Hankel determinant for starlike and convex functions of order alpha

D. Vamshee Krishna1,*, T. Ramreddy2

1Department of Humanities and Sciences, Swarna Bharathi College of Engineering, Khammam 507170, Andhra Pradesh, India.
2Department of Mathematics, Kakatiya University, Warangal 506009, Andhra Pradesh, India.
*Corresponding author

E-mail: vamsheekrishna1972@gmail.com, reddytr2@yahoo.com

\begin{abstract}

The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_2 a_4 - a_3^2|$ for starlike and convex functions of order α ($0 \leq \alpha < 1$), also for the inverse function of f, belonging to the class of convex functions of order α, using Toeplitz determinants.

2000 Mathematics Subject Classification. 30C45. 30C50.

Keywords. Analytic function, starlike and convex functions, upper bound, second Hankel functional, positive real function, Toeplitz determinants.

\end{abstract}

1 Introduction

Let A denote the class of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

in the open unit disc $E = \{ z : |z| < 1 \}$. Let S be the subclass of A, consisting of univalent functions. In 1976, Noonan and Thomas [15] defined the q^{th} Hankel determinant of f for $q \geq 1$ and $n \geq 1$ as

$$H_q(n) = \begin{vmatrix}
a_n & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}.$$

(1.2)

This determinant has been considered by several authors in the literature. For example, Noor [16] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for the functions in S with bounded boundary. Ehrenborg [5] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman in [11]. One can easily observe that the Fekete-Szeg"{o} functional is $H_2(1)$. Fekete-Szeg"{o} then further generalized the estimate $|a_3 - \mu a_2^2|$ with μ real and $f \in S$. Ali [3] found sharp bounds on the first four coefficients and sharp estimate for the Fekete-Szeg"{o} functional $|\gamma_3 - \tau_2^2|$, where t is real, for the inverse function of f defined as $f^{-1}(w) = w + \sum_{n=3}^{\infty} \gamma_n w^n$ to the class of strongly starlike functions of order α ($0 < \alpha \leq 1$) denoted by $\tilde{S}T(\alpha)$.

For our discussion in this paper, we consider the Hankel determinant in the case of $q = 2$ and $n = 2$, known as the second Hankel determinant

$$\begin{vmatrix}
a_2 & a_3 \\
a_3 & a_4
\end{vmatrix} = |a_2 a_4 - a_3^2|. $$

(1.3)
Janteng, Halim and Darus [10] have considered the functional \(|a_2a_4 - a_3^2| \) and found a sharp bound for the function \(f \) in the subclass \(\mathcal{RT} \) of \(S \), consisting of functions whose derivative has a positive real part studied by Mac Gregor [12]. In their work, they have shown that if \(f \in \mathcal{RT} \) then \(|a_2a_4 - a_3^2| \leq \frac{4}{9} \). These authors [9] also obtained the second Hankel determinant and sharp bounds for the familiar subclasses of \(S \), namely, starlike and convex functions denoted by \(\text{ST} \) and \(\text{CV} \) and shown that \(|a_2a_4 - a_3^2| \leq 1 \) and \(|a_2a_4 - a_3^2| \leq \frac{1}{4} \) respectively. Mishra and Gochhayat [13] have obtained the sharp bound to the non-linear functional \(|a_2a_4 - a_3^2| \) for the class of analytic functions denoted by \(R_\lambda(\alpha, \rho)(0 \leq \rho \leq 1, 0 \leq \lambda < 1, |\alpha| < \frac{\pi}{2}) \), defined as \(\text{Re} \left\{ e^{i\alpha} \frac{2z^2f''(z)}{f'(z)} \right\} > \rho \cos \alpha \), using the fractional differential operator denoted by \(\Omega^2_\lambda \), defined by Owa and Srivastava [17]. These authors have shown that, if \(f \in R_\lambda(\alpha, \rho) \) then \(|a_2a_4 - a_3^2| \leq \left\{ \frac{(1-\rho^2)(2-\lambda^2)(3-\lambda^2)\cos^2\alpha}{9} \right\} \). Similarly, the same coefficient inequality was calculated for certain subclasses of analytic functions by many authors ([14], [4], [1]).

Motivated by the above mentioned results obtained by different authors in this direction, in this paper, we obtain an upper bound to the functional \(|a_2a_4 - a_3^2| \) for the function \(f \) belonging to the classes starlike and convex functions of order \(\alpha \), denoted by \(\text{ST}(\alpha) \) and \(\text{CV}(\alpha) \), defined as follows.

