HirosHIMA MATH. J.
31 (2001), 213-262

Asymptotic expansions of the null distributions of
three test statistics in a nonnormal GMANOVA model

Hirokazu YANAGIHARA

(Received August 22, 2000)
(Revised November 11, 2000)

ABSTRACT. This paper deals with three test statistics for testing a linear hypothesis and
estimators of regression coefficients in the GMANOVA model which was proposed by
Potthof and Roy (1964), without assuming normal error. The test statistics considered
include the likelihood ratio statistic, the Lawley-Hotelling trace criterion and the
Bartlett-Nanda-Pillai trace criterion, which have been proposed under normality. We
obtain asymptotic expansions of the null distributions of three test statistics up to the
order n~!, where n is the sample size. The results are generalizations of the formulas in
Wakaki, Yanagihara and Fujikoshi (2000). In addition, asymptotic expansions of the
distribution functions of several standardized statistics on regression coefficients are
derived.

1. Introduction

The GMANOVA model considered is defined by

Y =AEX'+ 6, (1.1)
where Y = (y,,...,»,)  is an n x p observation matrix of response variables,
A= (ay,...,a,) is an n x k between-individuals design matrix of explanatory

variables with full rank k£, X is a p x ¢ within-individuals design matrix of
explanatory variables with full rank ¢ (< p), 5 is a k x ¢ unknown parameter
matrix and & = (1,...,¢,)’ is an n x p error matrix. It is assumed that each
vector ¢ is iid., ie., independently and identically distributed with E(e;) =0
and Cov(g;) = 2. This model can be applied to analysis of growth curve data,
and hence it is also called the growth curve model.

We consider to test for a general linear hypothesis
Hy:CED =0, (1.2)

where C is a known ¢ x k matrix with rank ¢ (< k), D is a known ¢ x d
matrix with rank d (< ¢) and O is a ¢ x d matrix all of whose elements are 0.
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The GMANOVA model (1.1) with normal error was introduced by
Potthoff and Roy (1964) and have been extensively studied by many authors.
The maximum likelihood estimators = and 2 of = and Z, and the likelihood
ratio test statistic were obtained by Khatri (1966) and Gleser and Olkin (1970).
Fujikoshi (1974) studied properties of some test statistics, including the LR
test statistic, and gave asymptotic expansions of their non-null distributions.
Gleser and Olkin (1970) were the first to derive the exact density of MLE
Z. Asymptotic expansions of the distributions of & and its linear trans-
form have been studied by Fujikoshi (1985, 1993a) and von Rosen (1997).
Various aspects of statistical inference under normality have been also discussed
in literature. For these results, see. e.g., Kariya (1985), von Rosen (1991),
Fujikoshi (1993b), Kshirsagar and Smith (1995), and Srivastava and von Rosen
(1999).

The above results are based on the assumption that the error vectors
&1,...,& are independently and identically distributed as a multivariate normal
distribution with means 0 and covariance matrix 2. Khatri (1988) discussed
robustness for test statistic under elliptical distribution. However, the non-
normal case has not been investigated so much, except for the case X =1, i.e.,
MANOVA case. For MANOVA case, Ito (1969, 1980), Chase and Bulgren
(1971) and Everitt (1979) studied robustness of certain test statistics by
simulation. Wakaki, Yanagihara and Fujikoshi (2000) obtained asymptotic
expansions of the null distributions of three test statistics in nonnormal
multivariate linear model. These results include several expansions obtained
by Kano (1995), Fujikoshi (1997b, 2001), Fujikoshi, Ohmae and Yanagihara
(1999) and Yanagihara (1999), as special cases. Our main purpose is to extend
the asymptotic expansion formulas in a multivariate linear model to the ones in
the GMANOVA model.

The present paper is organized in the following way. In §2, we describe
three test statistics. It is shown that our test statistics can be expresses in terms
of a random matrix U, which is a kind of Studentized version of Z. Using
this expression, we derive perturbation expansions of our test statistics. In §3,
we give an asymptotic expansion of the distribution function of U. Further,
asymptotic expansions of other standardized statistics of = are obtained in
§4. In §5, we obtain asymptotic expansions of the null distributions of three
test statistics, by expanding their characteristic function. Moreover, in §6,
we discuss robustness of testing under nonnormality and derive a result on
conservativeness based on the asymptotic expansion formulas. Some applica-
tions of the asymptotic expansions of test statistics are given in §7. In §8,
numerical accuracies are studied for some confidence interval of = and
asymptotic expansions of the null distributions for some test statistics under
nonnormality.
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2. Test statistics and perturbation expansion

First, we summarize typical three test criteria that have been proposed
under normality. Let Sj, and S, be the variation matrices due to the hypothesis
and the error, respectively, i.e.,

Sy = (CZD)'(CRC')" (CED),  S.=D'(X'S'X)"'D,

E=AA)AYs'X(x'sTIx)

R=(AA)"" +(AA)AY{S—SXX'STX)X'S}y'A(4'4)"",
and S=Y'(l, — Py)Y. Here Py is the projection matrix to the linear space
R(A) generated by the column vectors of A. Then the following three criteria

have been proposed, in particular, under normality.
(i) the likelihood ratio statistic:

Tir = —{n—k—(p—q)+si}log(|Sc|/|Se + Sil),
(i) the Lawley-Hotelling trace criterion:
Tur={n—k—(p—q)+s}te(S;S; ),
(iii) the Bartlett-Nanda-Pillai trace criterion:

Tonp = {n—k —(p—q) + 53} tr{Su(Si + S.) '},

where the constants s;’s are the Bartlett corrections in the normal case, and they
are given as follows: s = —(d —c+1)/2, s, =—(d+1) and s3 =c. For the
special case ¢ = p, note that three criteria are reduced to the ones in the usual
MANOVA model. Therefore, as in the MANOVA model, it may be sug-
gested to use the criteria for nonnormal models.

Under normality, the distributions of these statistics have been extensively
studied. Fujikoshi (1974) obtained asymptotic expansions of the non-null dis-
tributions for three test statistics. Under nonnormality it is easily seen that the
null distributions of these statistics converge to 2, as the sample size n tends to
infinity under an appropriate regularity condition on the design matrix (see Huber
(1973)). Our main purpose is to obtain asymptotic expansions of the null
distributions of these statistics up to the order n~! under a general condition.

Note that the three test statistics are invariant under the transformations
from [Y',X] to Z~'2[Y’ X]. Therefore, without loss of generality we may
assume 2 =/, by replacing X with >712x. In the following, we shall do
that, and we regard X as 2~ '/2X. We consider expressing the test statistics in
terms of

1 n
Z=(A'A)7"Pae, v =-0o (4¢ - 1I). (2.1)
\/ﬁ; 7% p
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Note that (n'S)™' can be expanded as

1 \! 1 1
-S| =L, -~V +-(V2+Z'Z)+0,n 3.
(35) =p -1yt 4z2) 40,00
Therefore,
1
7X/ 71X—1
n( STX)

1
= (X'x)'? {Iq + %(X’X)’I/ZX’VX(X’X)’I/Z

- % X' X)) 2x{v, - Py)V+Z'Zyx(x'Xx)"2
x (X'X)2+0,(n?),

By using these results, we define modified matrices S,, £ and R by the fol-
lowing relations, respectively.

(15) = (D'(x'x) "Dy 8D (X' x) Dy,

E=A'A)"ZEx(x'x)2,

(4'4)""2C'(CRC)'C(4'4)"? = RQR,
where
Q=A'a)"Pc{caa) 'y A a2
Then, we obtain Q? = and get rank(Q) = tr(2) = c¢. Further, the random
matrices S,, Z and R can be expanded as
~ 1

S,=I;———L'VL
N

1 3
+%L’{ V(IP — Py +ZQ> v+ Z’Z}L +0,(n3?),

E=1,- % (I, — Px)V (22)

1
“FZ(IP — Px){V(]p —Py)V + Z’Z} + Op(n_3/2),

. 1
R= 1l —5-QZ(I, - Py)Z'Q 4 0,(n3?),

where
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_ ! -1 / li -1 —1/2
L=X(X'X)"'D{D'(x'X)"'D}"",

O=LL =X(X'X)"'D{D'(X'X)"'D}y"'D'(x'x)"'Xx".

Using these expressions, the three test statistics can be expanded as
1
Te =tr(U'QU) +Z[{r1 —k—(p—q)} tr(U'QU)

+ 12 tr{(U'QU)*} + O, (n~*/?), (2.3)
where
U= RZZLS,. (2.4)
Here the constants r; and r, are defined as follows;
(i) Tr :ri=s1, rn=-1/2,
(il) Typ :ri =83, =0,
(iti) Tpyp:r1 =353, 1 =—1.

In our derivation, first we derive an asymptotic expansion of the distribution of
U. Then, using the result, we obtain an asymptotic expansion of the null
distribution of Tj.

3. Edgeworth expansion of U

In this section, we obtain an asymptotic expansion of the distribution
function of U up to the order n~'. Without loss of generality, we assume that
2 =1, as in a previous section. So, we regard X as 212X in the following
expressions. Let ¢,¢p,...,¢ be a sequence of i.i.d. random vectors with E(¢) =
0 and Cov(e) =1,. We write a moment of & as

Hiy iy = E[gil s Sim]?
where ¢ denotes the jth element of & Similarly, the corresponding cumulant

of ¢ is expressed as x; ;. Further, we use the following real matrix notation
for arguments of some characteristic functions.

T = [tw] : k X d matrix,
T, = [ti?] : k x p matrix,

T =1 +(5ab)l,(j,)/2] : p X p matrix,

where J,, is the Kronecker delta, i.e., d,, =1 and J,, =0 for a # b.

In order to get a valid expansion for the distribution function of U up the
order n~', we make some assumptions for the between-individuals design
matrix 4 and the distribution of &. Let 4, be the smallest eigenvalue of 4’4,
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and M, = max{||a]|: j=1,...n}, where | -|| denotes the Euclidean norm.
We make the following assumptions.

1<
Bl. li 2 <
im sup n;llafll < o0,

n— o0

B2. lim inf ﬁ >0,

n—ow n

B3. For some constant § >0, M, = O(n'/>79),
B4. E(|¢]®) < o,

B5. The Cramér’s condition for ¢ and eé’;

lim sup |Elexp{it’e + i tr(Tree')}]| < 1,
llel|+1 72— o0

where ¢ is a p x 1 real vector. Here, we define the norm of a matrix
2
Ty as ||Taf) = [0 300 A0+ w) i} /4'.
From (2.2) and (2.4), the random matrix U can be expanded as

1 1 _3)2
_ Z .1
U UO+\/ﬁU1+nU2+Op(n ), (3 )

where
Uy=ZL,

Ui = ~32{0+2(1, ~ PO} VL.
U = $Z12{Q + 2, ~ P)}V(Q+ 201, — Py)} + QVOIVL

1 1
+5Z{Q +2(I, — Px)}Z'ZL — 3 QZ(I, ~ Py)Z'QZL.

