Uniqueness results related to L-functions and certain differential polynomials

Pulak Sahoo and Samar Halder*
Department of Mathematics, University of Kalyani, West Bengal-741235, India.
E-mail: sahoopulak1@gmail.com, samarhalder.mtmh@gmail.com

Abstract

In this paper, using the idea of weighted sharing we investigate the uniqueness problem of a meromorphic function and an L-function when certain differential polynomials generated by them share a nonzero finite value or have the same fixed points. Our results improve the recent results due to Liu-Li-Yi [Proc. Japan Acad. Ser. A, 93 (2017), 41-46].

2010 Mathematics Subject Classification. 30D35. 11M36
Keywords. Nevanlinna Theory, L-function, weighted sharing, differential polynomials, uniqueness.

1 Introduction, definitions and results

L-functions are Dirichlet series with the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ as a prototype and are important objects in number theory. The value distribution of L-functions concerns distribution of zeros of L-functions and more generally, the c-points of L, that is, the zeros of the function $L(s)-c$, or the values in the set of pre-images

$$
L^{-1}=\{s \in \mathbb{C}: L(s)=c\}
$$

where and in what follows, s denotes complex variables and c denotes a value in the extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. In connection to meromorphic functions, Nevanlinna's uniqueness theorem states that a nonconstant meromorphic function f in \mathbb{C} is completely determined by five such pre-images (cf. [3], [23] and [25]). It is to be noted that an L-function can be analytically continued as meromorphic function in \mathbb{C}.

Let f and g be two meromorphic functions in \mathbb{C} and let $c \in \overline{\mathbb{C}}$. Then f and g are said to share the value c IM (ignoring multiplicities) if $f^{-1}(c)=g^{-1}(c)$ as two sets in $\mathbb{C} . f$ and g are said to share the value c CM (counting multiplicities) if $f(s)-c$ and $g(s)-c$ have the same zeros with the same multiplicities. In the paper by an L-function we shall always mean an L-function L in the Selberg class S that includes the Riemann zeta function ζ and essentially those Dirichlet series where one might expect a Riemann hypothesis. An L-function belonging to S is defined to be a Dirichlet series $L(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ satisfying the following axioms (see [15]):
(i) Ramanujan hypothesis: $a(n) \ll n^{\varepsilon}$ for each $\varepsilon>0$;
(ii) Analytic continuation: There is a nonnegative integer m such that $(s-1)^{m} L(s)$ is an entire function of finite order;
(iii) Functional equation: L satisfies a functional equation of the type

$$
\Lambda_{L}(s)=\omega \overline{\Lambda_{L}(1-\bar{s})},
$$

[^0]where
$$
\Lambda_{L}(s)=L(s) Q^{s} \prod_{j=1}^{K} \Gamma\left(\lambda_{j} s+\nu_{j}\right)
$$
with positive real numbers Q, λ_{j} and complex numbers ν_{j}, ω with $\operatorname{Re} \nu_{j} \geq 0$ and $|\omega|=1$;
(iv) Euler product hypothesis: $L(s)=\prod_{p} \exp \left(\sum_{k=1}^{\infty} \frac{b\left(p^{k}\right)}{p^{k s}}\right)$ with suitable coefficients $b\left(p^{k}\right)$ such that $b\left(p^{k}\right) \ll p^{k \theta}$ for some $\theta<\frac{1}{2}$, where the product is taken over all prime numbers p.

The degree d of an L-function L is defined to be

$$
d=2 \sum_{j=1}^{K} \lambda_{j}
$$

where K and λ_{j} are respectively the positive integer and the positive real number defined in axiom (iii) of the definition of L-function.

In the recent times, the theory of L-functions along with the families of partial zeta type functions, q - zeta type functions, $(q-) L$-functions has become a prominent branch of the analytic number theory. In fact, many important investigations have been done on the unified presentations of such functions (see [16]-[18]). However, in this paper, we shall be mainly concerned with the value sharing of L-functions related to some meromorphic functions. During the last decade the value distribution of L-functions has been studied extensively (see the monograph [19] and also [5], [10], [11]). The uniqueness property related to L-functions was first studied by Steuding ([19], p. 152), as seen from the following result.

Theorem A. If two L-functions L_{1} and L_{2} with $a(1)=1$ share a complex value $c(\neq \infty) \mathrm{CM}$, then $L_{1}=L_{2}$.

Since L-functions are analytically continued as meromorphic functions, it becomes an interesting question that to which extent an L-function can share values with an arbitrary meromorphic function. In this direction, Li [10] proved the following uniqueness result.
Theorem B. Let f be a meromorphic function in the complex plane such that f has finitely many poles in the complex plane and let a and b be any two distinct finite complex values. If f and a nonconstant L-function L share the values a CM and $b \mathrm{IM}$, then $L=f$.

