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Abstract

In this paper, using the idea of weighted sharing we investigate the uniqueness problem of a
meromorphic function and an L-function when certain differential polynomials generated by
them share a nonzero finite value or have the same fixed points. Our results improve the recent
results due to Liu-Li-Yi [Proc. Japan Acad. Ser. A, 93 (2017), 41-46].
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1 Introduction, definitions and results

L-functions are Dirichlet series with the Riemann zeta function ζ(s) =
∑∞
n=1

1
ns as a proto-

type and are important objects in number theory. The value distribution of L-functions concerns
distribution of zeros of L-functions and more generally, the c-points of L, that is, the zeros of the
function L(s)− c, or the values in the set of pre-images

L−1 = {s ∈ C : L(s) = c},

where and in what follows, s denotes complex variables and c denotes a value in the extended
complex plane C = C ∪ {∞}. In connection to meromorphic functions, Nevanlinna’s uniqueness
theorem states that a nonconstant meromorphic function f in C is completely determined by five
such pre-images (cf. [3], [23] and [25]). It is to be noted that an L-function can be analytically
continued as meromorphic function in C.

Let f and g be two meromorphic functions in C and let c ∈ C. Then f and g are said to share
the value c IM (ignoring multiplicities) if f−1(c) = g−1(c) as two sets in C. f and g are said to
share the value c CM (counting multiplicities) if f(s) − c and g(s) − c have the same zeros with
the same multiplicities. In the paper by an L-function we shall always mean an L-function L in
the Selberg class S that includes the Riemann zeta function ζ and essentially those Dirichlet series
where one might expect a Riemann hypothesis. An L-function belonging to S is defined to be a

Dirichlet series L(s) =
∑∞
n=1

a(n)
ns satisfying the following axioms (see [15]):

(i) Ramanujan hypothesis: a(n) << nε for each ε > 0;
(ii) Analytic continuation: There is a nonnegative integer m such that (s− 1)mL(s) is an entire

function of finite order;
(iii) Functional equation: L satisfies a functional equation of the type

ΛL(s) = ωΛL(1− s),
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where

ΛL(s) = L(s)Qs
K∏
j=1

Γ(λjs+ νj)

with positive real numbers Q, λj and complex numbers νj , ω with Reνj ≥ 0 and |ω| = 1;

(iv) Euler product hypothesis: L(s) =
∏
p

exp

( ∞∑
k=1

b(pk)

pks

)
with suitable coefficients b(pk) such

that b(pk) << pkθ for some θ < 1
2 , where the product is taken over all prime numbers p.

The degree d of an L-function L is defined to be

d = 2

K∑
j=1

λj ,

where K and λj are respectively the positive integer and the positive real number defined in axiom
(iii) of the definition of L-function.

In the recent times, the theory of L-functions along with the families of partial zeta type
functions, q- zeta type functions, (q−)L-functions has become a prominent branch of the analytic
number theory. In fact, many important investigations have been done on the unified presentations
of such functions (see [16]-[18]). However, in this paper, we shall be mainly concerned with the
value sharing of L-functions related to some meromorphic functions. During the last decade the
value distribution of L-functions has been studied extensively (see the monograph [19] and also [5],
[10], [11]). The uniqueness property related to L-functions was first studied by Steuding ([19], p.
152), as seen from the following result.

Theorem A. If two L-functions L1 and L2 with a(1) = 1 share a complex value c (6= ∞) CM,
then L1 = L2.

Since L-functions are analytically continued as meromorphic functions, it becomes an interest-
ing question that to which extent an L-function can share values with an arbitrary meromorphic
function. In this direction, Li [10] proved the following uniqueness result.

Theorem B. Let f be a meromorphic function in the complex plane such that f has finitely many
poles in the complex plane and let a and b be any two distinct finite complex values. If f and a
nonconstant L-function L share the values a CM and b IM, then L = f .

