŵS;E�z1ÿa��;

Ĵ1 � �ÿy; a 0X̂bÿ t̂ŵT ;E�z1ÿa��;

Î2 � �a 0X̂bÿ t̂ŵS;E�z�1�a�=2�; a 0X̂bÿ t̂ŵS;E�z�1ÿa�=2��;

Ĵ2 � �a 0X̂bÿ t̂ŵT ;E�z�1�a�=2�; a 0X̂bÿ t̂ŵT ;E�z�1ÿa�=2��:

Let

~Y � �~y1; . . . ; ~yn�0 � �Y ÿ AX̂X 0�Ŝÿ1=2; �8:1�

where

Ŝ � 1

nÿ k
�Y ÿ AX̂X 0� 0�Y ÿ AX̂X 0�: �8:2�

Then the unknown parameters kabc and kabcd can be estimated as

k̂abc � n

�nÿ 1��nÿ 2�
Xn

j�1

~y� j�
a ~y

� j�
b ~y� j�

c ;

k̂abcd � n�n� 1�
�nÿ 1��nÿ 2��nÿ 3�

Xn

j�1

~y� j�
a ~y

� j�
b ~y� j�

c ~y
� j�
d ;

�8:3�

where ~y
� j�
a is the ath element of vector ~yj. For estimators of kabc and kabcd ,

see, e.g., Kaplan (1952), Mardia (1970) and Isogai (1985).

The model considered in simulation studies is A � 1n, X � Ip, a � 1

and b � 1p. So, P � pÿ1=21p and Y � pÿ11p1 0p. By using these settings, the

coe½cients cj's can be written as
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c1 � 0; c2 � 1

p
���
p
p

Xp

abc

kabc; c3 � 0; c4 � 1

p2

Xp

abc

kabcd ;

c5 � 1

p3

Xp

abcdef

kabckdef ; c6 � 1

p
���
p
p

Xp

abc

kabc; c7 � 3� 2

p3

Xp

abcdef

kabckdef ;

c8 � 6ÿ 3

p2

Xp

abc

kabcd � 16

p3

Xp

abcdef

kabckdef ; c9 � 1

p3

Xp

abcdef

kabckdef :

In order to estimate for each coe½cient cj, it is su½cient to do for g �Pp
abc kabc

and k �Pp
abcd kabcd as

ĝ �
Xp

abc

k̂abc; k̂ �
Xp

abcd

k̂abcd ;

where k̂abc and k̂abcd are de®ned by (8.3). Therefore,

ĉ2 � 1

p
���
p
p ĝ; ĉ4 � 1

p2
k̂; ĉ5 � 1

p3
ĝ2; ĉ6 � 1

p
���
p
p ĝ;

ĉ7 � 3� 2

p3
ĝ2; ĉ8 � 6ÿ 3

p2
k̂� 16

p3
ĝ2; ĉ9 � 1

p3
ĝ2:

The distributions considered are as follows,

1. Multivariate Normal Distribution,

2. Uniform Distribution: Each of the p variables is generated inde-

pendently from a uniform �ÿ2; 2� distribution,

3. Exponential Distribution: Each of the p variables is generated inde-

pendently from an exponential distribution with a mean of unity,

4. Lognormal Distribution: Each of the p variables is generated inde-

pendently from a lognormal distribution such that log x@N�0; 1�.
Table 8.1 gives the following six probabilities on one-side 90%, 95% and

99% con®dence intervals.

a1 � P�a 0Xb A I1�; a2 � P�a 0Xb A J1�;

a3 � P�a 0Xb A Î1�; a4 � P�a 0Xb A Ĵ1�;
a5 � P�a 0Xb A I1;N�; a6 � P�a 0Xb A J1;N�;

where I1;N and J1;N are con®dence intervals with normal error, that is

I1;N � �ÿy; a 0X̂bÿ t̂zSE;1ÿa�;

J1;N � �ÿy; a 0X̂bÿ t̂zTE;1ÿa�:

Asymptotic expansions in nonnormal GMANOVA model 253



Here, zSE;a and zTE;a are Cornish-Fisher expansions of a% point under

normal error given by

zSE;a � 1� 1

2n
�pÿ q�

� �
za;

zTE;a � za � 1

n

1

2
�2pÿ 2q� 2� k�za � 1

4
za�z2

a ÿ 3�
� �

:

From Table 8.1, it seems that using I1 and J1 gives considerable

improvements for the actual probability. Especially, the region I1 has high

probabilities than J1. For an actual use, i.e., using the regions Î1, Ĵ1,

Î1;N and Ĵ1;N , Studentized intervals are better than standardized intervals.

