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Abstract

In this paper, we first examine the relationships between a double sequence and its arithmetic
means in different senses (i. e. (C, 1, 0), (C, 0, 1) and (C, 1, 1) means) in terms of slow oscillation
in certain senses and investigate some properties of oscillatory behaviors of the difference se-
quence between the double sequence and its arithmetic means in different senses. Next, we give
an alternative proof of the generalized Littlewood Tauberian theorem for Cesàro summability
method as an application of the results obtained in the first part.
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1 Introduction

Imposing some conditions on the difference sequence between a single sequence of real numbers
and its arithmetic means, such a sequence is called a generator sequence, is based on the second
theorem of Tauber [13]. Tauber [13] proved that the generator sequence’s convergence to zero
is a Tauberian condition for Abel summability method. Later, Szász [12] proved that one-sided
boundedness of the generator sequence is sufficient to recover Cesàro summability of a sequence
from its Abel summability.

The concept of slowly oscillating sequence is introduced by Schmidt [10]. It is well-known
that every convergent sequence is slowly oscillating. Nevertheless, the converse is not true in
general. Schmidt [10] proved that every sequence which is Abel summable and slowly oscillating is
convergent. Dik [4] and Móricz [8] proved that sequence of arithmetic means of a slowly oscillating
sequence is slowly oscillating. Moreover, Dik [4] showed that a sequence is slowly oscillating if and
only if the generator sequence is bounded and slowly oscillating.

Schmidt [10] obtained convergence of (un) from its Cesàro summability by introducing the
concept of a slowly oscillating sequence. Schmidt’s Tauberian theorem is called the generalized
Littlewood Tauberian theorem in the literature. The generalized Littlewood Tauberian theorem is
one of the well-known classical Tauberian theorems. The generalized Littlewood Tauberian theorem
for a single sequence is proved by several authors such as Landau [6] and Vijayaraghavan [16].

Stanojević [11] introduced an equivalent definition for a slowly oscillating sequence. Using
Stanojević’s definition, Dik [4] proved that the slow oscillation of the generator sequence is a
Tauberian condition for Abel summability method. Çanak [3] obtained an alternative proof of the
generalized Littlewood Tauberian theorem stating that (un) is Cesàro summable to s and slowly
oscillating, then (un) is convergent to s.
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The concept of a regularly generated sequence is introduced by Stanojević [11]. Çanak [2] proved
a new Tauberian theorem to retrieve the slow oscillation of (un) out of the Cesàro summability of
the generator sequence and some additional condition(s).

On the other hand, Móricz [7] has given the Tauberian theorems of Landau and Hardy type
for double sequences and deduced an analogue of the generalized Littlewood Tauberian theorem
for double sequences. Totur [14] has proved some classical type Tauberian theorems, which are
called Landau’s theorem and generalized Littlewood Tauberian theorem for Cesàro summability of
a double sequence. Moreover, Totur [14] has given sufficient conditions for a (C, 1, 1) summable
sequence to be P -convergent by imposing conditions on the sequence or one of its generators.
Recently, Totur [15] has shown that if a sequence of arithmetic means of a double sequence has
both the limit inferior and the limit superior, then the double sequence itself has the limit inferior
and the limit superior under suitable Tauberian conditions.

The main results in this paper are given in two parts. In the first part, we examine the re-
lationships between a double sequence and its arithmetic means in different senses (i.e. (C, 1, 0),
(C, 0, 1) and (C, 1, 1) means) in terms of slow oscillation in different senses, and investigate the
oscillatory behaviors of the generator sequence. In the second part, we give an alternative proof of
the generalized Littlewood Tauberian theorem as an application of the results obtained in the first
part.

2 Preliminaries

We now give some necessary definitions and notations for double sequences.
A double sequence u = (umn) is called Pringsheim convergent (in short P -convergent) to s [9],

if for a given ε > 0 there exists a positive integer N0 such that |umn − s| < ε for all nonnegative
integers m,n ≥ N0. Note that in this paper we use convergence in Pringsheim’s sense for double
sequences.

A double sequence (umn) is said to be slowly oscillating in sense (1, 1) if

lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm
n<k≤λn

∣∣∣∣∣
j∑

r=m+1

k∑
s=n+1

∆r,surs

∣∣∣∣∣ = 0,

where λm and λn denote the integer parts of λm and λn, respectively. Equivalently, (umn) is
slowly oscillating in sense (1, 1) if for each ε > 0 there exist n1 > 0 and λ > 1 such that
|ujk − umk − ujn + umn| < ε whenever n1 < m < j ≤ λm and n1 < n < k ≤ λn. A double
sequence (umn) is said to be slowly oscillating in sense (1, 0) if

lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm

∣∣∣∣∣
j∑

r=m+1

∆rurn

∣∣∣∣∣ = 0

Equivalently, (umn) is slowly oscillating in sense (1, 0) if for each ε > 0 there exist n1 > 0 and λ > 1
such that |ujn − umn| < ε whenever n1 < m < j ≤ λm and n1 < n.
A double sequence (umn) is said to be slowly oscillating in sense (0, 1) if

lim
λ→1+

lim sup
m,n→∞

max
n<k≤λn

∣∣∣∣∣
k∑

s=n+1

∆sums

∣∣∣∣∣ = 0
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Equivalently, (umn) is slowly oscillating in sense (0, 1) if for each ε > 0 there exist n1 > 0 and λ > 1
such that |umk − umn| < ε whenever n1 < n < k ≤ λn and n1 < m.