Definition 1.1. Let \(f \) be given by (1.1). Then \(f \in \text{ST}(\alpha) \) \((0 \leq \alpha \leq 1)\), if and only if

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \geq \alpha, \quad \forall z \in E. \quad (1.4)
\]

It is observed that for \(\alpha = 0 \), we obtain \(\text{ST}(0) = \text{ST} \). It follows that \(\text{ST}(\alpha) \subset \text{ST} \), for \((0 \leq \alpha < 1)\), \(\text{ST}(1) = \text{z} \) and \(\text{ST}(\alpha) \subset \text{ST}(\beta) \), for \(\alpha \geq \beta \). Robertson [19] obtained that if \(f \in \text{ST}(\alpha) \) \((0 \leq \alpha \leq 1)\), then

\[
|a_n| \leq \left\lfloor \frac{1}{(n-1)!} \prod_{k=2}^{n} (k-2\alpha) \right\rfloor, \quad \text{for} \quad n = 2, 3, ...
\]

(1.5)

The inequality in (1.5) is sharp for the function \(s_\alpha(z) = \left\{ \frac{z}{(1-z)(1-z^2)} \right\} \), for every integer \(n \geq 2 \).

Definition 1.2. Let \(f \) be given by (1.1). Then \(f \in \text{CV}(\alpha) \) \((0 \leq \alpha \leq 1)\), if and only if

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} \geq \alpha, \quad \forall z \in E. \quad (1.6)
\]

Choosing \(\alpha = 0 \), we get \(\text{CV}(0) = \text{CV} \). It is observed that the sets \(\text{ST}(\alpha) \) and \(\text{CV}(\alpha) \) become smaller as the value of \(\alpha \) increases [6]. Further, from the Definitions 1.1 and 1.2, we observe that, there exists an Alexander type Theorem [2], which relates the classes \(\text{ST}(\alpha) \) and \(\text{CV}(\alpha) \), stated as follows.

\[
f \in \text{CV}(\alpha) \Leftrightarrow zf' \in \text{ST}(\alpha).\]

We first state some preliminary Lemmas required for proving our results.

2 Preliminary Results

Let \(P \) denote the class of functions \(p \) analytic in \(E \), for which \(\text{Re}\{p(z)\} > 0 \),

\[
p(z) = (1 + c_1z + c_2z^2 + c_3z^3 + \ldots) = 1 + \sum_{n=1}^{\infty} c_nz^n, \forall z \in E. \quad (2.1)
\]
Lemma 2.1. ([18]) If $p \in P$, then $|c_k| \leq 2$, for each $k \geq 1$.

Lemma 2.2. ([7]) The power series for p given in (2.1) converges in the unit disc E to a function in P if and only if the Toeplitz determinants

$$D_n = \begin{vmatrix} 2 & c_1 & c_2 & \cdots & c_n \\ c_{-1} & 2 & c_1 & \cdots & c_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix}, \quad n = 1, 2, 3, \ldots,$$

and $c_{-k} = \tau_k$, are all non-negative. These are strictly positive except for $p(z) = \sum_{k=1}^m \rho_k p_0(\exp(ik)z)$, $\rho_k > 0$, t_k real and $t_k \neq t_j$, for $k \neq j$; in this case $D_n > 0$ for $n < (m - 1)$ and $D_n = 0$ for $n \geq m$.

This necessary and sufficient condition is due to Caratheodory and Toeplitz can be found in [7].

We may assume without restriction that $c_1 > 0$. On using Lemma 2.2, for $n = 2$ and $n = 3$ respectively, we get

$$D_2 = \begin{vmatrix} 2 & c_1 & c_2 \\ \tau_1 & 2 & c_1 \\ \tau_2 & \tau_1 & 2 \end{vmatrix} = [8 + 2Re(c_1^2c_2) - 2 |c_2|^2 - 4c_1^2] \geq 0,$$

which is equivalent to

$$2c_2 = \{c_1^2 + x(4 - c_1^2)\}, \quad \text{for some } x, \quad |x| \leq 1. \quad (2.2)$$

Then $D_3 \geq 0$ is equivalent to

$$|(4c_3 - 4c_1c_2 + c_1^2)(4 - c_1^2) + c_1(2c_2 - c_1^2)^2 \leq 2(4 - c_1^2)^2 - 2|2c_2 - c_1^2|^2 \leq (2c_2 - c_1^2)|z|. \quad (2.3)$$