In 1997, it was asked by Lahiri [6]: What can be said about the relationship between two
meromorphic functions f and g when two differential polynomials generated by them share some
nonzero complex value? Some of the works in this direction can be found in [1, 2, 12, 22]. The
following results are due to Yang-Hua [22] and Fang [2] respectively.

Theorem C. Let f and g be two nonconstant meromorphic functions and n ≥ 11 be a positive
integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz and g(z) = c2e
−cz, where c1, c2 and

c are three constants satisfying (c1c2)n+1c2 = −1, or f = tg for a constant t satisfying tn+1 = 1.

Theorem D. Let f and g be two nonconstant entire functions and n, k be positive integers such
that n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM, then either f(z) = c1e

cz and g(z) = c2e
−cz,

where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1, or f = tg for a constant
t satisfying tn = 1.
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In connection to Theorems A-D, it is natural to ask, what can be said about the relationship
between a meromorphic function f and an L-function L when (fn)(k) and (Ln)(k) share the value 1
CM, or when (fn)(k) and (Ln)(k) have same fixed points, where n, k are positive integers? Recently
Liu, Li and Yi [13] proved the following results in this direction.

Theorem E. Let f be a nonconstant meromorphic function, L be an L-function and let n, k be
two positive integers such that n > 3k + 6. If (fn)(k) and (Ln)(k) share 1 CM, then f = tL for a
constant t satisfying tn = 1.

Theorem F. Let f be a nonconstant meromorphic function, L be an L-function and let n, k be
two positive integers such that n > 3k + 6. If (fn)(k)(z) − z and (Ln)(k)(z) − z share 0 CM, then
f = tL for a constant t satisfying tn = 1.

Regarding Theorems E and F it is quite natural to ask the following question.

Question 1. Is it possible to relax the nature of sharing the value in Theorems E and F?

In 2001, an idea of gradation of sharing of values known as weighted sharing of values was
introduced in [8] which measures how close a shared value being shared IM or to being shared CM.
The notion is as follows.

Definition 1. [8] Let a ∈ C and l be nonnegative integer or infinity. We denote by El(a; f) the
set of all a-points of f where an a-point of multiplicity p is counted p times if p ≤ l and l+ 1 times
if p > l. If El(a; f) = El(a; g), we say that f, g share the value a with weight l.

The definition implies that if f, g share some value a with weight l, then z0 is an a-point of f
with multiplicity p(≤ l) if and only if it is an a-point of g with multiplicity p(≤ l) and z0 is an
a-point of f with multiplicity p(> l) if and only if it is an a-point of g with multiplicity q(> l),
where p is not necessarily equal to q.

We write f, g share (a, l) to mean that f, g share the value a with weight l. Clearly if f, g
share (a, l), then f, g share (a, l1) for any integer l1 where 0 ≤ l1 < l. Also we note that f, g share
the value a CM or IM if and only if f, g share (a,∞) or (a, 0) respectively.

In the paper, with the aid of weighted sharing we shall find out the possible answers of the above
question. We shall prove the following two theorems that improve Theorems E and F respectively
by relaxing the nature of sharing of values. The main results of the paper are as follows.

Theorem 1. Let f be a nonconstant meromorphic function, L be an L-function, and n, k be
positive integers. If (fn)(k) and (Ln)(k) share (1, l) and one of the following conditions is satisfied:
(i) l ≥ 2 and n > 3k + 6, (ii) l = 1 and n > 7k

2 + 13
2 , (iii) l = 0 and n > 7k + 11, then f = tL for

some constant t satisfying tn = 1.

Theorem 2. Let f be a nonconstant meromorphic function, L be an L-function, and n, k be
positive integers. If (fn)(k)(z)−z and (Ln)(k)(z)−z share (0, l) and one of the following conditions
is satisfied: (i) l ≥ 2 and n > 3k + 6, (ii) l = 1 and n > 7k

2 + 13
2 , (iii) l = 0 and n > 7k + 11, then

f = tL for some constant t satisfying tn = 1.