Using (3.1), the characteristic function Cy(T) of U can be expanded under
the assumptions B1, B2, B3 and B4 as

Cy(T) = Elexp{i tr(T'U)}]

= Elexp{i tr(T'Up)}] +\/IEE[i tr(T'Uy) exp{i tr(T'Up)}]

# [ (i 0 + S (T 00y } expti a(rt)| + o0 )

0 I 1 _
= i1 +WC§]>(T) +CP(T) +o(n").
Now we need to evaluate each term in the expansion of Cy (7). Here we note
that, rank(L) = d, which can be essentially done in the same way as in Wakaki,
Yanagihara and Fujikoshi (2000). The method is based on the use of dif-
ferentials for ¥(T;,7>), which is defined by
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Y(T),T,) = Elexp{i tr(T|Z + n > T, V)}].
Therefore, letting 77 = TL' we have
Cy(T) = ¥(T1. 0)
3

i2
l
= Cxp{ 5 tr(TI/Tl) \/_ E E Zu albb ¢ ()Xarb/ 1Kabe
/b/(/

abc
(1) -1
24n Z Zta alb’ l(, l ’an/b’ 1q'Kabed +O( )},
a'b'c'd’ abed

where

J
e VA Par = (1,20 (3.2)

ci(T) = féE[tr{T’Z(Q +2(1, — Py)VL} exp{i tr(T'ZL)]}

_ —éE[tr{T{Z(Q +2(1, — Py))V} exp{i tr(TZ)}]

o?
_ -2 Z Z Zfll/z, qub + 2pa;, 5 at( ) (Tl, TZ)ITzzO’ (33)

a'  abc a'a”"be

where ¢ and p, the (a,b)th elements of Q and I, — Py resrpectively, and
k k k
Darea = D=1+ 2a—1- Note that
Pp

W'P(TNTZ)‘B

i Xa’Kubc +i ta a Z Z tb/de’Kbcd

1 . 4 1 lS k p
- Vn {13 > tard (Hapea = Faidse) + Eta Z Z mtyt(Kpeae — Obedie)
d

b'  de

¥(Ty,0) +o(n'/?).

(1)
Z Z tb’etc’ftd d%a’b’ ’7d/Kaebeul}
b’ 'd’ def

Moreover, it holds that (I, — Py)L=0, tr(l, —Px)=p—¢q, (I,— Py)? =
I, — Py, L'L=1; and Q> = Q, in other words
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p

P P
S =t =0, Y pu=P—4 D Pucle = Pur
a C

b

4 P
Z lailaj = 5(/7 Z qacqdbc = Yab
a ¢

where /,; is the (a, b)th element of L. By substituting these equations into
(3.3) and replacing taa with Z "1 tajlsj, We can evaluate C ( ) and C(Ul)(T).
Similarly, we can evaluate C §]>( T). Therefore, we can obtain an expansion of
Cy(T), whose formal inversion yields a valid expansion of the distribution
function of U as in the following Theorem 3.1.

Some additional notations on cumulants need to be defined before
describing Theorem 3.1.  The quantity #; 4.4.,), Which depends on the third
order cumulants and the elements of L and Q is defined as

atade) Z LadlyreKarprer (3.4)

Pyt
In this expression, the order of indices * in 24" corresponds to the one of indices
in xupe. So, the / accompanying with index a’ appears to the first order of
indices in #". Similarly, the second and third order of indices in # are the
g with indices b’ and ¢’, respectively. Further, the same number in indices
expresses as the same element of symmetric matrix. Along the same line as
(3.4), we define
p

=%/(l*,,/)*1pxz)(l*;,/)*lp%,z) = § Ia’uld’bpb’e’pc’f’Ka’b’c’Kd’e’f’-
a/bfcld’elf'/

Other constants are defined similarly.

THEOREM 3.1.  Suppose that the design matrix A and the error matrix & in
(1.1) satisfy the assumptions Bl, B2, B3, B4 and B5. Let u = vec(U), then the
distribution function of U can be expanded as

P(vec(U) < x)

where

Rl = Z){a uq*lq*l + 2%/6 Lap. lp*l>)H (u)

a'  ab

+- Z Z Tarvrer = 3aOpe ) H 1yl Harabrs,cre,ara(u),  (3.5)

a'b’c’ abc
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E : E Xa’%b’ (leaq1g1) (Lipgi2q2) + 3‘7/(1*111*“]*1)(!]*1(1*2!1*2)
a'b’ abed

+ 4 (14410 s014.2) T 3 apirp.)Lopapn) T 8K (Lloop.) (p1p2.2)
+ lz’ﬁlm/&]ﬂ*z)(l*b/?ﬂﬂ*z) + 4‘%1*441*17/7*1)(!1*1’1*11&1) + 12’7/(1*114*117*1)(l*b%lpn)

+ 4=%f(lmlmqu)(q*1p*1p*1) + 4*%71*1,4*111*1)(l*bp*lpn))Ha/a?b’b(”)

N =

k d
3D {k+3p=2q+1) + ua (p — @)Y Hara,ara(w)

k d
n %bzd ;M[(Z“W a1 = 30 Ocrar ) H (1. pl. )
= Ylarbr e XA H it sl ) agrg) T 3K (aleaga) slcg.r)
F 2H 1) Lapap) + OA Lteapo)tstp) s F 3Tar Ty Ocra A H Lugung )
+ Hbabsg)ctog) T 2K Lalcg)Cotagn) T 4K 1ap.ip) Lol
FAA st Ceehoaps) T 8K Lalp Y Losloapo) }

+ 60 ’b’é ’d’aacébc] a’'a,a'b,c’c,d’ d( )

1 k d ~ B ~ B B ~
+ 772 Z Z (Xu’b’c’)(d’e’f/ - 6Xu’b’c’)(d’5€ff’ + 9Xa’5b’c’)(d’5€’f’)
a'b'c'd'e'f" abcbdef
X H1alslo) aluelp) Hata,brb,crc.dvd e g1f (W) (3.6)

Here ¢, (u) is the probability density function of Ni4(0,Iiy) given by ¢ ,(u) =
(271)_1‘”1/2 exp(—u'u/2), and Hal’al,.“,aj’a,- (u) is the multivariate Hermite polynomial.

In Theorem 3.1, the multivariate Hermite polynomial is defined by

o/

Olgry, - .. Oy,
1 L4

Ha]’al,.“.,a]’aj(”) = (_1)'/ ¢kd(u)7

where u,, is the (a’,a)th element of U. For example

Ha’a(u) = Ug'a,

Ha’a,b’b(”) = Ug'qUp'p — 5ab(5(1’b’7
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Hu’a.b’b,c’c(”) = Ug'qUp'pUcte — § ua’uébc&b’c’»
(3]

Ha’aﬁb’bﬁc’c;d’d(”) = Ug'qUp'pUe cUgrd — Zua’aub’/750d5c”d’ + Zéabécdéa’b’éc’d’a
(6] Bl

Huabb,cre,drd,ete.frr(W) = UgrgUppler cqrgUerelpry — E UgraUp pUer UgrdOefOerpr
(15]

+ Z ua’aub’/750d5¢{f‘5c’d’5e’f’ + Z5ab56d58f511’b’5c’d’5e’f’~
[45] [45]
Here Z[ ;] means the sum of all j possible combinations of the sets a; and a;,
for example
> Sunberardarded = SurbrSerarBabOed + OareObarOacOba + SurdObrerGade.
Bl
It may be noted that we can demonstrate the validity of the expansion
by the argument similar to the one as in Wakaki, Yanagihara and Fujikoshi
(2000), which is based on the same manner as in Bhattacharya and Ghosh
(1978). Moreover, the moment condition B4 will be replaced with E(|l]|*) <
oo as in Hall (1987).

4. Asymptotic expansions of the distribution functions of = and its
linear combination

4.1. Two types of standardizations

In this section we consider asymptotic expansions of the distribution
functions for = and its linear combination, where = is the maximum like-
lihood estimator of £ under normality. Related to the construction of confi-
dence intervals of = and its linear combination, we consider following two types of
standardizations.

(1) standardized Z:

Us=(A'A)'?(E-5)(X'2'x)?,
(2) Studentized Z:
Ur = /n(4'4)"2(5 - 5)(x's71x) 2,
(3) standardized linear combination of Z:
)b/,
(4) Studentized linear combination of Z:
U, =d' (5 — E)b/%,

)

USL = a’(E —
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where @ and b are k x 1 and ¢ x 1 fixed vectors, respectively, and positive
values 7 and 7 are defined by

1
P =dA'4)ab (X' 2 X)p, 2= Za/(A’A)*lab’(X’S*X)*lb.

Note that these standardizations have been proposed under normality.
However, we shall see that such standardizations do work asymptotically under
nonnormality. Under normality, Fujikoshi (1987, 1993a) and von Rosen
(1997) derived asymptotic expansions of the distributions of these statistics.
Further, its error bounds were discussed in Fujikoshi (1987, 1993a).

In this section, without loss of generality, we assume that X =1, as in
previous sections. So, X is regarded as X~'/2X. Therefore, 72 is rewritten as

2 =a'(A'4) " ab’' (X' X) b

4.2. Asymptotic expansion of Ug

Let M = X(X’X)*l/2 whose (a,b)th elements of M is denoted as migy.
From (2.1), Us can be expanded as

1
Us = ZM ——Z(I, — Py)VM

Vn
1
= Z (I, = POV (I, = Px) + Z'ZYM + 0,(n~%?). (4.1)
From (4.1) we can expand the characteristic function Cy,(73) of Us as
Cuy(T3) = Elexp{i tr(T;ZM)}]

i

E[tr{T5Z(I, — Px)VM} exp{i tr(T3ZM)}]

NG
+£E[tr{T3’Z(I,, — Px){V(I,— Px)+Z'Z}M} exp{i tr(T3ZM)}]
+ﬁE[{tr(T3’Z(I,, — Py)VM)Y? exp{i te(T3ZM)}] + o(n™ ),

2n
where T3 is a k x ¢ real matrix. Letting 77 = TsM’, we can see that the
characteristic function can be evaluated by the same method as in Section 3.
In this case, using the relations M'M =1,, MM' = Py and (I, — Pxy)M =0,
we can obtain an expansion of Cy,(73), whose inversion yields an asymptotic
expansion of the distribution function of Us as in Theorem 4.1.