Notice that every P -convergent sequence is slowly oscillating in senses (1, 1), (1, 0) and (0, 1).
However, the converses may not be true. For instance, the double sequence (umn) = (logm log n)
is slowly oscillating in sense (1, 1), but not P -convergent.

The (C, 1, 1) means of (umn) are defined by

σ(11)
mn (u) :=

1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

uij

for all nonnegative integers m and n. The (C, 1, 0) and (C, 0, 1) means of (umn) are defined respec-
tively by

σ(10)
mn (u) :=

1

m+ 1

m∑
i=0

uin and σ(01)
mn (u) :=

1

n+ 1

n∑
j=0

umj

for all nonnegative integers m and n.
The following identities are satisfied for a double sequence (umn):

σ(10)
mn (σ(01)(u)) = σ(01)

mn (σ(10)(u)) = σ(11)
mn (u), (1)

σ(10)
mn (σ(11)(u)) = σ(11)

mn (σ(10)(u)), (2)

σ(01)
mn (σ(11)(u)) = σ(11)

mn (σ(01)(u)) (3)

for all nonnegative integers m and n.
A double sequence (umn) is said to be bounded if there exists a real number C > 0 such that

|umn| ≤ C for all nonnegative m and n. A sequence (umn) is called (C,α, β) bounded if the sequence

(σ
(αβ)
mn (u)) is bounded, where (α, β) = (1, 1), (1, 0) and (0, 1).
Throughout this paper, the symbols umn = o(1) and umn = O(1) mean respectively that (umn)

is P -convergent to zero as m,n → ∞, and (umn) is bounded. For a double sequence (umn), the
backward differences in sense (1, 0), (0, 1) and (1, 1) are defined respectively by

∆10umn := umn − um−1,n,
∆01umn := umn − um,n−1,
∆11umn := umn − um,n−1 − um−1,n + um−1,n−1

for all nonnegative integers m,n ≥ 1.
Let (umn) be a double sequence. The (C, 1, 1) means of the sequence (mn∆11umn) is defined

by

V (11)
mn (∆11u) :=

1

(m+ 1)(n+ 1)

m∑
i=1

n∑
j=1

ij∆11uij

for all nonnegative integers m and n ([5]). The (C, 1, 0) means of the sequence (m∆10umn) is
defined by

V (10)
mn (∆10u) :=

1

m+ 1

m∑
i=1

i∆10uin
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for all nonnegative integers m and n. The (C, 0, 1) means of sequence (n∆01umn) is defined by

V (01)
mn (∆01u) :=

1

n+ 1

n∑
j=1

j∆01umj

for all nonnegative integers m and n.
We define the Kronecker identities for a double sequence (umn) as follows:

umn − σ(10)
mn (u)− σ(01)

mn (u) + σ(11)
mn (u) = V (11)

mn (∆11u), (4)

umn − σ(10)
mn (u) = V (10)

mn (∆10u), (5)

umn − σ(01)
mn (u) = V (01)

mn (∆01u) (6)

for all nonnegative integers m and n ([5]).
For a double sequence (umn), we have the following identities:

mn∆11σ
(11)
mn (u) = V (11)

mn (∆11u),

m∆10σ
(10)
mn (u) = V (10)

mn (∆10u),

n∆01σ
(01)
mn (u) = V (01)

mn (∆01u) (7)

for all nonnegative integer m and n. Indeed, we can easily obtain the identity (7) from the calcu-
lations

n∆01σ
(01)
mn (u) = n

 1

n+ 1

n∑
j=0

umj −
1

n

n−1∑
j=0

umj


=

1

n+ 1

n n∑
j=0

umj − n
n−1∑
j=0

umj −
n−1∑
j=0

umj


=

1

n+ 1

numn − n−1∑
j=0

umj


=

1

n+ 1

n∑
j=0

j∆01umj .

The other identities can be obtained similarly.
For a double sequence (umn), we obtain

σ(11)
mn (u) =

m∑
i=1

n∑
j=1

V
(11)
ij (∆11u)

ij
+ σ

(11)
0,n (u) + σ

(11)
m,0 (u)− σ(11)

0,0 (u),

σ(10)
mn (u) =

m∑
i=1

V
(10)
in (∆10u)

i
+ u0n,
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σ(01)
mn (u) =

n∑
j=1

V
(01)
mj (∆01u)

j
+ um0

by using the identities above.
The Kronecker identity (4) can be rewritten as

V (10)
mn (∆10u) + V (01)

mn (∆01u)− V (11)
mn (∆11u) = umn − σ(11)

mn (u) (8)

by (5) and (6).
A double sequence (umn) can be expressed by (8) as

umn = V (10)
mn (∆10u) + V (01)

mn (∆01u) +

m∑
i=1

n∑
j=1

V
(11)
ij (∆11u)

ij

+ σ
(11)
0,n (u) + σ

(11)
m,0 (u)− σ(11)

0,0 (u)− V (11)
mn (∆11u)

in terms of the sequences
(
V

(10)
mn (∆10u)

)
,
(
V

(01)
mn (∆01u)

)
and

(
V

(11)
mn (∆11u)

)
which generate (umn).