Table 8.1: Actual probabilities for con®dence intervals of a 0Xb

Normal Uniform Exponential Log-Normal

Nominal Levels Nominal Levels Nominal Levels Nominal Levels

n p a 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

5 2 a1 90.0 94.9 98.9 90.7 95.3 99.1 90.0 95.0 98.7 66.2 80.9 99.9

a2 88.6 93.4 98.1 88.9 93.1 98.0 87.9 92.9 97.5 96.6 98.5 99.7

a3 83.2 88.6 93.7 83.3 88.4 93.3 74.9 79.6 86.4 67.8 72.8 79.8

a4 92.1 95.5 97.9 92.0 95.3 97.9 85.0 89.0 93.8 79.0 84.1 90.1

a5 84.6 89.4 94.6 84.9 89.6 94.4 76.1 81.1 87.9 69.2 74.0 81.7

a6 88.6 93.4 98.1 89.1 93.1 97.7 80.3 86.1 93.1 73.3 79.8 88.6

10 2 a1 90.1 95.1 99.0 91.1 95.5 99.2 90.4 95.1 99.0 81.8 90.2 99.8

a2 89.4 94.5 98.5 90.2 94.8 99.0 89.3 94.1 98.5 96.7 98.8 99.8

a3 87.0 92.1 97.1 87.8 92.4 97.3 81.0 85.9 92.0 73.1 78.4 85.9

a4 90.4 94.8 98.3 92.0 95.7 98.8 86.8 91.1 95.8 80.5 86.6 93.2

a5 87.3 92.3 97.2 88.3 92.8 97.4 81.9 86.7 92.7 73.9 79.6 87.4

a6 89.4 94.5 98.5 90.3 94.8 98.9 84.1 89.1 95.3 76.6 82.8 91.2

4 a1 90.1 95.2 99.2 89.8 94.8 99.0 90.4 95.2 99.2 86.8 93.0 99.4

a2 89.5 94.8 98.8 89.0 94.5 98.7 89.7 94.7 98.9 94.2 97.3 99.7

a3 87.2 92.1 97.6 86.2 91.8 97.2 83.1 88.5 94.8 77.4 82.8 90.5

a4 90.5 95.0 98.4 90.3 94.7 98.5 87.1 91.9 96.5 81.6 87.4 93.3

a5 87.4 92.2 97.5 86.6 91.9 97.2 83.7 88.7 94.7 77.9 83.1 90.4

a6 89.5 94.8 98.8 89.0 94.5 98.7 85.9 91.2 97.0 79.7 86.2 93.4

6 a1 89.8 94.9 98.8 89.9 95.1 98.9 90.6 95.3 99.1 88.7 94.4 99.3

a2 89.6 94.8 98.7 89.2 94.7 98.7 89.9 94.9 98.7 93.4 97.2 99.5

a3 86.7 92.2 97.3 86.6 92.3 97.5 84.1 90.0 95.9 79.2 85.4 92.6

a4 90.7 95.1 98.4 90.6 95.3 98.3 87.4 91.9 96.6 82.4 87.5 93.4

a5 87.2 92.4 97.1 87.1 92.3 97.5 84.6 89.9 95.3 79.4 85.0 91.9

a6 89.6 94.8 98.7 89.3 94.7 98.7 86.8 92.3 97.2 81.9 87.9 94.5
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However, the estimation problem for kabc, kabcd is left over. It will be

necessary to ®nd improved estimators. On the other side, it seems that critical

points of these intervals do not give good approximations for the true

percentage points in the case of log-normal distribution. Particularly, such

e¨ects happen in the case of small sample size, n � 5. As for a source, it

seems that since cumulants kabc and kabcd are too much big, the e¨ect of

remainder term, e.g., the nÿ2 term in this case, becomes to large. For a

study of two-side intervals, we have obtained similar results. Other methods

of con®dence intervals in a nonnormal ANOVA model have been discussed

in Hall (1992).

8.2. Case of test statistic

In this subsection, we examine numerical studies for two test statistics.