We apply Nevanlinna value distribution theory to prove our main results. It is assumed that
the reader is familiar with the standard notations such as m(r, f), N(r, f), N(r, f), N(r, a; f),
N(r, a; f), T (r, f) etc. and the fundamental results of Nevanlinna theory (see [3], [9], [23] and [25]).
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For a nonconstant meromorphic function f in the complex plane we denote by S(r, f) any quantity
satisfying S(r, f) = o(T (r, f)) as r →∞, possibly outside a set of r with finite linear measure. For
a function of finite order, O(log r) and S(r, f) means the same quantity. Moreover, we shall use the
following definitions of the order ρ(f) and the lower order µ(f) of a meromorphic function f (see
[3, 23, 25]):

ρ(f) = lim sup
r−→∞

log T (r, f)

log r
, µ(f) = lim inf

r−→∞

log T (r, f)

log r
.

Also, a meromorphic function α is said to be a small function of f provided that T (r, α) = S(r, f).
We now explain the following definitions and notations that have been used in the paper.

Definition 2. [7] For a ∈ C, we denote by N(r, a; f |= 1) the counting function of simple a-points
of f . For a positive integer p we denote by N(r, a; f |≤ p) the counting function of those a-points of
f (counted with proper multiplicities) whose multiplicities are not greater than p. By N(r, a; f |≤ p)
we denote the corresponding reduced counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 3. [8] Let p be positive integer or infinity. We denote by Np(r, a; f) the counting
function of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ p and p
times if m > p. Then

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ p).

Clearly N1(r, a; f) = N(r, a; f).

Definition 4. Let a be any value in the extended complex plane and let k be an arbitrary non-
negative integer. We define

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)

and

δk(a, f) = 1− lim sup
r−→∞

Nk(r, a; f)

T (r, f)
.

Remark 1. From the definitions of Θ(a, f) and δk(a, f), it is clear that

0 ≤ δk(a, f) ≤ δk−1(a, f) ≤ δ1(a, f) ≤ Θ(a, f) ≤ 1.

2 Lemmas

In this section, we present some lemmas that will be needed in the sequel.

Lemma 1. [21] Suppose that f is a nonconstant meromorphic function and let a0, a1, . . . , an be
finite complex numbers such that an 6= 0. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2. [23] Let f be a nonconstant meromorphic function and k be a positive integer. Then

N
(
r, 0; f (k)

)
≤ N(r, 0; f) + kN(r, f) + S(r, f),

as r →∞, except possibly outside a set of finite linear measure.

Lemma 3. [3] Let f be a nonconstant meromorphic function, k be a positive integer and let c be
a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) +N(r, 0; f) +N
(
r, c; f (k)

)
−N

(
r, 0; f (k+1)

)
+ S(r, f)

≤ N(r, f) +Nk+1(r, 0; f) +N
(
r, c; f (k)

)
−N0

(
r, 0; f (k+1)

)
+ S(r, f),

where N0

(
r, 0; f (k+1)

)
is the counting function of those zeros of f (k+1) in |z| < r which are not

zeros of f(f (k) − c) in |z| < r.

Lemma 4. [4] Let f be a transcendental meromorphic function in the complex plane. Then
corresponding to each Λ > 1, there exists a set M(Λ) ⊂ (0,+∞), with lower logarithmic density
not exceeding the value d(Λ) = 1− (2eΛ−1 − 1)−1 > 0, i.e.,

log densM(Λ) = lim inf
r−→∞

1

log r

∫
M(Λ)∩[1,r]

dt

t
≤ d(Λ),

provided that for all r 6∈M(Λ) and for each positive integer k,

lim sup
r−→∞

T (r, f)

T (r, f (k))
≤ 3eΛ.

Lemma 5. [24] Let f be a nonconstant meromorphic function, α(6≡ 0,∞) be a small function of
f. Then

T (r, f) ≤ N(r, f) +N(r, 0; f) +N
(
r, 0; f (k) − α

)
−N

(
r, 0;

(
f (k)

α

)′)
+ S(r, f).