From the relations (2.2) and (2.3), after simplifying, we get

$$4c_3 = \{c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z\}
\quad \text{for some real value of } z, \quad \text{with } |z| \leq 1. \quad (2.4)$$

3 Main Results

Theorem 3.1. If $f(z) \in ST(\alpha) \,(0 \leq \alpha \leq {\frac{1}{2}}, then

$$|az_2a_4 - a_2^3| \leq (1 - \alpha)^2.$$

Proof. Since $f(z) = z + \sum_{n=2}^\infty a_n z^n \in ST(\alpha)$, from the Definition 1.1, there exists an analytic function $p \in P$ in the unit disc E with $p(0) = 1$ and $\text{Re}\{p(z)\} > 0$ such that

$$\left\{zf'(z) - \alpha f(z) \right\} \quad \Leftrightarrow \quad \left\{zf'(z) - \alpha f(z) \right\} = \{(1 - \alpha)f(z)p(z)\}. \quad (3.1)$$
Replacing \(f(z) \), \(f'(z) \) and \(p(z) \) with their equivalent series expressions in (3.1), we have

\[
\left\{ 1 + \sum_{n=2}^{\infty} n a_n z^{n-1} \right\} - \alpha \left\{ \sum_{n=2}^{\infty} a_n z^n \right\} = (1 - \alpha) \left[\sum_{n=2}^{\infty} a_n z^n \right] \times \left[1 + \sum_{n=1}^{\infty} c_n z^n \right].
\]

Upon simplification, we obtain

\[
[a_2 z + 2a_3 z^2 + 3a_4 z^3 + ...] = (1 - \alpha)[c_1 z + (c_2 + c_1 a_2)z^2 + (c_3 + c_2 a_2 + c_1 a_3)z^3 + ...] \tag{3.2}
\]

Equating the coefficients of like powers of \(z \), \(z^2 \) and \(z^3 \) respectively in (3.2), after simplifying, we get

\[
[a_2 = (1 - \alpha)c_1; a_3 = \frac{(1 - \alpha)}{2} \{c_2 + (1 - \alpha)c_1^2\}; \\
\]

\[
a_4 = \frac{(1 - \alpha)}{6} \{2c_3 + 3(1 - \alpha)c_1 c_2 + (1 - \alpha)^2 c_1^3\} \tag{3.3}
\]

Substituting the values of \(a_2, a_3 \) and \(a_4 \) from (3.3) in the second Hankel determinant \(|a_2 a_4 - a_3^2| \) for the function \(f \in ST(\alpha) \), we have

\[
|a_2 a_4 - a_3^2| = \left| (1 - \alpha) c_1 \times \frac{(1 - \alpha)}{6} \{2c_3 + 3(1 - \alpha)c_1 c_2 + (1 - \alpha)^2 c_1^3\} \right| - \frac{(1 - \alpha)^2}{4} \{c_2 + (1 - \alpha)c_1^2\}^2.
\]

After simplifying, we get

\[
|a_2 a_4 - a_3^2| = \frac{(1 - \alpha)^2}{12} \times \left| 4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4 \right|. \tag{3.4}
\]

Substituting the values of \(c_2 \) and \(c_3 \) from (2.2) and (2.4) respectively from Lemma 2.2 in the right hand side of (3.4), we have

\[
|4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4| = 4c_1 \times \frac{1}{4} \left| c_1^4 + 2c_1 (4 - c_1^2) x - c_1 (4 - c_1^2) x^2 + 2(4 - c_1^2)(1 - |x|^2) z \right| - 3 \times \frac{1}{4} \left| c_1^2 + x(4 - c_1^2) \right|^2 - (1 - \alpha)^2 c_1^4.
\]

Using the facts that \(|x| < 1 \) and \(|xa + yb| \leq |x||a| + |y||b| \), where \(x, y, a \) and \(b \) are real numbers, after simplifying, we get

\[
4 \left| 4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4 \right| \leq \left| (-4a^2 + 8a - 3)c_1^4 + 8c_1 (4 - c_1^2) \right| + 2c_1^2 (4 - c_1^2)|x| - (c_1 + 2)(c_1 + 6)(4 - c_1^2)|x|^2. \tag{3.5}
\]
Moreover, for fixed c, the interior of the closed square $(0, 1) \times (0, 1)$.

