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Empirical processes and applications:
an overview
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Some recent theory of empirical processes indexed by general classes of sets or functions is reviewed.
Several of the main results, as well as some of the methods, such as randomization and reduction to
Gaussian processes, are described. Applications in asymptotic statistics are illustrated by a few
examples. The bootstrap of empirical processes, which enhances the applicability of the theory (as
invariance of the limit law is the exception rather than the rule}, is also discussed.
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1. Intreduction

Empirical process theory addresses the basic question of how well frequency (or sample
mean) approaches probability (or expected value). It is therefore not surprising that its
theory and methods are of value in statistics.

The classical period, from the 1920s to the 1960s, considers the empirical cdf in R and
also in ®? (Glivenko and Cantelli, Kolmogorov and Smirnov, Cramér, Kac, Doob and
Donsker, Kiefer, etc.). It continues to this day, with new impetus provided by strong
approximations, particularly by the work of Komlos et af. (1975; 1976) (this is not
considered here). Vapnik and Cervonenkis (1971) and Dudley (1978) sparked a revival
by considerably broadening the scope of the theory. We will try to describe some of the
main results and methods inspired by them and obtained by several researchers over the last
5 years, and how they are applied. The emphasis will be on methods, which we try to
tHustrate in simple instances.

Vapnik and Cervonenkis (1971) consider X; independent identically distributed, with
values in a measurable space (S, &) (which can be R but also R?, the sphere, or a space of
functions) and common law P. The empirical measure P, associated with these random
variables is defined as placing mass 1/» on each of the observations X;, i=1,...,m

18
P =-% &y, =12... 1.1
n ﬂ; X, n 12, ( )

(le, P(C) = (F#of X;inC)/n, P, £ = (1/n) 3%, f(X;).) Then, they ask (and answer to a
large extent) the following natural question: for what families of measurable sets, ¥ C &,
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do we have

sup | P,(C} - P(C)| — 0 inpr oras?
Ce¥

Or, more generally, for what families # of measurable functions do we have

sup | P,(f )~ P(f)[—0 inpr. oras?
fe#F

(Notation: we will use P(f) or Pf for [ fdP.) If § =R, the collection of all half-lines
{(~00, x] is an example of a family of sets € with this property, by the Glivenko-Cantelli
theorem. So, Vapnik and Cervonenkis replace (R, #) by a general measurable space (S, &)
and the set of half lines by general families of sets or functions.

Similar questions can be asked about the central limit theorem, the law of the iterated
logarithm, exponential bounds, etc.

Resuits on these questions find direct application in, for example, goodness of fit based
on statistics of the form

sup | P,(C) - P(C)| (12)
Ced

or, more generally, of the form supcc¢ | P,(C) — 7P,{(C)| where 7P, is some transforma-
tion of P,, such as symmetrization, the product of the marginals, etc. Even more often,
these results are applied to control quantities such as > "7, f; (X}, where 8, is a statistic, by
the usual trick of controlling instead sup| 3.7~ f3(X;}|, the supremum taken over (an
approximation of ) the range of the variables 4,. The family of sets €, or the family of
functions { f3}, need not be a set of half-lines, and most often is not.

A typical example of the first type of application can be found, for example, in Beran and
Millar (1986), where it is proposed 1o use the statistic (1.2) with € equal the set of all half-
spaces of R? as a goodness-of-fit statistic for multivariate data. Being invariant under affine
transformations, it is more natural to consider this statistic, which we will denote T, than
the Kolmogorov—Smirnov statistic in RY, d>2. Empirical process theory shows that
T, — 0as. and that n'/*T, 4 Zp, assuming P is the probability law of the data, for all Pon
R? (and more, for instance, the law of the iterated jogarithm and exponential inequalities
for its tail probabilities). The two main problems with this statistic are that it is difficult to
compute and that the limiting distribution, Zp, depends on the underlying distribution P of
the data. We will not consider computational issues (which, in this case, are obviated by
taking the supremum, for all n, only over those half-spaces determined by hyperplanes
orthogonal 10 &, randomly chosen directions, k£, — oo). The problem of the dependence on
the limit can be overcome by using bootstrap critical values instead of quantiles of the
limiting distribution. So, the limiting results provided by empirical process theory, together
with the bootstrap (within the framework of this theory), make it possible to test goodness
of fit based on this statistic or to construct approximate confidence regions for P. In fact,
these same two ingredients, empirical process theory and bootsirapping, enable the
practicability of many goodness-of-fit tests that may have been unthinkable before — see
Romano (1988; 1989) for a general theory and several examples; and Arcones and Giné
(1991) for an additional illustration.