In 1997, it was asked by Lahiri [6]: What can be said about the relationship between two meromorphic functions f and g when two differential polynomials generated by them share some nonzero complex value? Some of the works in this direction can be found in [1, 2, 12, 22]. The following results are due to Yang-Hua [22] and Fang [2] respectively.
Theorem C. Let f and g be two nonconstant meromorphic functions and $n \geq 11$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 1 CM , then either $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f=t g$ for a constant t satisfying $t^{n+1}=1$.
Theorem D. Let f and g be two nonconstant entire functions and n, k be positive integers such that $n>2 k+4$. If $\left(f^{n}\right)^{(k)}$ and $\left(g^{n}\right)^{(k)}$ share 1 CM , then either $f(z)=c_{1} e^{c z}$ and $g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three constants satisfying $(-1)^{k}\left(c_{1} c_{2}\right)^{n}(n c)^{2 k}=1$, or $f=t g$ for a constant t satisfying $t^{n}=1$.

In connection to Theorems A-D, it is natural to ask, what can be said about the relationship between a meromorphic function f and an L-function L when $\left(f^{n}\right)^{(k)}$ and $\left(L^{n}\right)^{(k)}$ share the value 1 CM, or when $\left(f^{n}\right)^{(k)}$ and $\left(L^{n}\right)^{(k)}$ have same fixed points, where n, k are positive integers? Recently $\mathrm{Liu}, \mathrm{Li}$ and Yi [13] proved the following results in this direction.

Theorem E. Let f be a nonconstant meromorphic function, L be an L-function and let n, k be two positive integers such that $n>3 k+6$. If $\left(f^{n}\right)^{(k)}$ and $\left(L^{n}\right)^{(k)}$ share 1 CM , then $f=t L$ for a constant t satisfying $t^{n}=1$.

Theorem F. Let f be a nonconstant meromorphic function, L be an L-function and let n, k be two positive integers such that $n>3 k+6$. If $\left(f^{n}\right)^{(k)}(z)-z$ and $\left(L^{n}\right)^{(k)}(z)-z$ share 0 CM, then $f=t L$ for a constant t satisfying $t^{n}=1$.

Regarding Theorems E and F it is quite natural to ask the following question.
Question 1. Is it possible to relax the nature of sharing the value in Theorems E and F?
In 2001, an idea of gradation of sharing of values known as weighted sharing of values was introduced in [8] which measures how close a shared value being shared IM or to being shared CM. The notion is as follows.

Definition 1. [8] Let $a \in \overline{\mathbb{C}}$ and l be nonnegative integer or infinity. We denote by $E_{l}(a ; f)$ the set of all a-points of f where an a-point of multiplicity p is counted p times if $p \leq l$ and $l+1$ times if $p>l$. If $E_{l}(a ; f)=E_{l}(a ; g)$, we say that f, g share the value a with weight l.

The definition implies that if f, g share some value a with weight l, then z_{0} is an a-point of f with multiplicity $p(\leq l)$ if and only if it is an a-point of g with multiplicity $p(\leq l)$ and z_{0} is an a-point of f with multiplicity $p(>l)$ if and only if it is an a-point of g with multiplicity $q(>l)$, where p is not necessarily equal to q.

We write f, g share (a, l) to mean that f, g share the value a with weight l. Clearly if f, g share (a, l), then f, g share $\left(a, l_{1}\right)$ for any integer l_{1} where $0 \leq l_{1}<l$. Also we note that f, g share the value a CM or IM if and only if f, g share (a, ∞) or $(a, 0)$ respectively.

In the paper, with the aid of weighted sharing we shall find out the possible answers of the above question. We shall prove the following two theorems that improve Theorems E and F respectively by relaxing the nature of sharing of values. The main results of the paper are as follows.

Theorem 1. Let f be a nonconstant meromorphic function, L be an L-function, and n, k be positive integers. If $\left(f^{n}\right)^{(k)}$ and $\left(L^{n}\right)^{(k)}$ share $(1, l)$ and one of the following conditions is satisfied: (i) $l \geq 2$ and $n>3 k+6$, (ii) $l=1$ and $n>\frac{7 k}{2}+\frac{13}{2}$, (iii) $l=0$ and $n>7 k+11$, then $f=t L$ for some constant t satisfying $t^{n}=1$.

Theorem 2. Let f be a nonconstant meromorphic function, L be an L-function, and n, k be positive integers. If $\left(f^{n}\right)^{(k)}(z)-z$ and $\left(L^{n}\right)^{(k)}(z)-z$ share $(0, l)$ and one of the following conditions is satisfied: (i) $l \geq 2$ and $n>3 k+6$, (ii) $l=1$ and $n>\frac{7 k}{2}+\frac{13}{2}$, (iii) $l=0$ and $n>7 k+11$, then $f=t L$ for some constant t satisfying $t^{n}=1$.

We apply Nevanlinna value distribution theory to prove our main results. It is assumed that the reader is familiar with the standard notations such as $m(r, f), N(r, f), \bar{N}(r, f), N(r, a ; f)$, $\bar{N}(r, a ; f), T(r, f)$ etc. and the fundamental results of Nevanlinna theory (see [3], [9], [23] and [25]).