THEOREM 4.1.  Suppose that the design matrix A and the error matrix & in
(1.1) satisfy the assumptions B1, B2, B3, B4 and BS. Let u = vec(Us), then the
distribution function of Us can be expanded as
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- JXI Jw; Prq (1) [1 +\/L,2Rs,1(u) +%RS,2(") du+o(n"),

where

k 4
RS}(“) = - Z ZZal'%/(‘m*ulj*l/)*”Ha’a(u)

1 k q _
+ 8 Z Xa/b/(,’“%i’n*”fﬂ*hm*u)Ha/a,b/b,C/C(u)7 (4'2)
a'b’c’ abe
k 4
Rs 2(") - EZ Z[(p - q)éa'b’éab - 5(1’17’f/(m*,,m*b/)*l/)*l)
a'b’ ab

+ Za’)?b’{’%/(.mmﬂ*lﬂn)(”hb/bz/&z) + 2%<mmm*h/]*1)(P*]P*zﬂ*z)

+ 3'%?7"“:/&1/&2)(Wl*b/’*l/&z) }]Ha’u,b’b (ll)
1 &
g D D 12aZOctar K p omaman)
a'b’c'd" abed
- 4)?“/17/6”)?(1/{J{/(m*um*hm*r)(’”ni/’»«l/&l) + 39{(’”*«’”*!)/’*1)(m*rm*d/’*l)}
+Za’b’c’d’Jf(m*“m*bmwmﬂg)]Ha’u,b’b,c’v,d’d(”)
| a
T YD Kawedaer
a'b'c'd'e'f" abedef
X f%qmmm*hmw)(m*,imwm*/)Ha’a,b’b,c’c,d’d,e’etf"f(”)- (43)
Specially, when ¢ is distributed as N,(0,2),

k q
Rsaw) =0, Realw) =50 =) >3 o).

Therefore,

P(vec(Us) < x)

SRR

This result coincides with the formula in Fujikoshi (1987).

1 k q 4
1+E(p7q);za:Ha’a,a’a(”) dll+0(l/l )
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4.3. Asymptotic expansion of Uy

Let /; be the eigenvalues of X'X and A = diag(4i,...,4,). Further, let
H be an orthogonal matrix of order ¢ such that (X'X) = HAH’'. Then, using
a perturbation formula (see, Okamoto and Fujikoshi (1976)), we have

1 1
Va(X'STIX)V2 = (x'x)\/? +7Hy<1>H’ +£HV(2)H’ +0,(n3?), (4.4)
n
where the (i, j)th elements of %! and .#(® are defined by

___B)
RN/ VErAE

Here (-); is denoted as the (i, j)th element of the matrix in the parenthesis and

the matrix B is defined by

(y(U) (y(2>)ij -

1
B=—H'X' V—%(V2+Z’Z) XH.

Substituting (4.4) into Uy, we can represent as

1
Ur = Us+—Us(X'X)PHSVH'
T S+\/ﬁ s( )

1
+- Us(X'X)PHSPH' +0,(n ). (4.5)
From (4.5), the characteristic function Cy,(73) of Ur can be expanded as

CUT(T3) = CUS(T3)

i

+—E[tr{TUX' X)) PHSVH'} exp{i tr(TiUs)}]
n

=

+ %E[tr{Tg(X’X)*l/zH%”H’} exp{i tr(TUs)}]

2
;—E[{tr{T{(X’X)_l/zHY(l)H’}}Z exp{i tr(T{Us)} + o(n™").

p k

By computing Cy,(73) and inverting the resultant expansion, we can obtain
an asymptotic expansion of Ur as in Theorem 4.2.

+

THEOREM 4.2. Suppose that the design matrix A and the error matrix & in
(1.1) satisfy the assumptions Bl, B2, B3, B4 and B5. Let u = vec(Ur),
S B
RN/
and hgp, hg? and hflzb) denote the (a,b)th elements of H, XH and (X’X)I/ZH
respectively. Then the distribution function of Urp can be expanded as
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P(vec(Ur) < x)

= JM S Ji’“l ¢kq(ll) [1 + %RTJ(M) + %R[z(”) du + O(n—l)7

—0
where
Ry 1(u) = Rs 1 (u +Z E Heyra ()74 Ve mlf(h%(l),(l))
a'  abc
k q 2)
- Z Z Ha’a,b’b.c’c(u)za/éb’c’h(,d vd@hbe%m*uhii{)hip)’
a'b’c’ abede
Ry,2(u)
= RS 2(l) — _Z Z Hu’a u’b V(dhad
a' abcde
X[Z(S {1/ 1), (1,0 7/’1(2)% 1 }
de V2 (0 be R s.16.0)

2
+Zh;,c??ceﬂde«)f(h<1),10),1(1),m) 77(>ehbe3f(h$)hg)h(yhip)

xe Thxe

+ 64 {20 (1 + 60a) e — 2(p + 1) Abea — 2(k + 1)h50q

- 2h£‘§1> - nce)“(fidhbd(l + 56’6/) + 2h§j»)’7(255(d(1 + 5(?6’)}]

1 & o _
+*; ;fHma,b’h(”)){u!%bﬂ}cd}lad[wdeédf{%(m*bhiphild))(hi]r)p*lp*])
a'b’ abcede,

22 b0 ) W08 p.0) T K ) 60 B

+ A

+ A (m*bhﬁl)éﬂ><hi1?hi1)%)}

moh s ) h5,0)
- 2’7ce’7de5ef{“ﬁm*,,hgghw><hi1.>hi1.>h;:,>> A RO HOROA)

+ Verbar {00 )(/“)h“)h“))+‘%/(h(”h lzt><hii‘)hii)h1;>)}

xe Thxe xe Myg

1 2

__Z Z Ha’a,a’b,b’c,b’d(u)hée)vefhaf
a'b’ abcdefgh

X 0rom A, B v X, R D)

emhly g Moy

+ 5ﬁ}5ﬂl{2h df —|— hde hcf + A /1/ (hd(, hcf + hdf hce)}]
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1 k q
— = E Ha’mb’bm’c,d’d(”)‘/ef
a'b’'c'd’ abedefgh

X [ Jarpre '}’d/éfgéfh{hdf%mmm*hmﬂ)(hmhﬂ h*/ ) + 3h‘1/{9{(m*hmﬂh(*p)(mmh(*l)h(*]/))}

o 2
— 37Xy Ocrar {zhé())/’hféfgéfh(tj{(m*am*bp*l)(hii)hii)/’*l)

T apoap o om0y T '”fmmhil)m><mmhi'/5u>)

@
= 2hde NegpgherOghH (10 D) oy D)

+ Veg )”fhﬁ.’fhd{/ j&mw,hip hi}) )(mapht? /1(*11) )

+ A

2
+ hdg Vghhufhc/z(% (m*bh*e h(l))(/ D

(l)h(l)))

(1) 1)
YR DR Wpl

+hgdi)’7ghh€fhah(’%?m RO (D RO Ry '%f(m ”h“,?)(h(”h(”hm))}]

g Moy )\ hie *f *g sch

k q

1 DS o)
E Ha’a,b’b,e’c,c’d,d’e,d’f(u)hﬁ vghhej
a'b’c'd’e'f" abedefghij

X {Xa/bfc/)fdré 7/55]1611/ E(MaqiMipMye) %/(m*dhib)hm)

3}’[’/){17/5 /dré ,f/hiic] Vl]h(h%(‘m H 0 f (l)h( )h( ))}

iy W3] )R

and Rg 1(u) and Rg(u) are given by (4.2) and (4.3), respectively.
Specially, when X = I, then

1\ 12
UT:Z<—S> .
n

In this case, (I, — Px) = O, H =1, and all the 4; are 1. Therefore,

4
Rri() = —3 > Zukaby Hara(w)

+ Xa’b’ / 320/517’6’)KabcHa’a,b’bm’c(u)7

a'b'c’ abc
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I G &
Rra(u) =2 N Furilr (Kacepdd + 3abelSedd + <acdbea) Hara,bro (1)
a'b’ abed

kK »p
_|_%(p—|—k+ 1) ;Z:Ha’a,a’a(u)

1 & Lo
+ ﬂ Z Z{(Xa’b’c’d’ - 35a’b’5c’d’)’€abcd + 651/1’b’éc’af’éacébd}
a'b’c'd’ | abed

P
-2 Z {twprerXar (KabeK dee + 3K adeKbee)
abede

- 3Za’Zb’6¢"d’(KueeKbcd + KabeKcde + 2KuceKbde)} Ha’u,b’b,c’c,d’d(”)

1 k )4

+ 7—2 Z Z (Za’h’c’)?d’e’f’ - 67:0’}1’6/251’56’7‘/ + 9)Za’5b/(?//ﬂzd’5€{f/)
a'b’c'd’e'f" abcbdef

X KabrKdefHa’avb’b,c’c,d’d,e’&f’f(”)-

This result coincides with formula in Wakaki, Yanagihara and Fujikoshi
(2000).

4.4. Asymptotic expansion of Ugp

Let @ = (A'A)""*a and b= (X'X)""?b, then U, can be rewritten as
Us, = (a'a)""*(b'b)""?a@ Usb.

Then we obtain E(Us,) =0 and Var(Usy) =1+ o(1). Therefore the charac-
teristic function Cy, (f) of Usy can be written as

Cuy,, (t) = Elexp(itUs)] = Elexp{it tr(11' Us)}],

where IT = (a'a) "*(b'b) "*ab’ = [ny,] is a k x g matrix. Note that an
asymptotic expansion of Cy, (#) can be obtained from the one of Cy,(T3)
as a special case. Therefore we have the following Theorem 4.3.

THEOREM 4.3. Suppose that the design matrix A and the error matrix &
in (1.1) satisfy the assumptions B1, B2, B3, B4 and BS5. Then the distribution
function of Usy can be expanded as
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P(Usy < x) = &(x) + LnRSLA,l(x)qﬁ(x)l + %RSL’z(x)qﬁ(x) +o(n ),

NG

where

Rsr1(x) =c¢1 — 662h2(x), (4.6)
Rsp2(x) = 1ch(x) 1ch(x) 1ch(x) 4.7
sL.2(X) = =53l 54 €4 75 €5/15(%); .
and
k q
€1 = Z Zia’ J (rnm/)”p*])na/ua
a' a
k q
C = Z ZZa/b'c/J{(mwm*hmw)na’anb’bnc’u
a'b’c’ abc
k q
= Z Z[(!’ — q)0ayOub — 5a’b’=%/(mmm¥bmp*l)
a'b’ ab

+ Za’}?b’{%(mmp*lp*l)(m*b/)*zp*z) + 2%('"1*“%17/1*1)(ﬂ*m*z/’*z)

+ 3'%*"*4:,17*1/’*2)(’”*}7/7*1/7*2) }] Ta'aTlh'b,

k q
Z [ 1 2)?“,)?[1,50,‘1/ %(‘m*um*r/’*l )(m*bm*d/)*] )

a'b’c'd’ abed
- 4%“’17’(?’261/{%(m*am*b"”*u)(m*dp*]ﬂ*l) + 33{(171*“"1*/,;7*1)(m*cm*dp*l)}

Cq =

+ Xa/b’c’d"}ﬁmmm*bmwm*d} }]ﬂa/aﬂbrbﬂ'c/cﬂd/d,

k

q
s = § E Za’b’zf’)?d’e’f’
a'b'c'd’e’f" abedef

X %m*am*bm*c)(m*dmwm*f)77:(1’unb’bnc’cnd’dne’enf’f~
Here ¢(x) and @(x) are the probability density function and distribution func-
tion of N(0,1), respectively. Further, h;j(x) are univariate Hermite polyno-
mials, for example, hi(x) = x, hy(x) =x* -1, h3(x) = x(x* — 3) and hs(x) =
x(x* — 10x% + 15).
Specially, when & is distributed as N,(0,2), then

cr=c=cs=¢5=0, a=(p—19q).

Therefore
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P(Ust < x) = B(x) — 5 (p — )x(x) + oln).