Empirical processes and applications: an overview 3

Interesting situations of the second kind mentioned above occur, for example, in M-
estimation (Huber, 1967, Pollard 1985; Arcones and Giné 1992; Hoffmann-Jargensen 1992)
and in the delta method (Gill 1989). An example of this sort will be developed in Section 3.
For 2 survey of applications of empirical processes, see Wellner (1992).

Dudley (1978) considered the central limit theorem, that is, the extension of Donsker’s
invariance principle (and so, in particular, of the Kolmogorov—Smirnov theorem), in the
general setting of Vapnik and Cervonenkis. His paper marked the beginning of an intense
and fruitful activity in this field that has led to a deeper understanding of the empirical
process, 1o very complete versions of the main limit theorems, exponential inequalities,
large deviations, etc., and to new techniques for dealing with supyc» {311 f(X;)]. We will
only review the law of large numbers and the central limit theorem, and will try to present
the basic principles at work in the simplest situations — in particular, randomization,
relation to Gaussian processes, and chaining, which seem to be the main techniques in the
field. This is done in Sections 2 and 3.

In many applications, as mentioned above, the limiting distribution of the empirical
process depends on the underlying distribution, and is an ofien intractable Gaussian
process. The bootstrap offers a practical way to overcome this difficulty and therefore
enhances the applicability of the theory. Giné and Zinn (1990) proved that whenever
the central limit theorem holds for the empirical process indexed by a class of functions &,
then so does the bootstrap central limit theorem, and conversely. We present the ideas
involved in the proof of this resuit in Section 4.

In Section 5, we show how to obtain consistency and asymptotic normality of the
empirical simplicial median, as another example of how empirical process techniques are
applied. The simpler example of Beran and Millar, mentioned above, will be developed
along the way, as the theory unfolds.

2. On the law of large numbers for empirical processes

There are almost complete solutions to the questions we are considering — the law of large
numbers {LLN), central limit theorem (CLT) and law of the iterated logarithm (LIL) -
although in terms which are not too useful at first glance. We will describe these solutions
for the T.LN in this section and for the CLT in the next, and then only for classes of sets.

To introduce the appropriate concept in a more or less heuristic way, we first describe a
simple but useful randomization device. Let

(i) {X;} beiid. with law P,
(ii) {X;'} be an independent copy of {X;},
(iii) £, = (1/n) 3_ 1%, by, and
(iv) {¢;} be a Rademacher sequence (¢; = +1 or —1 with probability §) independent of
everything else.

Also, if x is a bounded functional on the collection of functions &, suchas x( '} = P,( f) if
F(s):==supsegz | fis)| < oc foralt s € S, a condition we will assume throughout, or such
asx{ f} = Pfif supsc & | Pf | < o0, another condition we always assume without further
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mention, then we set

[ x|l#=sup|x(f},
fesF

and drop the subscript & if no confusion results from it. So we will usually write || P, ~ P||
for supse s | Po{ f) — P{f)|. Then we have the following lemma:

Lemina 1. Under ‘measurability conditions’ on the class

"
Z £; 6X'_

=1

— 0 a.s. (2.1)
F

The proof of this lemma and specification of the measurability conditions will be given
below. Now we will introduce the Vapnjk—éervonenkis law of large numbers. Suppose the
class ¥ of sets is so rich that for each n, with probability o, 7 0, every subset of the nth
sample {X,(w),..., X,(w)} can be obtained as the intersection of the sample with some set
C € €. Then, in particular, all the (random) subsets {X;(w) : ¢; = I,7 < n} obtain in this
way and we thus have, with probability at least q,,

1< 1, ..
;;eiéfo 2;#{: <n:eg =1}

| P, — Plls — 0 as. if and only if

Since these last random variables tend to % a.s. we cannot have || (1/n) 31 6y || = Oin
probability, or, by the symmetrization lemma, || P, — P |} #+ 0 in probability.

This argument suggests that we should examine the traces of the sets in % on samples.
The Vapnik—Cervonenkis solution to the uniform LLN problem is the surprising fact that,
under measurability, the uniform LLN for % is completely characterized by the cardinality
of the collection of these traces. Explicitly: For € C & and x,-..,x, € S, let

A¥(x, ..., x,) = #{CN{x,...,x,} : CEL}.