A double sequence (umn) can be also represented as

umn = V (10)
mn (∆10u) +

m∑
i=1

V
(10)
in (∆10u)

i
+ u0,n

or

umn = V (01)
mn (∆01u) +

n∑
j=1

V
(01)
mj (∆01u)

j
+ um,0

The sequences
(
V

(10)
mn (∆10u)

)
and

(
V

(01)
mn (∆01u)

)
are said to be generators of (umn).

3 Lemmas

In this part of the paper, we give the required lemmas to prove our main theorem.
We need the following lemma for the proof of the next lemma. The following two Lemmas are

double sequence analogues of lemmas given by Badiozzaman [1] for single sequences.

Lemma 3.1. Let (umn) be a double sequence. If (γn) is an increasing sequence of positive integers,
then ∣∣∣∣∣∣

q∑
i=p

s∑
j=r

γiγjuij

∣∣∣∣∣∣ ≤ γqγs max
p≤x≤q
r≤y≤s

∣∣∣∣∣∣
q∑
i=x

s∑
j=y

uij

∣∣∣∣∣∣ .
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Proof. Let tmn =

q∑
i=m

s∑
j=n

uij . Then using summation by parts, we have

q∑
i=p

s∑
j=r

γiγjuij =

q∑
i=p

s∑
j=r

γiγj (tij − ti+1,j − ti,j+1 + ti+1,j+1)

=

q∑
i=p

s∑
j=r

γiγjtij −
q+1∑
i=p+1

s∑
j=r

γi−1γjtij

−
q∑
i=p

s+1∑
j=r+1

γiγj−1tij +

q+1∑
i=p+1

s+1∑
j=r+1

γi−1γj−1tij

=

q∑
i=p+1

s∑
j=r+1

γiγjtij + γr

q∑
i=p

γitir + γp

s∑
j=r+1

γjtpj

−
q∑

i=p+1

s∑
j=r+1

γi−1γjtij − γr
q∑

i=p+1

γi−1tir − γq
s∑
j=r

γjtq+1,j

−
q∑

i=p+1

s∑
j=r+1

γiγj−1tij − γp
s∑

j=r+1

γj−1tpj − γs
q∑
i=p

γiti,s+1

+

q∑
i=p+1

s∑
j=r+1

γi−1γj−1tij + γq

s∑
j=r+1

γj−1tq+1,j

+ γs

q∑
i=p+1

γi−1ti,s+1 + γsγqtq+1,s+1

=

q∑
i=p+1

s∑
j=r+1

tijγiγj (γiγj − γi−1γj − γiγj−1 + γi−1γj−1)

+ γr

q∑
i=p+1

tir (γi − γi−1) + γp

s∑
j=r+1

tpj (γj − γj−1) + γrγptpr

≤
q∑

i=p+1

s∑
j=r+1

tpr(γiγj − γi−1γj − γiγj−1 + γi−1γj−1

+ γr (γi − γi−1) + γp (γj − γj−1) + γrγp).



An alternative proof of the generalized Littlewood Tauberian theorem 137

Therefore, we obtain∣∣∣∣∣∣
q∑
i=p

s∑
j=r

γiγjuij

∣∣∣∣∣∣ ≤ max
p≤x≤q
r≤y≤s

∣∣∣∣∣∣
q∑
i=x

s∑
j=y

uij

∣∣∣∣∣∣
q∑

i=p+1

s∑
j=r+1

∣∣(γiγj − γi−1γj − γiγj−1
+γi−1γj−1 + γr (γi − γi−1) + γp (γj − γj−1) + γrγp

)∣∣
= max

p≤x≤q
r≤y≤s

∣∣∣∣∣∣
q∑
i=x

s∑
j=y

uij

∣∣∣∣∣∣ ∣∣γpγr − γpγs − γrγq + γqγs

+γr (γq − γp) + γp (γs − γr) + γrγp
∣∣

= γqγs max
p≤x≤q
r≤y≤s

∣∣∣∣∣∣
q∑
i=x

s∑
j=y

uij

∣∣∣∣∣∣ .
q.e.d.

The following lemma is required for the proof of Theorem 4.1.

Lemma 3.2. Let (umn) be a double sequence. If λ > 1 can be choosen such that for m,n ≥ 0

max
m≤p≤λm
n≤s≤λn

∣∣∣∣∣∣
p∑

i=m

s∑
j=n

uij

∣∣∣∣∣∣ ≤ β
then ∣∣∣∣∣∣

m∑
i=1

n∑
j=1

ijuij

∣∣∣∣∣∣ = O(mn).

Proof. If m < x < m+ 1 and n < y < n+ 1, by Lemma 3.1, we have∣∣∣∣∣∣
m∑
i=1

n∑
j=1

ijuij

∣∣∣∣∣∣ ≤
∞∑
q=0

∞∑
r=0

∣∣∣∣∣∣
∑

xλ−q−1<i<xλ−q

∑
yλ−r−1<j<λ−r

ijuij

∣∣∣∣∣∣
≤
∞∑
q=0

∞∑
r=0

xyλ−q−r max
xλ−q−1≤t≤tp<xλ−q

yλ−r−1≤v≤vp<yλ−r

∣∣∣∣∣∣
tp∑
i=t

vp∑
j=v

uij

∣∣∣∣∣∣
≤ βxy

(
λ

λ− 1

)2

and the result follows on letting x→ m+ and y → n+. q.e.d.