From the expressions (3.7) and (3.13), after simplifying, we get

$$
4 \left| 4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4 \right| \leq \left| (-4\alpha^2 + 8\alpha - 3)c_4^4 + 8c_1(4 - c_1^2) + 2c_1^2(4 - c_1^2)|x| - (c_1 - 2)(c_1 - 6)(4 - c_1^2)|x|^2 \right| \quad (3.6)
$$

Choosing $c_1 = c \in [0, 2]$, applying Triangle inequality and replacing $|x|$ by μ in the right hand side of (3.6), we get

$$
4 \left| 4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4 \right| \leq \left| (4\alpha^2 - 8\alpha + 3)c_4^4 + 8c(4 - c^2) + 2c^2(4 - c^2)\mu + (c - 2)(c - 6)(4 - c^2)\mu^2 \right| = F(c, \mu) \quad (3.7)
$$

Where

$$
F(c, \mu) = [(4\alpha^2 - 8\alpha + 3)c_4^4 + 8c(4 - c^2) + 2c^2(4 - c^2)\mu + (c - 2)(c - 6)(4 - c^2)\mu^2].
$$

We next maximize the function $F(c, \mu)$ on the closed square $[0, 2] \times [0, 1]$. Differentiating $F(c, \mu)$ in (3.8) partially with respect to μ, we get

$$
\frac{\partial F}{\partial \mu} = 2 \left[c^2 + (c - 2)(c - 6)\mu \right] \times (4 - c^2) \quad (3.9)
$$

For $0 < \mu < 1$, for fixed c with $0 < c < 2$, from (3.9), we observe that $\frac{\partial F}{\partial \mu} > 0$. Consequently, $F(c, \mu)$ is an increasing function of μ and hence it cannot have a maximum value at any point in the interior of the closed square $[0, 2] \times [0, 1]$.

Moreover, for fixed $c \in [0, 2]$, we have

$$
\max_{0 \leq \mu \leq 1} F(c, \mu) = F(c, 1) = G(c) \quad (3.10)
$$

From the relations (3.8) and (3.10), upon simplification, we obtain

$$
G(c) = \{4\alpha(\alpha - 2)c_4^4 + 48\} \quad (3.11)
$$

$$
G'(c) = \{16\alpha(\alpha - 2)c_3^3\} \quad (3.12)
$$

From the expression (3.12), we observe that $G'(c) \leq 0$ for all values of $0 \leq c \leq 2$ and $0 \leq \alpha \leq \frac{1}{2}$. Therefore, $G(c)$ is a monotonically decreasing function of c in the interval $[0, 2]$ so that its maximum value occurs at $c = 0$. From (3.11), we obtain

$$
\max_{0 \leq c \leq 2} G(0) = 48 \quad (3.13)
$$

From the expressions (3.7) and (3.13), after simplifying, we get

$$
\left| 4c_1 c_3 - 3c_2^2 - (1 - \alpha)^2 c_1^4 \right| \leq 12 \quad (3.14)
$$

From the expressions (3.4) and (3.14), upon simplification, we obtain

$$
|a_2 \alpha_4 - a_3^2| \leq (1 - \alpha)^2 \quad (3.15)
$$
Upon simplification, we obtain

\[|a_2a_4 - a_3^2| \leq \left[\frac{(1 - \alpha)^2(17\alpha^2 - 36\alpha + 36)}{144(\alpha^2 - 2\alpha + 2)} \right]. \]

Remark. For the choice of \(\alpha = 0 \), we get \(ST(0) = ST \), for which, from (3.15), we get \(|a_2a_4 - a_3^2| \leq 1 \). This inequality is sharp and coincides with that of Janteng, Halim and Darus [9].

Theorem 3.2. If \(f(z) \in CV(\alpha) \) \((0 \leq \alpha \leq 1)\), then

\[\{f'(z) + zf''(z)\} - \alpha f'(z) \]

for the function \(f \) and substituting the values of \(a \) from (3.18) in the second Hankel functional \(0 \) with \(p(0) = 1 \) and \(\text{Re}\{p(z)\} > 0 \) such that

\[\left\{ \frac{f'(z) + zf''(z)}{(1 - \alpha)f'(z)} \right\} = p(z) \]

\[\Leftrightarrow \left\{ (1 - \alpha)f'(z) + zf''(z) \right\} = \left\{ (1 - \alpha)f'(z)p(z) \right\}. \] (3.16)