This result coincides with formula in Fujikoshi (1987, 1993a).

4.5. Asymptotic expansion of Uy,

Note that

2= Ly b (xs 1 x)

1 .
— Eb’M’{ V(I, — Px)V +Z'ZYMb + op(n3/2)} :

1

Therefore, 7~' can be expanded as

b'b) b'b)"!

fI:(d’&)l/z(l;’l;)l/z[l (2\/_ v vmh+ B0 S b'M’
X {V(I,, — Py +%@> v+ Z’Z}MIJ + o,,(n—3/2)}
= (a/a)l/z(é’i)l/z[l + f+ 2+ 0,(n 3/2)}, (4.8)

where @ = (b'b) 'Mbb'M’ is a p x p matrix whose the (a,b)th element is
0. Substituting (4.8) into U yields

1 . 1. _
Urp = USL"‘%TlUSL‘FETzUSL‘FOp(n 3/2).

So, the characteristic function Cy,, (¢) of Uy is expressed as follow.

1 . .
CUTL(I) = E[exp{itUSL}] + —E[itT1 Uy, exp{ztUSL}]

7
1 . (ir)* . ) . i
+ZE llT]USL—I-T(TlUSL) exp{ztUSL} —‘rO(I’l )
= Cy,, (1) +Lew (1) +Llew (1) +o(n™").
SL \/ﬁ Urp n U

In this expansion, Cyy, (f) has been derived in previous subsection. As for the
computations of CST)L(Z) and Cg;L(t), we can get them by using the following
equations.
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d_.. . .
cyl () = (2 Elitty exp{itUs. )],
> d?
24

After simplification, we have the following Theorem 4.4.

d_.. . . . .
cyl () = ¢ Elitty exp{itUsc}] + E[it22 exp{itUs. }].

THEOREM 4.4. Suppose that the design matrix A and the error matrix &
in (1.1) satisfy the assumptions B1, B2, B3, B4 and B5. Then the distribution
Sfunction of Urp can be expanded as

P(Ur, < x) = &(x) + LRTL71(X)¢(X)1 + %RTL’Q(X)¢(X) + 0(1171),

NG

where

RTL,I(X) = RSL,](X) + %CG(I + /12()6))

1 1
=1+ 566 — 6 (C2 — 366)/’12()6),

1 1 1
Rrr2(x) = Rsp 2(x) — 5 e7h1(x) — 57 cshs

; 72 651 = 3 coms()

4+ ex)hs(x) — = (5 + 3es)hs(x),

1 1
:—5(63+C7)h1(x)—ﬁ( 7

and
k

q
5625 § Za"%f(mmf)ﬂﬁ*l)na’ay
a

a,
=P —=q+k)+2+ H0,0.p.1p.)
k g
+2 Z ZZa’)?b’{'%/(mm@n@vz)(m*b@*]g*z) + ‘/){(mm@*l/)*l)(m*bg*I/M)
a'b’ ab
- %(‘m*a/)*lp*l)(’n*beklg*l) - e%("nffa"”xb/’*l)(/’*10*19*1>}7z:u/a7rblb7

g =6 = 34(0,10.10.,0.,)

k 4
+12 E E ia’)?b’{2‘%(111*[,9*19*2)(7"*1;9*19*2) + '%/i"haﬁxllhl)(m*be*llhl)
a'b’ ab
- '%/im*um*b/’*l)(@lg*lp*l) - Ji/(m*aﬁ*lﬂ*l)(m*bg*le*l)}nalunb,b

k

q
-8 Z Za’b’c’)?d’*%/(mmm*;,m*(.)'%/(mm()*l&l)na’anb/hn,‘/(‘n,,/dy
a'b’'c'd’ abed
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k g
=3 § E Za’)?b"%/(m*u()*]0*2)'%/(7'1*;,0*10*2)7[11/‘177:1"17

a'b’ ab
k q
-2 Z Za’b’c’Zd“%(mmm*bm*,)°%(m¥119*1H*l)nu’anb’bnc’cnd’d'
a'b'c'd’ abed

Here Ry 1(x) and Rspa(x) are defined by (4.6) and (4.7), respectively.
Specially, when & is distributed as N,(0,2), then
c6 =9 =0, c=(p-q+k)+2, cg = 6.
Therefore
1
P(Ur < %) = @(x) = - {2(2p = 2q + 2+ k)x + x(x* = 3)}g(x) + o(n ).

The corresponding results in the case when

2= . i ka'(A’A)*lab'(X’S”X)*lb,

was derived by Fujikoshi (1993a).

5. Asymptotic expansion of the null distribution of 7;

In this section, we derive an asymptotic expansion of the null distribution
of T up to the order n~!. Without loss of generality, we may replace & by
&X712 and X by X7'/2X, in the expressions of Ts. Then E[vec(&)] = 0 and
Covlvec(&)] = 1,

Suppose that the design matrix 4 and the distribution of & satisfy the
assumptions Bl, B2, B3, B4 and B5. Note that T is a smooth function of
U. Asrank(L) =d and L'L = I;, by the same way as in Wakaki, Yanagihara
and Fujikoshi (2000) and Bhattacharya and Rao (1976), it can be shown that
T has a valid expansion up to the order n~' under the assumptions Bl, B2,
B3, B4 and B5. In the following, we will find an asymptotic expansion of
the characteristic function of T up to the order n~!, which can be inverted
formally. From (2.3), we can write the characteristic function of T as

Cr, (1) = Co(1) —|—%C1(1) + o(n‘l), (5.1
where
Co(t) = Elexp{it tr(U'QU)}],

Ci(t) = itB[{(r) —k — (p — q)) tr(U'QU) + ry(tr(U'QU))*} exp{it tr(U'QU)}].
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As a method for computing each term in (5.1), we consider to use the results in
Theorem 3.1.
By using the integrand function in Theorem 3.1, Cy(f) can be given by

Co(t) = Lz’“’ exp{it tr(U'QU)}

X (/ﬁkd(u){l +\/iﬁRl(u) +%R2(u)}du +o(n 1),

where u = vec(U), and R;(u) and R,(u) are defined by (3.5) and (3.6), res-
pectively. Let ¢ = (1 —2if)"" and I' = I + (p — 1)Q. Then note that

exp{it tr(U'QU)} exp{%tr(U’U)} = exp{%tr(U’FlU)}.

Using the transformation from U to U* =I""2U and the equation u =
vec(I'"'?U*) = (I; ® I'*)u*, where u* = vec(U*), Cy(t) is expressed as the
expectation with respect to U*, that is

1

Co(t) =Ey-|1+—
o(7) U { + i
Here the expectation may be taken with respect to U* whose columns are
independently distributed as N4(0,1;). Let W = I''/2U*, it is seen that w =
vec(W) ~ Nyy(0,1; ® I').  Therefore the expansion (5.2) can be rewritten as

Ri((I; @ I'*)u*) + %Rz((ld ® Fl/z)u*)} +o(m™). (52)

Co(t) = ¢“I*Eyy {1 + %Rl(w) + %Rz(w)} +o(n7h). (5.3)

Applying a similar method to C(¢) yields
1
Ci(1) = 5(1 — ¢ e PEy

x{(r —k—(p—q) tr(W'QW) + rn{tt(WQW)}*}] + o(1). (5.4)

Through the calculations of (5.3) and (5.4), we use the following identities
which are expectations of the Hermite polynomials, and some relations among
the elements of 2. As for the former, let the («,b)th elements of Q and I" be
denoted by w,, and y,, respectively. Note that y,, = du + (¢ — ),y and

EW[Ha’u(w)] = 07 EW[Ha’a,b’b(w)] = ((ﬂ - 1)wu’b’5uba

EW[Ha’a,b’b,c’c(w)] =0,
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EW[Ha’a,b’b,c’c,d’d(w>] = (@ - l)zzwa’b’wc’d’éab5cda (55)
(3]

EW[Hu’a,b’b,(?’c.,d’d.,e’e,f’f(w)] = ((ﬂ - 1)3 Zwa’b’wc’d’we’f’(sabéedéef~
(15]

As for the latter, using the property that  is an idempotent matrix,

k
E Wyl c!'Wpret = Wqlp!,
(,/

k k
tr(Q) = E Ogar = €, tr(Q?) = E w2, = ¢, (5.6)
a’ a'b’
k c
tr(QS) = E Wq'h'Wp'c' Wyl e! = C, tI‘(.Q4) - E Wa'p'Wp' ' W' d'Wq'q! = C.
a'b'c! a'b’c'd’

Substituting (5.5) and (5.6) into both of (5.3) and (5.4) yields

, 1<,
Cr, (1) = 92 l+£ij(p1+o(n’l) , (5.7)
=0

where

by = allcftll) —{ay+as —2as+ (c—2)(c+ l)a(,}icgll)
—{as — (c+ Dag — (¢ —2)as — (¢ — 2)a6}1c(321)
—2{3as —2(2c¢ + 1)616}Kg12> —2{as +as — 2ca6}1cg22)1
= 2{3as = 2(c + Daghel) — das{3x + 25 +x3)
+%cd{(c —d—-1)-2n},

b = —2a1K511) + {3ay — 6as + (3)(:2 +c— 6)a6}}c(311)
+{3a3 — 3¢+ 4)as — (3¢ — 2)as + (¢ + 6)at3}1cgzl>
+4{3a4 — (4c + 5)&6}Kg12> +4{as +as—2(c+ 1)616}Kg22>1
+4{3as — 2c + 3)616}ng2)2 + 4(16{31((313) + 2K(323)1 + Kg23)2}

1
- ECd{C —r+nrlc+d+ 1)},
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by = a1K41 {3a; — 3a4 — 6as + (¢ +2)(3c — 1)a6}Kgll)
—{3a3 — 3¢+ 5)as — 3¢ +2)as + 5(c + 2)a6}1<g21)

—2{3a4 — 4(c + 2)“6}’€(312) —2{as+as —2(c+ 2)a6}zcgzz)l

5.8)
1 (
—2{3as — 2(c+ 2)a6}}c(322)2 + ch(c +d+1)(1+2r),
by ={ay —2a4 — 2as + (c+ 1)(c + 2)06}K<311)
+{a3 — (¢ +2)aq — (¢ + 2)as + 3(c + 2)ag ),
and
Z Xabed Z Wap®ed — g (¢ +2),
abcd
Z Xachdef Z WadWpeWef
abcdsf
Z Xabc/(d()f Z DabWedDef (59)
abcdef
k
as 2 ZXachd (@ab®ed + Dacpa),
abed

1 _
1 ZXub(deadwbm de = gZXawaah
abed ab

Here %, ,, 1s defined by (3.2). Further K‘(Gl), Kg11>, K(321), Kglz) , K<322>1, Kg22>2, K<313>,

IC%)I and zc%é are defined by

P P
(1) (1) } :
Ky = g qabqcdKabed, K3 = GadqbeqcfKabcKdef
abed abcdef

P p
2 1
Kgl) = E qabqcdqef KabcKdef Kg; = E Pad9bedqcf KabcKdef
abcedef abcdef

)4
2
ng)l = Z Pabqcdqef KabcKdef 5 K322 Z qabPra9ef KabcKdef 5

abcdef abcdef

4
K33 = Z GadPpePefNabcKdef » "331 = E GabPedPef KabeK def »
abcdef abcdef



236 Hirokazu YANAGIHARA

P
2
Kg3)2 = § Pab9cdPefKabcKdef -
abcdef

Moreover, Z[/s] Dad@pe®er and Zf% Wap®cawer mean the following summations.
/ /
Z WapWedWef = Z Wad WpeDcf + Z WapWcdDef
(15] (6] 9]

!
E DadWDbeWcf = WadWpeWcf + Dadhf Dee + DaeWpdDcf
(6]

+ WaeWpf Wed + Waf WpdWce + Wqf WpeWed -

Finally, by inversing for (5.7), we have the following Theorem 5.1.