First, generalized Hotelling's T 2 statistic, which is denoted by TG in Section

7.4, is taken up. Our purpose is to see how the actual test size closes to the

nominal one by using the asymptotic expansion approximations. In the case

generalized Hotelling's T 2 statistic, we can use a modi®ed Cornish-Fisher

expansion, which give an exact one in the normal error case. It is well known

that �nÿ d�TG=d�nÿ 1� is distributed as F -distribution with degrees of free-

doms d and nÿ d. Using this fact, we can modify tE�u� as

t�u� � d�nÿ 1�
nÿ d

uF ÿ 2u

nd
b 00 ÿ

�b 02 � b 03�u
d � 2

ÿ b 03u2

�d � 2��d � 4�
� �

� o�nÿ1�

� tE�u� � o�nÿ1�;

where uF is the percentage point of F -distribution with degrees of freedoms d

and nÿ d and

b 00 � ÿ
1

4
k
�1�
41 �

1

6
k
�1�
31 �

1

2
k
�1�
32 ÿ

3

2
k
�2�
322 ÿ

3

2
k
�1�
33 ÿ k

�2�
331 ÿ

1

2
k
�2�
332;

b 01 �
1

2
k
�1�
41 ÿ

1

2
k
�1�
31 ÿ

5

2
k
�1�
32 ÿ k

�2�
321 ÿ

3

2
k
�2�
322 �

3

2
k
�1�
33 � k

�2�
331 �

1

2
k
�2�
332;

b 02 � ÿ
1

4
k
�1�
41 ÿ

1

2
k
�2�
31 � 2k

�1�
32 � k

�2�
321 � k

�2�
322;

b 03 �
1

3
k
�1�
31 �

1

2
k
�2�
31 :

Without saying, if the error vectors are distributed as normal distribution, all

the coe½cients b 0j 's are 0. As for the estimation of each cumulant, by using

(8.1) and
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Q̂ � X̂�X̂ 0X̂�ÿ1DfD 0�X̂ 0X̂�ÿ1Dgÿ1D 0�X̂ 0X̂ �ÿ1X̂ 0;

where X̂ � Ŝÿ1=2X and Ŝ is de®ned by (8.2), we can estimate cumulants as

follows.

k̂
�1�
41 �

n�n� 1�
�nÿ 1��nÿ 2��nÿ 3�

Xn

j�1

�~y 0j Q̂~yj�2 ÿ d�d � 2�;

k̂
�1�
31 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

�~y 0i Q̂~yj�3;

k̂
�2�
31 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

�~y 0i Q̂~yi��~y 0i Q̂~yj��~y 0j Q̂~yj�;

k̂
�1�
32 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

f~y 0i �Ip ÿ PX̂ �~yjg�~y 0i Q̂~yj�2;

k̂
�2�
321 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

f~y 0i �Ip ÿ PX̂ �~yig�~y 0i Q̂~yj��~y 0j Q̂~yj�;

k̂
�2�
322 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

�~y 0i Q̂~yi�f~y 0i �Ip ÿ PX̂ �~yjg�~y 0j Q̂~yj�;

k̂
�1�
33 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

�~y 0i Q̂~yj�f~y 0i �Ip ÿ PX̂ �~yjg2;

k̂
�2�
331 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

�~y 0i Q̂~yi�f~y 0i �Ip ÿ PX̂ �~yjgf~y 0j �Ip ÿ PX̂ �~yjg;

k̂
�2�
332 �

n

�nÿ 1��nÿ 2�
� �2Xn

ij

f~y 0i �Ip ÿ PX̂ �~yig�~y 0i Q̂~yj�f~y 0j �Ip ÿ PX̂ �~yjg:

Table 8.2 gives the actual test sizes for the nominal 10%, 5% and 1% test

in several cases of p, q and d. The distributions considered are the same four

ones in the case of con®dence interval. For each row in table, the top stairs

express the actual test sizes based on F -distribution, the next and bottom stairs

show the actual sizes by using tE�u� and t̂E�u� which is de®ned from tE�u� by

replacing unknown parameters by their estimators, respectively. From Table

8.2, it seems that using tE�u� gives a considerable improvement for the actual

test size. However, there is a tendency that the approximation tends to be bad

when p tends to large. Moreover, the estimation problem for several cumu-
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lants are left over. As these values tend to be large, it is di½cult to obtain

good estimators. When p � q and d � 1, almost the elements of Q become to

small, equivalently each cumulant is small. Since an in¯uence of nonnormality

tends to little, we can regard the test statistic as robust in this case. To be

not very striking, an e¨ect of nonnormality in the case q > d is small com-

paratively, based on the same reason in the former case p � q and d � 1.