Replacing \(f'(z), f''(z) \) and \(p(z) \) with their equivalent series expressions in (3.16), we have

\[\left[(1 - \alpha) \left\{ 1 + \sum_{n=2}^{\infty} na_n z^{n-1} \right\} + z \left\{ \sum_{n=2}^{\infty} n(n - 1)a_n z^{n-2} \right\} \right] \]

\[= \left[(1 - \alpha) \left\{ 1 + \sum_{n=2}^{\infty} na_n z^{n-1} \right\} \times \left\{ 1 + \sum_{n=1}^{\infty} c_n z^{n} \right\} \right]. \]

Upon simplification, we obtain

\[[2a_2z + 6a_3z^2 + 12a_4z^3 +...] \]

\[= (1 - \alpha)[c_1z + (c_2 + 2c_1a_2)z^2 + (c_3 + 2c_2a_2 + 3c_1a_2)z^3 + ...]. \] (3.17)

Equating the coefficients of like powers of \(z, z^2 \) and \(z^3 \) respectively in (3.17), after simplifying, we get

\[a_2 = \frac{(1 - \alpha)}{2} c_1; a_3 = \frac{(1 - \alpha)}{6} \left\{ c_2 + (1 - \alpha)c_1^2 \right\}; \]

\[a_4 = \frac{(1 - \alpha)}{24} \left\{ 2c_3 + 3(1 - \alpha)c_1 c_2 + (1 - \alpha)^2 c_1^3 \right\}. \] (3.18)

Substituting the values of \(a_2, a_3 \) and \(a_4 \) from (3.18) in the second Hankel functional \(|a_2a_4 - a_3^2| \) for the function \(f \in CV(\alpha) \), upon simplification, we obtain

\[|a_2a_4 - a_3^2| = \frac{(1 - \alpha)^2}{144} \times [6c_1c_3 - 4c_2^2 + (1 - \alpha)c_1^2 c_2 - (1 - \alpha)^2 c_1^3]. \] (3.19)

Applying the same procedure as described in Theorem 3.1, we get

\[2 \left[6c_1c_3 - 4c_2^2 + (1 - \alpha)c_1^2 c_2 - (1 - \alpha)^2 c_1^3 \right] \leq \left[(3\alpha - 2\alpha^2)c_1^2 c_2 - (1 - \alpha)^2 c_1^3 \right], \]

\[+ 6c_1(4 - c_1^2) + (3 - \alpha)c_1^2(4 - c_1^2)|x| - (c_1 + 2)(c_1 + 4)(4 - c_1^2)|x|^2. \] (3.20)
Since $c_1 \in [0, 2]$, using the result $(c_1 + a)(c_1 + b) \geq (c_1 - a)(c_1 - b)$, where $a, b \geq 0$ in the right hand side of (3.20), upon simplification, we obtain

$$2 \left| 6c_1 c_3 - 4c_2^2 + (1 - \alpha)c_1^2 c_2 - (1 - \alpha)^2 c_1^4 \right| \leq |(3\alpha - 2\alpha^2)c_1^4 + 6\alpha(4 - c^2) + (3 - \alpha)c_1^2(4 - c^2)\mu + (c - 2)(c - 4)(4 - c^2)\mu^2|$$

(3.21)

Applying the same procedure as described in Theorem 3.1, we obtain

$$2 \left| 6c_1 c_3 - 4c_2^2 + (1 - \alpha)c_1^2 c_2 - (1 - \alpha)^2 c_1^4 \right| \leq |(3\alpha - 2\alpha^2)c_1^4 + 6\alpha(4 - c^2) + (3 - \alpha)c_1^2(4 - c^2)\mu + (c - 2)(c - 4)(4 - c^2)\mu^2|$$

(3.22)

Where

$$F(c, \mu) = |(3\alpha - 2\alpha^2)c_1^4 + 6\alpha(4 - c^2) + (3 - \alpha)c_1^2(4 - c^2)\mu + (c - 2)(c - 4)(4 - c^2)\mu^2|.$$

We next maximize the function $F(c, \mu)$ on the closed square $[0, 2] \times [0, 1]$. Differentiating $F(c, \mu)$ in (3.23) partially with respect to μ, we get

$$\frac{\partial F}{\partial \mu} = [(3 - \alpha)c_1^2 + 2(c - 2)(c - 4)\mu] \times (4 - c^2).$$

(3.24)

