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Abstract

In this paper we show how the Zipf-Mandelbrot law is connected to the theory of majorization.
Firstly we consider the Csiszár f -divergence for the Zipf-Mandelbrot law and then develop
important majorization inequalities for these divergences. We also discuss some special cases
for our generalized results by using the Zipf-Mandelbrot law. As applications, we present the
majorization inequalities for various distances obtaining by some special convex functions in
the Csiszár f -divergence for Z-M law like the Rényi α-order entropy for Z-M law, variational
distance for Z-M law, the Hellinger distance for Z-M law, χ2-distance for Z-M law and triangular
discrimination for Z-M law. At the end, we give important applications of the Zipf’s law
in linguistics and obtain the bounds for the Kullback-Leibler divergence of the distributions
associated to the English and the Russian languages.
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1 Introduction and preliminaries

The frequency distribution of words has been a key object of study in statistical linguistics for the
past 70 years. This distribution approximately follows a simple mathematical form known as the
Zipf’s law.

The term ”Zipfian distribution” refers to ”a distribution of probabilities of occurrence that
follows the Zipf’s Law” (see [32]). Zipf’s law is an experiment law, not a theoretical one; i.e. it
describes an occurrence rather than predicting it from some kind of theory. The observation that,
in many natural and man-made phenomena, ”the probability of occurrence of ... items starts high
and tapers off. Thus, a few occur very often while many others occur rarely.” The formal definition
of this law is: Pn = 1/na, where Pn is the frequency of occurrence of the nth ranked item and a
is closed to 1.

Applied to language, this means that the rank of a word (in terms of its frequency) is approx-
imately inversely proportional to its actual frequency, and so produces a hyperbolic distribution.
To put the George Zipf’s Law (1932) in another way: fr = C, where: r = the rank of a word, f =
the frequency of occurrence of that word, and C = a constant (the value of which depends on the
subject under consideration). Essentially this shows an inverse proportional relationship between
a word’s frequency and its frequency rank. Zipf calls this curve the ’standard curve’. Texts from
natural languages do not, of course, behave with such absolute mathematical precision. They can
not, because, for one thing, any curve representing empirical data from large texts will be a stepped
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graph, since many non-high-frequency words will share the same frequency. But the overall con-
sensus is that texts match the standard curve significantly well. Li (1992:1842) [17] writes ”this
distribution, also called the Zipf’s law, has been checked for accuracy for the standard corpus of
the present-day English [Kučera and Francis, 1967] with very good results. See Miller (1951:91-95)
[24] for a concise summary of the match between actual data and the standard curve.

Zipf also studied the relationship between the frequency of occurrence of a word and its length.
In The Psycho-Biology of Language (1935), he stated that ”it seems reasonably clear that shorter
words are distinctly more favoured in language other than words.”

Apart from the use of this law in information science and linguistics, Zipf’s law is used in
economics. This distribution in economics is known as Pareto’s law which analyze the distribution
of the wealthiest members of the community [10, p.125] . These two laws are the same in the
mathematical sense, but they are applied in a different context [11, p.294]. The same type of
distribution that we have in Zipf’s and Pareto’s law, also known as the Power law, can be also
found in other scientific disciplines, such as: physics, biology, earth and planetary sciences, computer
science, demography and the social sciences [27].

Benoit Mandelbrot in 1966 [18] gave generalization of the Zipf’s law, now known as the Zipf-
Mandelbrot law, which gave improvement in account for the low-rank words in corpus where k < 100
[25]: f(k) = C

(k+t)s when t = 0, we get Zipf’s law.

For n ∈ N, t ≥ 0, s > 0, k ∈ {1, 2, ..., n}, in a more clear form, Zipf-Mandelbrot law (probability
mass function) is defined with

f (k, n, t, s) :=
1/(k + t)s

Hn,t,s
, (1)

where,

Hn,t,s :=

n∑
i=1

1

(i+ t)s
. (2)

Application of the Zipf-Mandelbrot law can also be found in linguistics [25], information sciences
[11, 31] and ecological field studies [26].

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued
random variable X, or just distribution function of X, evaluated at x, is the probability that X will
take a value less than or equal to x and we often denote CDF as the following ratio:

CDF :=
Hk,t,s

Hn,t,s
. (3)

The cumulative distribution function is an important application of majorization.
In the case of a continuous distribution, it gives the area under the probability distribution

functions are also used to specify the distribution of multivariable random variables. There are
various applications of CDF, for example, in learning to rank, the cumulative distribution function
(CDF) arises naturally as a probability measure over inequality events of the type {X ≤ x}. The
joint CDF lends itself to problems that are easily described in terms of inequality events in which
statistical dependence relationships also among events. Examples of this type of problem include
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web search and document retrieval [5, 6, 14, 33], predicting rating of movies [30] or predicting
multiplayer game outcomes with a team structure [13]. In contrast to the canonical problems of
classification or regression, in learning to rank we are required to learn some mapping from inputs
to inter-dependent output variables so that we may wish to model both stochastic orderings of
variable states that statistical dependence relationships between variables.

Now we introduce the main mathematical theory explored in the present work, the theory of
majorization. It is a powerful and elegant mathematical tool which can be applied to a wide variety
of problems as in quantum mechanics. The theory of majorization is closely related to the notions
of ’randomness’ and ’disorder’. It indeed allows us to compare two probability distributions, in
order for us to know which one of the two is more random. The appearance of Marshall and Olkin’s
1979 book on inequalities with special emphasis on majorization generated a surge of interest in
potential applications of majorization and Schur convexity in a broad spectrum of fields and then
the second volume of this book was published in 2011 [19].
Let us now give the most general definition of majorization. For fixed n ≥ 2 let

x = (x1, ..., xn) , y = (y1, ..., yn)

denote two real n-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[n], y[1] ≥ y[2] ≥ ... ≥ y[n],

x(1) ≤ x(2) ≤ ... ≤ x(n), y(1) ≤ y(2) ≤ ... ≤ y(n)

denote their ordered components.
Majorization: Let x = (x1, ..., xn) , y = (y1, ..., yn) be sequences of real numbers. Then [29,
p.319] we say that y is majorized by x or x majorizes y, in symbol, x � y, if we have

j∑
i=1

y[i] ≤
j∑
i=1

x[i], (4)

for j = 1, 2, ..., n− 1 and
n∑
i=1

x[i] =

n∑
i=1

y[i].

Note that (4) is equivalent to
n∑

i=n−j+1

y(i) ≤
n∑

i=n−j+1

x(i),

for j = 1, 2, ..., n− 1.