Table 8.2: Actual test sizes of generalized Hotelling T 2 statistic

Normal Uniform Exponential Log-Normal

Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes

n p q d 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

10 2 2 2 9.7 5.1 0.7 11.4 6.5 1.2 19.9 13.8 7.4 28.2 21.9 12.3

9.7 5.1 0.7 11.3 6.2 1.1 13.3 8.8 2.1 6.1 2.1 0.1

8.5 3.8 0.4 9.6 5.1 0.9 16.6 10.8 4.7 23.4 16.7 7.6

2 1 9.5 5.3 1.0 11.3 5.7 0.8 9.7 4.0 0.4 7.6 2.6 0.1

9.5 5.3 1.0 11.3 5.7 0.8 9.4 4.2 0.4 6.1 2.8 0.2

8.9 4.6 0.8 10.7 5.2 0.8 8.3 3.3 0.3 5.9 1.8 0.1

1 1 10.9 5.9 1.3 10.1 5.8 1.2 19.0 13.0 5.2 28.3 20.6 11.2

10.9 5.9 1.3 10.2 5.6 1.2 12.0 6.0 1.2 3.6 1.0 0.1

8.6 4.1 0.6 8.3 3.8 0.4 15.3 9.4 2.6 22.9 15.4 7.3

4 4 4 10.2 5.0 0.8 10.3 5.9 1.5 22.1 14.7 6.0 37.5 28.6 13.3

10.2 5.0 0.8 10.2 5.8 1.5 15.1 8.8 2.9 7.3 3.3 0.5

7.4 3.6 0.6 8.5 4.2 0.9 17.5 10.4 3.8 30.8 22.1 8.3

4 2 10.8 5.5 1.0 11.4 5.9 1.5 15.4 10.4 3.7 23.6 16.7 7.3

10.8 5.5 1.0 11.4 5.8 1.5 11.6 5.9 1.4 4.4 1.7 0.1

9.0 4.3 0.5 10.1 4.8 0.9 13.3 8.0 2.4 19.7 12.3 4.3

4 1 10.6 5.3 1.5 9.3 3.9 0.8 9.0 4.6 0.7 9.6 4.2 0.4

10.6 5.3 1.5 9.3 3.9 0.8 8.3 4.5 0.7 5.5 3.9 0.3

9.8 5.1 1.2 8.5 3.8 0.7 8.0 4.0 0.5 8.1 3.7 0.3

2 2 13.1 7.8 2.1 12.7 7.2 2.0 22.2 15.4 7.1 36.3 26.4 14.1

13.1 7.8 2.1 12.5 7.0 2.0 12.3 7.3 1.8 4.0 1.6 0.3

7.4 3.6 0.7 6.9 3.4 0.7 14.4 8.7 2.9 24.6 16.7 7.8

2 1 9.8 5.1 1.1 12.1 7.0 2.1 19.7 13.0 5.1 29.6 22.6 12.3

9.8 5.1 1.1 12.1 6.9 2.1 10.1 5.1 1.1 2.0 0.7 0.1

5.5 2.4 0.3 7.7 4.0 0.7 13.3 7.7 2.6 22.5 15.9 7.1

1 1 11.5 6.5 2.0 11.4 6.5 2.3 19.6 13.9 5.5 29.5 21.7 10.4

11.5 6.5 2.0 11.4 6.5 2.1 10.4 5.5 1.8 2.0 0.8 0.1

5.3 2.4 0.6 5.7 3.0 0.4 12.5 7.6 2.7 19.6 12.8 5.3
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Moreover, it seems that the size of q does not a¨ect the accuracy of actual

size. On the other side, the critical points in the case of log-normal distri-

bution do not give good approximations by the same reason in the experiment

of con®dence interval.

Secondly, we consider the Bartlett-Nanda-Pillai trace criterion. In this

time, k populations case is considered because the previous study, generalized

Hotelling's T 2 statistic, is the one population case. Further, we consider a

simple situation. The between-individuals design matrix A used is de®ned by

(7.1), the within-individuals design matrix X used is given by 1p and the

restricted matrices are assumed by

C �
1 . . . 0 ÿ1

..