For a nonconstant meromorphic function f in the complex plane we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set of r with finite linear measure. For a function of finite order, $O(\log r)$ and $S(r, f)$ means the same quantity. Moreover, we shall use the following definitions of the order $\rho(f)$ and the lower order $\mu(f)$ of a meromorphic function f (see [3, 23, 25]):

$$
\rho(f)=\limsup _{r \longrightarrow \infty} \frac{\log T(r, f)}{\log r}, \mu(f)=\liminf _{r \longrightarrow \infty} \frac{\log T(r, f)}{\log r} .
$$

Also, a meromorphic function α is said to be a small function of f provided that $T(r, \alpha)=S(r, f)$.
We now explain the following definitions and notations that have been used in the paper.
Definition 2. [7] For $a \in \overline{\mathbb{C}}$, we denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer p we denote by $N(r, a ; f \mid \leq p)$ the counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than p. By $\bar{N}(r, a ; f \mid \leq p)$ we denote the corresponding reduced counting function.

Analogously we can define $N(r, a ; f \mid \geq p)$ and $\bar{N}(r, a ; f \mid \geq p)$.
Definition 3. [8] Let p be positive integer or infinity. We denote by $N_{p}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq p$ and p times if $m>p$. Then

$$
N_{p}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\ldots+\bar{N}(r, a ; f \mid \geq p)
$$

Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.
Definition 4. Let a be any value in the extended complex plane and let k be an arbitrary nonnegative integer. We define

$$
\Theta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

and

$$
\delta_{k}(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{N_{k}(r, a ; f)}{T(r, f)}
$$

Remark 1. From the definitions of $\Theta(a, f)$ and $\delta_{k}(a, f)$, it is clear that

$$
0 \leq \delta_{k}(a, f) \leq \delta_{k-1}(a, f) \leq \delta_{1}(a, f) \leq \Theta(a, f) \leq 1
$$

2 Lemmas

In this section, we present some lemmas that will be needed in the sequel.
Lemma 1. [21] Suppose that f is a nonconstant meromorphic function and let $a_{0}, a_{1}, \ldots, a_{n}$ be finite complex numbers such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2. [23] Let f be a nonconstant meromorphic function and k be a positive integer. Then

$$
N\left(r, 0 ; f^{(k)}\right) \leq N(r, 0 ; f)+k \bar{N}(r, f)+S(r, f)
$$

as $r \rightarrow \infty$, except possibly outside a set of finite linear measure.
Lemma 3. [3] Let f be a nonconstant meromorphic function, k be a positive integer and let c be a nonzero finite complex number. Then

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N(r, 0 ; f)+N\left(r, c ; f^{(k)}\right)-N\left(r, 0 ; f^{(k+1)}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+N_{k+1}(r, 0 ; f)+\bar{N}\left(r, c ; f^{(k)}\right)-N_{0}\left(r, 0 ; f^{(k+1)}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, 0 ; f^{(k+1)}\right)$ is the counting function of those zeros of $f^{(k+1)}$ in $|z|<r$ which are not zeros of $f\left(f^{(k)}-c\right)$ in $|z|<r$.

Lemma 4. [4] Let f be a transcendental meromorphic function in the complex plane. Then corresponding to each $\Lambda>1$, there exists a set $M(\Lambda) \subset(0,+\infty)$, with lower logarithmic density not exceeding the value $d(\Lambda)=1-\left(2 e^{\Lambda-1}-1\right)^{-1}>0$, i.e.,

$$
\underline{\log \operatorname{dens}} M(\Lambda)=\liminf _{r \longrightarrow \infty} \frac{1}{\log r} \int_{M(\Lambda) \cap[1, r]} \frac{d t}{t} \leq d(\Lambda),
$$

provided that for all $r \notin M(\Lambda)$ and for each positive integer k,

$$
\limsup _{r \longrightarrow \infty} \frac{T(r, f)}{T\left(r, f^{(k)}\right)} \leq 3 e \Lambda .
$$

Lemma 5. [24] Let f be a nonconstant meromorphic function, $\alpha(\not \equiv 0, \infty)$ be a small function of f. Then

$$
T(r, f) \leq \bar{N}(r, f)+N(r, 0 ; f)+N\left(r, 0 ; f^{(k)}-\alpha\right)-N\left(r, 0 ;\left(\frac{f^{(k)}}{\alpha}\right)^{\prime}\right)+S(r, f)
$$

Lemma 6. [26] Let $E \subset(0,+\infty)$ be a set of finite linear measure and let f_{1}, f_{2} be two nonconstant meromorphic functions such that $\bar{N}\left(r, f_{j}\right)+\bar{N}\left(r, 0 ; f_{j}\right)=S(r),(j=1,2)$. Then either $\bar{N}_{0}\left(r, 1 ; f_{1}, f_{2}\right)=S(r)$ or there exist two integers p and q satisfying $|p|+|q|>0$ such that $f_{1}^{p} f_{2}^{q}=1$. Here $\bar{N}_{0}\left(r, 1 ; f_{1}, f_{2}\right)$ denotes the reduced counting function of the common 1-points of f_{1} and f_{2} in $|z|<r, T(r)=T\left(r, f_{1}\right)+T\left(r, f_{2}\right)$ and $S(r)=o\{T(r)\}$ as $r \rightarrow \infty$ and $r \notin E$.