The following theorem is given in ([28, p.32]):

Theorem 1.1. Let f : J → R be a continuous convex function on an interval J , w be a positive
n-tuple and x, y ∈ Jn satisfying

k∑
i=1

wi yi ≤
k∑
i=1

wi xi for k = 1, ..., n− 1, (5)
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and
n∑
i=1

wi yi =

n∑
i=1

wi xi. (6)

(a) If y is a decreasing n-tuple, then

n∑
i=1

wi f (yi) ≤
n∑
i=1

wi f (xi) . (7)

(b) If x is an increasing n-tuple, then

n∑
i=1

wi f (xi) ≤
n∑
i=1

wi f (yi) . (8)

If f is strictly convex and x 6= y, then (7) and (8) are strict.

One can see the generalizations and refinements of majorization inequality in [1, 2, 3, 4, 16].
Pečarić, Matić and Pearce (1998)[20], (1999)[21], (2000)[22] and (2002)[23] continuously worked

on Shannon’s inequality and related inequalities in the probability distribution and information
science. They studied and discussed in [22, 23] several aspects of Shannon’s inequality in discrete
as well as in integral forms, by presenting upper estimates of the difference between its two sides.
Applications to the bounds in information theory were also given. In [22, p.139-140], they used
the majorization inequality to prove the generalized result that is the entropy function achieved its
maximum value on the discrete uniform of probability distribution.

Dragomir gave in his monograph (chapter.02) [9] about these divergences like the Kullback-
Leibler divergence, variational distance, the Hellinger distance, χ2-divergence, triangular discrimi-
nation and the Rényi α-order entropy.

Motivated the idea in [22] (2000) and [23] (2002), we discuss the behaviour of the results in the
form of divergences, majorization and Zipf-Mandelbrot law. We arrange the paper in this manner:
in section-2, we consider the Csiszár f -divergence for Zipf-Mandelbrot law and to develop several
important majorization inequalities via CDF as the condition of majorization. We discuss some
special cases of our generalized results. In section-3, we present several applications of our results
by constructing distances in the Zipf-Mandelbrot law i.e., the Rényi α-order entropy for Z-M law,
variational distance for Z-M law, the Hellinger discrimination for Z-M law, triangular discrimination
for Z-M law and χ2-distance for Z-M law. At the end, in section-4, we give important applications
of the Zipf’s law in linguistics and obtain the bounds for the Kullback-Leibler divergence of the
distributions associated to the English and Russian languages.

2 Main results

We can consider the following two definitions of Csiszár divergence [7, 8] for Zipf-Mandelbrot law:

Definition 2.1. (Csiszár Divergence for Z-M law)
Let J ⊂ R be an interval, and let f : J → R be a function. Let n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and
also let qi > 0 for (i = 1, ..., n) such that

1

qi(i+ t1)s1Hn,t1,s1

∈ J, i = 1, ..., n, (9)
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then let

Îf (i, n, t1, s1,q) :=

n∑
i=1

qif

(
1

qi(i+ t1)s1Hn,t1,s1

)
.

Definition 2.2. Let J ⊂ R be an interval, and let f : J → R be a function. Let n ∈ {1, 2, 3, ...},
t1, t2 ≥ 0 and s1, s2 > 0 such that

(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1

∈ J, i = 1, ..., n, (10)

then let

Ĩf (i, n, t1, t2, s1, s2) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
(i+ t2)s2Hn,t2,s2

(i+ t1)s1Hn,t1,s1

)
.

Remark 2.3. It is obvious that the second Csiszár divergence for Zipf-Mandelbrot law is a special
case of the first one.

We present the following theorem is the connection between Csiszár f -divergence, Zipf-Mandelbrot
law and weighted majorization inequality:

Theorem 2.4. Let J ⊂ R is an interval and f : J → R is a continuous convex function. Let
n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying

Hk,t2,s2

Hn,t2,s2

≤ Hk,t1,s1

Hn,t1,s1

, k = 1, ..., n− 1, (11)

with

(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

,
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

∈ J, (i = 1, ..., n),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

Ĩf (i, n, t2, t3, s2, s3) :=

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

f

(
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

)

≤ Ĩf (i, n, t1, t3, s1, s3) :=

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

f

(
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

)
. (12)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

f

(
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

)

≥
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

f

(
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

)
, (13)

If f is continuous concave function, then the reverse inequalities hold in (12) and (13).
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Proof. Let us consider xi :=
1/(i+t1)s1Hn,t1,s1

1/(i+t3)s3Hn,t3,s3
, yi :=

1/(i+t2)s2Hn,t2,s2

1/(i+t3)s3Hn,t3,s3
, wi := 1

(i+t3)s3Hn,t3,s3
for

(i = 1, ..., n), then

k∑
i=1

wixi :=

k∑
i=1

1

(i+ t3)s3Hn,t3,s3

1/(i+ t1)s1Hn,t1,s1

1/(i+ t3)s3Hn,t3,s3

=
1

Hn,t1,s1

k∑
i=1

1

(i+ t1)s1

=
Hk,t1,s1

Hn,t1,s1

, k = 1, ..., n− 1,

similarly

k∑
i=1

wiyi :=
Hk,t2,s2

Hn,t2,s2

, k = 1, ..., n− 1.

This implies that

k∑
i=1

wiyi ≤
k∑
i=1

wixi ⇔ Hk,t2,s2

Hn,t2,s2

≤ Hk,t1,s1

Hn,t1,s1

, k = 1, ..., n− 1.

We can easily check that 1
(i+t1)s1Hn,t1,s1

is decreasing over i = 1, ..., n and similarly the others too.

Now, we investigate the behaviour of yi for (i = 1, 2, ..., n), take

yi =
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

and yi+1 =
(i+ 1 + t3)s3Hn,t3,s3

(i+ 1 + t2)s2Hn,t2,s2

,

yi+1 − yi =
Hn,t3,s3

Hn,t2,s2

[
(i+ 1 + t3)s3

(i+ 1 + t2)s2
− (i+ t3)s3

(i+ t2)s2

]
≤ 0,

⇔ (i+ 1 + t3)s3

(i+ 1 + t2)s2
≤ (i+ t3)s3

(i+ t2)s2
, (i = 1, ..., n),

which shows that yi is decreasing.

Therefore, substitute xi :=
1/(i+t1)s1Hn,t1,s1

1/(i+t3)s3Hn,t3,s3
, yi :=

1/(i+t2)s2Hn,t2,s2

1/(i+t3)s3Hn,t3,s3
, wi := 1

(i+t3)s3Hn,t3,s3
for (i =

1, ..., n) and f := f in Theorem 1(a), then we get (12).
(b) We can prove part (b) with the similar substitutions as in Part (a) but switch the role of yi
with xi that is increasing sequence, in Theorem 1.1 (b). q.e.d.