Lemma 6. [26] Let E ⊂ (0,+∞) be a set of finite linear measure and let f1, f2 be two non-
constant meromorphic functions such that N(r, fj) + N(r, 0; fj) = S(r), (j = 1, 2). Then either
N0(r, 1; f1, f2) = S(r) or there exist two integers p and q satisfying |p|+ |q| > 0 such that fp1 f

q
2 = 1.

Here N0(r, 1; f1, f2) denotes the reduced counting function of the common 1-points of f1 and f2 in
|z| < r, T (r) = T (r, f1) + T (r, f2) and S(r) = o{T (r)} as r →∞ and r 6∈ E.

Lemma 7. [14] Let F and G be two transcendental meromorphic functions and let k(≥ 1), l(≥ 0)
be two integers. Suppose that F (k) − P and G(k) − P share (0, l), where P 6≡ 0 is a polynomial.
Then either F (k)G(k) = P 2 or F = G, whenever F and G satisfies one of the following conditions:
(i) l ≥ 2 and ∆11 = 2Θ(∞, F ) + (k + 2)Θ(∞, G) + δk+2(0, F ) + δk+2(0, G) > k + 5

and ∆12 = 2Θ(∞, G) + (k + 2)Θ(∞, F ) + δk+2(0, G) + δk+2(0, F ) > k + 5;
(ii) l = 1 and

∆21 =
(
k
2 + 5

2

)
Θ(∞, F ) + (k + 2)Θ(∞, G) + 1

2δk+1(0, F ) + δk+2(0, F ) + δk+2(0, G) > 3k
2 + 6
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and ∆22 =
(
k
2 + 5

2

)
Θ(∞, G)+(k+2)Θ(∞, F )+ 1

2δk+1(0, G)+ δk+2(0, G)+ δk+2(0, F ) > 3k
2 +6;

(iii) l = 0 and
∆31 = (2k+4)Θ(∞, F )+(2k+3)Θ(∞, G)+2δk+1(0, F )+δk+1(0, G)+δk+2(0, F )+δk+2(0, G) >

4k + 11
and ∆32 = (2k + 4)Θ(∞, G) + (2k + 3)Θ(∞, F ) + 2δk+1(0, G) + δk+1(0, F ) + δk+2(0, G) +

δk+2(0, F ) > 4k + 11.

3 Proof of the Theorems

[Proof of Theorem 2] Let d be the degree of the L-function L. Then by Steuding ([19], p.150),
we have

T (r, L) =
d

π
r log r +O(r). (3.1)

We see that any zero z0 of L of multiplicity q0 is a zero of
(

(Ln)(k)

z

)′
with multiplicity at least

nq0 − k − 2. Also any zero z1 of (Ln)(k)

z − 1 of multiplicity q1 is a zero of
(

(Ln)(k)

z

)′
of multiplicity

q1 − 1. Since an L-function can have at most one pole at z = 1 in the complex plane, using (3.1)
and Lemmas 1 and 5 we get

T (r, Ln) = nT (r, L) + S(r, f)

≤ N(r, 0;Ln) +N

(
r, 0;

(Ln)(k)

z
− 1

)
−N

(
r, 0;

(
(Ln)(k)

z

)′)
+ S(r, f)

≤ (k + 2)N(r, 0;L) +N

(
r, 0;

(Ln)(k)

z
− 1

)
−N0

(
r, 0;

(
(Ln)(k)

z

)′)
+ S(r, f)

≤ (k + 2)T (r, L) +N

(
r, 0;

(fn)(k)

z
− 1

)
+ S(r, f)

≤ (k + 2)T (r, L) + T
(
r, (fn)(k)

)
+ S(r, f),

where N0

(
r, 0;

