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ABSTRACT. M. G. Cowling and J. F. Price showed a generalization of Hardy’s theorem
as follows. If v and w grow very rapidly, then the finiteness of |luf]|, and [lwf [l; implies
that /' =0, where f denotes the Fourier transform of f. We give an analogue of this
theorem for the Helgason—Fourier transform for homogeneous vector bundles over Rie-
mannian symmetric spaces and for connected noncompact semisimple Lie groups with
finite centre.

1. Introduction

The mathematical uncertainty principle, roughly speaking, states that a
nonzero function and its Fourier transform cannot both be sharply local-
ized. First of all, in the case of Euclidean space, G. H. Hardy showed that if
a measurable function f on R satisfies | f(x)| < Ce " and | 7 ()] = Ce " and
ab > 1/4, then f =0 (a.e.). Here we use the Fourier transform defined by
f(») = (1/v27) [*, f(x)eV""™ dx. M. G. Cowling and J. F. Price [3] gen-
eralized Hardy’s theorem as follows. Suppose that 1 < p,¢ < oo and one of
them is finite. If a measurable function /" on R satisfies llexp{ax?}f (x)||Lrw) <
oo and |lexp{by?}f(¥)|lLor) < 0 and ab = 1/4, then /=0 (a.c.). The case
where p = ¢ = oo and ab > 1/4 is covered by Hardy’s theorem. S. C. Bagchi
and S. K. Ray [l] showed that if ab > 1/4, then Hardy’s theorem on R is
equivalent to the Cowling—Price theorem.

Some generalizations of Hardy’s theorem and the Cowling—Price theorem
to various homegeneous spaces were obtained (e.g. [1], [4], [5], [6] and [12]).
In these papers, the theorems were proved by using the estimates of matrix
elements of representations and the Phragmén—Lindel6f theorem. The purpose
of this paper is to prove an analogue of the Cowling—Price theorem for semi-
simple Lie groups. On the other hand, J. Sengupta [11] proved the Cowling—
Price theorem on Riemannian symmetric spaces, by using the argument that
the Fourier transform is decomposed into the composition of the Radon
transform and the Euclidean Fourier transform. We consider the Helgason—
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Fourier transform as the Fourier transform on homogeneous vector bundles over
Riemannian symmetric spaces. By using an argument similar to [11], we get
the Cowling—Price theorem for the vector bundles. From this result and the
estimate of the Plancherel measures, we obtain the Cowling—Price theorem for
semisimple Lie groups.

2. Notaion and preliminaries

The standard symbols Z, R and C shall be used for the sets of the in-
tegers, the real numbers and the complex numbers, respectively. For z € C, Rz
and 3z denote its real and complex part, respectively. If U is a manifold, then
we denote by C(U) the set of continuous complex valued functions on U and
by C;°(U) the set of compactly supported smooth functions on U. If S< U
and f is a function on U, then f'|s denotes the restriction of f to S. If Vis a
vector space over R, Ve, V™ and V¢ denote its complexification, its real dual
and its complex dual, respectively. For a Lie group L, L denotes the set of
equivalence classes of irreducible unitary representations of L. As usual, we
use lower case German letters to denote the corresponding Lie algebras.

If o# is a complex separable Hilbert space, B(#') denotes the Banach
space comprised of all bounded operators on # with operator norm || - |-
For TeB(#) and 1 <p < oo, we indicate the p-th norm by |T||,, that is,
T, = (t(T*T)?'*)'/? | with T* being the adjoint operator of 7. For a com-
plex separable Hilbert space # and a o-finite measure space (X,u), we de-
note by L7(X,B(#)) the noncommutative L”-space relative to the gauge
(LA(X, B(#)), L* (X, B())).

Let G be a connected semisimple Lie group with finite centre, K a maxi-
mal compact subgroup of G and G/K the associated Riemannian symmetric
space of noncompact type. Let G = KAN be an Iwasawa decomposition.
Each g € G can be uniquely decomposed as g = k(g) exp(H(g))n(g). We de-
note by 0 the Cartan involution fixing the elements in K. Let g =T+ p be the
Cartan decomposition of g defined by 6. Denote by d the real rank of G. Let
A be the set of restricted roots, 47 the set of all positive restricted roots and
p the half the sum of the elements in 47. Denote by a, the positive Weyl
chamber in a and set 4, =exp a;. Then G = K Cl(4)K is a Cartan decom-
position, where Cl(A4,) denotes the closure of 4, in 4. Let dk be the Haar
measure on K normalized as [, dk =1. We normalize the Lebesgue mea-
sure dH on a by multiplying (27z)7d/ 2. We write for dg the Haar measure on
G given by dg = D(exp H)dk dk,dH, where D(exp H) =[], [sinh a(H)|"™
and m(a) denotes the multiplicity of a. Let M be the centralizer of 4 in K.
Then P = MAN is a minimal parabolic subgroup of G. The Killing form of
g induces an inner product {-,-> on a and a*. We write |H|= <H,H>1/2.
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Let W be the restricted Weyl group. When g = kexp X for k€ K and X € p,
we set a(g) = |X|. For vea*, there exists a unique element H, € a such that
v(H)={H,H,) for all Hea. For Hea and reR.y, we set B(H,r)={Xe€a]
| X — H| <r}.