Lemma 7. [14] Let F and G be two transcendental meromorphic functions and let $k(\geq 1), l(\geq 0)$ be two integers. Suppose that $F^{(k)}-P$ and $G^{(k)}-P$ share $(0, l)$, where $P \not \equiv 0$ is a polynomial. Then either $F^{(k)} G^{(k)}=P^{2}$ or $F=G$, whenever F and G satisfies one of the following conditions:
(i) $l \geq 2$ and $\Delta_{11}=2 \Theta(\infty, F)+(k+2) \Theta(\infty, G)+\delta_{k+2}(0, F)+\delta_{k+2}(0, G)>k+5$ and $\Delta_{12}=2 \Theta(\infty, G)+(k+2) \Theta(\infty, F)+\delta_{k+2}(0, G)+\delta_{k+2}(0, F)>k+5$;
(ii) $l=1$ and

$$
\Delta_{21}=\left(\frac{k}{2}+\frac{5}{2}\right) \Theta(\infty, F)+(k+2) \Theta(\infty, G)+\frac{1}{2} \delta_{k+1}(0, F)+\delta_{k+2}(0, F)+\delta_{k+2}(0, G)>\frac{3 k}{2}+6
$$

and $\Delta_{22}=\left(\frac{k}{2}+\frac{5}{2}\right) \Theta(\infty, G)+(k+2) \Theta(\infty, F)+\frac{1}{2} \delta_{k+1}(0, G)+\delta_{k+2}(0, G)+\delta_{k+2}(0, F)>\frac{3 k}{2}+6$; (iii) $l=0$ and
$\Delta_{31}=(2 k+4) \Theta(\infty, F)+(2 k+3) \Theta(\infty, G)+2 \delta_{k+1}(0, F)+\delta_{k+1}(0, G)+\delta_{k+2}(0, F)+\delta_{k+2}(0, G)>$ $4 k+11$
and $\Delta_{32}=(2 k+4) \Theta(\infty, G)+(2 k+3) \Theta(\infty, F)+2 \delta_{k+1}(0, G)+\delta_{k+1}(0, F)+\delta_{k+2}(0, G)+$ $\delta_{k+2}(0, F)>4 k+11$.

3 Proof of the Theorems

[Proof of Theorem 2] Let d be the degree of the L-function L. Then by Steuding ([19], p.150), we have

$$
\begin{equation*}
T(r, L)=\frac{d}{\pi} r \log r+O(r) \tag{3.1}
\end{equation*}
$$

We see that any zero z_{0} of L of multiplicity q_{0} is a zero of $\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}$ with multiplicity at least $n q_{0}-k-2$. Also any zero z_{1} of $\frac{\left(L^{n}\right)^{(k)}}{z}-1$ of multiplicity q_{1} is a zero of $\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}$ of multiplicity $q_{1}-1$. Since an L-function can have at most one pole at $z=1$ in the complex plane, using (3.1) and Lemmas 1 and 5 we get

$$
\begin{aligned}
T\left(r, L^{n}\right) & =n T(r, L)+S(r, f) \\
& \leq N\left(r, 0 ; L^{n}\right)+N\left(r, 0 ; \frac{\left(L^{n}\right)^{(k)}}{z}-1\right)-N\left(r, 0 ;\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}\right)+S(r, f) \\
& \leq(k+2) \bar{N}(r, 0 ; L)+\bar{N}\left(r, 0 ; \frac{\left(L^{n}\right)^{(k)}}{z}-1\right)-N_{0}\left(r, 0 ;\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}\right)+S(r, f) \\
& \leq(k+2) T(r, L)+\bar{N}\left(r, 0 ; \frac{\left(f^{n}\right)^{(k)}}{z}-1\right)+S(r, f) \\
& \leq(k+2) T(r, L)+T\left(r,\left(f^{n}\right)^{(k)}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, 0 ;\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}\right)$ is the counting function of those zeros of $\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)^{\prime}$ in $|z|<r$ which are not the zeros of L and $\frac{\left(L^{n}\right)^{(k)}}{z}-1$ in $|z|<r$.
This implies

$$
\begin{equation*}
(n-k-2) T(r, L) \leq T\left(r,\left(f^{n}\right)^{(k)}\right)+S(r, f) \tag{3.2}
\end{equation*}
$$