Theorem 2.5. Let J ⊂ R is an interval and f : J → R is a continuous convex function. Let
n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also let qi > 0, (i = 1, ..., n)
with

1

qi(i+ t1)s1Hn,t1,s1

,
1

qi(i+ t2)s2Hn,t2,s2

∈ J (i = 1, ..., n),
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(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

Îf (i, n, t2, s2,q) :=

n∑
i=1

qif

(
1

qi(i+ t2)s2Hn,t2,s2

)

≤ Îf (i, n, t1, s1,q) :=

n∑
i=1

qif

(
1

qi(i+ t1)s1Hn,t1,s1

)
. (14)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

qif

(
1

qi(i+ t2)s2Hn,t2,s2

)

≥
n∑
i=1

qif

(
1

qi(i+ t1)s1Hn,t1,s1

)
. (15)

If f is continuous concave function, then the reverse inequalities hold in (14) and (15).

Proof. Let us consider xi :=
1/(i+t1)s1Hn,t1,s1

qi
, yi :=

1/(i+t2)s2Hn,t2,s2

qi
, and wi = qi > 0, (i = 1, ..., n)

then we can get as in the previous proof

k∑
i=1

wiyi ≤
k∑
i=1

wixi ⇔ Hk,t2,s2

Hn,t2,s2

≤ Hk,t1,s1

Hn,t1,s1

, k = 1, ..., n− 1.

Now, we investigate the behaviour of yi for (i = 1, 2, ..., n), take

yi =
1

qi(i+ t2)s2Hn,t2,s2

and yi+1 =
1

qi+1(i+ 1 + t2)s2Hn,t2,s2

,

yi+1 − yi =
1

Hn,t2,s2

[
1

qi+1(i+ 1 + t2)s2
− 1

qi(i+ t2)s2

]
≤ 0,

⇔ (i+ t2)s2

(i+ 1 + t2)s2
≤ qi+1

qi
, (i = 1, ..., n),

which shows that yi is decreasing. Therefore, substitute xi := 1
qi(i+t1)s1Hn,t1,s1

, yi := 1
qi(i+t2)s2Hn,t2,s2

,

wi = qi > 0, (i = 1, ..., n) and also f := f in Theorem 1, we get (14).
(b) If we switch the role of yi into xi as increasing sequence in the similar fashion as the proof of
Part (a), then by using Theorem 1 (b) we get (15). q.e.d.

Corollary 2.6. Let J ⊂ R is an interval and f : J → R is a continuous convex function. Let
n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) with

1

(i+ t1)s1Hn,t1,s1

,
1

(i+ t2)s2Hn,t2,s2

∈ J (i = 1, ..., n),
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then the following inequality holds

Îf (i, n, t2, s2,1) :=

n∑
i=1

f

(
1

(i+ t2)s2Hn,t2,s2

)

≤ Îf (i, n, t1, s1,1) :=

n∑
i=1

f

(
1

(i+ t1)s1Hn,t1,s1

)
. (16)

If f is continuous concave function, then the reverse inequality hold in (16).

Proof. Let us consider xi := 1
(i+t1)s1Hn,t1,s1

and yi := 1
(i+t2)s2Hn,t2,s2

, we can easily check that

yi := 1
(i+t2)s2Hn,t2,s2

is decreasing over i = 1, ..., n. Therefore, substitute xi := 1
(i+t1)s1Hn,t1,s1

,

yi := 1
(i+t2)s2Hn,t2,s2

, qi = 1, (i = 1, ..., n) and also f := f in (14), we get (16).
q.e.d.

Theorem 2.7. Let J ⊂ R is an interval and f : J → R be a function such that x→ xf(x) (x ∈ J)
is a continuous convex function. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that
satisfying (11) with

(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

,
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

∈ J, (i = 1, ..., n),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

ĨidJ f (i, n, t2, t3, s2, s3) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

)

≤ ĨidJ f (i, n, t1, t3, s1, s3) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

f

(
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

)
. (17)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

)

≥
n∑
i=1

1

(i+ t1)s1Hn,t1,s1

f

(
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

)
. (18)

If xf(x) is continuous concave function, then the reverse inequalities hold in (17) and (18).

Proof. Let us substitute xi :=
1/(i+t1)s1Hn,t1,s1

1/(i+t3)s3Hn,t3,s3
, yi :=

1/(i+t2)s2Hn,t2,s2

1/(i+t3)s3Hn,t3,s3
, wi := 1

(i+t3)s3Hn,t3,s3
for

(i = 1, ..., n) in Theorem 1(a) and follow the proof of Theorem 2 for function f(x) := xf(x), then
we get (17).
(b) We can prove part (b) with the similar substitutions as in Part (a) but switch the role of yi
with xi that is an increasing sequence, in Theorem 1.1 (b) for function f(x) := xf(x). q.e.d.
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Theorem 2.8. Let J ⊂ R is an interval and f : J → R be a function such that x→ xf(x) (x ∈ J)
is a continuous convex function. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying
(11) and also let qi > 0 with

1

qi(i+ t1)s1Hn,t1,s1

,
1

qi(i+ t2)s2Hn,t2,s2

∈ J (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

ÎidJ f (i, n, t2, s2,q) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
1

qi(i+ t2)s2Hn,t2,s2

)

≤ ÎidJ f (i, n, t1, s1,q) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

f

(
1

qi(i+ t1)s1Hn,t1,s1

)
. (19)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
1

qi(i+ t2)s2Hn,t2,s2

)

≥
n∑
i=1

1

(i+ t1)s1Hn,t1,s1

f

(
1

qi(i+ t1)s1Hn,t1,s1

)
. (20)

If xf(x) is continuous concave function, then the reverse inequalities hold in (19) and (20).

Proof. Let us consider xi :=
1/(i+t1)s1Hn,t1,s1

qi
, yi :=

1/(i+t2)s2Hn,t2,s2

qi
, and wi = qi > 0, (i = 1, ..., n)

and also f(x) := xf(x) in Theorem 1(a) by follow the proof of Theorem 3(a), we get (19).
(b) If we switch the role of yi into xi as an increasing sequence with the similar substitutions as in
Part (a), then by using Theorem 1(b) we get (20). q.e.d.

Corollary 2.9. Let J ⊂ R is an interval and f : J → R be a function such that x→ xf(x) (x ∈ J)
is a continuous convex function. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying
(11) with

1

(i+ t1)s1Hn,t1,s1

,
1

(i+ t2)s2Hn,t2,s2

∈ J (i = 1, ..., n),

then the following inequality holds

ÎidJ f (i, n, t2, s2,1) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

f

(
1

(i+ t2)s2Hn,t2,s2

)

≤ ÎidJ f (i, n, t1, s1,1) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

f

(
1

(i+ t1)s1Hn,t1,s1

)
. (21)

If xf(x) is continuous concave function, then the reverse inequality hold in (21).
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Proof. Since yi := 1
(i+t2)s2Hn,t2,s2

is decreasing over i = 1, ..., n. Therefore, substitute xi :=
1

(i+t1)s1Hn,t1,s1
and yi := 1

(i+t2)s2Hn,t2,s2
, and qi = 1, (i = 1, ..., n) and also f(x) := xf(x) in

(19), we get (21).
q.e.d.