For 7€ K, we denote by M(7) the subset of M contained in the restric-
tion of 7 to M. For d,7e€ K, we write M(d,7) = M(5)N M (7). We denote
the degree of 7 by d(r) and the character of 7 by y,.. We set & =d(7)x;.
We set for k,kj,kyeK, ge G

L2(G) = {f e L(G) | [ #x & = [},
LP(G,7) = {F e L"(G,End(V;)) | F(gk) = (k)" F(9)},

LG, V) = {f G Vil | 1@y < oo, f (k) = r<k>1f<g>},
L(G.r.7) = {F e LY(G, End(V,)) | Flkngks) = (ko) ' F(g)e(k) '},

Let 2.(G) (resp. 2(G,7), 2(G,V;), 2(G,1,7)) be the subset of L2(G) (resp.
L?(G,7), LP(G,V;), L?(G,1,7)) comprised of all compactly supported C*-
functions. For f € Z.(G), we set Fy(g) = [, f(gk)t(k)dk. Then the mapping
f +— Fy is a topological isomorphism of 2.(G) onto 2(G,t) and its inverse is
the mapping F — d(t) Tr F, (F € 2(G,1)) (cf. [8], p. 397). For feL?(G,V;)
and ve V;, we define f ®v by

(S ®0)(9), Wiy, = w, vy f(9), for all we V..

For feL?(G,V;) and ve V;, we have

Vs

(1) I/ ®vllzrG,s = IflLrcwllo
and thus f®uve L?(G,7). For F|,F, e 2(G,t), we define the convolution
Fy x F, by

) (Fy * Fy)(g) = J Fi(x ') Fx(x)dx.

This definition is arranged so that F) x F, € 2(G,7). And we also define the
convolution for ¥ € 9(G,1,7) and fe€ 2(G,V;) by

(3) (¥ + £)(9) :J w(xg)f(x)dx.

G

It is easy to show that ¥« (f ®v) = (¥ f) ®v.
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3. The vector-valued Helgason—Fourier transform

Let (0, H;) be a unitary representation of M and ve v—1la*. We denote
by 7, , the representation induced from s ®@ v® 1 of P to G. The represen-
tation space # 7" is

H7 = {g e L3(K, H,) | pllem) = o(m) ™ p(k),m € Mk € K},

with the norm

gl = J lp(k)|12, dk.

The action of n,, on #%" is given by

(o (@)0)(K) = &P (g 1))

It is known that (7, ,,# ") is unitary. We set

A ={pe AT 9k & = 9}

For PeHomy (V:,H,), veV; we write ¢pg, (k)= P(z(k)"'v). Then the
mapping P ® v — @pg, is a bijection of Homy,(Vz, Hy) ® V; onto #,”". For
f €LY (G), its Fourier transform on G is defined by

(4) Tolf) = jG 1(9)70(9)dg.

R. Camporesi defined the Helgason-Fourier transform of f e L'(G, V;) by

5) Fler) = | e ety ) (),
G
for ke K and vea{. The Plancherel formula for f e 2(G,V;) is given by
Hf||i2(G, V) = ZCP’ Z
P/ U/
1 ~ -
7 || Ty V). T = V=)o ()
7Jar

a

(see [2], p. 286). The relation between (4) and (5) is given by the following
proposition.

ProposITION 3.1. If f e LY(G) and T ® v e Homy (V;, Hy) ® Vs, then we
have

(o (/) 0re0) (k) = T(folk, ),
where f,(g) = Fr(g)v.