From (3.1) it is clear that L is a transcendental meromorphic function. Now combining this with (3.2), Theorem 1.5 [23] and the assumption of the lower bound of n, we obtain that $\left(f^{n}\right)^{(k)}$ and so f is a transcendental meromorphic function. Using Lemma 1, we have

$$
\begin{align*}
\Theta\left(\infty, f^{n}\right) & =1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}\left(r, f^{n}\right)}{T\left(r, f^{n}\right)} \\
& =1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, f)}{n T(r, f)+O(1)} \geq 1-\frac{1}{n}, \tag{3.3}
\end{align*}
$$

$$
\begin{align*}
\delta_{k+2}\left(0, f^{n}\right) & =1-\limsup _{r \longrightarrow \infty} \frac{N_{k+2}\left(r, 0 ; f^{n}\right)}{T\left(r, f^{n}\right)} \\
& =1-\limsup _{r \longrightarrow \infty} \frac{(k+2) \bar{N}(r, 0 ; f)}{n T(r, f)+O(1)} \geq 1-\frac{k+2}{n} \tag{3.4}
\end{align*}
$$

and similarly

$$
\begin{align*}
& \delta_{k+2}\left(0, L^{n}\right) \geq 1-\frac{k+2}{n}, \tag{3.5}\\
& \delta_{k+1}\left(0, f^{n}\right) \geq 1-\frac{k+1}{n}, \tag{3.6}\\
& \delta_{k+1}\left(0, L^{n}\right) \geq 1-\frac{k+1}{n} . \tag{3.7}
\end{align*}
$$

Since an L-function has at most one pole $z=1$ in the complex plane, we have

$$
N(r, L) \leq \log r+O(1)
$$

So using (3.1) we deduce that

$$
\begin{equation*}
\Theta\left(\infty, L^{n}\right)=1 \tag{3.8}
\end{equation*}
$$

Considering $F=f^{n}, G=L^{n}$ in Lemma 7 we now get the following three cases.
Case 1. Let $l \geq 2$. Then using (3.3)-(3.5) and (3.8) we have $\Delta_{11} \geq k+6-\frac{2 k+6}{n}$ and $\Delta_{12} \geq$ $k+6-\frac{3 k+6}{n}$. Since $n>3 k+6$, by (i) of Lemma 7 we have two possibilities, either $\left(f^{n}\right)^{n(k)}\left(L^{n}\right)^{(k)}=z^{2}$ or $f^{n}=L^{n}$.

If $f^{n}=L^{n}$, we have nothing to prove as the conclusion of the theorem follows immediately. Therefore we assume that $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=z^{2}$. We claim that 0 is a Picard exceptional value of both f and L. If not, let $z_{2}(\neq 0) \in \mathbb{C}$ be a zero of f with multiplicity $p_{2}(\geq 1)$. Therefore from the assumption that $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=z^{2}$ it follows that $z_{2}=1$ is a pole of L with multiplicity $q_{2}(\geq 1)$ such that $n p_{2}-k=n q_{2}+k$, i.e., $n\left(p_{2}-q_{2}\right)=2 k$, and so $n \leq 2 k$. This is a contradiction to the lower bound of n in Theorem 2 and hence proves our claim for the function f. Similarly we can prove the claim for L. Again, using (3.1), Lemma 1, Theorem 1.15 [23], a result of Whittaker [20], the definition of the order of meromorphic function and also by the assumption that $\frac{\left(f^{n}\right)^{(k)}}{z} \frac{\left(L^{n}\right)^{(k)}}{z}=1$ we get

$$
\begin{equation*}
\rho(f)=\rho\left(f^{n}\right)=\rho\left(\frac{\left(f^{n}\right)^{(k)}}{z}\right)=\rho\left(\frac{\left(L^{n}\right)^{(k)}}{z}\right)=\rho\left(L^{n}\right)=\rho(L)=1 \tag{3.9}
\end{equation*}
$$

Now from (3.9), Lemma 2 and $\frac{\left(f^{n}\right)^{(k)}}{z} \frac{\left(L^{n}\right)^{(k)}}{z}=1$ and the fact that $z=1$ is the only possible pole
of L in \mathbb{C}, we obtain that

$$
\begin{align*}
(n+k) \bar{N}(r, f) & \leq N\left(r,\left(f^{n}\right)^{(k)}\right) \leq N\left(r, \frac{\left(f^{n}\right)^{(k)}}{z}\right)+O(1) \\
& \leq N\left(r, 0 ; \frac{\left(L^{n}\right)^{(k)}}{z}\right)+O(1) \\
& \leq N\left(r, 0 ;\left(L^{n}\right)^{(k)}\right)+O(1) \\
& \leq N\left(r, 0 ; L^{n}\right)+k \bar{N}\left(r, L^{n}\right)+S(r, f) \\
& \leq S(r, f) \tag{3.10}
\end{align*}
$$

Since $z=1$ is the only possible pole of L in \mathbb{C}, using (3.10) it follows that

$$
\begin{equation*}
\bar{N}(r, f)+\bar{N}(r, L) \leq S(r, f) \tag{3.11}
\end{equation*}
$$