Then we obtain the following theorem:

Theorem 2 (Vapnik and Cervoneunkis 1971). Under measurability conditions,
| Py — Plle¢ — 0 a.s. (inpr)
if and only if

log A¥(X,,.... X,
n

— 0 in pr.

(A measurability condition under which all the theorems in this paper hold is: the random
variables X; are taken to be the coordinate functions on the infinite product probability
space (S,5, PY) and ¢ can be parametrized by the elements of a Suslin space (O, o) in
such a way that the evaluation map (8,s) — I, (s} is jointly measurable (Dudley 1984). A
Suslin space is the image of a complete separable metric space by a measurable map.)
We give two examples. First, if ¢ = {(—o0,x] : x € R}, then A@(xl,...,x,,) <n+1,and



Empirical processes and applications: an overview 5

the Glivenko—Canteili theorem follows with lots of room to spare. Second, if P is discrete

then Theorem 1 implies that the total varation of P, — P (that is, the supremum of

| P, — P| over all the subsets of S') converges 1o zero a.s. There are different proofs of this,

but let us see one based on Theorem 1 and any good estimate of binomial probabilities, in
particular this one (Giné and Zinn 1984)

i A enp\k

Pr{Bin(n,p) > k} < (k)p < (T) .

We may assume S = N, and let P{m} = p,,, m € N; then

Pr{AZN(Xl,...,X,,) > 2"} = Pr{card{{X,,..., X,}) > [en]}

< Pr{at least 1[en] of the X; are > L[en]}

Yen)
< (ewnzmzfl‘"‘pm) _o,

%Ien]

since the guantity in parentheses is eventually smaller than 1.
Remarkably (Vapnik and Cervonenkis 1971; Sauer 1972), either

m¥(n) = sup A¥(T)=2" foralln
TCS
#T=n

or
m®(n) grows polynomially.

In the second case we say that € is a V'C class of sets. And of course, by Theorem 1, the law
of large numbers holds uniformly over VC classes satisfying the stated measurability
condition.

Examples of measurable VC classes are the following:

(i) The lower left quadrants of R (Vapnik and Cervonenkis 1971).

(if) The closed half spaces of R4 (Vapnik and Cervonenkis 1971).

(iii) The closed balls of R? (Dudley 1979).

(iv) If G is an m-dimensional vector space of real functions, then {g > 0:g € G} is VC
(Dudley 1978). And also the projections of these sets into fewer variables if G consists of
polynomials of bounded degree (Stengle and Yukich 1989).

(v) Classes obtained from VC classes by a bounded number of Boolean operations are
also VC (Dudley 1978).

In particular, since the closed balf-spaces of R form a VC class, Theorem 2 gives the
Glivenko-Cantelli theorem for the statistic considered by Beran and Millar (1986),
mentioned in the Introduction.

Before describing the central limit theorem for empirical processes, we will skeich the
proofs of Lemma 1 (randomization) and the direct part of the Vapnik and Cervonenkis
(1971) law of large numbers.
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Proaf of Lemmma 1. Recall we are assuming, for any ¢lass of functions &, that the means are
bounded, i.e. ||Pf ||+ < co. Dropping the subscript %, we have, using just symmetry,
Jensen inequality conditionally, and Fubini's theorem,

E(| P, - Pl =E||(P,- P}~ E'(F ~ P}

; 1
SE[[P~ B} =E||=> (6, — bx)
=1
=E lie(é — 8y
- 4 R
1 n
< Z - .
< 2E n;e,aﬁ (2.2)
and
1< 1< 1<
E|l- E;’(S_ SE - 656 - F + sup | P E|- €;
nz; X, n; (6x, — P) (fegl f!) n;
1 1&
< 2B.E,||~ 6y —PY||+ | sup | PF||E|=-Y ¢
X n{g;ﬁ:](x ) (fegj |) n;
1 n
S2E||Pn—PII+(SUP|PfI)E -fo . (2.3)
fe# Ly

These two strings of inequalities prove Lemma 1 up to some technicalities. (Here are the
technicalities. It is easy to see that either hypothesis in the lemma implies PF =
P(supse s | f1) < 00, hence we can assume this much integrability; then there is enough
uniform integrability to get equivalence of convergence in L, and in probability (an
inequality of Hoffmann-Jargensen (1974) is best to see this); finally, since we are dealing
with reverse submartingales, convergence in probability te 0 is equivalent to a.s. con-
vergence to 0.) 0O

Proof of the sufficiency part of Theorem 2 for VC classes (sketch). The proof of the
sufficiency part of Theorem 2 can be based on the trick of transferring properties of Gaussian
processes to the empirical process, by randomization and conditioning, something that has
proved very useful in this subject (this was introduced for empirical processes by Giné and
Zinn (1984), but it was not new: at least Marcus and Pisier (1981) had used Gaussian
randomization before, in their study of random Fourier series; Rademacher randomization,
used before in related subjects, was first used by Pollard (1981) for empirical processes).