. . .
. ..

. ..
.

0 . . . 1 ÿ1

264
375 �k ÿ 1� k matrix�; D � 1:

To set up this situation is equivalent to consider the mean structure mij � xi

�1a ia k; 1a j a p�, and the null hypothesis H0: x1 � � � � � xk. Further, in

this model, the coe½cients aj's are de®ned by (7.3) and Q becomes to a simple

form as

Q � �1 0pS1p�ÿ1
Sÿ1=21p1 0pSÿ1=2:

The approximations considered are the limiting distribution and the asym-

ptotic expansions. These simulation studies are carried for k � 3, p � 2, 3 and

5. Moreover, we take the samples with exponential distribution. The reason

why these samples are used is that the cumulants of this distribution are not so

big, so it seems that such distribution suits this examination of e¨ect on each

cumulant.

Tables 8.3 and 8.4 give t�u�, u and tE�u� and the actual test sizes based

on these approximations of percentage points for nominal 5% and 1% test,

respectively. Each actual size is given by

a7 � P�TG b u�; a8 � P�TG b tE�u��; a9 � P�TG b t̂E�u��:

Further, we have tried to study for other statistics, the likelihood ratio statistic

and the Lawlye-Hotelling trace criterion, other several variates k and error

models, and have obtained similar results. From Tables 8.3 and 8.4, we can

see that to use tE�u� or t̂E�u� gives a considerable improvement in a comparison

with the limiting approximation.
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Table 8.3: Nominal 5% test of the Bartlett-Nanda-Pillai trace criterion for k � 3.

Sample Sizes Percentage Points Actual Sizes

p n1 n2 n3 t�u� u tE�u� a7 a8 a9

2 5 5 5 5.11 5.99 5.23 2.7 4.6 4.3

10 10 10 5.75 5.99 5.61 4.3 5.5 5.3

15 15 15 5.79 5.99 5.74 4.3 5.3 5.0

5 10 15 5.75 5.99 5.60 4.7 5.5 5.5

5 5 20 5.53 5.99 5.59 4.1 5.0 5.1

3 5 5 5 5.19 5.99 5.35 2.3 4.5 4.5

10 10 10 5.69 5.99 5.67 4.5 5.1 5.0

15 15 15 5.69 5.99 5.78 4.4 4.8 4.7

5 10 15 5.53 5.99 5.67 3.8 4.5 4.5

5 5 20 5.76 5.99 5.66 4.2 5.5 5.3

5 5 5 5 5.22 5.99 5.45 2.5 4.3 4.2

10 10 10 5.65 5.99 5.72 3.9 4.9 4.3

15 15 15 5.70 5.99 5.81 4.3 4.8 4.8

5 10 15 5.96 5.99 5.72 5.0 5.8 5.5

5 5 20 5.68 5.99 5.71 4.2 4.9 4.9

Table 8.4: Nominal 1% test of the Bartlett-Nanda-Pillai trace criterion for k � 3.

Sample Sizes Percentage Points Actual Sizes

p n1 n2 n3 t�u� u tE�u� a7 a8 a9

2 5 5 5 7.01 9.21 6.40 0.3 1.7 1.9

10 10 10 7.89 9.21 7.80 0.4 1.1 0.9

15 15 15 8.04 9.21 8.27 0.4 0.9 0.9

5 10 15 8.52 9.21 8.09 0.9 1.3 1.3

5 5 20 8.17 9.21 8.44 0.8 0.9 0.9

3 5 5 5 6.92 9.21 6.80 0.1 1.2 1.7

10 10 10 8.48 9.21 8.01 0.6 1.4 1.3

15 15 15 7.63 9.21 8.41 0.8 1.1 1.1

5 10 15 8.20 9.21 8.19 0.5 1.1 1.1

5 5 20 9.18 9.21 8.43 1.0 1.3 1.3

5 5 5 5 6.74 9.21 7.13 0.1 0.7 1.6

10 10 10 8.32 9.21 8.17 0.6 1.1 0.9

15 15 15 8.53 9.21 8.52 0.8 1.1 1.0

5 10 15 8.53 9.21 8.28 0.5 1.3 1.2

5 5 20 8.32 9.21 8.42 0.7 0.9 1.0
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