The following identities are important because of showing the relationships between the gener-
ators of a double sequence (umn).
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Lemma 3.3. The following identities are satisfied:

V (01)
mn (∆01V

(10)(∆10u)) = V (11)
mn (∆11u), (9)

and
V (10)
mn (∆10V

(01)(∆01u)) = V (11)
mn (∆11u).

Proof. First, we prove (9). By definition, we have

V (01)
mn

(
∆01V

(10) (∆10u)
)

=
1

n+ 1

n∑
j=1

j∆01

(
1

m+ 1

m∑
i=1

i∆10uij

)

=
1

(m+ 1)(n+ 1)

n∑
j=1

j∆01

m∑
i=1

i∆10uij

=
1

(m+ 1)(n+ 1)

m∑
i=1

n∑
j=1

ij∆11uij

= V (11)
mn (∆11u).

Proof of the second identity is similar. We omit the proof of it. q.e.d.

The following two lemmas are due to Móricz [7]. A different proof of Lemma 3.4 is given by
Totur [14].

Lemma 3.4. Let (umn) be a double sequence of real numbers. For sufficiently large m and n,

(i) If λ > 1,

umn − σ(11)
mn (u) =

(λm + 1)(λn + 1)

(λm −m)(λn − n)

(
σ
(11)
λm,λn

(u)− σ(11)
λm,n

(u)− σ(11)
m,λn

(u) + σ(11)
mn (u)

)
+
λm + 1

λm −m

(
σ
(11)
λm,n

(u)− σ(11)
mn (u)

)
+
λn + 1

λn − n

(
σ
(11)
m,λn

(u)− σ(11)
mn (u)

)
− 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

(ujk − umn).

(ii) If 0 < λ < 1,

umn − σ(11)
mn (u) =

(λm + 1)(λn + 1)

(m− λm)(n− λn)

(
σ(11)
mn (u)− σ(11)

λm,n
(u)− σ(11)

m,λn
(u) + σ

(11)
λm,λn

(u)
)

+
λm + 1

m− λm

(
σ(11)
mn (u)− σ(11)

λm,n
(u)
)

+
λn + 1

n− λn

(
σ(11)
mn (u)− σ(11)

m,λn
(u)
)

+
1

(m− λm)(n− λn)

m∑
j=λm+1

n∑
k=λn+1

(umn − ujk)

where λm and λn denote the integer parts of λm and λn, respectively.
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Lemma 3.5. Let (umn) be a double sequence of real numbers. For sufficiently large m and n,

(i) If λ > 1,

umn − σ(10)
mn (u) =

λm + 1

λm −m

(
σ
(10)
λm,n

(u)− σ(10)
mn (u)

)
− 1

λm −m

λm∑
j=m+1

(ujn − umn).

(ii) If 0 < λ < 1,

umn − σ(10)
mn (u) =

λm + 1

m− λm

(
σ(10)
mn (u)− σ(10)

λm,n
(u)
)

+
1

m− λm

m∑
j=λm+1

(umn − ujn).

4 Main results

In this section, we present the first part of our main results.

Theorem 4.1. If (umn) is slowly oscillating in sense (1, 1), then
(
V

(11)
mn (∆11u)

)
is bounded.

Proof. Let m < x < m + 1 and n < y < n + 1. Since (umn) is slowly oscillating in sense (1, 1),
the condition in Lemma 3.2 is satisfied for the sequence (∆11umn) sequence. Replacing umn by
∆11umn in Lemma 3.2, then we obtain∣∣∣∣∣∣

m∑
i=1

n∑
j=1

ij∆11uij

∣∣∣∣∣∣ ≤ βxy
(

λ

λ− 1

)2

.

By dividing both sides of the previous inequality by (m+ 1)(n+ 1), we have∣∣∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=1

n∑
j=1

ij∆11uij

∣∣∣∣∣∣ ≤ βxy

(m+ 1)(n+ 1)

(
λ

λ− 1

)2

.

Because of m < x < m+ 1 and n < y < n+ 1, we get∣∣∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=1

n∑
j=1

ij∆11uij

∣∣∣∣∣∣ ≤ β
(

λ

λ− 1

)2

.

Finally, we conclude that
(
V

(11)
mn (∆11umn)

)
is bounded. q.e.d.

Dik [4] proved that a single sequence (un) is slowly oscillating if and only if the sequence of the
difference between un and its arithmetic mean σn(u) is bounded and slowly oscillating. Analogue
statements for double sequences are given by the following theorem. Since their proofs can be done
similarly as in the proof of single sequence case, then we omit it.

Theorem 4.2. (i) A double sequence (umn) is slowly oscillating in sense (1, 0) if and only if(
V

(10)
mn (∆10u)

)
is bounded and slowly oscillating in sense (1, 0).
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(ii) A double sequence (umn) is slowly oscillating in sense (0, 1) if and only if
(
V

(01)
mn (∆01u)

)
is

bounded and slowly oscillating in sense (0, 1).

It is well-known that the (C, 0, 1) (or (C, 1, 0)) mean of a slowly oscillating sequence in sense
(0, 1) (or (1, 0)) is slowly oscillating in the same sense.