THEOREM 5.1. Under the Assumptions Bl, B2, B3, B4 and BS, the null
distribution of T can be expanded as

3
P(Tg < x) = Go(x) + %ijchuj(x) +o(nt), (5.10)
Jj=0

where Gy is the distribution function of a central chi-squared distribution with f
degrees of freedom and the coefficients b; are given by (5.8).

Note that the final result depends on the cumulants up to the fourth
order. By the same way as in the multivariate t-statistic, it is expected that the
assumption B4 may be weakened to E(||¢]|*) < 0.

As for a special case, we assume that X =1, and D=1,. Then Q =1,

and (I, — Py) = O. Therefore, ng), Kg22)1, ngz)z, Kgg), K(323)1 and Kg?z are 0 and

Kgll), Kgll) and ngl) are turned out the multivariate kurtosis and skewnesses
(see, Mardia (1970) and Isogai (1985)) which are defined by

)4 4 )4

(1 _ 1 _ 2 2 _

Ky = Kaabb Ky = Kabes Ky = KaabKbec-
ab

abc abc

So, the coefficients b; are rewritten as
by = alKil) —{ar+as —2as+ (¢ —2)(c+ 1)616}}((31)
—{as = (c+ Das — (¢ = 2)as — (¢ — 2)“6}I€g2)

1
+ZCP{(C —p—1)=2n},
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b = —2alic£¥1> + {3ay — 6as + (3¢* + ¢ — 6)a6}K§l)

+ {3a3 — 3¢+ 4)as — (3¢ = 2)as + (¢ + 6)a6}1cgz)
1
—Septe—ri+nlc+p+ 1),

b, = alicflw —{3ay — 3a4 — 6as + (¢ + 2)(3¢c — 1)06}Kg1)

—{3a3 — (3¢ + 5)as — (3¢ + 2)as + S5(c + 2)616}K(32)

1
+Zcp(c+p + 1)(1 +2r),

b3 = {az — 2a4 — 2615 + (C + 1)(6’ + 2)616}16(31)
+{a3 — (c+2)as — (¢ +2)as + 3(c + Z)aé}lcf).

These results are corresponding with the formula in Wakaki, Yanagihara and
Fujikoshi (2000).

Before concluding this section, we state the next corollary which is an
alternative of Theorem 5.1.

COROLLARY 5.1. Under the same assumptions as in Theorem 5.1, the
asymptotic expansion (5.10) can be written as

P(Ts < x)
_ 2x (b2 + b3)x byx?
—ch(x)—@gcd(x){bl+b2+b3+ cd+2 " (cd+2)(cd +4)
_’_o(n_l)’ (511)

where gr(x) is the density function of a central chi-squared distribution with f
degrees of freedom and the coefficients b; are given by (5.8).

6. Robustness and conservativeness

6.1. Transformation of T

In this section, we consider certain conditions, which imply robustness
and conservativeness of test statistics on effects of nonnormality. Under the
condition that » is large enough, our test statistics can be regarded as robust
for nonnormality because the limiting distributions in both of normal and
nonnormal cases are the same. However, if 7 is not large enough, we can not
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regard test statistics as robust for nonnormality, because there are test statistics
which can not be ignored an effect of nonnormality like the Hotelling’s 72
test statistic (see, e.g., Chase and Bulgren (1971) and Everitt (1979), etc). Our
aim is to get theoretical tendencies of effects for nonnormality as well as
numerical ones. On the other side, there is an important investigation on
effect of heteroscedastic distribution (see, e.g., Ito (1969, 1980) and Yanagihara
(2000)), but this paper is not taken a matter of such case.

We consider the Cornish-Fisher expansion for 7, which is used as an
approximation of the true percentage point. Let #(#) and u denote the true
percentage point of T and the percentage point of its limiting distribution,
respectively, that is

P(T < 1(u)) = P(xeg < u),

where y2, is a variate of central chi-squared distribution with degrees of
freedom c¢d. Then from (5.11), #(u) can be expanded as

. 2u (b2+b3)u b3u2 _
t(”)_“+m_d{bl+b2+b3+ cd12 (cd+2)(cd+4)}+0(n )
= tg(u) +o(n"). (6.1)

Through this section, when a correction term for nonnormality in the approx-
imation #g(u) is sufficiently small, we regard test statistics as robust for non-
normality.

First, we consider improved transformations on chi-squared approxima-
tions under normality (see, e.g., Fujikoshi (1997a, 2000), Kakizawa (1996) and
Fujisawa (1997)). For example, for Ty and Tpyp,

. d+2 1 ctd+1
T =72 Lt pbiogd 474
HL c+d+1{”+2( ¢ )} Og{ Taled 1 2) HL}

c+d+1 1 1
2(n+d) cd+2

Tenp = Tonp — TBNP} T'pnp.
Under normality, the transformed test statistics satisfy
P(Tyr < x) = Ge(x) +o(n™"), P(Tpnp < X) = Gea(x) +o0(n7').
It is without saying that under normality,
P(Tir < X) = Geg(x) +o(n™").

For these transformed statistics, the 7g(u) in (6.1) is represented as

1
ten(u) = u +EA(u; K3,Kill)),
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where s; = (), 51, 3y, ki kg, w3y gy i) . Note that A(usaes, ) =
0, when x3 =0 and Kf‘ll) =0. So, we can regard test statistics as robust under
nonnormality, when A4 (u; k3, zcgll)) is sufficiently small. If A(u; K3,K5‘11)) < 0, then
ten(u) < u. Therefore, #(u) is expected to be smaller than u. So, the test with
a critical point # may be conservative more precisely, neglecting the terms of
o(n™),

P(Tg>u) < P(TG > t(u)).

6.2. The case k3 =0
We consider the special case, k3 =0. Then fgn(#) can be expressed as

2a1 (1
ten(u) = u— k4 fi(u), (6.2)

where a; is defined by (5.9) and

Si(w) :”{1 _ch—l|—2}'

Therefore,

1 1 2a1 (1
Aus s, ) = Awse)) = =7k i w).

In a testing problem, since percentage points used are in the tail of distri-
bution, for instance upper 10%, 5% and 1% points, so through the following
arguments we assume that u > cd + 2, equivalently f;(u) <0. Actually, as
for 10% points, if the degrees of freedom cd greater than 1, u > ¢d +2. On
the other hand, u > ¢d + 2 always holds in 5% and 1% points. From these
equations, A(u; Kf‘ll)) <0 holds in the following two cases.

(1) Icglf >0 and a; <0,

(i) «\)<0 and @ >0.

First, we consider the case Kill) >0 and a; < 0. For example, when T is

the one-way MANOVA test statistics for testing an equality of mean vectors of
k populations with each sample size n; (1 <i<k), a; becomes

1 (< n 2
a1§<;n—ak 2k+2>. (6.3)

Then a; <0 is equivalent to Z,l;:ln/na < k?>+2k —2. It means that each
sample size is not different extremely. If K4(111> and «; satisfy the condition (i),
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TABLE 6.1: Actual test sizes of the one-way ANOVA test for several a; and x4

Each value of a

-0.5 —0.43 —0.25 —0.05 0.06 0.42 1.03
Nominal

Ky test sizes Actual test sizes
10% 10.3 10.2 9.8 9.8 10.1* 9.9* 9.1*
-1.2 5% 53 5.2 5.2 52 5.0%* 4.9% 4.1*
1% 1.2 1.2 1.2 1.0 0.9* 0.8* 0.6*
10% 10.1* 10.3* 9.5% 9.4* 9.7 10.1 10.2
1.5 5% 4.6* 5.0* 4.8% 4.6* 4.8 5.1 5.1
1% 0.8%* 0.9* 1.0* 1.1* 1.0 1.1 1.1
10% 9.7* 9.9* 9.7* 9.9*% 9.7 10.2 10.6
6.0 5% 4.5% 5.0* 4.5% 4.9* 5.0 5.2 5.6
1% 0.9* 0.9* 0.9* 1.1* 1.0 1.1 1.3
10% 7.3*% 8.3* 8.7* 10.6* 11.4 12.8 14.3
43.2 5% 2.4* 3.3* 3.8% 4.8* 5.6 6.9 9.3
1% 0.2% 0.2* 0.7* 0.9* 1.2 1.6 2.7
10% 4.1* 5.3% 8.5% 11.2% 14.1 17.5 17.1
730.16 5% 1.1* 1.7* 2.8% 4.0* 5.0 10.7 13.5
1% 0.1* 0.1* 0.5% 0.8 1.2 1.5 52

*indicates a test with a critical point to be conservativeness asymptotically.

ten(u) < u. Therefore, we can expect that true percentage point #(u#) have a
tendency of #(u) <u, ie.,

P(Ts = u) < P(Tg = t(u)).
It means that our test statistics may be conservative if K5111> > 0.
Next, we consider the case Kf‘ll) <0 and a; > 0. Then, by the same
condition as in the case Kf‘ll) >0 and @ <0, roughly we have, neglecting the
terms of o(n~!)

P(T¢ > u) < P(Tg > t(u)).

: 1 . 1 .
However, since Kf”) has a lower bound, the region of KEH) is narrower than the

. 1 . .
one in the case KA(”) >0 and @) <0. For a univariate case, —2 < k4, where x4

is the univariate fourth cumulant.

The results of the simulations are shown in Table 6.1. A test statistic
considered is simple, that is the one-way ANOVA test. In this case, a; is
given by (6.3) and Kﬂ) is k4. We examine several x4 and a;. From Table
6.1, it notes that this test statistics has robustness and conservativeness under
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condition a; <0 and x4 > 0. Moreover, the cases of a; >0 and x4 <0 are
similarly.

As mentioned above, if k3 =0, a; <0 and Ké(‘ll) > 0, then our test statistics
have a tendency of robustness and conservativeness. Further it is similar for
the case that a; > 0 and Kill) < 0.

6.3. The case x3 # 0

In this subsection, we consider the case k3 # 0. However, in general
form, as there are many factors to determine for a size of A(u; m,xﬂll)), it is
difficult to obtain a simple condition for A(u; K3,K£l]1>) <0.