3 Applications

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-
Leibler divergence. All previous results in the Main Section can be easily applied on functions
− log x and log x to get various results for the Kullback-Leibler divergence for the Zipf-Mandelbrot
law as given in [15]. So, in this paper we will give applications on some other known divergences
for the Zipf-Mandelbrot law.

The following definitions are the Rényi α-order entropy for the Zipf-Madelbrot law:

Definition 3.1. (Rényi α- order entropy for Z-M law)
If n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and also q

i
> 0, (i = 1, ..., n), then the Rényi α-order entropy

(α > 1) for Zipf-Madelbrot law is defined by

R̂α (i, n, t1, s1,q) :=

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

qα−1
i .

Definition 3.2. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0, s1, s2 > 0, then for (α > 1)

R̃α (i, n, t1, t2, s1, s2) :=

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

[(i+ t2)s2Hn,t2,s2 ]
α−1

.

Application 1. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying (11),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then the following inequality holds for (α > 1)

R̃α (i, n, t2, t3, s2, s3) :=

n∑
i=1

[(i+ t2)s2Hn,t2,s2 ]
−α

[(i+ t3)s3Hn,t3,s3 ]
α−1

≤ R̃α (i, n, t1, t3, s1, s3) :=

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

[(i+ t3)s3Hn,t3,s3 ]
α−1

.

(22)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then the following inequality holds for (α > 1)

n∑
i=1

[(i+ t2)s2Hn,t2,s2 ]
−α

[(i+ t3)s3Hn,t3,s3 ]
α−1

≥
n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

[(i+ t3)s3Hn,t3,s3 ]
α−1

.

(23)



Majorizatiuon and Zipf-Mandelbrot law 11

Proof. If we choose f(t) := tα, t ∈ R+ (α > 1), then by using (12) we get

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

(
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

)α
≤

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

(
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

)α
,

we get (22).
(b) Similarly as Part (a), we can prove (23) by using (13) and f(t) := tα, t ∈ R+ (α > 1). q.e.d.

Application 2. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also
qi > 0, (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

R̂α (i, n, t2, s2,q) :=

n∑
i=1

[(i+ t2)s2Hn,t2,s2 ]
−α

q1−α
i

≤ R̂α (i, n, t1, s1,q) :=

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

q1−α
i . (24)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

[(i+ t2)s2Hn,t2,s2 ]
−α

q1−α
i ≥

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

q1−α
i . (25)

Proof. If we choose f(t) := tα, t ∈ R+ (α > 1), then by using (14) we get

n∑
i=1

qi

[
1

qi (i+ t2)s2Hn,t2,s2

]α
≤

n∑
i=1

qi

[
1

qi (i+ t1)s1Hn,t1,s1

]α
,

we get (24).
(b) Similarly as Part (a), we can prove (25) by using (15) and f(t) := tα, t ∈ R+ (α > 1). q.e.d.

Application 3. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11), then the
following inequality holds

R̂α (i, n, t2, s2,1) :=

n∑
i=1

[(i+ t2)s2Hn,t2,s2 ]
−α

≤ R̂α (i, n, t1, s1,1) :=

n∑
i=1

[(i+ t1)s1Hn,t1,s1 ]
−α

. (26)

Proof. If we choose f(t) := tα, t ∈ R+ (α > 1), and qi := 1, (i = 1, ..., n) in (24), then we get
(26). q.e.d.
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The following definitions are the variational distance for Zipf-Madelbrot law:

Definition 3.3. (Variational Distance for Z-M law)
If n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and also qi > 0, (i = 1, ..., n), then the variational distance for
Zipf-Mandelbrot law is defined by

V̂ (i, n, t1, s1,q) :=

n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− qi
∣∣∣∣ .

Definition 3.4. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0, s1, s2 > 0, then

Ṽ (i, n, t1, t2, s1, s2) :=

n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− 1

(i+ t2)s2Hn,t2,s2

∣∣∣∣ .
Application 4. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying (11),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

Ṽ (i, n, t2, t3, s2, s3) :=

n∑
i=1

∣∣∣∣ 1

(i+ t2)s2Hn,t2,s2

− 1

(i+ t3)s3Hn,t3,s3

∣∣∣∣
≤ Ṽ (i, n, t1, t3, s1, s3) :=

n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− 1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ .
(27)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

∣∣∣∣ 1

(i+ t2)s2Hn,t2,s2

− 1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ ≥ n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− 1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ .
(28)

Proof. If we choose f(t) := |t− 1|, t ∈ R+, then by using (12) we get

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ (i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

− 1

∣∣∣∣ ≤ n∑
i=1

1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ (i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

− 1

∣∣∣∣ ,
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ (i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2

(i+ t2)s2Hn,t2,s2

∣∣∣∣
≤

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

∣∣∣∣ (i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1

(i+ t1)s1Hn,t1,s1

∣∣∣∣ ,
since (i+ t3)s3Hn,t3,s3 > 0, we get (27).
(b) Similarly as Part (a), we can prove (28) by using (13) and f(t) := |t− 1|, t ∈ R+. q.e.d.
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Application 5. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also
let qi > 0, (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

V̂ (i, n, t2, s2,q) :=

n∑
i=1

∣∣∣∣ 1

(i+ t2)s2Hn,t2,s2

− qi
∣∣∣∣

≤ V̂ (i, n, t1, s1,q) :=

n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− qi
∣∣∣∣ . (29)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

∣∣∣∣ 1

(i+ t2)s2Hn,t2,s2

− qi
∣∣∣∣ ≥ n∑

i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− qi
∣∣∣∣ . (30)

Proof. If we choose f(t) := |t− 1|, t ∈ R+, then by using (14) we get

n∑
i=1

qi

∣∣∣∣ 1

qi(i+ t2)s2Hn,t2,s2

− 1

∣∣∣∣ ≤ n∑
i=1

qi

∣∣∣∣ 1

qi(i+ t1)s1Hn,t1,s1

− 1

∣∣∣∣ ,
n∑
i=1

qi

∣∣∣∣1− qi(i+ t2)s2Hn,t2,s2

qi(i+ t2)s2Hn,t2,s2

∣∣∣∣ ≤ n∑
i=1

qi

∣∣∣∣1− qi(i+ t1)s1Hn,t1,s1

qi(i+ t1)s1Hn,t1,s1

∣∣∣∣ ,
since qi > 0 (i = 1, ..., n), we get (29).
(b) Similarly as Part (a), we can prove (30) by using (15) and f(t) := |t− 1|, t ∈ R+. q.e.d.