The following theorem shows that the (C, 1, 0) (or (C, 0, 1)) mean of a slowly oscillating sequence
in sense (0, 1) (or (1, 0)) is also slowly oscillating in the same sense under the boundness condition.

Theorem 4.3. (i) If (umn) is slowly oscillating in sense (0, 1) and bounded, then (σ
(10)
mn (u)) is

slowly oscillating in sense (0, 1).

(ii) If (umn) is slowly oscillating in sense (1, 0) and bounded, then (σ
(01)
mn (u)) is slowly oscillating

in sense (1, 0).

Proof. (i) Suppose that (umn) is slowly oscillating in sense (0, 1). Hence given ε > 0, there exist

n1 > 0 and λ > 1 such that |umk − umn| <
ε

2
whenever n1 < n < k ≤ λn and n1 < m. Since (umn)

is bounded, there is a constant K > 0 such that |umn| ≤ K for all nonnegative integers m and n.
Then, we have

∣∣∣σ(10)
mk (u)− σ(10)

mn (u)
∣∣∣ =

1

m+ 1

∣∣∣∣∣
m∑
i=0

(uik − uin)

∣∣∣∣∣
≤ 1

m+ 1

m∑
i=0

|uik − uin|

=
|u0k − u0n|+ |u1k − u1n|+ · · ·+ |un1,k − un1,n|

m+ 1

+
|un1+1,k − un1+1,n+|+ · · ·+ |umk − umn|

m+ 1

≤ n1K

m+ 1
+
ε

2

m− n1
m+ 1

<
n1K

m+ 1
+
ε

2
.

Since lim
m→∞

n1K

m+ 1
= 0, there exists n2 such that

∣∣∣∣ n1Km+ 1

∣∣∣∣ < ε

2
whenever m > n2. So there exists

n3 = max(n1, n2) such that ∣∣∣σ(10)
mk (u)− σ(10)

mn (u)
∣∣∣ < ε

whenever n3 < n < k ≤ λn and n3 < m. This proves that
(
σ
(10)
mn

)
is slowly oscillating in sense

(0, 1).
The proof of (ii) is similar to that of (i). q.e.d.

The following Theorem is presented that the slow oscillation of (umn) in the certain sense implies
the slow oscillation of the sequence (C, 1, 0) (or (C, 0, 1)) mean of (umn) in the different sense.
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Theorem 4.4. (i) If (umn) is slowly oscillating in sense (0, 1), then (σ
(10)
mn (u)) is slowly oscillating

in sense (1, 1).

(ii) If (umn) is slowly oscillating in sense (1, 0), then (σ
(01)
mn (u)) is slowly oscillating in sense (1, 1).

Proof. (i) Suppose that (umn) is slowly oscillating in sense (0, 1). Hence given ε > 0, there exist
n1 > 0 and λ > 1 such that |umk − umn| < ε whenever n1 < n < k ≤ λn and n1 < m. Then, we
have∣∣∣σ(10)

jk (u)− σ(10)
jn (u) + σ

(10)
mk (u)− σ(10)

mn (u)
∣∣∣

=

∣∣∣∣∣ 1

j + 1

j∑
i=0

uik −
1

j + 1

j∑
i=0

uin −
1

m+ 1

m∑
i=0

uik +
1

m+ 1

m∑
i=0

uin

∣∣∣∣∣
≤ 1

j + 1

j∑
i=m+1

|uik − uin| < ε

This proves that
(
σ
(10)
mn

)
is slowly oscillating in sense (0, 1).

The proof of (ii) is similar to that of (i). q.e.d.

Theorem 4.5. If (umn) is slowly oscillating in senses (1, 0), (0, 1) and (1, 1), then
(
V

(11)
mn (∆11u)

)
is slowly oscillating in sense (1, 1).

Proof. Suppose that (umn) is slowly oscillating in senses (1, 0), (0, 1) and (1, 1). Then,
(
σ
(10)
mn (u)

)
and

(
σ
(01)
mn (u)

)
are slowly oscillating in sense (1, 1) by Theorem 4.4. So we obtain that

(
V

(10)
mn (∆10u)

)
and

(
V

(01)
mn (∆01u)

)
are slowly oscillating in sense (1, 1) by the Kronecker identities (5) and (6), re-

spectively. We conclude that
(
V

(11)
mn (∆11u)

)
is slowly oscillating in sense (1, 1) by (8). q.e.d.

The following theorem allows us to prove the generalized Littlewood Tauberian theorem without
imposing a condition on the regularly generated sequence.

Theorem 4.6. If (umn) is slowly oscillating in senses (1, 0) and (0, 1), then
(
V

(11)
mn (∆11u)

)
is

slowly oscillating in senses (1, 0) and (0, 1), respectively.

Proof. Replacing umn by V
(01)
mn (∆01u) in the Kronecker identity (5), we have

V (01)
mn (∆01u)− σ(10)

mn

(
V (01) (∆01u)

)
= V (11)

mn (∆11u) .