Therefore, for simplicity, the one-way ANOVA test is taken up. In this
case, fgN(u) in (6.1) has a simple form as

1 5 u 5 ulari3
t = — — [ -2 R
En (1) u+n{azk3 a1K4+(k+1)(a1K4 a2K3)+(k+1)(k+3)

2
= “+7u4’(“;’€3,1€4)7

n(k —1)

where k3 and k4 are the third and fourth cumulants in the univariate case, a; is
given by (6.3) and

k
a2:i<521—3k2—6k+4>.
a=1

—1

Let

u 2u u?

e RIRAIC R S oy yT ey

i) =1~

then the correction term A(u;x3,74) can be expressed as

A3 18) = o ()3 — a fy (s

From the same reason in the previous subsection, we assume that u >k + 1,
equivalently fj(u) <0. For the condition A(u;rc3,x4) < 0, the following two
cases are considered.

(1) A <0,
(2)  fo(u) > 0.
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First, we consider the case f,(#) <0. In this case, from a, >0 and
k3 >0 the maximum value of the correction term becomes

2u
k—1

Amax = max{4(u; k3,k4)} =

{—a1fi(u)ka}.

If a; <0 and x4 >0 or a; >0 and x4 <0, then Ay, <0, equivalently
ten(u) < u. Therefore, we can expect that the true percentage point #(u)
have a tendency of #(u) <u under condition

(i) x4=0, a=0 and fi(u) =0,

(i) x4<0, a;<0 and f(u)=>0.

Next, we consider the case f,(u) > 0. By using inequality K32. < K4+ 2,
the maximum value of A(u;x3,x4) can be written as

A = a2 )4+ 2) — a1 fy s}

= 2 i) — i+ 2 )

Therefore, tgn(#) < u holds under the following conditions.

2a, f>(u)
(i) x4 = al @ _2a2f2(u), arfr(u) —arfi(u) <0 and fo(u) >0,
(iv) s < 242 /() a fr(u) —arfi(u) >0 and fo(u) >0,

afy(u) — ax fr(u)’

Then, we can roughly say that the test statistic is conservative. However xy
has a lower bound, —2 < k4, the region x4 in condition (4) is narrower than the
ones in other conditions.

Table 6.2 shows actual test sizes of the one-way ANOVA test statistic in
several aj, a;, k3 and x4 by simulation studies. From Table 6.2, it is seen that
this test tends to be robust and conservative. However, robustness and
conservativeness are not kept in the tail side of percentage points under the
conditions which are not included ones (1)~(4), that is x4 >0, a; >0 and
fr(u) <0.

In this section, we have seen that the coefficients of asymptotic expansion
is useful for deciding a robustness and conservativeness of certain test statistics.
For detailed simulation results in the one-way ANOVA and MANOVA test,
see Fujikoshi, Ohmae and Yanagihara (1999) and Fujikoshi (2001) respectively.
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TABLE 6.2: Actual test sizes of the one-way ANOVA test for several a;, ay, x5 and x4

Each value of f;(u)
[-0.42 (10%), —0.50 (5%), —0.66 (1%)]

K3 =1.0 K3 =22 K3 =6.18
Ky = 1.5 g = 12.0 g = 110.97
Nominal sizes Nominal sizes Nominal sizes
a ar 10% 5% 1% 10% 5% 1% 10% 5% 1%

—0.50 0.17 10.0* 4.9* 1.0* 8.7% 3.7% 0.7* 8.1*% 3.6% 0.6*
-0.43 0.29 9.8% 4.8* 1.0* 8.9% 4.3* 0.8* 8.3* 3.5% 0.6*
—0.25 0.58 9.6% 5.2% 1.1* 8.7% 4.1%* 1.0* 9.0* 4.4%* 1.0*
—0.05 0.91 9.3* 4.8* 1.0* 8.7* 4.6* 1.1* 9.7% 4.8* 1.2%
0.06 1.10 9.7 4.7 1.1 9.1 5.1 1.3 9.9 5.1 1.5
0.42 1.70 9.7 4.9 1.2 9.5 5.8 1.9 9.8 5.7 2.0
1.03 2.72 9.6 5.2 1.3 10.2 6.7 2.7 11.8 8.1 3.1

*indicates a test with a critical point to be conservativeness asymptotically.
7. Some applications

7.1. Testing for equality on gradients

In this section, we obtain asymptotic expansions of the null distribution for
several test statistics by applying Theorem 5.1.

First, we consider testing for equality on gradients. We assume that all
the means of k populations are restricted to be linear with respect to time #,
that is

wi=<¢n+<at; (I1<i<k1<j<p),
Then consider testing for the null hypothesis
Ho: &=+ = &na

In other words, this hypothesis means to test for the equality on gradients in
the mean structure.
Let n; be sample size of ith population, n = Zlk n;,

A= | ) ) (n x k matrix),
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ESTRRSE I n
g = : (k x 2 matrix), X=1: : (p x 2 matrix), (7.1)
LS k2 Lt
1 0 —1
c=|: . = (k — 1 x k matrix), DZ{(”,
L0 1 -1

where 1, is an n-dimensional vector all of whose elements are 1. In this case,

ny/n coo y/ming/n
Q=1I— : - :
NGOV ng/n

Noting that

Vvn/nily, 0 0
0 vn/ml,, ... 0

VnA(4'4)" =

0 0 ceoo /ey,
we can derive easily that

Xa =V ”a/n7 Xabe = { n/na (a =b= C)

0 (otherwise)

_ _{n/na (a=b=c=d)
Kabed =1 (otherwise) '

Further, using wg = 0, — /Malip/n, we have

1 (<& n By
a :8<Znu_k —2k+2>,

a=1

Next, we consider the assumptions B1, B2 and B3. It is easily shown that
all laj] =1, n! i1 ||aj||4 =1 and n/nj <n/Z,. Therefore the assumptions
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B1, B2 and B3 are replaced by
n/n; = O(1) (i=1,2,...,k). (7.4)

These results imply an asymptotic expansion.
1 3
P(Tg < x) = G (x) + ZzbijflJij(x) + 0(}’171)7
j=0

where

1
by = a1K4(‘11> — (azkgll) +Cl3K<321>) +Z(k — 1) (k—=3-2r),

(1)

1
by = —2a1Kill) + 3(aarl) +a3Kg21)) —s(k=1{k—=1—-r +rk+1)},

2
1
by = alkftll) - 3(a21c§11) + aycgzl)) +4—l(k = D(k+ 1)(1 +2r),
by = aycé? + Cl3l€gzl).

For the special case X' =1,, O becomes to
(Pt = s1)’ o (Pt = s) (Pt = s))
0= (s~ : : ’
(pty —s)(pti —s1)) -~ (pty —s1)°

where

4 P

2

Sy = Ztu, Sy = pZZti = pls))”
a a

Therefore, Kfﬁ), Kgll) and "521) can be rewritten more simple form as

)4
1 _
Ky = (s) 7 > (pta = s@)(pts = s))(ple = 501)) (Pla — $(1))Kabed:
abed

)4
| 2 -
K =k = (s~ > (pta = s0) (pts — s1))
abcdef

x (pte — 1)) (pta — 501)) (Pte — 1)) (Pt — 5(1))KabeKder -

7.2. Testing for effect on quadratic

Secondly, we assume that the mean structure is quadratic, that is

wy =+ énti+Ent; (1<i<k1<j<p).
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Then consider to test for the null hypothesis
Hyp: &3=-=¢&3=0.

Let the design matrix 4 be the same as (7.1) and

ESITRESERRSE

E=|: : : (k x 3 matrix),
L&k Sk Si3
(1 #

X=|: = (p x 3 matrix),
1oy g

0
e, D:H.
1

From (7.2) and Q = [, we have

1/ n 1 n

=S k-2 =Y =

@ 8<;na ) = 12;na’
. _12":;1 kK .
3_8a:lnaa 4_67 5_127 6_8'

These results imply an asymptotic expansion.
1< »
P(To < x) = Ge(x) + =Y biGrygi(x) +o(n ),
né

where
by = alicé(lll) —{ar+as —2as+ (c—2)(c+ l)aé}K(;I)
—{a3 — (k+ Day — (k — 2)as — (k — 2)ag}x})
—2{3ay — 2(2k + V)aghkly) — 2{as + as — 2kag}r)

—2{3as — 2(k + Vaghily), — das{3r') + 23 + 130}

+%k{(k —2)—2n},
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b = —2a11ci11) + {3ay — 6as + (3k2 4k — 6)a6}K§11)
+ {3a3 — (3k + 4)ay — (3k — 2)as + (k + 6)ag}r}
+4{3ay — (4k + 5)as il + 4{ay + as — 2(k + 1)aghy)
+4{3as — (2k + 3)ag iy + das{3xs3 + 205 + K3}
— %k{k —r+nrnk+2)},
by, = alk‘ill) —{3a, — 3a4 — 6as + (k +2)(3k — 1)a6};cgll)
— {3as — 3k + 5)as — 3k + 2)as + 5(k + 2)ag}x\)
—2{3as — 4(k + 2)a6}Kg12) —2{as +as —2(k+ 2)a6}icg22)l
~2{3as — 2(k + 2ag}ns + g(k +2)(1+2n),
by = {ay — 2as — 2as + (k + 1) (k + 2)ag}x)
+{az — (k+2)aq — (k + 2)as + 3(k + 2)ag xS
Like a previous subsection, we can rewrite the assumptions B1, B2 and B3

as (7.4).

7.3. Testing for hierarchical structure
Thirdly, we consider to divide = as

- [511 En

Ey Exn

} (k x ¢ matrix),

where 2y is a k; x (¢ — ¢1) matrix, &, is a k; X ¢ matrix, 5y is a (k — k) x
(¢ — ¢1) matrix and 52 is a (kK — k) X ¢; matrix. Related to a hierarchical
structure of mean matrix, we are interested to test for the null hypothesis

H(): 512 =0.
Let

C = I, Ok kt,] (ki x k matrix),

Ifll

D= [ } (¢ X g1 matrix),
Oq*th
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where Oy, , 1S a ki x k, matrix all of whose elements are 0, then the null
hypothesis can be rewritten as CZD = O.

In order to be simple form on the coefficient a;, suppose that the design
matrix 4 is the same as (7.1). Then an asymptotic expansion is as follow.

1< ~
P(T6 < x) = Giyqy (x) + ;ijleql+zj(X) +o(n!),
=0

where

bo = ariy) — {ar + ag — 2as + (¢ — 2)(c + Dag}ty
—{as — (k1 + Dag — (k1 — 2)as — (k; — 2)ag k)
—2{3a4 — 2(2k| + l)a(,}Kglz) —2{as +as — 2k1a6}ngz)1
—2{3as — 2(ki + Dag}ryy — dae {3y + 4Ky + K3}
kg — g~ 1)~ 2n),

by = —2ayk) + {3ay — 6as + (3k? + ky — 6)ag }rcl)
+ {3a3 — (3k1 + 4)ay — (3ky — 2)as + (ky + 6)ag )
+4{3ay — (4k1 + S)aghily) + 4{as + as — 2(ky + Vag}r)
+4{3as — (2ky + 3)aghDh + dag {3 + 2D + 1}
—%kICIl{kl —r+nlk+q+1)},

by = alkfd) —{3a, — 3a4 — 6as + (ky +2)(3k; — l)aé}Kgll)
— {3as — (3ki + 5)as — (3ki + 2)as + 5(ki + 2)ag}ry)
—2{3ay — 4(ky + 2agh) — 2{ay + as — 2(ky + 2)agh?,
— 2{3as — 2(ki + 2)as ks + %qul (ki + q1 + 1)(1 + 2r2),

by = {ay — 2as — 2as + (ky + 1)(k; + 2)“6}Kgll>
+ {a3 — (ky + 2)as — (ky + 2)as + 3(ky + 2)ag}rl,

and
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1(&n 1 gLn
alzg Zn——kl—Zkl y azzﬁ n—a,

a=1 "9 a=1
_1 ky n _kl a kl a 1
a3_8 na7 a4_6> 5 12’ 6 8

Then like the previous subsection, we can rewrite the assumptions B1, B2
and B3 as (7.4).