Application 6. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11), then the
following inequality hold

V̂ (i, n, t2, s2,1) :=

n∑
i=1

∣∣∣∣ 1

(i+ t2)s2Hn,t2,s2

− 1

∣∣∣∣
≤ V̂ (i, n, t1, s1,1) :=

n∑
i=1

∣∣∣∣ 1

(i+ t1)s1Hn,t1,s1

− 1

∣∣∣∣ . (31)

Proof. If we choose f(t) := |t− 1|, t ∈ R+ and qi := 1, (i = 1, ..., n) in (29), then we get (31). q.e.d.

The following definitions are the Hellinger discrimination for Zipf-Madelbrot law:

Definition 3.5. (Hellinger Discrimination for Z-M law)
If n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and also q

i
> 0 for (i = 1, ..., n), then the Hellinger discrimination

for Zipf-Mandelbrot law is defined by

ĥ (i, n, t1, s1,q) :=

n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

−√qi

)2

.
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Definition 3.6. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0, s1, s2 > 0, then

h̃ (i, n, t1, t2, s1, s2) :=

n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

− 1√
(i+ t2)s2Hn,t2,s2

)2

.

Application 7. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying (11),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

h̃ (i, n, t2, t3, s2, s3) :=

n∑
i=1

(
1√

(i+ t2)s2Hn,t2,s2

− 1√
(i+ t3)s3Hn,t3,s3

)2

≤ h̃ (i, n, t1, t3, s1, s3) :=

n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

− 1√
(i+ t3)s3Hn,t3,s3

)2

.

(32)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

(
1√

(i+ t2)s2Hn,t2,s2

− 1√
(i+ t3)s3Hn,t3,s3

)2

≥
n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

− 1√
(i+ t3)s3Hn,t3,s3

)2

.

(33)

Proof. If we choose f(t) := 1
2

(√
t− 1

)2
, t ∈ R+, then by using (12) we get

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

(√
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

− 1

)2

≤
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

(√
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

− 1

)2

,

n∑
i=1

(√
(i+ t3)s3Hn,t3,s3 −

√
(i+ t2)s2Hn,t2,s2√

(i+ t3)s3Hn,t3,s3

√
(i+ t2)s2Hn,t2,s2

)2

≤
n∑
i=1

(√
(i+ t3)s3Hn,t3,s3 −

√
(i+ t1)s1Hn,t1,s1√

(i+ t3)s3Hn,t3,s3

√
(i+ t1)s1Hn,t1,s1

)2

,

we get (32).

(b) Similarly as Part (a), we can prove (33) by using (13) and f(t) := 1
2

(√
t− 1

)2
, t ∈ R+. q.e.d.



Majorizatiuon and Zipf-Mandelbrot law 15

Application 8. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also
let qi > 0, (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

ĥ (i, n, t2, s2,q) :=

n∑
i=1

(
1√

(i+ t2)s2Hn,t2,s2

−√qi

)2

≤ h (i, n, t1, s1,q) :=

n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

−√qi

)2

. (34)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

(
1√

(i+ t2)s2Hn,t2,s2

−√qi

)2

≥
n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

−√qi

)2

. (35)

Proof. If we choose f(t) := 1
2

(√
t− 1

)2
, t ∈ R+, then by using (14) we get

n∑
i=1

qi
2

(
1√

qi(i+ t2)s2Hn,t2,s2

− 1

)2

≤
n∑
i=1

qi
2

(
1√

qi(i+ t1)s1Hn,t1,s1

− 1

)2

,

n∑
i=1

qi

(
1−

√
qi(i+ t2)s2Hn,t2,s2

)2

qi(i+ t2)s2Hn,t2,s2

≤
n∑
i=1

qi

(
1−

√
qi(i+ t1)s1Hn,t1,s1

)2

qi(i+ t1)s1Hn,t1,s1

,

we get (34).

(b) Similarly as Part (a), we can prove (35) by using (15) and f(t) := 1
2

(√
t− 1

)2
, t ∈ R+. q.e.d.

Application 9. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11), then the
following inequality holds

ĥ (i, n, t2, s2,1) :=

n∑
i=1

(
1√

(i+ t2)s2Hn,t2,s2

− 1

)2

≤ ĥ (i, n, t1, s1,1) :=

n∑
i=1

(
1√

(i+ t1)s1Hn,t1,s1

− 1

)2

. (36)

Proof. Substitute qi = 1, (i = 1, ..., n) in (34), we get (36). q.e.d.

The following definitions are the Triangular discrimination for Zipf-Madelbrot law:
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Definition 3.7. (Triangular Descrimination in Z-M Law)
If n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and also q

i
> 0 for (i = 1, ..., n), then the Triangular discrimination

for Zipf-Mandelbrot law is defined by

∆̂ (i, n, t1, s1,q) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

[
(1− qi(i+ t1)s1Hn,t1,s1)

2

1 + qi(i+ t1)s1Hn,t1,s1

]
.

Definition 3.8. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0, s1 s2 > 0, then the Triangular discrimination for
Zipf-Mandelbrot law is defined by

∆̃ (i, n, t1, t2, s1, s2) :=

n∑
i=1

1

[(i+ t1)s1Hn,t1,s1 ][(i+ t2)s2Hn,t2,s2 ]

[
[(i+ t2)s2Hn,t2,s2 − (i+ t1)s1Hn,t1,s1 ]

2

(i+ t2)s2Hn,t2,s2 + (i+ t1)s1Hn,t1,s1

]
.

Application 10. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying (11),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

∆̃ (i, n, t2, t3, s2, s3)

:=

n∑
i=1

1

[(i+ t2)s2Hn,t2,s2 ] [(i+ t3)s3Hn,t3,s3 ]

[
[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2 ]

2

(i+ t3)s3Hn,t3,s3 + (i+ t2)s2Hn,t2,s2

]
≤ ∆̃ (i, n, t1, t3, s1, s3)

:=
1

[(i+ t1)s1Hn,t1,s1 ] [(i+ t3)s3Hn,t3,s3 ]

[
[(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1 ]

2

(i+ t3)s3Hn,t3,s3 + (i+ t1)s1Hn,t1,s1

]
.

(37)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

1

[(i+ t2)s2Hn,t2,s2 ] [(i+ t3)s3Hn,t3,s3 ]

[
[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2 ]

2

(i+ t3)s3Hn,t3,s3 + (i+ t2)s2Hn,t2,s2

]

≥ 1

[(i+ t1)s1Hn,t1,s1 ] [(i+ t3)s3Hn,t3,s3 ]

[
[(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1 ]

2

(i+ t3)s3Hn,t3,s3 + (i+ t1)s1Hn,t1,s1

]
.