It is a classical result that if N > 2and g, i < N, are N(0, o7) then (without independence

assumptions})
E (r_riah:r{ | g |) < 2% /log N max ;. (2.4)



Empirical processes and applications: an overview 7

(Here is an easy proof of (2.4), due to Pisier. Let £, be random variables, ¢ be an increasing,
non-negative, convex function {such as ¢(x) = exp{x2)) and let ¢; be such that

()

then |
max;< x| €} 1€
¢(E( max; <y <; )) SE[{I)(I’%&;’( i )]
ele() ] <o
or

Al <g™! "
B(msplei) < 67 (M) mage

Now (2.4) follows since E[exp(g?/40?)] = 21/2)
Now let g be a generic N(0,1) variable and let g; be i.i.d. N(0,1) independent of the
sample and of the ¢;. Following up on the symmetrization inequalities (2.2) above, we have

B2, Plle S 28| 15t (C) |
—25|| 1S B la )8 ()] 2
ni S| Elel
< VEE %;&-%(c) )
= V2nEE, :-ngiaxf(m .

Conditionally on the sample, the expression || (1/7) 31, 8:8x,(C ) |} ¢ is 2 supremum over a
coliection of normal variables. The variance of each of these is dominated by
{1/n*) ", 1 = 1/n. And now we observe that

Cﬁ{Xl,...,X,,} =DH{X1,...,X’,}
. #
=3 56(C) =3 46x(D)
i=l1 i=1

so that the supremum ||- || is really onty over
N=A%X. . ..X)
terms. Hence, (2.4) gives us

'3
EIIP, — Pllq < 4v7Ey REA KL Xo)
H
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which is essentially the direct part of Theorem 2. The converse part of Theorem 2 can also
be obtained by reduction to Gaussian processes, as a consequence of Proposition 6 below
and a theorem of Sudakov on minorization of Gaussian process.

3. On the central limit theorem for empirical processes

First we should briefly consider the question of how to extend the Koimogorov—Smirnov
theorem to the general context of Vapnik and Cervonenkis. Recall that the Kolmogorov—
Smrirnov theorem is usually derived from Donsker’s theorem on weak convergence of the
empirical cdf considered as a random element of (or a process with sample paths in) the
space D{—oc, 00}, or D{0, 1), of cadlag functions. Something similar is true in the present
more general situation. We try to explain succinctly the differences with the classical
Donsker and Kolmogorov-Smirnov set-up. To begin with, there is no such space D when
one considers general % . But if

sup | f(s)]| == F{s) < o0 for all s € 8,
fe#F

then the map

f=P.f
is a2 bounded function on #, and if

sup | Pf| < o,
feF

then the map /' — Pf is also bounded. As mentioned above, we are assuming these two
conditions on # throughout. So, instead of the space D we will take the space of bounded
functions on &, with the supremum norm, || x|{# = sup,c s !x(f )1, which we denote by
£%°(#). The Brownian bridge will no longer be the limit. But if Pf? < o then, by the CLT
inR, (P, - PY(f) 4, N(0,varp( f)) and the convergence is joint for any finite number
of fs (CLT in R?). So the Brownian bridge has to be replaced by a centred Gaussian process
{Gp([): f € #} with covariance

EGp(f)Grlg}=P(f - Pf)g—PFg)l, [fge#.

And then, by analogy with one of several equivalent definitions of convergence in law in R
or R?, we will say that & € CLT(P), or that # is P-Donsker, if

(1) Gp is a ‘sample continuous’ process, and
(2) for every H : £*(#) — R bounded and continuous,

E'H(n'*(P, — P)) — EH(G)p).