The Cowling—Price theorem for semisimple Lie groups 341
Proor. We have

T(fv(k7 v)) = T(JG g—(vw)H(g*lk)T(K(g—lk))fl JKf(gkl)T(kl)dklv dg)
- J f(g)e PO T (2(x(g™ k) v)dg
G

= JG f(g)no,v(g)wT(@v(k)dg

= (Mo, v(N)ore.) (k). O
Let feL'(G,V,). We have

flevy=| e M0 D (e(g71)) " (kg)dg

= J J —(v+p)H(ki'na ) ( (k 1,—1 71)) f(kal’lkl)dadndkl
AJN

= J e~ H (@ (kan)dadn—J "H(“)J " O f (kan)dnda.
aln N

A

For ke K and ae A, we set
(6) Rf(k.a) = | e (kan)an.
N

We call Rf the (vector-valued) Radon transform of f. And also, define the
Fourier transform of f e L'(K x A) on A by

Ff k) = L MOf (k. a)da

for ke K.

Let oe M(d,7). In the following, we write m, = [t|y : 0] and n, =
[0ls : 0] Let {Ps;}i 15 m, a0d {Qg,j}i—i 5, ., be bases of Homy (Vz, Hy)
and Hom,,(V3, H,;), respectively, such that

Tr(P; Py j) = d(0)d;,  Tr(Q; 0, ;) = d(a)dy.
For aeM(&,r), we set T, ;= Q;,A,P(,,,' € Homy (V, V5).  Let {v/}/=12.. a)
and {w/},—1 2. 4@ be orthonormal bases of V; and Fj, respectively.

LEmMMA 3.2. The set

#Tm,ﬂaeM(é,r),i: 1,2,....mg, j=1,2,... 1,4
d(e)

is an orthonormal basis of Homy (V;, V).
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Proor. For k=1,2,...,m, and /=1,2,...,n,, we have

T, To ke Dtomy (v, vi) = 10T, 1y To,5) = d(0)0ucyr.

In a similar fashion,

T, NE ,k/>HomM(V“ V) — 0,
for ,u,oeM(é, 7) such that u 2 0. For T € Homy (V;, Vs), we obtain

ny,

I'=1yTly, = Z Z Z ZQﬂ]Q/”TP iFo,i-

ueM@©) J=1 geM(z
Let
(a, l)HomM(Vr; V()) (u,)) {QﬂjQu]TP* o, | Te HomM(Vr» V())}

Then we have

1y

(7) Homy (Vz, Vs) = Z Z ZZ (o, Homy, (V2 Vf’)(/l‘j)'

ceM(x) ue M) i=1 j=1

From Q, ;TP; ;e Homy,(H,, Hy,), we have (; )Homy(V%, V())(ﬂ, =0foru#o.
Since Q, ;TP; ;€ Endy(H,), there exists ¢(T) € C such that Q, ;TP ;= c(T)l4,.
Therefore,

Qa‘ ]Qa /TP Poi = C(T)Ta,g/-
Especially, we have
Qa jQG ]Trr le* P(T‘i = 1g,jj-.
Hence ¢(7,,5) =1 and (5 yHomy (Vz, V5), ;) = CT5 5. From (7), we obtain

HomM V;—, I/() Z Z ZZ (a,1) HOHIM V‘H V(S)(a]

ceM(t) geM(0) =1 J=

my Ny

= 2 22 Chy

ceM(,7) =1 j=
Let 0,te K. For T e Homy(V;, V), we set
E(T,v,q) = J S Te(x(g~ k)L O+ HE ) g
K
The function E(T',v,g) is so called the Eisenstein integral. In case &5 #k f = f,

R. Camporesi gave the expression of the Helgason—Fourier transform f(k,v) in
terms of the Eisenstein integrals.
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ProposiTiON 3.3 ([2]). If &x*x f =f, for fe D(G,V,), then

m; Hg

few= 3 ¢ ZZ 200 | B0 f @)y

ceM(9, r) =l j=

We define the Helgason—Fourier transform F(k,v) € End(V;) of F € 2(G, 1)
by

Fk,v) = J e PG O (167 k)T F (g)dg.
G

From the definition of F for F e %(G, 1), we have F(k,v)v = @(k, v) for
veV;. For ¥ e%(G,1,7), we have

Plkov) = | e (il ) P (9)dg

= | W)Y (kan)dadn
AN

= | ey (ap)dadnt(k)™".
Jan

Therefore, we define the Fourier transform of ¥ e 2(G,1,7) by
Y(v) = J eI () dadn.
AN

REMARK. R. Camporesi (cf. [2]) defined the Fourier transform of ¥ e
2(G,t,7) by

mg 1
) /:Zld(o-) JG r( (g) ( a,J ,V,g)) g ]
for P e Homy(V;, H;). Each ve V; can be decomposed into

= > ZP*,,.P(,J-ue > Homy(V:, Hy) ® H,.

ceM(r) i= ceM(7)

Accordingly, for ve V,, the relation between Ye End(V;) and ¥ s

Pw= Y Y P (P
ceM(z) i=1
> Z‘fj P [ T EE: By v g)dgPs o
d
UEM i=1 j=

We have the following proposition.
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ProrosiTiON 3.4. If fe 2(G,V;) and ve V,, then the Helgason—Fourier
transform of f(g) ® ve 2(G,1) is given by

(f(9) ® 0)(k,v) =k, v) ® .
From the definition of ¥ for ¥ € (G, 1,1), we have
PROPOSITION 3.5. If ¥ € %(G,1,7), then we have ¥(k,v) = ¥(v)r(k)™".