(38)

Proof. If we choose f(t) := (t−1)2

t+1 , t ∈ R+, then by using (12) we get

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3/(i+ t2)s2Hn,t2,s2 − 1]
2

(i+ t3)s3Hn,t3,s3/(i+ t2)s2Hn,t2,s2 + 1

≤
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3/(i+ t1)s1Hn,t1,s1 − 1]
2

(i+ t3)s3Hn,t3,s3/(i+ t1)s1Hn,t1,s1 + 1
,
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n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2/(i+ t2)s2Hn,t2,s2 ]
2

(i+ t3)s3Hn,t3,s3 + (i+ t2)s2Hn,t2,s2/(i+ t2)s2Hn,t2,s2

≤
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1/(i+ t1)s1Hn,t1,s1 ]
2

(i+ t3)s3Hn,t3,s3 + (i+ t1)s1Hn,t1,s1/(i+ t1)s1Hn,t1,s1

,

we get (37).

(b) Similarly as Part (a), we can prove (38) by using (13) and f(t) := (t−1)2

t+1 , t ∈ R+. q.e.d.

Application 11. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also
let qi > 0, (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

∆̂ (i, n, t2, s2,q) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

[
(1− qi(i+ t2)s2Hn,t2,s2)

2

1 + qi(i+ t2)s2Hn,t2,s2

]

≤ ∆̂ (i, n, t1, s1,q) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

[
(1− qi(i+ t1)s1Hn,t1,s1)

2

1 + qi(i+ t1)s1Hn,t1,s1

]
. (39)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

[
(1− qi(i+ t2)s2Hn,t2,s2)

2

1 + qi(i+ t2)s2Hn,t2,s2

]

≥
n∑
i=1

1

(i+ t1)s1Hn,t1,s1

[
(1− qi(i+ t1)s1Hn,t1,s1)

2

1 + qi(i+ t1)s1Hn,t1,s1

]
. (40)

Proof. If we choose f(t) := (t−1)2

t+1 , t ∈ R+, then by using (14) we get

n∑
i=1

qi
(1/qi(i+ t2)s2Hn,t2,s2 − 1)

2

1/qi(i+ t2)s2Hn,t2,s2 + 1
≤

n∑
i=1

qi
(1/qi(i+ t1)s1Hn,t1,s1 − 1)

2

1/qi(i+ t1)s1Hn,t1,s1 + 1
,

n∑
i=1

qi
[1− qi(i+ t2)s2Hn,t2,s2/qi(i+ t2)s2Hn,t2,s2 ]

2

1 + qi(i+ t2)s2Hn,t2,s2/qi(i+ t2)s2Hn,t2,s2

≤
n∑
i=1

qi
[1− qi(i+ t1)s1Hn,t1,s1/qi(i+ t1)s1Hn,t1,s1 ]

2

1 + qi(i+ t1)s1Hn,t1,s1/qi(i+ t1)s1Hn,t1,s1

,

we get (39).

(b) Similar way as Part (a), we can prove (40) by using (15) and f(t) := (t−1)2

t+1 , t ∈ R+. q.e.d.
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Application 12. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11), then the
following inequality holds

∆̂ (i, n, t2, s2,1) :=

n∑
i=1

1

(i+ t2)s2Hn,t2,s2

[
(1− (i+ t2)s2Hn,t2,s2)

2

1 + (i+ t2)s2Hn,t2,s2

]

≤ ∆̂ (i, n, t1, s1,1) :=

n∑
i=1

1

(i+ t1)s1Hn,t1,s1

[
(1− (i+ t1)s1Hn,t1,s1)

2

1 + (i+ t1)s1Hn,t1,s1

]
. (41)

Proof. Substitute qi = 1, (i = 1, ..., n) in (39), we get (41). q.e.d.

The following definitions are the χ2-distance (chi-square distance) for Zipf-Madelbrot law:

Definition 3.9. (χ2-distance for Z-M law)
If n ∈ {1, 2, 3, ...}, t1 ≥ 0, s1 > 0 and also q

i
> 0 for (i = 1, ..., n), then the χ2-distance for

Zipf-Mandelbrot law is defined by

χ̂2 (i, n, t1, s1,q) :=

n∑
i=1

[1− qi(i+ t1)s1Hn,t1,s1 ]
2

qi [(i+ t1)s1Hn,t1,s1 ]
2 .

Definition 3.10. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0, s1, s2 > 0, then

χ̃2 (i, n, t1, t2, s1, s2) :=

n∑
i=1

[(i+ t2)s2Hn,t2,s2 − (i+ t1)s1Hn,t1,s1 ]
2

[(i+ t2)s2Hn,t2,s2 ] [(i+ t1)s1Hn,t1,s1 ]
2 .

Application 13. Let n ∈ {1, 2, 3, ...}, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 such that satisfying (11),

(a) if (i+1+t3)s3

(i+1+t2)s2 ≤
(i+t3)s3

(i+t2)s2 (i = 1, ..., n), then

χ̃2 (i, n, t2, t3, s2, s3) :=

n∑
i=1

[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2 ]
2

[(i+ t2)s2Hn,t2,s2 ]
2

[(i+ t3)s3Hn,t3,s3 ]

≤ χ̃2 (i, n, t1, t3, s1, s3) :=
[(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1 ]

2

[(i+ t1)s1Hn,t1,s1 ]
2

[(i+ t3)s3Hn,t3,s3 ]
.

(42)

(b) if (i+1+t3)s3

(i+1+t1)s1 ≥
(i+t3)s3

(i+t1)s1 (i = 1, ..., n), then

n∑
i=1

[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2 ]
2

[(i+ t2)s2Hn,t2,s2 ]
2

[(i+ t3)s3Hn,t3,s3 ]

≥ [(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1 ]
2

[(i+ t1)s1Hn,t1,s1 ]
2

[(i+ t3)s3Hn,t3,s3 ]
.

(43)
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Proof. If we choose f(t) := (t− 1)
2
, t ∈ [0,∞), then by using (12) we get

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[
(i+ t3)s3Hn,t3,s3

(i+ t2)s2Hn,t2,s2

− 1

]2

≤
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[
(i+ t3)s3Hn,t3,s3

(i+ t1)s1Hn,t1,s1

− 1

]2

,

n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3 − (i+ t2)s2Hn,t2,s2 ]
2

[(i+ t2)s2Hn,t2,s2 ]
2

≤
n∑
i=1

1

(i+ t3)s3Hn,t3,s3

[(i+ t3)s3Hn,t3,s3 − (i+ t1)s1Hn,t1,s1 ]
2

[(i+ t1)s1Hn,t1,s1 ]
2 ,

we get (42).

(b) Similarly as Part (a), we can prove (43) by using (13) and f(t) := (t− 1)
2
, t ∈ [0,∞). q.e.d.