We set

$$
\begin{equation*}
\Gamma_{1}=\frac{F_{1}}{G_{1}}, \Gamma_{2}=\frac{F_{1}-1}{G_{1}-1} \tag{3.12}
\end{equation*}
$$

where $F_{1}=\frac{\left(f^{n}\right)^{(k)}}{z}$ and $G_{1}=\frac{\left(L^{n}\right)^{(k)}}{z}$.
Since f and L are transcendental meromorphic functions, we get from (3.12) that $\Gamma_{1} \not \equiv 0$ and $\Gamma_{2} \not \equiv 0$. Now suppose that at least one of Γ_{1} and Γ_{2} is a nonzero constant. Then, from (3.12) we see that F_{1} and G_{1} share $\infty \mathrm{CM}$. Combining this with the fact that $F_{1} G_{1}=1$ we find that ∞ is a Picard exceptional value of both f and L. Next we assume that each of Γ_{1} and Γ_{2} is a nonconstant meromorphic function.

From (3.12) we can deduce that

$$
\begin{equation*}
F_{1}=\frac{\Gamma_{1}\left(1-\Gamma_{2}\right)}{\Gamma_{1}-\Gamma_{2}}, G_{1}=\frac{1-\Gamma_{2}}{\Gamma_{1}-\Gamma_{2}} . \tag{3.13}
\end{equation*}
$$

Without loss of generality suppose that there exists a subset $E \subset \mathbb{R}^{+}$with infinite linear measure such that $T\left(r, G_{1}\right) \leq T\left(r, F_{1}\right)$ and

$$
\begin{align*}
T\left(r, F_{1}\right) & \leq 2\left\{T\left(r, \Gamma_{1}\right)+T\left(r, \Gamma_{2}\right)\right\}+S(r) \\
& \leq 8 T\left(r, F_{1}\right)+S(r) \tag{3.14}
\end{align*}
$$

as $r \in E$ and $r \rightarrow \infty$ where $S(r)=o\{T(r)\}$ and $T(r)=T\left(r, \Gamma_{1}\right)+T\left(r, \Gamma_{2}\right)$. Therefore using (3.9), Lemma 2 and the condition that 0 is a Picard exceptional value of both f and L, we have

$$
\begin{align*}
N\left(r, 0 ; F_{1}\right) & =N\left(r, 0 ; \frac{\left(f^{n}\right)^{(k)}}{z}\right) \\
& \leq N\left(r, 0 ;\left(f^{n}\right)^{(k)}\right)+O(1) \\
& \leq k \bar{N}(r, f)+S(r, f) \tag{3.15}
\end{align*}
$$

Now by (3.10), (3.11) and (3.15) we get

$$
\begin{equation*}
N\left(r, 0 ; F_{1}\right)+N\left(r, 0 ; G_{1}\right) \leq S(r, f) \tag{3.16}
\end{equation*}
$$

From the condition that $F_{1} G_{1}=1$, it is easy to see that F_{1} and G_{1} share 1 and -1 CM . Since F_{1} and G_{1} share 1 CM , using (3.11), (3.12) and (3.16) and noting that F_{1} and G_{1} are transcendental, we obtain

$$
\begin{equation*}
\bar{N}\left(r, \Gamma_{j}\right)+\bar{N}\left(r, 0 ; \Gamma_{j}\right)=S(r),(j=1,2), \tag{3.17}
\end{equation*}
$$

as $r \in E$ and $r \rightarrow \infty$. Now we shall show that $\bar{N}_{0}\left(r, 1 ; \Gamma_{1}, \Gamma_{2}\right)=S(r)$ is not possible. Since F_{1} and G_{1} share -1 CM , from (3.11), (3.12), (3.15) and Nevanlinna's second fundamental theorem we have

$$
\begin{align*}
T\left(r, F_{1}\right) & \leq \bar{N}\left(r, 0 ; F_{1}\right)+\bar{N}\left(r,-1 ; F_{1}\right)+\bar{N}\left(r, F_{1}\right)+S\left(r, F_{1}\right) \\
& \leq \bar{N}\left(r,-1 ; F_{1}\right)+S(r, f)+S\left(r, F_{1}\right) \\
& \leq \bar{N}_{0}\left(r, 1 ; \Gamma_{1}, \Gamma_{2}\right)+S\left(r, F_{1}\right) \tag{3.18}
\end{align*}
$$

as $r \in E$ and $r \rightarrow \infty$.
If $\bar{N}_{0}\left(r, 1 ; \Gamma_{1}, \Gamma_{2}\right)=S(r)$, we get from (3.14) and (3.18) that $T\left(r, \Gamma_{1}\right)+T\left(r, \Gamma_{2}\right) \leq S(r)$, a contradiction. Therefore by Lemma $6,(3.12)$ and (3.17) it follows that there exist two relatively prime integers p and q such that $|p|+|q|>0$ and $\Gamma_{1}^{p} \Gamma_{2}^{q}=1$. Therefore from (3.12) we get that

$$
\begin{equation*}
\left(\frac{F_{1}}{G_{1}}\right)^{p}\left(\frac{F_{1}-1}{G_{1}-1}\right)^{q}=1 . \tag{3.19}
\end{equation*}
$$