The next proposition can be proved by using an argument similar to the
K-biinvariant case.

PropoSITION 3.6. Let ¥ € 9(G,t,7) and F € 9(G,t). Then we have
(F+ F)(k,v) = $()E (k,v).
From Proposition 3.6, we have

CorROLLARY 3.7. If Y € 2(G,7,7) and [ € 2(G,V;), then

(¥ /), v) = P O0) f (K, ).

4. The Cowling—Price theorem for vector-valued Helgason—Fourier transform

In this section, we shall prove the Cowling—Price theorem for a vector-
valued function over G/K. The following is the Cowling—Price theorem for a
vector-valued function on R”.

Lemma 4.1. Let a,b>0, 1 <p,q < o0, min(p,q) < oo and V a finite-
dimensional vector space. Let f be a measurable V-valued function on R" such
that

e f () lLowe ) < 000 e (D)o, ) < o0
If ab=1/4, then f =0 (a.e.).
Proor. For ve V, we set h(x) = {f(x),v);. Then

8 G = ([ e rean) =i

vV

We have
Jplec e = [ e icr, 0 ax
R” R*

<| eIl < o
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Similarly, from (8), we have [[e?’A(y) rorr) < 0. Applying the Cowling—
Price theorem to /s, we obtain 7 =0 (a.e.). Then f =0 (ae.). [

Let y € C;°(A) be a non-negative W-invariant function with supp(y oexp)
B(0,1) and [ (exp H)D(exp H)dH =1. For Hea,, ¢>0 and ki,k € K,
we set

¥,(ky exp Hky) = ¢ “D(exp H) 'D(exp & "H)y(exp ¢ ' H)t(kiks) ™",
and
,(exp H) = ¢ “D(exp H) ' D(exp ¢ ' H)y(exp ¢ ' H).

From the smoothness of ¥,, ¥, is well-defined on G. And also, we set
J Y, (exp H)D(exp H)dH = 1.
at

The next lemma is given by the same way as in [13].
Lemma 4.2 (cf. [13])). If feL?(G,V;) and 1 £p < o0, then

lim (|, * / = f1|Ls(6,v,) = 0.

We have the following Cowling—Price theorem for JV;-valued functions.

THEOREM 4.3. Let 1 < p,q < 0 and a,b,C > 0. Let f be a measurable
Vi-valued function such that

2 2~
|\e“”<9> S(@lerG. vy < C, ||3bh| Sk, V)||Lu(1<x¢?1m,V,,,,(v)dvdk) <,

where u(v) is a positive function on v —la* of polynomial order. If ab > 1/4,
then f =0 (ae.).

Proor. First, by using a similar argument of J. Sengupta [11], we have
f=o.

Second, we shall show f =0 (ae). If 1<p' ¢ <o and r!=p~1+
g¢~' —1 =1, then the Young inequality implies that

1
a0 [ullv. 1P+ 6. = ¥ * FepwllirG.e

é H W”L”'(G,r,r) HF'</V~,”>||L‘1’(G,T,1')
1

—

d(7)

V. 5”||Lv’<G.,f,z)Hf||Lt/(G,V,)v

for ueV;, and ¥ e 2(G,t,7). From the assumption, we have ¥ f e
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L'(G,V.)NL>(G,V,). Corollary 3.7 implies ¥ % f = ¥f =0. Then we ob-
tain ¥ * f =0. As shown in Lemma 4.2, we can compose {¥,}.-o such that

ii_{% | * f _fHL‘(G,VI) =0.

Therefore, this proves f =0 (a.e.). [

5. The Cowling—Price theorem for semisimple Lie groups

We need the following lemma, which can be proved by a slight modifi-
cation of [3].

LemMma 5.1. Let 1 <p<o0,5s>0and A>0. Let g be an entire function
on C such that

lg(x +V=1y)| £ 4e™,  (x,y€R),

(. g<x>|f”|x|3dx)l/p <A

Then g is a constant function on C. Moreover, if p < oo then g = 0.