(
(Ln)(k)

z

)′)
is the counting function of those zeros of

(
(Ln)(k)

z

)′
in |z| < r which

are not the zeros of L and (Ln)(k)

z − 1 in |z| < r.
This implies

(n− k − 2)T (r, L) ≤ T
(
r, (fn)(k)

)
+ S(r, f). (3.2)

From (3.1) it is clear that L is a transcendental meromorphic function. Now combining this with
(3.2), Theorem 1.5 [23] and the assumption of the lower bound of n, we obtain that (fn)(k) and so
f is a transcendental meromorphic function. Using Lemma 1, we have

Θ(∞, fn) = 1− lim sup
r−→∞

N(r, fn)

T (r, fn)

= 1− lim sup
r−→∞

N(r, f)

nT (r, f) +O(1)
≥ 1− 1

n
, (3.3)
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δk+2(0, fn) = 1− lim sup
r−→∞

Nk+2(r, 0; fn)

T (r, fn)

= 1− lim sup
r−→∞

(k + 2)N(r, 0; f)

nT (r, f) +O(1)
≥ 1− k + 2

n
, (3.4)

and similarly

δk+2(0, Ln) ≥ 1− k + 2

n
, (3.5)

δk+1(0, fn) ≥ 1− k + 1

n
, (3.6)

δk+1(0, Ln) ≥ 1− k + 1

n
. (3.7)

Since an L-function has at most one pole z = 1 in the complex plane, we have

N(r, L) ≤ log r +O(1).

So using (3.1) we deduce that

Θ(∞, Ln) = 1. (3.8)

Considering F = fn, G = Ln in Lemma 7 we now get the following three cases.

Case 1. Let l ≥ 2. Then using (3.3)-(3.5) and (3.8) we have ∆11 ≥ k + 6 − 2k+6
n and ∆12 ≥

k+6− 3k+6
n . Since n > 3k+6, by (i) of Lemma 7 we have two possibilities, either (fn)(k)(Ln)(k) = z2

or fn = Ln.
If fn = Ln, we have nothing to prove as the conclusion of the theorem follows immediately.

Therefore we assume that (fn)(k)(Ln)(k) = z2. We claim that 0 is a Picard exceptional value of
both f and L. If not, let z2( 6= 0) ∈ C be a zero of f with multiplicity p2(≥ 1). Therefore from the
assumption that (fn)(k)(Ln)(k) = z2 it follows that z2 = 1 is a pole of L with multiplicity q2(≥ 1)
such that np2−k = nq2 +k, i.e., n(p2−q2) = 2k, and so n ≤ 2k. This is a contradiction to the lower
bound of n in Theorem 2 and hence proves our claim for the function f. Similarly we can prove
the claim for L. Again, using (3.1), Lemma 1, Theorem 1.15 [23], a result of Whittaker [20], the

definition of the order of meromorphic function and also by the assumption that (fn)(k)

z
(Ln)(k)

z = 1
we get

ρ(f) = ρ(fn) = ρ

(
(fn)(k)

z

)
= ρ

(
(Ln)(k)

z

)
= ρ(Ln) = ρ(L) = 1. (3.9)

Now from (3.9), Lemma 2 and (fn)(k)

z
(Ln)(k)

z = 1 and the fact that z = 1 is the only possible pole
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of L in C, we obtain that

(n+ k)N(r, f) ≤ N(r, (fn)(k)) ≤ N
(
r,

(fn)(k)

z

)
+O(1)

≤ N

(
r, 0;

(Ln)(k)

z

)
+O(1)

≤ N
(
r, 0; (Ln)(k)

)
+O(1)

≤ N(r, 0;Ln) + kN(r, Ln) + S(r, f)

≤ S(r, f). (3.10)

Since z = 1 is the only possible pole of L in C, using (3.10) it follows that

N(r, f) +N(r, L) ≤ S(r, f). (3.11)

We set

Γ1 =
F1

G1
, Γ2 =

F1 − 1

G1 − 1
, (3.12)

where F1 = (fn)(k)

z and G1 = (Ln)(k)

z .
Since f and L are transcendental meromorphic functions, we get from (3.12) that Γ1 6≡ 0 and

Γ2 6≡ 0. Now suppose that at least one of Γ1 and Γ2 is a nonzero constant. Then, from (3.12) we
see that F1 and G1 share ∞ CM. Combining this with the fact that F1G1 = 1 we find that ∞ is a
Picard exceptional value of both f and L. Next we assume that each of Γ1 and Γ2 is a nonconstant
meromorphic function.