Now we discuss the following two subcases.
Subcase 1.1 Assume that $p q \geq 0$. From (3.19) we see that F_{1} and G_{1} share ∞ CM. Then noting that $F_{1} G_{1}=1$ i.e., $\frac{\left(f^{n}\right)^{(k)}}{z} \frac{\left(L^{n}\right)^{(k)}}{z}=1$, we obtain that ∞ is a Picard exceptional value of f and L. This together with the fact that 0 is another Picard exceptional value of f and L, and by (3.9), we can write L as

$$
L(z)=e^{c_{1} z+c_{2}},
$$

where $c_{1}(\neq 0)$ and c_{2} are constants.
Therefore by the result of Hayman [[3], p. 7] we get that

$$
T(r, L)=T\left(r, e^{c_{1} z+c_{2}}\right)=\frac{\left|c_{1}\right| r}{\pi}(1+o(1))
$$

a contradiction to (3.1).
Subcase 1.2 Assume that $p q<0$. Without loss of generality let $p>0$ and $q<0$ and $q=-q^{*}$, for some positive integer q^{*}. Therefore (3.19) reduces to

$$
\begin{equation*}
\left(\frac{F_{1}}{G_{1}}\right)^{p}=\left(\frac{F_{1}-1}{G_{1}-1}\right)^{q^{*}} . \tag{3.20}
\end{equation*}
$$

From $F_{1} G_{1}=1$ it follows that if z_{3} be a pole of F_{1} of some multiplicity $p_{3}(\geq 1)$, then z_{3} is also a zero of G_{1} of multiplicity p_{3}. Therefore from (3.20) we get $2 p=q^{*}=-q$. This gives, $p=1$ and $q=-q^{*}=-2$ as p and q are prime to each other. Hence we get that $F_{1}\left(G_{1}-1\right)^{2}=G_{1}\left(F_{1}-1\right)^{2}$, which is nothing but our obtained result $F_{1} G_{1}=1$. Now we shall deduce a contradiction by using other method.

Since $z=1$ is the only possible pole of L and so of $\left(L^{n}\right)^{(k)}$, using (3.16) we get

$$
\begin{equation*}
\left(L^{n}\right)^{(k)}(z)=\frac{z P(z)}{(z-1)^{m}} e^{c_{3} z+c_{4}} \tag{3.21}
\end{equation*}
$$

where $P(z)$ is nonzero polynomial, m is a nonnegative integer and $c_{3}(\neq 0), c_{4}$ are constants.
Now using the result of Hayman [[3], p. 7], Lemma 4 we get from (3.21) that there exists a subset $E \subset(0,+\infty)$ with logarithmic measure \log meas $E=\int_{E} \frac{d t}{t}=\infty$ such that for any given sufficiently large number $\Lambda>1$, we have

$$
\begin{aligned}
T(r, L) & \leq 3 e \Lambda T\left(r,\left(L^{n}\right)^{(k)}\right) \\
& =\frac{3 e \Lambda\left|c_{3}\right| r}{\pi}(1+o(1))+S(r, f)
\end{aligned}
$$

as $r \in E$ and $r \rightarrow \infty$. This clearly contradicts with (3.1).
Case 2. Let $l=1$. Then using (3.3)-(3.8) we have $\Delta_{21} \geq \frac{3 k}{2}+7-\frac{3 k+7}{n}$ and $\Delta_{22} \geq \frac{3 k}{2}+7-\frac{7 k+13}{2 n}$. Since $n>\frac{7 k}{2}+\frac{13}{2}$, by (ii) of Lemma 7 we have either $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=z^{2}$ or $f^{n}=L^{n}$. Therefore proceeding exactly in the similar manner as of Case 1 we can get the conclusion of the theorem.

Case 3. Let $l=0$. Then using (3.3)-(3.8) we have $\Delta_{31} \geq 4 k+12-\frac{7 k+11}{n}$ and $\Delta_{32} \geq$ $4 k+12-\frac{7 k+10}{n}$. Since $n>7 k+11$, by (iii) of Lemma 7 we have the same possibilities, either $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=z^{2}$ or $f^{n}=L^{n}$. Proceeding as in Case 1 the conclusion of the theorem follows immediately. This proves Theorem 2.
[Proof of Theorem 1] By Steuding ([19], p.150) we have (3.1). We see that $z=1$ is the only possible pole of L in \mathbb{C}. Then by Lemmas 1 and 3 and the assumption of Theorem 1, we get

$$
\begin{aligned}
n T(r, L) & =T\left(r, L^{n}\right)+S(r, f) \\
& \leq \bar{N}\left(r, L^{n}\right)+N_{k+1}\left(r, 0 ; L^{n}\right)+\bar{N}\left(r, 1 ;\left(L^{n}\right)^{(k)}\right)-N_{0}\left(r, 0 ;\left(L^{n}\right)^{(k+1)}\right)+S(r, f) \\
& \leq \bar{N}(r, L)+(k+1) \bar{N}(r, 0 ; L)+\bar{N}\left(r, 1 ;\left(f^{n}\right)^{(k)}\right)+S(r, f) \\
& \leq(k+1) T(r, L)+T\left(r,\left(f^{n}\right)^{(k)}\right)+S(r, f)
\end{aligned}
$$