Let u(o,v) be the Harish-Chandra u-function. We need the following
estimate for general u-functions.

LEMMA 5.2. Let 6e M and ve/—1a*. Then there exist Bi,B,>0,t=0
and s € R such that

Biu(o,v) = [

oaed?

v,
4p, o

(1 R

4p, oy ) = Balo,).

Proor. By [15, p. 47|, there exist a;,b;, (i=1,...,m), ¢;,d;, (j=1,...,n)
such that

_ F(<V,O(>/4<p,0(> _ai)r(_<v>“>/4<p70‘> - C')
o =11 11 Fo S ac,as = sy rtr s facpas —dy

aedT 1Sism

I<jsn

In [14, p. 96], Trombi proved that a; and ¢; must be real numbers. By con-

sidering zeros of the Plancherel measure (cf. [10], p. 536) and the property of

I'(z), b; and d; must be real numbers. Let mo and 7o be numbers of the case

bi #0 and d; # 0, respectively. In a similar fashion to [7], we can find By, B, >

0 such that

v, ’(1 +‘ v,

4p, o) 4<p, o)

B = I ) = Bato),

aed™
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where
t=m-+n—my— ny,

s = —ma; + mob; — nc; + nod; —m —n+my +ng. [

REMARK. In the case when ¢ is the trivial representation, an estimate of
u-function is given in [7, Lemma 5].

Finally, we shall prove the Cowling—Price theorem for G.

THEOREM 5.3. Let 1 £ p,q < o0 and a,b,C,C, > 0. Let f be a measur-
able function on G such that

2 vZ
||€M(g) F (@l < C, ||6’h‘ | ”a,v(f)||Lq<\/ITn*,B<,W-">) < G
If ab > 1/4, then =0 (ae.).

Proor. It is sufficient to prove the case when f = &sx*g f *xx &, Our
first assumption and f, € L'(G, V) imply that

©) 1e“ " ,(9) | o(a.vy < C.
From f e L!(G) and Proposition 3.1, we have
(7 (/) pee) (k) = P(f(k,v)

for P®veHomy(V;,H,)® V.. We also have 7n,,(f)ppg, € 4" =
Hom y (Vs, Hy) ® V3. Therefore, we obtain

fillky) =1y 1, = > Z Py i fo (K, v)

ceM(@d,7) i=1
my g, d(9)
* -1
= Z Z <7Tt7 V (oPn,;@v’ (oQ(,‘,@w/ >/f” "Pﬂ,iQtﬂ,j(é(k) W/)7
ceM(,7) i=1 j=1 /=1

where P} .0, ; € Homy,(V5, V). And we see that

2
||¢Pﬂ_,-®v” = <¢P,7_j®m¢P,,,j®v>%””“‘

d(o)
d(q)

2

v, 0)y, Tr(P;ng,j) = llvlly,

_
~d(7)

(cf. [2], p. 281). Hence we obtain
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||fb(k7 v)HLq (K xv/=1a*, Vs, u(v)dkdv)

mg  Ng

Z Z Z Z H <77-'(7 v (ﬂP,,_,@l,’ P09, ®w >9f“"’ ”L’I(\/f_la*,u(v)dv)

ceM(,7) i=1 j=1 /=1

X ||P:iQﬂ,j((5(k)71Wﬁ")HL‘l K, V)

IA

oy d(o)
= 760 (f ||Lq (V=Ta*,B(#""), u(v)dv —————lvllw,
Mz )21212 ) (d()d ()
< ||} Q0. ;(0(k) W)l Lo, v2)-
Put
d(o) 1
E, = max —————= P00, j(0(k)" w)llLag. v) ¢
=1 2“_’mg {(d(‘[)d(5))1/2 H : ,j( ( ) /)”L (K,V)}
j=1,2,...,n5,0=1,2,....d(0)

then we have
||f;(k’ V)HLII (Kxv/=1a*, Vy, u(v)dkdv)

< Y Eemgng dO)|ollv 7o () Loy Tar o) ua-
ceM(5,1)
We set
o |
4p,ap|

Lemma 5.2, the second assumption and the Holder inequality imply that

z(v,p) = H

aed™

(10) "] i fulk, VI L (ke Vi 2(v. p)alkean)
< Z By C E;mgn, d(0)||v
oeM(6,7)

where C; > 0 and 0 < b; < b such that ab; > 1/4. Applying Theorem 4.3 and
Lemma 5.1 to (9) and (10), we conclude f =0 (a.e.). [
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