For $0 < \mu < 1$, for fixed c with $0 < c < 2$ and for $(0 \leq \alpha \leq 1)$, from (3.24), we observe that $\frac{\partial F}{\partial \mu} > 0$. Consequently, $F(c, \mu)$ is an increasing function of μ and hence it cannot have a maximum value at any point in the interior of the closed square $[0, 2] \times [0, 1]$. Moreover, for fixed $c \in [0, 2]$, we have

$$\max_{0 \leq \mu \leq 1} F(c, \mu) = F(c, 1) = G(c) \text{(say)}. \quad (3.25)$$

In view of the expression (3.25), replacing μ by 1 in (3.23), after simplifying, we get

$$G(c) = 2 \left\{ -(\alpha^2 - 2\alpha + 2)c^4 + 2(2 - \alpha)c^2 + 16 \right\}. \quad (3.26)$$

$$G'(c) = 2 \left\{ -4(\alpha^2 - 2\alpha + 2)c^3 + 4(2 - \alpha)c \right\}. \quad (3.27)$$

$$G''(c) = 2 \left\{ -12(\alpha^2 - 2\alpha + 2)c^2 + 4(2 - \alpha) \right\}. \quad (3.28)$$

For Optimum value of $G(c)$, consider $G'(c) = 0$. From (3.27), we get

$$-8c \left\{ (\alpha^2 - 2\alpha + 2)c^2 - (2 - \alpha) \right\} = 0. \quad (3.29)$$

We now discuss the following Cases.

Case 1) If $c = 0$, then, from (3.28), we obtain

$$G''(c) = 8(2 - \alpha) > 0, \quad \text{for} \quad 0 \leq \alpha < 1.$$
From the second derivative test, \(G(c) \) has minimum value at \(c = 0 \).

Case 2) If \(c \neq 0 \), then, from (3.29), we get
\[
c = \left\{ \frac{(2 - \alpha)}{(\alpha^2 - 2\alpha + 2)} \right\}. \tag{3.30}
\]

Using the value of \(c^2 \) given in (3.30) in (3.28), after simplifying, we obtain
\[
G''(c) = -\left\{ \frac{16(2 - \alpha)}{(\alpha^2 - 2\alpha + 2)} \right\} < 0, \quad \text{for} \quad 0 \leq \alpha < 1.
\]

By the second derivative test, \(G(c) \) has maximum value at \(c \), where \(c^2 \) given by (3.30). Using the value of \(c^2 \) given by (3.30) in (3.26), upon simplification, we obtain
\[
\max_{0 \leq c \leq 2} G(c) = 2 \left[\frac{(17\alpha^2 - 36\alpha + 36)}{(\alpha^2 - 2\alpha + 2)} \right]. \tag{3.31}
\]

Considering the maximum value of \(G(c) \) at \(c \), where \(c^2 \) is given by (3.30), from (3.22) and (3.31), after simplifying, we get
\[
|a_2a_4 - a_3^2| \leq \left[\frac{(1 - \alpha)^2(17\alpha^2 - 36\alpha + 36)}{144(\alpha^2 - 2\alpha + 2)} \right]. \tag{3.32}
\]

From the expressions (3.19) and (3.32), we obtain
\[
|a_2a_4 - a_3^2| \leq \left[\frac{(1 - \alpha)^2(17\alpha^2 - 36\alpha + 36)}{144(\alpha^2 - 2\alpha + 2)} \right]. \tag{3.33}
\]

This completes the proof of our Theorem 3.2.

Remark. Choosing \(\alpha = 0 \), we have \(CV(0) = CV \), for which, from (3.33), we get \(|a_2a_4 - a_3^2| \leq \frac{1}{8} \). This inequality is sharp and coincides with that of Janteng, Halim and Darus [9].

Theorem 3.3. If \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in CV(\alpha)(0 \leq \alpha < \frac{\pi}{3}) \) and \(f^{-1}(w) = w + \sum_{n=2}^{\infty} t_n w^n \) near \(w = 0 \), is the inverse function of \(f \), then
\[
|t_2t_4 - t_3^2| \leq \left[\frac{(57\alpha^2 - 84\alpha + 36)}{288} \right].
\]

Proof. Since \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in CV(\alpha) \), from the definition of inverse function of \(f \), we have
\[
w = f \left\{ f^{-1}(w) \right\}. \tag{3.34}
\]