7.4. Generalized Hotelling’s 72 test
Finally, the model considered is defined by
yi=Xn+eg (I<i<n),

where g is a ¢ X 1 unknown parameter vector. Then we deal with a testing for
the null hypothesis

Hy: C(u—p))'D =0,
where
1,
C=1, D{ d }
Oy-d,a

This hypothesis means that some elements of an unknown parameter vector u
are equal to certain values as the elements of u,. In this case, if the design
matrix 4 =1, and = = (u— uy)’, we can test for such hypothesis by using a
test statistic as

To=(n—1—p+q) te(S,S; ).

Without saying, when ¢ = p and D = I, then its test statistic becomes to the
basic Hotelling’s T2 test statistic

ro=nty )/ (;y8) G- m)

where y=n""'3"y. As =1, 50 f, , =1. Therefore

1 1 1
ay = 4’ a2_127 a3_87
1 1 1
a4_67 a5_123 a6_8'
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Using these coefficients a;’s, we can obtain b;’s as

1 1 1 3 3 1 1
by = (1) (1) (1) 2) (1) 2 2) d2,

= _Z"41 +g"sl 5’“32 _5’%22_5"33 — K331 _5"332_1

L' oy 1 oy 54 ) 3 2 1 2y 1 2 1
by = §K4(11> - EKgl) _Eng) - ng)l - Eng)z +§Kg3) +’Cg3)1 +§Kg3)2 - Edv

I I I
by = — iy — 5rs 20y iy Ky + 4 d(d + ),

1Ly 1o
by = g’fg1> + EK(N)'

So, the asymptotic expansion based on these ones is given by
1 3
P(Tg < x) = Ga(x) + - _ bjGuy(x) +o(n").
ne

Specially, when ¢ = p and D = I,, then

Lo, La 1, Lo Lo 1
b0:—1K4 +6K3 —Zp, b1:§K4 —EK?) —Ep,

1 1 1 I 1
by=—gny =3k Hgp(p+2), by=ga) +oad.

These coeflicients b;’s correspond to the ones in Kano (1995) and Fujikoshi

(1997b).

8. Numerical accuracies

8.1. Case of confidence interval

Numerical accuracies are studied on confidence intervals of a’=Zh and the

null distribution of two test statistics.

First, the confidence intervals are taken up. Kabe (1980) proposed a
confidence interval for a’Zh based on t-distribution. As we consider the non-
normal case, so it is necessary to consider different method in the normal
case. Actually, in the nonnormal case, we use the Cornish-Fisher expansion as
an approximation of the true percentage point. Let z, be the a-level standard
normal quantile, given by &(z,) = « and wg(z,) and wr(z,) denote the true

percentage points of Us; and Upp, respectively. In other words,
P(Us, < ws(zy)) = @(z,),
P(UrL < wr(zy)) = D(zy).
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From Theorems 4.3 and 4.4, wg(z,) and wr(z,) can be expanded as

1 1
ws(z4) = 2y +ﬁ¢s,1(za> + Z‘//s.z(za) +o(n™h)

= ws g(z4) + o(n’l),

Wr(z) = 22t Y150+ a(z) + oln”)

N/
=wr g(zy) + o(n_l),

where
Ys1 = —0s1(24)

1
=—c + ECZhZ(Zo:)a

1
V2= Os1,1(22) Qs 1(22) — EzocQSL,l(Zoc)z — Os1.,2(z,)

1 1 1 1 2
= _502291{61 —gczhz(za)} _zza{cl _ECZhZ(Zx)}

1 1 1
+ §C3h1 (z2) + ﬁc4h3(zo¢) + 7—26‘5h5(2a)7
Yry=—0rr1(2)

1 1
= —C| — ECG + 6 (6'2 — 36’6)/12(21),

V12 = Ori (201 (22) — 5201 (22)? — Or1a()

1 1 1
= —5(62 - 3c<,){61 + 56’6 - 3(62 - 3C6)h2(z“)}

1 11 :
— 52“{61 +§c6 — 8(62 — 3c6)h2(za)}

—_—

1 1
+ 3 (e3 4+ cn)hi(zy) + 2 (ca + cg)h3(zy) + 7 (s 4 3¢o)hs(zy).
Therefore, one-side « level intervals are given by

I = (—0,d'Eb — tws £(21)),

g = (—oo,a'fb —twr, g(Z1-4))-
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Similarly, two-side intervals can be expressed as

fz = (a’.?b — T\/VS7E(Z(1+D()/2), a'ﬁb — TWSA,E(Z(I—a)/Z)):

Iy = (a'Eb — 2wy £(Z(112)/2), @' Eb — twr g(2(1-0)2)).-

In actual use, we use .%;, %>, jl and jz, which are defined from .#;, .%;,
J, and #, by replacing unknown parameters by their estimators, respectively.
Let ws g(-) and wr g(-) be the ones defined from wg g(-) and wr g(-) by
replacing x5 and k. by their estimators. Moreover, t has to be replaced
by 7 in wg . Then

jz = a’éb — fWTﬁE(Z(1+a)/2),a/éb — ‘LA'WT“’E(Z(I,OC)/z)).
Let
f]:(j)la'~~>5)n)/:(YﬁAéXl)fil/a (8.1)
where
. 1 A N
2= k(Y—AEX’)’(Y—AEX’). (8.2)
n—

Then the unknown parameters x,,. and k.. can be estimated as

n n ) N
- § :~(])~(J)~(])
Kabe (n—l)(”—z)j:l Vi yh Ve

. n(n+1) )55 50)
Kabed = Y'Yy V' Vi
S [ [ DISL RS

where j/flj ) is the ath element of vector y;. For estimators of e and Kapea,

see, e.g., Kaplan (1952), Mardia (1970) and Isogai (1985).

The model considered in simulation studies is 4=1,, X =1, a=1
and b=1,. So, IT = p~'/1, and © = p'1,1,. By using these settings, the
coefficients ¢;’s can be written as
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1 P
a=0, a=—F2=> ki, =0, Zkabcd,
p\/ﬁ abc abc
1 < 2
7 Z KabeKdefs — C6 =—= Y Kaber  €1=3+—5 D Kabelaef,
abcdef p \/ﬁ abe abcdef

P
=6—— Z Kabcd + 3 Z KabcKdef » Cg = % Z abcKdef -

abe abcdef bedef

In order to estimate for each coefficient ¢, it is sufficient to do for y = Zﬁbc Kabe
_ N7
and k=)0, . Kabed aS

P P
= § Kabe, K= § Kabed
abc abed

where Ku. and K,peq are defined by (8.3). Therefore,

¢ b $ ¢ 11% ¢ 1@2 ¢ b p

2 = 3 4 — S K, 5—"=3 5 6 — 5

PP p? P} PP

X 2 , 316, . 1,

¢ =3+—=79% C8—6——K+ an Cg = —7)°.
p3 P 3 p3

The distributions considered are as follows,

1.  Multivariate Normal Distribution,

2. Uniform Distribution: Each of the p variables is generated inde-
pendently from a uniform (—2,2) distribution,

3.  Exponential Distribution: Each of the p variables is generated inde-
pendently from an exponential distribution with a mean of unity,

4. Lognormal Distribution: Each of the p variables is generated inde-
pendently from a lognormal distribution such that log x ~ N(0, 1).

Table 8.1 gives the following six probabilities on one-side 90%, 95% and

99%  confidence intervals.

oy = P(a’'Eh e .4)), o =Pla’Ebe ¢)),
a3 =P(a'Eb e .4)), ay =P(ad'Ebe 4)),
as =P(a'Eb e S y), o =P(a’'Eh e SN
where 7| y and ¢, y are confidence intervals with normal error, that is
Jin=(—0,a'Eb — tz55.1-,),

jLN = (—oo,a’éb — ‘EZTE,I—O()'
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TaBLE 8.1: Actual probabilities for confidence intervals of a’'Zh

Normal Uniform Exponential Log-Normal
Nominal Levels Nominal Levels Nominal Levels Nominal Levels
n| pl oo |90% 95 99% | 90% 95% 99% | 90% 95% 99% | 90% 95%  99%

S 2o |90 949 989 90.7 953 99.1 900 950 987 | 662 809 99.9
o | 88.6 934 981 | 889 93.1 98.0 | 87.9 929 975 96.6 985 99.7
o3 | 832 88.6 937|833 884 933|749 796 864 | 67.8 728 79.8
og | 92.1 955 979|920 953 979 | 8.0 8.0 938 | 79.0 841 90.1
os | 846 894 946 | 849 89.6 944 | 761 81.1 879 | 692 740 81.7
os | 88.6 934 98.1 | 89.1 93.1 97.7 | 80.3 86.1 93.1| 733 79.8 88.6

10 | 2] or | 90.1 951 99.0 | 91.1 955 992 | 904 951 99.0 | 81.8 90.2 99.8
o | 89.4 945 985|902 948 99.0 | 893 941 985 | 96.7 988 99.8
o3 | 87.0 921 97.1 | 87.8 924 973 | 81.0 859 920 | 73.1 784 859
o4 | 904 948 983 | 920 957 988 | 86.8 91.1 958 | 80.5 86.6 932
os | 873 923 972 | 883 928 974 | 819 867 927 | 739 79.6 874
os | 89.4 945 9851903 948 989 | 84.1 89.1 953 | 76.6 828 912

4 [ o | 90.1 952 992 89.8 948 99.0 | 90.4 952 99.2 | 868 93.0 994
o | 89.5 948 98.8 | 89.0 945 987 | 89.7 947 989 | 942 973 99.7
o3 | 87.2 921 97.6 | 86.2 91.8 972 | 83.1 885 948 | 774 828 90.5
og | 90.5 950 984 | 903 947 985 | 871 919 965 | 81.6 874 933
os | 87.4 922 975 |86.6 919 972 | 83.7 887 947|779 831 904
o | 89.5 948 988 | 89.0 945 987|859 912 970 | 79.7 862 934

6 | o | 89.8 949 988 [ 899 951 989 | 90.6 953 99.1 | 83.7 944 993
o | 89.6 948 98.7 | 89.2 947 987 | 899 949 987|934 972 995
o3 | 86.7 922 973 | 86.6 923 975 | 84.1 90.0 959 | 79.2 854 926
o4 | 90.7 951 984 | 90.6 953 983 | 874 919 96.6| 824 875 934
os | 87.2 924 97.1 | 87.1 923 975 | 84.6 899 953 | 794 850 919
o | 89.6 948 987 | 893 947 987 | 86.8 923 972 | 819 879 945

Here, zsg , and zrg, are Cornish-Fisher expansions of «% point under
normal error given by

1
ZSE, 0 = {1 +%(p_Q)}Zow

ITE o = Zy —l—l{l(Zp —2¢g+2+k)z, +lzm(zi — 3)}
n |2 4
From Table 8.1, it seems that using .#; and ¢, gives considerable
improvements for the actual probability. Especially, the region .#; has high
probabilities than _#;. For an actual use, i.e., using the regions A, fl,
g1y and fAL ~»> Studentized intervals are better than standardized intervals.
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However, the estimation problem for xu., Kupeq 1S left over. It will be
necessary to find improved estimators. On the other side, it seems that critical
points of these intervals do not give good approximations for the true
percentage points in the case of log-normal distribution. Particularly, such
effects happen in the case of small sample size, n =5. As for a source, it
seems that since cumulants x,,. and ., are too much big, the effect of
remainder term, e.g., the n~? term in this case, becomes to large. For a
study of two-side intervals, we have obtained similar results. Other methods
of confidence intervals in a nonnormal ANOVA model have been discussed
in Hall (1992).