Since
(
V

(01)
mn (∆01u)

)
is bounded and slowly oscillating in sense (0, 1) by Theorem 4.2 (ii), the

(C, 1, 0) means of
(
V

(01)
mn (∆01u)

)
is slowly oscillating in sense (0,1) by Theorem 4.3 (i). Therefore,(

V
(11)
mn (∆11u)

)
is slowly oscillating in sense (0, 1). Similarly, we obtain that

(
V

(11)
mn (∆11u)

)
is

slowly oscillating in sense (1, 0). q.e.d.
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5 Applications to Tauberian theorems

A sequence (umn) is said to be (C,α, β) summable to s if lim
m,n→∞

σ(αβ)
mn (u) = s, where (α, β) = (1, 1),

(1, 0) and (0, 1). In this case, we write umn → s (C,α, β).
Note that P -convergent double sequences need not be bounded (see [14]).
By the regularity of the (C, 1, 1) summability method under the boundedness condition, we

mean that if a double sequence is P -convergent to s and bounded, then it is (C, 1, 1) summable
to s. However, the converse is not necessarily true in general. Namely, a double sequence which
is bounded and (C, 1, 1) summable may not be P -convergent. We can recover P -convergence of a
double sequence from its (C, 1, 1) summability under some suitable condition. Such a condition is
called a Tauberian condition and the resulting theorem is called a Tauberian theorem.

Our goal in this part is to give an alternative proof of the generalized Littlewood Tauberian
theorem for Cesàro summability method for double sequences by using the concept of the regularly
generated sequence. Our main theorem adapts the proof given by Çanak [3] for single sequences to
double sequences.

Theorem 5.1. Let (umn) be (C, 1, 1) bounded. If (umn) is (C, 1, 1) summable to s and slowly
oscillating in senses (1, 1), (1, 0) and (0, 1), then (umn) is P -convergent to s.

Corollary 5.2. Let (umn) be (C, 1, 1) bounded. If (umn) is (C, 1, 1) summable to s and the
conditions

m∆10umn = O(1), n∆01umn = O(1) and mn∆11umn = O(1)

are satisfied, then (umn) is P -convergent to s.

Proof. Since mn∆11umn = O(1), there exists a constant C > 0 such that |mn∆11umn| ≤ C. Then,
we have

|ujk − umk − ujn + umn| ≤
j∑

i=m+1

k∑
s=n+1

|∆11uis| ≤
j∑

i=m+1

k∑
s=n+1

C

is
≤ C log

(
j

m

)
log

(
k

n

)
.

For λ > 1, we obtain

max
m<j≤λm
n<k≤λn

|ujk − umk − ujn + umn| ≤ C log

(
λm
m

)
log

(
λn
n

)
.

By the definition of slowly oscillating sequence in sense (1, 1), we obtain that (umn) is slowly
oscillating in sense (1, 1).

Similarly, we can easily obtain the slow oscillation of (umn) in senses (1, 0) and (0, 1). q.e.d.

In the following theorem, we present the generalized Littlewood Tauberian theorem for (C, 1, 0)
and (C, 0, 1) summability methods.

Theorem 5.3. (i) Let (umn) be (C, 1, 0) bounded. If (umn) is (C, 1, 0) summable to s and slowly
oscillating in sense (1, 0), then (umn) is P -convergent to s.

(ii) Let (umn) be (C, 0, 1) bounded. If (umn) is (C, 0, 1) summable to s and slowly oscillating in
sense (0, 1), then (umn) is P -convergent to s.
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The following result can be given as a corollary for Theorem 5.3.

Corollary 5.4. (i) Let (umn) be (C, 1, 0) bounded. If (umn) is (C, 1, 0) summable to s and the
condition m∆10umn = O(1) is satisfied, then (umn) is P -convergent to s.

(ii) Let (umn) be (C, 0, 1) bounded. If (umn) is (C, 0, 1) summable to s and the condition
n∆01umn = O(1) is satisfied, then (umn) is P -convergent to s.

6 The proof of Theorem 5.1

Now, we prove our main theorem in this section.

Proof. Taking the (C, 1, 1) means of both sides of the Kronecker identity (4), we get

σ(11)
mn (u) − σ(11)

mn

(
σ(10)(u)

)
− σ(11)

mn

(
σ(01)(u)

)
+ σ(11)

mn

(
σ(11)(u)

)
= σ(11)

mn

(
V (11) (∆11u)

)
.

Then, we obtain

σ(11)
mn (u) − σ(10)

mn

(
σ(11)(u)

)
− σ(01)

mn

(
σ(11)(u)

)
+ σ(11)

mn

(
σ(11)(u)

)
= σ(11)

mn

(
V (11) (∆11u)

)
by the identities (2) and (3).

Taking the limit of both sides of the last identity as m,n→∞, then we have

lim
m,n→∞

(
σ(11)
mn (u)− σ(10)

mn

(
σ(11)(u)

)
− σ(01)

mn

(
σ(11)(u)

)
+ σ(11)

mn

(
σ(11)(u)

))
= lim
m,n→∞

σ(11)
mn

(
V (11) (∆11u)

)
Since (C, 0, 1), (C, 1, 0) and (C, 1, 1) summability methods are regular under the boundedness con-
dition, and (umn) is (C, 1, 1) bounded and (C, 1, 1) summable to s, it follows that

lim
m,n→∞

σ(11)
mn

(
V (11) (∆11u)

)
= 0.