Using the expression for \(f(z) \), the relation (3.34) is equivalent to
\[
w = f \left\{ f^{-1}(w) \right\} = \left[f^{-1}(w) + \sum_{n=2}^{\infty} a_n \left\{ f^{-1}(w) \right\}^n \right] = \left\{ f^{-1}(w) \right\} + a_2 \left\{ f^{-1}(w) \right\}^2 + a_3 \left\{ f^{-1}(w) \right\}^3 + ... \tag{3.35}
\]
Using the expression for $f^{-1}(w)$ in (3.35), we have
\[
w = \left\{ (w + t_2w^2 + t_3w^3 + ...) + a_2(w + t_2w^2 + t_3w^3 + ...)^2 + a_3(w + t_2w^2 + t_3w^3 + ...)^3 + a_4(w + t_2w^2 + t_3w^3 + ...)^4 + ... \right\}.
\]
Upon simplification, we obtain
\[
\{(t_2 + a_2)w^2 + (t_3 + 2a_2t_2 + a_3)w^3 + (t_4 + 2a_2t_3 + a_2t_2^2 + 3a_3t_2 + a_4)w^4 + ... \} = 0. \tag{3.36}
\]
Equating the coefficients of like powers of w^2, w^3 and w^4 on both sides of (3.36) respectively, we have
\[
\{(t_2 + a_2) = 0; (t_3 + 2a_2t_2 + a_3) = 0; (t_4 + 2a_2t_3 + a_2t_2^2 + 3a_3t_2 + a_4) = 0 \}.
\]
After simplifying, we get
\[
\begin{align*}
t_2 &= -a_2; t_3 = \{-a_3 + 2a_2^2\}; t_4 = \{-a_4 + 5a_2a_3 - 5a_2^2\}. \tag{3.37}
\end{align*}
\]
Using the values of a_2, a_3 and a_4 in (3.18) along with (3.37), upon simplification, we obtain
\[
\begin{align*}
\{t_2 &= -\frac{(1 - \alpha)c_1}{2}; t_3 = -\frac{(1 - \alpha)}{6}\{c_2 - 2(1 - \alpha)c_1^2\}; \\
t_4 &= -\frac{(1 - \alpha)}{24}\{2c_3 - 7(1 - \alpha)c_1c_2 + 6(1 - \alpha)^2c_1^3\} \tag{3.38}
\end{align*}
\]
Substituting the values of t_2, t_3 and t_4 from (3.38) in the second Hankel functional $|t_2t_4 - t_3^2|$ for the inverse function $f \in CV(\alpha)$, after simplifying, we get
\[
|t_2t_4 - t_3^2| = \frac{(1 - \alpha)^2}{144} \times |6c_1c_3 - 5(1 - \alpha)c_1^2c_2 - 4c_2^2 + 2(1 - \alpha)^2c_1^4|. \tag{3.39}
\]
Substituting the values of c_2 and c_3 from (2.2) and (2.4) respectively from Lemma 2.2 in the right hand side of (3.39), using the same procedure as described in Theorem 3.1, upon simplification, we obtain
\[
\begin{align*}
&2|6c_1c_3 - 5(1 - \alpha)c_1^2c_2 - 4c_2^2 + 2(1 - \alpha)^2c_1^4| \leq \{(3\alpha - 4\alpha^2)c_1^4 \\
&+ 6c_1(4 - c_2^2) + (3 - 5\alpha)c_1^2(4 - c_2^2)|x| - (c_1 + 2)(c_1 + 4)(4 - c_2^2)|x|^2\}. \tag{3.40}
\end{align*}
\]
Since $c_1 \in [0, 2]$, using the result $(c_1 + a)(c_1 + b) \geq (c_1 - a)(c_1 - b)$, where $a, b \geq 0$ in the right hand side of (3.40), applying the same procedure as described in Theorem 3.1, after simplifying, we get
\[
\begin{align*}
&2|6c_1c_3 - 5(1 - \alpha)c_1^2c_2 - 4c_2^2 + 2(1 - \alpha)^2c_1^4| \leq \left[(3\alpha - 4\alpha^2)c_1^4 + 6c(4 - c^2) + (3 - 5\alpha)c_1^2(4 - c^2)\mu - (c - 2)(c - 4)(4 - c^2)\mu^2\right] \\
&= F(c, \mu)(say), \quad \text{with } 0 \leq \mu = |x| \leq 1. \tag{3.41}
\end{align*}
\]
Where
\[
F(c, \mu) = \left[(3\alpha - 4\alpha^2)c^4 + 6c(4 - c^2) + (3 - 5\alpha)c_1^2(4 - c^2)\mu + (c - 2)(c - 4)(4 - c^2)\mu^2\right]. \tag{3.42}
\]
We next maximize the function \(F(c, \mu) \) on the closed square \([0, 2] \times [0, 1]\). Differentiating \(F(c, \mu) \) in (3.42) partially with respect to \(\mu \), we obtain

\[
\frac{\partial F}{\partial \mu} = [(3 - 5\alpha)c^2 + 2(c - 2)(c - 4)\mu] \times (4 - c^2). \tag{3.43}
\]