Application 14. Let n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11) and also
let qi > 0, (i = 1, ..., n),

(a) if (i+t2)s2

(i+1+t2)s2 ≤
qi+1

qi
(i = 1, ..., n), then

χ̂2 (i, n, t2, s2,q) :=

n∑
i=1

[1− qi(i+ t2)s2Hn,t2,s2 ]
2

qi [(i+ t2)s2Hn,t2,s2 ]
2

≤ χ̂2 (i, n, t1, s1,q) :=

n∑
i=1

[1− qi(i+ t1)s1Hn,t1,s1 ]
2

qi [(i+ t1)s1Hn,t1,s1 ]
2 . (44)

(b) if (i+t1)s1

(i+1+t1)s1 ≥
qi+1

qi
(i = 1, ..., n), then

n∑
i=1

[1− qi(i+ t2)s2Hn,t2,s2 ]
2

qi [(i+ t2)s2Hn,t2,s2 ]
2

≥
n∑
i=1

[1− qi(i+ t1)s1Hn,t1,s1 ]
2

qi [(i+ t1)s1Hn,t1,s1 ]
2 . (45)

Proof. If we choose f(t) := (t− 1)
2
, t ∈ [0,∞), then by using (14) we get

n∑
i=1

qi

(
1

qi(i+ t2)s2Hn,t2,s2

− 1

)2

≤
n∑
i=1

qi

(
1

qi(i+ t1)s1Hn,t1,s1

− 1

)2

,

n∑
i=1

qi

(
1− qi(i+ t2)s2Hn,t2,s2

qi(i+ t2)s2Hn,t2,s2

)2

≤
n∑
i=1

qi

(
1− qi(i+ t1)s1Hn,t1,s1

qi(i+ t1)s1Hn,t1,s1

)2

,

we get (44).

(b) Similar way as Part (a), we can prove (45) by using (15) and f(t) := (t− 1)
2
, t ∈ [0,∞). q.e.d.
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Application 15. If n ∈ {1, 2, 3, ...}, t1, t2 ≥ 0 and s1, s2 > 0 such that satisfying (11), then the
following inequality holds

χ̂2 (i, n, t2, s2,1) :=

n∑
i=1

[1− (i+ t2)s2Hn,t2,s2 ]
2

[(i+ t2)s2Hn,t2,s2 ]
2

≤ χ̂2 (i, n, t1, s1,1) :=

n∑
i=1

[1− (i+ t1)s1Hn,t1,s1 ]
2

[(i+ t1)s1Hn,t1,s1 ]
2 . (46)

Proof. Substitute qi = 1, (i = 1, ..., n) in (44), we get (46). q.e.d.

4 Zipf’s Law in Linguistics

For finite n and t = 0 the Zipf-Mandelbrot law becomes Zipf’s law. Therefore (1) and (2) becomes

f (k, n, s) :=
1/ks

Hn,s
, where Hn,s :=

n∑
i=1

1

is
. (47)

Gelbukh and Sidorov in [12] observed the difference between the coefficients s1 and s2 in Zipf’s
law for the English and Russian languages. They processed 39 literature texts for each language,
chosen randomly from different genres, with the requirement that the size be greater than 10,000
running words each. They calculated coefficients for each of the mentioned texts and as the result
they obtained the average of s1 = 0, 973863 for the English language and s2 = 0, 892869 for the
Russian language.

The following definitions are the Kullback-Leibler divergence for Zipf’s law:

Definition 4.1. (Kullback-Leibler divergence for Zipf Law)
If n ∈ {1, 2, 3, ...}, s1 > 0 and also q

i
> 0 for (i = 1, ..., n), then the Kullback-Leibler divergence for

Zipf’s law is defined by

K̂L (i, n, s1,q) :=

n∑
i=1

qi log

(
1

qi is1Hn,s1

)
.

Definition 4.2. If n ∈ {1, 2, 3, ...}, s1 > 0 and also qi > 0 for (i = 1, ..., n), then the Kullback-
Leibler divergence for Zipf’s law is defined by

ˆKLid (i, n, s1,q) :=

n∑
i=1

1

is1Hn,s1

log

(
1

qi is1Hn,s1

)
.

Remark 4.3. The majorization conditions (11) for t1 = t2 = 0 becomes

Hk,s2

Hn,s2

≤ Hk,s1

Hn,s1

, for k = 2, ..., n− 1, (48)

and for k = 1, the above inequality becomes

Hn,s1 ≤ Hn,s2 ⇔ s2 ≤ s1, (49)

which means that the generalized harmonic number of order n of s1 is less or equal to the generalized
harmonic number of order n of s2.
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Corollary 4.4. Let n ∈ {1, 2, 3, ...} and s1, s2 > 0 such that s2 ≤ s1 satisfying (48) and also let
qi > 0, (i = 1, ..., n),

(a) if is2

(i+1)s2 ≤
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then

K̂L (i, n, s2,q) :=

n∑
i=1

qi log

(
1

qi is2 Hn,s2

)

≥ K̂L (i, n, s1,q) :=

n∑
i=1

qi log

(
1

qi is1Hn,s1

)
. (50)

If the base of log is in between 0 and 1, then the reverse inequality holds in (50).

(b) if is1

(i+1)s1 ≥
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then

n∑
i=1

qi log

(
1

qi is2 Hn,s2

)
≤

n∑
i=1

qi log

(
1

qi is1 Hn,s1

)
. (51)

If the base of log is in between 0 and 1, then the reverse inequality holds in (51).

Proof. If we choose the function f(x) := log x and t1 = t2 = 0 in Theorem 3, we get the required
results. q.e.d.

Corollary 4.5. If n ∈ {1, 2, 3, ...} and s1, s2 > 0 such that s2 ≤ s1 satisfying (48) and also the
base of log is greater than 1, then

K̂L (i, n, s2,1) :=

n∑
i=1

log

(
1

is2 Hn,s2

)

≥ K̂L (i, n, s1,1) :=

n∑
i=1

log

(
1

is1Hn,s1

)
. (52)

If the base of log is in between 0 and 1, then the reverse inequality holds in (52).

Proof. If we choose qi := 1, (i = 1, ..., n) in (50), then we get (52). q.e.d.

Application 16. Let n ∈ {1, 2, 3, ...}, s1 = 0, 973863 for the English language and s2 = 0, 892869
for the Russian language such that satisfying (48) and also let qi > 0, (i = 1, ..., n),

(a) if i0,892869

(i+1)0,892869 ≤
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then the following

bound for the Kullback-Leibler divergence of the distributions associated to the English and
Russian languages depending only on the parameter n hold

0 ≤
n∑
i=1

qi log

(
1

qi i0,892869Hn,0,892869

)
−

n∑
i=1

qi log

(
1

qi i0,973863Hn,0,973863

)

≤ log

(
n0,080994 Hn,0,973863

Hn,0,892869

) n∑
i=1

qi.