From (3.12) we can deduce that

F1 =
Γ1(1− Γ2)

Γ1 − Γ2
, G1 =

1− Γ2

Γ1 − Γ2
. (3.13)

Without loss of generality suppose that there exists a subset E ⊂ R+ with infinite linear measure
such that T (r,G1) ≤ T (r, F1) and

T (r, F1) ≤ 2{T (r,Γ1) + T (r,Γ2)}+ S(r)

≤ 8T (r, F1) + S(r), (3.14)

as r ∈ E and r →∞ where S(r) = o{T (r)} and T (r) = T (r,Γ1) + T (r,Γ2). Therefore using (3.9),
Lemma 2 and the condition that 0 is a Picard exceptional value of both f and L, we have

N(r, 0;F1) = N

(
r, 0;

(fn)(k)

z

)
≤ N

(
r, 0; (fn)(k)

)
+O(1)

≤ kN(r, f) + S(r, f). (3.15)
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Now by (3.10), (3.11) and (3.15) we get

N(r, 0;F1) +N(r, 0;G1) ≤ S(r, f). (3.16)

From the condition that F1G1 = 1, it is easy to see that F1 and G1 share 1 and −1 CM. Since F1

and G1 share 1 CM, using (3.11), (3.12) and (3.16) and noting that F1 and G1 are transcendental,
we obtain

N(r,Γj) +N(r, 0; Γj) = S(r), (j = 1, 2), (3.17)

as r ∈ E and r → ∞. Now we shall show that N0(r, 1; Γ1,Γ2) = S(r) is not possible. Since F1

and G1 share −1 CM, from (3.11), (3.12), (3.15) and Nevanlinna’s second fundamental theorem we
have

T (r, F1) ≤ N(r, 0;F1) +N(r,−1;F1) +N(r, F1) + S(r, F1)

≤ N(r,−1;F1) + S(r, f) + S(r, F1)

≤ N0(r, 1; Γ1,Γ2) + S(r, F1), (3.18)

as r ∈ E and r →∞.
If N0(r, 1; Γ1,Γ2) = S(r), we get from (3.14) and (3.18) that T (r,Γ1) + T (r,Γ2) ≤ S(r), a

contradiction. Therefore by Lemma 6, (3.12) and (3.17) it follows that there exist two relatively
prime integers p and q such that |p|+ |q| > 0 and Γp1Γq2 = 1. Therefore from (3.12) we get that(

F1

G1

)p(
F1 − 1

G1 − 1

)q
= 1. (3.19)

Now we discuss the following two subcases.

Subcase 1.1 Assume that pq ≥ 0. From (3.19) we see that F1 and G1 share ∞ CM. Then

noting that F1G1 = 1 i.e., (fn)(k)

z
(Ln)(k)

z = 1, we obtain that ∞ is a Picard exceptional value of f
and L. This together with the fact that 0 is another Picard exceptional value of f and L, and by
(3.9), we can write L as

L(z) = ec1z+c2 ,

where c1( 6= 0) and c2 are constants.
Therefore by the result of Hayman [[3], p. 7] we get that

T (r, L) = T (r, ec1z+c2) =
|c1|r
π

(1 + o(1)),

a contradiction to (3.1).