8.2. Case of test statistic

In this subsection, we examine numerical studies for two test statistics.
First, generalized Hotelling’s 72 statistic, which is denoted by T in Section
7.4, is taken up. Our purpose is to see how the actual test size closes to the
nominal one by using the asymptotic expansion approximations. In the case
generalized Hotelling’s 72 statistic, we can use a modified Cornish-Fisher
expansion, which give an exact one in the normal error case. It is well known
that (n —d)Tg/d(n—1) is distributed as F-distribution with degrees of free-
doms d and n—d. Using this fact, we can modify rg(u) as

), uf, Birhu b .
) == =g nd{bo it2 @@ ayy o)

= tg(u) +o(n"),

where up is the percentage point of F-distribution with degrees of freedoms d
and n—d and

1 1 1 1 1 1 3 2 3 1 2 1 2
by = _ZIKE“) +6Kgl) +§K§2) _§ng>2 - E’Cga) - K(33)1 _§K§3)2>

o _La_2 3w, .o 1o

Loy 1oy S50 @ 3
by = 2’@(;1 5731 zkgz) - ’C32)1 - z’cgz)z T 5%y TR 5 K

Il oy 1 o 1 2 2
by = _Z’Cc(u) - 51«_%1) + 2Kg2) + ng)l + ng)zv

L 0y 1 o
by = gkgl) +§Kg1 .

Without saying, if the error vectors are distributed as normal distribution, all
the coefficients bjf’s are 0. As for the estimation of each cumulant, by using
(8.1) and
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O=XX'X)"'D{D'X'X)"'D}'D'(X' X)X,

where X = 27'/2X and X is defined by (8.2), we can estimate cumulants as
follows.

() _ n(n+1) -
g _(n—l)(n—Z)(n—E»)]zl:( 305"~ d(d +2),

ij

) S P50
n—Dn=2) Z(%Qy]){y,( Py},
T} S GHOR U, — PORHE, — PO

(7’1—1} Z{yl yl}(leyj){y/(p_P)?)j;j}'

Table 8.2 gives the actual test sizes for the nominal 10%, 5% and 1% test
in several cases of p, ¢ and d. The distributions considered are the same four
ones in the case of confidence interval. For each row in table, the top stairs
express the actual test sizes based on F-distribution, the next and bottom stairs
show the actual sizes by using 7g(u) and 7g(u) which is defined from #g(u) by
replacing unknown parameters by their estimators, respectively. From Table
8.2, it seems that using 7g(u) gives a considerable improvement for the actual
test size. However, there is a tendency that the approximation tends to be bad
when p tends to large. Moreover, the estimation problem for several cumu-
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TABLE 8.2: Actual test sizes of generalized Hotelling 72 statistic

Normal Uniform Exponential Log-Normal
Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
n V4 q d 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

0|22 2 97 51 07| 114 65 1.2] 199 138 74| 282 219 123
9.7 51 07| 113 62 1.1 | 133 8.8 2.1 6.1 2.1 0.1
85 38 04 96 51 09 166 108 47| 234 167 7.6

2 1 95 53 10| 11.3 57 08 9.7 40 04 7.6 26 0.1
95 53 1.0 11.3 57 08 9.4 42 04 6.1 2.8 0.2
89 46 08| 107 52 08 8.3 33 03 5.9 1.8 0.1

I 1(109 59 13| 1001 58 12| 190 130 52| 283 206 112
109 59 13| 102 56 1.2] 120 6.0 12 3.6 1.0 0.1
86 41 06 83 38 04| 153 94 26| 229 154 1713

414 4| 102 50 08| 103 59 15| 221 147 60| 375 28.6 133
102 50 08 102 58 15| 151 88 29 7.3 33 0.5
74 3.6 06 85 42 09| 175 104 38| 30.8 221 8.3

4 2] 108 55 10| 114 59 15| 154 104 37| 236 167 7.3
108 55 1.0| 114 58 15| 11.6 59 14 4.4 1.7 0.1
90 43 05| 101 48 09| 133 80 24| 197 123 43

4 1] 106 53 15 93 39 08 9.0 46 0.7 9.6 42 04
106 53 1.5 93 39 038 8.3 45 0.7 5.5 39 03
98 51 12 85 38 07 8.0 40 05 8.1 37 03

2 2 (131 78 21| 127 72 20| 222 154 71| 363 264 141
131 78 21| 125 7.0 20| 123 73 1.8 4.0 1.6 03
74 3.6 07 69 34 07| 144 87 29| 246 167 7.8

2 1 98 51 11| 121 7.0 21| 197 13.0 51| 29.6 226 123
98 51 11| 121 69 21| 101 51 1.1 2.0 0.7 0.1
55 24 03 77 40 07 133 77 26| 225 159 7.1

I 1| 115 65 20| 114 65 23| 196 139 55| 295 217 104
1.5 65 20| 114 65 21| 104 55 1.8 2.0 0.8 0.1
53 24 06 57 30 04| 125 76 27 196 128 53

lants are left over. As these values tend to be large, it is difficult to obtain
good estimators. When p = ¢ and d = 1, almost the elements of Q become to
small, equivalently each cumulant is small. Since an influence of nonnormality
tends to little, we can regard the test statistic as robust in this case. To be
not very striking, an effect of nonnormality in the case ¢ > d is small com-
paratively, based on the same reason in the former case p=¢ and d =1.
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Moreover, it seems that the size of ¢ does not affect the accuracy of actual
size. On the other side, the critical points in the case of log-normal distri-
bution do not give good approximations by the same reason in the experiment
of confidence interval.

Secondly, we consider the Bartlett-Nanda-Pillai trace criterion. In this
time, k populations case is considered because the previous study, generalized
Hotelling’s T2 statistic, is the one population case. Further, we consider a
simple situation. The between-individuals design matrix A4 used is defined by
(7.1), the within-individuals design matrix X used is given by 1, and the
restricted matrices are assumed by

I ... 0 -1
c=1|: "+ (k — 1 x k matrix), D=1
0 ... 1 -1

To set up this situation is equivalent to consider the mean structure u; = ¢;
(1<i<k,1<j<p), and the null hypothesis Hy: & =--- =¢,. Further, in
this model, the coefficients a;’s are defined by (7.3) and Q becomes to a simple
form as

0=(1,x1,) 'z, 2712

The approximations considered are the limiting distribution and the asym-
ptotic expansions. These simulation studies are carried for k =3, p =2, 3 and
5. Moreover, we take the samples with exponential distribution. The reason
why these samples are used is that the cumulants of this distribution are not so
big, so it seems that such distribution suits this examination of effect on each
cumulant.

Tables 8.3 and 8.4 give #(u), u and tg(u) and the actual test sizes based
on these approximations of percentage points for nominal 5% and 1% test,
respectively. Each actual size is given by

a7 =P(Tg > u), ag = P(Tg > tg(u)), ag = P(Tg > 1g(u)).

Further, we have tried to study for other statistics, the likelihood ratio statistic
and the Lawlye-Hotelling trace criterion, other several variates k and error
models, and have obtained similar results. From Tables 8.3 and 8.4, we can
see that to use 7g(u) or 7g(u) gives a considerable improvement in a comparison
with the limiting approximation.
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TaBLE 8.3: Nominal 5% test of the Bartlett-Nanda-Pillai trace criterion for k = 3.

Sample Sizes Percentage Points Actual Sizes

ny ny n3 t(u) u tg(u) o7 og o9
5 5 5 5.11 5.99 5.23 2.7 4.6 4.3
10 10 10 5.75 5.99 5.61 43 5.5 5.3
15 15 15 5.79 5.99 5.74 43 53 5.0
5 10 15 5.75 5.99 5.60 4.7 5.5 5.5
5 5 20 5.53 5.99 5.59 4.1 5.0 5.1
5 5 5 5.19 5.99 5.35 23 4.5 4.5
10 10 10 5.69 5.99 5.67 4.5 5.1 5.0
15 15 15 5.69 5.99 5.78 44 4.8 4.7

10 15 5.53 5.99 5.67 3.8 4.5 4.5
5 5 20 5.76 5.99 5.66 42 5.5 5.3
5 5 5 5.22 5.99 5.45 2.5 4.3 4.2
10 10 10 5.65 5.99 5.72 3.9 49 4.3
15 15 15 5.70 5.99 5.81 43 4.8 4.8
5 10 15 5.96 5.99 5.72 5.0 5.8 5.5
5 5 20 5.68 5.99 5.71 42 49 49

TaBLE 8.4: Nominal 1% test of the Bartlett-Nanda-Pillai trace criterion for k = 3.

Sample Sizes Percentage Points Actual Sizes

ny ny n3 t(u) u tg(u) o7 og olg
5 5 5 7.01 9.21 6.40 0.3 1.7 1.9
10 10 10 7.89 9.21 7.80 0.4 1.1 0.9
15 15 15 8.04 9.21 8.27 0.4 0.9 0.9

10 15 8.52 9.21 8.09 0.9 1.3 1.3
5 5 20 8.17 9.21 8.44 0.8 0.9 0.9
5 5 5 6.92 9.21 6.80 0.1 1.2 1.7
10 10 10 8.48 9.21 8.01 0.6 1.4 1.3
15 15 15 7.63 9.21 8.41 0.8 1.1 1.1

10 15 8.20 9.21 8.19 0.5 1.1 1.1
5 5 20 9.18 9.21 8.43 1.0 1.3 1.3
5 5 5 6.74 9.21 7.13 0.1 0.7 1.6
10 10 10 8.32 9.21 8.17 0.6 1.1 0.9
15 15 15 8.53 9.21 8.52 0.8 1.1 1.0
5 10 15 8.53 9.21 8.28 0.5 1.3 1.2
5 5 20 8.32 9.21 8.42 0.7 0.9 1.0
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