This gives

$$
(n-k-1) T(r, L) \leq T\left(r,\left(f^{n}\right)^{(k)}\right)+S(r, f)
$$

From (3.1) it follows that L is a transcendental meromorphic function. Combining this with the above inequality, Theorem 1.5 [23] and the assumption of the lower bound of n, we obtain that
$\left(f^{n}\right)^{(k)}$ and so f is a transcendental meromorphic function. Then proceeding similarly as in the proof of Theorem 2, we get three cases for $l \geq 2, l=1$ and $l=0$ each of which leads to the conclusion that either $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=1$ or $f^{n}=L^{n}$. If $f^{n}=L^{n}$, we have $f=t L$ with some t satisfying $t^{n}=1$. If $\left(f^{n}\right)^{(k)}\left(L^{n}\right)^{(k)}=1$, then considering $F_{2}=\left(f^{n}\right)^{(k)}$ and $G_{2}=\left(L^{n}\right)^{(k)}$ such that $F_{2} G_{2}=1$ and then arguing similarly as in Case 1, we get a contradiction. This completes the proof of Theorem 1 .

Acknowledgement. The authors are thankful to the referee for his/her valuable suggestions towards the improvement of the paper.

References

[1] C.Y. Fang and M.L. Fang, Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 44 (2002), 607-617.
[2] M.L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44 (2002), 823-831.
[3] W.K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford (1964).
[4] W.K. Hayman and J. Miles, On the growth of a meromorphic function and its derivative, Complex Var. Theory Appl., 12 (1989), 245-260.
[5] P.C. Hu and P.Y. Zhang, A characterization of L-functions in the extended Selberg class, Bull. Korean Math. Soc., 53 (2016), 1645-1650.
[6] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J., 44 (1997), 147-156.
[7] I. Lahiri, Value distribution of certain differential polynomials, J. Math. Math. Sc., 28 (2001), 83-91.
[8] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241-253.
[9] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/ New York (1993).
[10] B.Q. Li, A result on value distribution of L-functions, Proc. Amer. Math. Soc., 138 (2010), 2071-2077.
[11] X.M. Li and H.X. Yi, Results on value distribution of L-functions, Math. Nachr., 286 (2013), 1326-1336.
[12] W.C. Lin and H.X.Yi, Uniqueness theorem for meromorphic functions, Indian J. Pure Appl. Math., 35 (2004), 121-132.
[13] F. Liu, X.M. Li and H.X. Yi, Value distribution of L-functions concerning shared values and certain differential polynomials, Proc. Japan. Acad. Ser. A, 93 (2017), 41-46.
[14] P. Sahoo and S. Seikh, Uniqueness of meromorphic functions sharing a nonzero polynomial with finite weight, Lobachevskii J. Math., 34 (2013), 106-115.
[15] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in Proccedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992.
[16] H.M. Srivastava, H. Ö̈zden, I.N. Cang \ddot{l} l and Y. Simsek, A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L functions, Appl. Math. Comput., 219 (2012), 3903-3913.
[17] H.M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-Zeta functions and basic L-series, Russian J. Math. Phys., 12 (2005), 241-268.
[18] H.M. Srivastava and H. Tsumura, Certain classes of rapidly convergent series representations for $L(2 n, \chi)$ and $L(2 n+1, \chi)$, Acta Arith., 100 (2001), 195-201.
[19] J. Steuding, Value-distribution of L-functions, Lecture Notes in Math., Springer, Berlin (2007).
[20] J.M. Whittaker, The order of the derivative of a meromorphic function, J. London Math. Soc., S1-11 (1936), 82-87.
[21] C.C. Yang, On deficiencies of differential polynomials, Math. Z., 125 (1972), 107-112.
[22] C.C. Yang and X.H. Hua, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math., 22 (1997), 395-406.
[23] C.C. Yang and H.X. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht (2003).
[24] L. Yang, Normality for families of meromorphic functions, Sci. Sinica Ser. A, 29 (1986), 1263-1274.
[25] L. Yang, Value distribution theory, Springer-Verlag, Berlin (1993).
[26] Q.C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math., 30 (1999), 667-682.

[^0]: *The second author is financially supported by UGC-NFSC scheme of research fellowship.