Subcase 1.2 Assume that pq < 0. Without loss of generality let p > 0 and q < 0 and q = −q∗,
for some positive integer q∗. Therefore (3.19) reduces to(

F1

G1

)p
=

(
F1 − 1

G1 − 1

)q∗
. (3.20)
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From F1G1 = 1 it follows that if z3 be a pole of F1 of some multiplicity p3(≥ 1), then z3 is also a
zero of G1 of multiplicity p3. Therefore from (3.20) we get 2p = q∗ = −q. This gives, p = 1 and
q = −q∗ = −2 as p and q are prime to each other. Hence we get that F1(G1 − 1)2 = G1(F1 − 1)2,
which is nothing but our obtained result F1G1 = 1. Now we shall deduce a contradiction by using
other method.

Since z = 1 is the only possible pole of L and so of (Ln)
(k)
, using (3.16) we get

(Ln)(k)(z) =
zP (z)

(z − 1)m
ec3z+c4 , (3.21)

where P (z) is nonzero polynomial, m is a nonnegative integer and c3(6= 0), c4 are constants.
Now using the result of Hayman [[3], p. 7], Lemma 4 we get from (3.21) that there exists a

subset E ⊂ (0,+∞) with logarithmic measure logmeasE =
∫
E
dt
t = ∞ such that for any given

sufficiently large number Λ > 1, we have

T (r, L) ≤ 3eΛT
(
r, (Ln)(k)

)
=

3eΛ|c3|r
π

(1 + o(1)) + S(r, f),

as r ∈ E and r →∞. This clearly contradicts with (3.1).

Case 2. Let l = 1. Then using (3.3)-(3.8) we have ∆21 ≥ 3k
2 +7− 3k+7

n and ∆22 ≥ 3k
2 +7− 7k+13

2n .

Since n > 7k
2 + 13

2 , by (ii) of Lemma 7 we have either (fn)(k)(Ln)(k) = z2 or fn = Ln. Therefore
proceeding exactly in the similar manner as of Case 1 we can get the conclusion of the theorem.

Case 3. Let l = 0. Then using (3.3)-(3.8) we have ∆31 ≥ 4k + 12 − 7k+11
n and ∆32 ≥

4k + 12 − 7k+10
n . Since n > 7k + 11, by (iii) of Lemma 7 we have the same possibilities, either

(fn)(k)(Ln)(k) = z2 or fn = Ln. Proceeding as in Case 1 the conclusion of the theorem follows
immediately. This proves Theorem 2.

[ Proof of Theorem 1] By Steuding ([19], p.150) we have (3.1). We see that z = 1 is the only
possible pole of L in C. Then by Lemmas 1 and 3 and the assumption of Theorem 1, we get

nT (r, L) = T (r, Ln) + S(r, f)

≤ N(r, Ln) +Nk+1(r, 0;Ln) +N
(
r, 1; (Ln)(k)

)
−N0

(
r, 0; (Ln)(k+1)

)
+ S(r, f)

≤ N(r, L) + (k + 1)N(r, 0;L) +N
(
r, 1; (fn)(k)

)
+ S(r, f)

≤ (k + 1)T (r, L) + T
(
r, (fn)(k)

)
+ S(r, f).

This gives

(n− k − 1)T (r, L) ≤ T
(
r, (fn)(k)

)
+ S(r, f).

From (3.1) it follows that L is a transcendental meromorphic function. Combining this with the
above inequality, Theorem 1.5 [23] and the assumption of the lower bound of n, we obtain that
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(fn)(k) and so f is a transcendental meromorphic function. Then proceeding similarly as in the
proof of Theorem 2, we get three cases for l ≥ 2, l = 1 and l = 0 each of which leads to the
conclusion that either (fn)(k)(Ln)(k) = 1 or fn = Ln. If fn = Ln, we have f = tL with some t
satisfying tn = 1. If (fn)(k)(Ln)(k) = 1, then considering F2 = (fn)(k) and G2 = (Ln)(k) such that
F2G2 = 1 and then arguing similarly as in Case 1, we get a contradiction. This completes the proof
of Theorem 1.
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