Therefore,
(
V

(11)
mn (∆11u)

)
is (C, 1, 1) summable to 0. Replacing umn by V

(11)
mn (∆11u) in Lemma 3.4

(i), we obtain

V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))

=
(λm + 1)(λn + 1)

(λm −m)(λn − n)

(
σ
(11)
λm,λn

(V (11)(∆11u))− σ(11)
λm,n

(V (11)(∆11u))

− σ(11)
m,λn

(V (11)(∆11u)) + σ(11)
mn (V (11)(∆11u))

)
+

λm + 1

λm −m

(
σ
(11)
λm,n

(V (11)(∆11u))− σ(11)
mn (V (11)(∆11u))

)
+
λn + 1

λn − n

(
σ
(11)
m,λm

(V (11)(∆11u))− σ(11)
mn (V (11)(∆11u))

)
− 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

(V
(11)
jk (∆11u)− V (11)

mn (∆11u)) (10)
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From the identity (10), we get

|V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))|

≤

∣∣∣∣∣ (λm + 1)(λn + 1)

(λm −m)(λn − n)

(
σ
(11)
λm,λn

(V (11)(∆11u))− σ(11)
λm,n

(V (11)(∆11u))

− σ(11)
m,λn

(V (11)(∆11u)) + σ(11)
mn (V (11)(∆11u))

)∣∣∣∣∣
+

∣∣∣∣∣ λm + 1

λm −m

(
σ
(11)
λm,n

(V (11)(∆11u))− σ(11)
mn (V (11)(∆11u))

)∣∣∣∣∣
+

∣∣∣∣∣λn + 1

λn − n

(
σ
(11)
m,λm

(V (11)(∆11u))− σ(11)
mn (V (11)(∆11u))

)∣∣∣∣∣
+

∣∣∣∣∣− 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

(V
(11)
jk (∆11u)− V (11)

mn (∆11u))

∣∣∣∣∣ (11)

For the last term on the right-hand side of the inequality (11), we have∣∣∣∣∣− 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

(V
(11)
jk (∆11u)− V (11)

mn (∆11u))

∣∣∣∣∣
≤ 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

∣∣∣∣∣
j∑

r=m+1

k∑
s=n+1

∆11V
(11)
rs (∆11u)

∣∣∣∣∣
+

1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

∣∣∣∣∣
j∑

r=m+1

∆10V
(11)
rn (∆11u)

∣∣∣∣∣
+

1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

∣∣∣∣∣
k∑

s=n+1

∆01V
(11)
ms (∆11u)

∣∣∣∣∣.
Therefore, we obtain∣∣∣∣∣− 1

(λm −m)(λn − n)

λm∑
j=m+1

λn∑
k=n+1

(V
(11)
jk (∆11u)− V (11)

mn (∆11u))

∣∣∣∣∣
≤ max
m+1≤j≤λm
n+1≤k≤λn

∣∣∣∣∣
j∑

r=m+1

k∑
s=n+1

∆11V
(11)
rs (∆11u)

∣∣∣∣∣+ max
m+1≤j≤λm

∣∣∣∣∣
j∑

r=m+1

∆10V
(11)
rn (∆11u)

∣∣∣∣∣
+ max
n+1≤k≤λn

∣∣∣∣∣
k∑

s=n+1

∆01V
(11)
ms (∆11u)

∣∣∣∣∣ .
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Taking the lim sup of both sides of the inequality (11) as m,n→∞, we have

lim sup
m,n→∞

∣∣∣V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))
∣∣∣ ≤ λ2

(λ− 1)2
lim sup
m,n→∞

|σ(11)
λm,λn

(V (11)(∆11u))|

+

(
λ2

(λ− 1)2
+

λ

λ− 1

)
lim sup
m,n→∞

|σ(11)
λm,n

(V (11)(∆11u))|

+

(
λ2

(λ− 1)2
+

λ

λ− 1

)
lim sup
m,n→∞

|σ(11)
m,λn

(V (11)(∆11u))|

+

(
λ2

(λ− 1)2
+

2λ

λ− 1

)
lim sup
m,n→∞

|σ(11)
m,n(V (11)(∆11u))|

+ lim sup
m,n→∞

max
m+1≤j≤λm
n+1≤k≤λn

∣∣∣∣∣
j∑

r=m+1

k∑
s=n+1

∆11V
(11)
rs (∆11u)

∣∣∣∣∣
+ lim sup
m,n→∞

max
m<j≤λm

∣∣∣∣∣
j∑

r=m+1

∆10V
(11)
rn (∆11u)

∣∣∣∣∣
+ lim sup
m,n→∞

max
n<k≤λn

∣∣∣∣∣
k∑

s=n+1

∆01V
(11)
ms (∆11u)

∣∣∣∣∣
Since

(
V

(11)
mn (∆11u)

)
is (C, 1, 1) summable to 0, the first four terms on the right-hand side of the

last inequality vanish. Taking the limit of both sides as λ→ 1+, we obtain

lim sup
m,n→∞

∣∣∣V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))
∣∣∣

≤ lim
λ→1+

lim sup
m,n→∞

max
m+1≤j≤λm
n+1≤k≤λn

∣∣∣∣∣
j∑

r=m+1

k∑
s=n+1

∆11V
(11)
rs (∆11u)

∣∣∣∣∣
+ lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm

∣∣∣∣∣
j∑

r=m+1

∆10V
(11)
rn (∆11u)