(53)
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If the base of log is in between 0 and 1, then

0 ≤
n∑
i=1

qi log

(
1

qi i0,973863Hn,0,973863

)
−

n∑
i=1

qi log

(
1

qi i0,892869Hn,0,892869

)

≤ log

(
Hn,0,892869

Hn,0,973863

) n∑
i=1

qi.

(54)

(b) if i0,973863

(i+1)0,973863 ≥
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then (54) holds. If

the base of log is in between 0 and 1, then (53) holds.

Proof. (a) Take the difference of Left Hand and the Right Hand sides of (50) and then putting the
experimental values of s1 and s2, we have

0 ≤
n∑
i=1

qi log

(
1

qi i0,892869Hn,0,892869

)
−

n∑
i=1

qi log

(
1

qi i0,973863Hn,0,973863

)

=

n∑
i=1

qi log

(
i0,080994 Hn,0,973863

Hn,0,892869

)
≤ log

(
n0,080994 Hn,0,973863

Hn,0,892869

) n∑
i=1

qi.

In the similar fashion, we can prove the other bounds. q.e.d.

Application 17. If n ∈ {1, 2, 3, ...}, s1 = 0, 973863 for the English language and s2 = 0, 892869
for the Russian language such that satisfying (48) and the base of log is greater than 1, then we
give the following bound associated to the English and Russian languages:

0 ≤
n∑
i=1

log

(
1

i0,892869Hn,0,892869

)
−

n∑
i=1

log

(
1

i0,973863Hn,0,973863

)
≤ log

(
n0,080994Hn,0,973863

Hn,0,892869

)n
.

(55)

If the base of log is in between 0 and 1, then

0 ≤
n∑
i=1

log

(
1

i0,973863Hn,0,973863

)
−

n∑
i=1

log

(
1

i0,892869Hn,0,892869

)
≤ log

(
Hn,0,892869

Hn,0,973863

)n
.

(56)

Corollary 4.6. Let n ∈ {1, 2, 3, ...} and s1, s2 > 0 such that s2 ≤ s1 satisfying (48) and also let
qi > 0, (i = 1, ..., n),

(a) if is2

(i+1)s2 ≤
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then

K̂Lid (i, n, s2,q) :=

n∑
i=1

1

is2 Hn,s2

log

(
1

qi is2 Hn,s2

)

≤ K̂Lid (i, n, s1,q) :=

n∑
i=1

1

is1 Hn,s1

log

(
1

qi is1Hn,s1

)
. (57)
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If the base of log is in between 0 and 1, then the reverse inequality holds in (57).

(b) if is1

(i+1)s1 ≥
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then

n∑
i=1

1

is2 Hn,s2

log

(
1

qi is2 Hn,s2

)
≥

n∑
i=1

1

is1 Hn,s1

log

(
1

qi is1Hn,s1

)
. (58)

If the base of log is in between 0 and 1, then the reverse inequality holds in (58).

Proof. If we choose the function xf(x) := x log x and t1 = t2 = 0 in Theorem 5, we get the required
results. q.e.d.

Corollary 4.7. If n ∈ {1, 2, 3, ...} and s1, s2 > 0 such that s2 ≤ s1 satisfying (48) and the base of
log is greater than 1, then

K̂Lid (i, n, s2,1) :=

n∑
i=1

1

is2 Hn,s2

log

(
1

is2 Hn,s2

)

≤ K̂Lid (i, n, s1,1) :=

n∑
i=1

1

is1 Hn,s1

log

(
1

is1Hn,s1

)
. (59)

If the base of log is in between 0 and 1, then the reverse inequality holds in (59).

Proof. If we choose qi := 1, (i = 1, ..., n) in (57), then we get (59). q.e.d.

Application 18. Let n ∈ {1, 2, 3, ...}, s1 = 0, 973863 for the English language and s2 = 0, 892869
for the Russian language such that satisfying (48) and also let qi > 0, (i = 1, ..., n),

(a) if i0,892869

(i+1)0,892869 ≤
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then

0 ≤ 1

Hn,0,973863

n∑
i=1

1

i0,973863
log

(
1

qi i0,973863Hn,0,973863

)

− 1

Hn,0,892869

n∑
i=1

1

i0,892869
log

(
1

qi i0,892869Hn,0,892869

)

≤ 1

Hn,0,973863

n∑
i=1

log

(
1

qiHn,0,973863

)
− 1

n0,892869Hn,0,892869

n∑
i=1

log

(
1

qi n0,892869Hn,0,892869

)
.

(60)
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If the base of log is in between 0 and 1, then

0 ≤ 1

Hn,0,892869

n∑
i=1

1

i0,892869
log

(
1

qi i0,892869Hn,0,892869

)

− 1

Hn,0,973863

n∑
i=1

1

i0,973863
log

(
1

qi i0,973863Hn,0,973863

)

≤ 1

Hn,0,892869

n∑
i=1

log

(
1

qiHn,0,892869

)
− 1

n0,973863Hn,0,973863

n∑
i=1

log

(
1

qi n0,973863Hn,0,973863

)
.

(61)

(b) if i0,973863

(i+1)0,973863 ≥
qi+1

qi
(i = 1, ..., n) and the base of log is greater than 1, then (61) holds. If

the base of log is in between 0 and 1, then (60) holds.

Application 19. If n ∈ {1, 2, 3, ...}, s1 = 0, 973863 for the English language and s2 = 0, 892869
for the Russian language such that satisfying (48) and the base of log is greater than 1, then

0 ≤ 1

Hn,0,973863

n∑
i=1

1

i0,973863
log

(
1

i0,973863Hn,0,973863

)

− 1

Hn,0,892869

n∑
i=1

1

i0,892869
log

(
1

i0,892869Hn,0,892869

)
≤ 1

Hn,0,973863
log

(
1

Hn,0,973863

)n
− n0,107131

Hn,0,892869
log

(
1

n0,892869Hn,0,892869

)
.

(62)

If the base of log is in between 0 and 1, then

0 ≤ 1

Hn,0,892869

n∑
i=1

1

i0,892869
log

(
1

i0,892869Hn,0,892869

)

− 1

Hn,0,973863

n∑
i=1

1

i0,973863
log

(
1

i0,973863Hn,0,973863

)
≤ 1

Hn,0,892869
log

(
1

Hn,0,892869

)n
− n0,026137

Hn,0,973863
log

(
1

n0,973863Hn,0,973863

)
.

(63)
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[1] M. A. Khan, N. Latif, and J. Pečarić, Generalization of majorization theorem, J. Math. In-
equal., 9(3) (2015), 847-872.
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[22] M. Matić, C. E. M. Pearce and J. Pečarić, Shannon’s and related inequalities in information
theory. Survey on classical inequalities, editor Themistocles M. Rassias, Kluwer Academic
Publ., 2000, 127-164.
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