For \(0 < \mu < 1 \), for fixed \(c \) with \(0 < c < 2 \) and for \(0 \leq \alpha \leq 1 \), from (3.43), we observe that \(\frac{\partial F}{\partial \mu} > 0 \). Consequently, \(F(c, \mu) \) is an increasing function of \(c \) and hence it cannot have a maximum value at any point in the interior of the closed square \([0, 2] \times [0, 1]\). Moreover, for fixed \(c \in [0, 2] \), we have

\[
\max_{0 \leq \mu \leq 1} F(c, \mu) = F(c, 1) = G(c) \text{(say)}. \tag{3.44}
\]

Replacing \(\mu \) by 1 in (3.42), after simplifying, we get

\[
G(c) = \{-4(1 - \alpha)^2c^4 + 4(2 - 5\alpha)c^2 + 32\}. \tag{3.45}
\]

\[
G'(c) = \{-16(1 - \alpha)^2c^3 + 8(2 - 5\alpha)c\}. \tag{3.46}
\]

\[
G''(c) = \{-48(1 - \alpha)^2c^2 + 8(2 - 5\alpha)\}. \tag{3.47}
\]

For maximum or minimum value of \(G(c) \), consider \(G'(c) = 0 \). From (3.46), we get

\[
-8c \{2(1 - \alpha)^2c^2 - (2 - 5\alpha)\} = 0. \tag{3.48}
\]

We now discuss the following Cases.

Case 1) If \(c = 0 \), then, from (3.47), we obtain

\[
G''(c) = \{8(2 - 5\alpha)\} > 0, \quad \text{for} \quad 0 \leq \alpha < \frac{2}{5}.
\]

From the second derivative test, \(G(c) \) has minimum value at \(c = 0 \).

Case 2) If \(c \neq 0 \), then, from (3.48), we get

\[
c^2 = \left\{ \frac{(2 - 5\alpha)}{2(1 - \alpha)^2} \right\}. \tag{3.49}
\]

Using the value of \(c^2 \) given in (3.49) in (3.47), after simplifying, we obtain

\[
G''(c) = -\{16(2 - 5\alpha)\} < 0, \quad \text{for} \quad 0 \leq \alpha < \frac{2}{5}.
\]

By the second derivative test, \(G(c) \) has maximum value at \(c \), where \(c^2 \) given in (3.49). Using the value of \(c^2 \) given by (3.49) in (3.45), upon simplification, we obtain

\[
\max_{0 \leq c \leq 2} G(c) = \left[\frac{57\alpha^2 - 84\alpha + 36}{(1 - \alpha)^2} \right]. \tag{3.50}
\]

Considering, the maximum value of \(G(c) \) at \(c \), where \(c^2 \) is given by (3.49), from (3.41) and (3.50), after simplifying, we get

\[
\left| 6c_1c_3 - 5(1 - \alpha)c_1^2c_2 - 4c_2^2 + 2(1 - \alpha)^2c_1^4 \right| \leq \left[\frac{57\alpha^2 - 84\alpha + 36}{2(1 - \alpha)^2} \right]. \tag{3.51}
\]
From the expressions (3.39) and (3.51), upon simplification, we obtain

\[|t_2t_4 - t_3^2| \leq \left(\frac{(57\alpha^2 - 84\alpha + 36)}{288} \right). \]

(3.52)

This completes the proof of our Theorem 3.3.

Remark.1 Choosing \(\alpha = 0 \), we get \(CV(0) = CV \), class of convex functions, for which, from (3.52), we get

\[|t_2t_4 - t_3^2| \leq \frac{1}{4}. \]

Remark.2 For the function \(f \in CV \), we have

\[|a_2a_4 - a_2^2| \leq \frac{1}{4} \]

and

\[|t_2t_4 - t_3^2| \leq \frac{1}{4}. \]

From these two results, we conclude that the upper bound to the second Hankel determinant of a convex function and its inverse is the same.

Acknowledgements. The authors would like to thank the esteemed Referee for his/her valuable suggestions and comments in the preparation of this paper.

References