∣∣∣∣∣+ lim
λ→1+

lim sup
m,n→∞

max
n<k≤λn

∣∣∣∣∣
k∑

s=n+1

∆01V
(11)
ms (∆11u)

∣∣∣∣∣
Since (umn) is slowly oscillating in senses (1, 1), (1, 0) and (0, 1),

(
V

(11)
mn (∆11u)

)
is slowly oscillating

in sense (1, 1) by Theorem 4.5 and
(
V

(11)
mn (∆11u)

)
is slowly oscillating in sense (1, 0) and (0, 1) by

Theorem 4.6. Hence, we get

lim sup
m,n→∞

∣∣∣V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))
∣∣∣ ≤ 0

We then have

lim
m,n→∞

(
V (11)
mn (∆11u)− σ(11)

mn (V (11)(∆11u))
)

= 0
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Since
(
V

(11)
mn (∆11u)

)
is (C, 1, 1) summable to 0, we obtain

lim
m,n→∞

V (11)
mn (∆11u) = 0. (12)

On the other hand, we have

umn − σ(10)
mn (u)− σ(01)

mn (u) + σ(11)
mn (u) = V (11)

mn (∆11u)

It follows from the Kronecker identity (5) that

V (10)
mn (∆10u)− σ(01)

mn (u) + σ(11)
mn (u) = V (11)

mn (∆11u)

Taking (C, 1, 0) means of both sides, we get

σ(10)
mn

(
V (10)(∆10u)

)
− σ(10)

mn

(
σ(01)(u)

)
+ σ(10)

mn

(
σ(11)(u)

)
= σ(10)

mn

(
V (11) (∆11u)

)
(13)

Since
(
V

(11)
mn (∆11u)

)
is bounded by Theorem 4.1 and

(
V

(11)
mn (∆11u)

)
is P -convergent to 0, we get

lim
m,n→∞

σ(10)
mn

(
V (11)(∆11u)

)
= 0 (14)

by the regularity of the (C, 1, 0) summability method. Since (umn) is (C, 1, 1) bounded and (C, 1, 1)
summable to s, we have

σ(10)
mn

(
σ(11)(u)

)
= s (15)

It follows by the fact that σ
(10)
mn

(
σ(01)(u)

)
= σ

(11)
mn (u) that

lim
m,n→∞

σ(10)
mn

(
σ(01)(u)

)
= lim
m,n→∞

σ(11)
mn (u) = s. (16)

Taking (14), (15) and (16) into consideration, we see that
(
V

(10)
mn (∆10u)

)
is (C, 1, 0) summable to

0 by identity (13). Similarly,
(
V

(01)
mn (∆01u)

)
is (C, 0, 1) summable to 0.

For λ > 1, replacing umn by V
(10)
mn (∆10u) in Lemma 3.5 (i), we obtain

|V (10)
mn (∆10u)− σ(10)

mn (V (10)(∆10u))| ≤

∣∣∣∣∣ λm + 1

λm −m

(
σ
(10)
λm,n

(V (10)(∆10u))− σ(10)
mn (V (10)(∆10u))

)∣∣∣∣∣
+

∣∣∣∣∣∣− 1

λm −m

λm∑
j=m+1

(
V

(10)
jn (∆10u)− V (10)

mn (∆10u)
)∣∣∣∣∣∣

≤

∣∣∣∣∣ λm + 1

λm −m

(
σ
(10)
λm,n

(V (10)(∆10u))− σ(10)
mn (V (10)(∆10u))

)∣∣∣∣∣
+ max
m<j≤λm

∣∣∣V (10)
jn (∆10u)− V (10)

mn (∆10u)
∣∣∣
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Taking the lim sup of both sides of the previous inequality as m,n→∞, we get

lim sup
m,n→∞

|V (10)
mn (∆10u)− σ(10)

mn (V (10)(∆10u))|

≤ λ

λ− 1
lim sup
m,n→∞

∣∣∣σ(10)
λm,n

(V (10)(∆10u))− σ(10)
mn (V (10)(∆10u))

∣∣∣
+ lim sup
m,n→∞

max
m<j≤λm

∣∣∣V (10)
jn (∆10u)− V (10)

mn (∆10u)
∣∣∣

Since
(
σ
(10)
mn

(
V (10)(∆10u)

))
is P -convergent to 0, the terms on the right-hand side of the last

inequality vanish. Taking the limit of both sides as λ→ 1+, we obtain

lim sup
m,n→∞

|V (10)
mn (∆10u)− σ(10)

mn (V (10)(∆10u))|

≤ lim
λ→1+

lim sup
m,n→∞

max
m<j≤λm

∣∣∣V (10)
jn (∆10u)− V (10)

mn (∆10u)
∣∣∣

Since
(
V

(10)
mn (∆10u)

)
is slowly oscillating in sense (1, 0) by Theorem 4.2, we get

lim sup
m,n→∞

|V (10)
mn (∆10u)− σ(10)

mn (V (10)(∆10u))| ≤ 0

Hence, we obtain

lim
m,n→∞

V (10)
mn (∆10u) = 0 (17)

Similarly, we obtain

lim
m,n→∞

V (01)
mn (∆01u) = 0 (18)

Taking (12), (17) and (18) into consideration and using (8) completes the proof. q.e.d.
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