(On (1) We say that Gp is sample-continuous if it has a version whose trajectories are
bounded and uniformly continucus with respect to its intrinsic L; (pseudo-)metric or, in
our case, with respect to the (pseudo-)metric ep(f,g) = vV P(f — g)?, slightly more
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tractable; in fact, G, is sample-continuous if and only if the law of Gp is tight in £™(F)
(Andersen and Dobri¢ 1987; cf. also Giné and Zinn 1986a). On (2): E* denotes outer
integral since H{n'/>(P, — P)) need not be measurable — we are tending to forget about
measurability conditions in this paper.)

For instance, if & is P-Donsker, then, under measurability requirements commonly met
in practice, we have the following analogue of the Kolmogorov—Smirnov theorem:

sup | n'2(P,(f ) = P(S )| sup | Gp(S)].
feF fes
And we have this as well for any other functionals which are continuous with respect to the
SUPreMUm Norm over .
The above definition should be ascribed jointly to Dudley and to Hoffimann-Jergensen.
Now for what classes of sets (= indicator functions) or functions # do we have
& ¢ CLT(P)? We should mention here that the answer to this question leads to inter-
mediate products which are often more useful than the limit theorems themselves, namely,
maximal inequalities: one proves that # ¢ CLT(P) via a kind of generalized Prokhorov
criterion (Dudley 1984; for a more elementary proof, see Giné and Zinn [986a):

# e CLT(P)
if and only if both

(i) (5, ep) is totally bounded and

(ii) limg_ lim sup,._.o, E |SWPe, (1.0 672 | (Pa =~ PY f —&)| | = 0.
fgesF

Often in applications all that is needed is control of the quantity inside the limits, or of
quantities like it, and achieving this control is the main part of the proof of almost any CLT
for empirical processes.

We can now state the analogue of Theorem 2 for the centrai limit theorem:

Theorem 3 (Giné and Zinn 1984; Talagrand, 1988). 4 measurable class € is P-Donsker if and
only if both:

(1) the process {Gp(C) : C € €} is sample-continuous, and
12)

log A%(X,,.... X;) 0
AV — 0 in pr.

When a class # of functions or a class € of sets satisfies condition (1), we say it is P-pre-
Gaussian. Pre-Gaussian classes have been recently characterized in metric terms in a
landmark paper by Talagrand (1987) (with important previous input, particularly by
Dudley and Fernique).

VC classes of sets are P-pre-Gaussian so, if they are measurable, they verify the
hypotheses of Theorem 3 and are therefore P-Donsker (this was proved originally by
Dudiey 1978). In particular, the theorem holds for € = {the half-spaces of Rd}. Hence ihe
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Kolmogorov—-Smirnov type statistic proposed by Beran and Millar (see the Introduction)
satisfies

n'2T, = supn'?| P,(C) — P(C)| % sup | Gp(C)| = Zp
ce¥ Ce¥

just as the Kolmogorov—-Smirnov statistic does. When d = 1 and P is continucus the limit
distribution Z, does not depend on P (this is Kolmogorov’s theorem) but this is the
exception rather than the rule, and in most cases it does depend on the underlying
distribution. We come back to this problem in the next section.

We skip the analogues of Theorems 2 and 3 for classes of functions (Giné and Zinn 1984;
and 1986a; Ledoux and Talagrand 1989).

The variables A®(X;,.. ., X,) of the previous theorems depend on the sample and are
difficult to compute in general. For classes of functions, the situation is still worse since the
place of A? is taken by more complicated (and also data-dependent) quantities {random
entropies, introduced by Vapnik and Cervonenkis 1981; and Kol¢inskii 1981). So the above
results, although revealing of the nature of the cancellation that makes things work, are
hardly ‘ready to use’ recipes. They should only be used when theorems that give simpler
sufficient conditions do not apply. The two most important such criteria are (1) the CLT for
VC-subgraph and related classes # (Theorem 4, Corollary 5), and (2) the CLT under a
bracketing entropy condition (Theorem 6). Of these, the CLT for VC type classes is the one
most often used.

A class of functions # is VC-subgraph if the subgraphs of the functions in the class form
a VC family of sets (subgraph of £: {(x, 1) € Sx R : 0 < 7 < f{x) or f{x} < ¢ < 0}). Finite-
dimensional spaces of functions are VC-subgraph, and so is {¢{C)I-: C € ¢} if € is VC.

Theorem 4. Under measurability, if #is VC-subgraph then.

fa) (Giné and Zinn 1984) PF < oc & || Py — Pllg — 0 as.,;

(b) (Alexander 1987 ) the following are equivalent, and implied by PF 2 & oer
(i) lim,_., 1°P{F > {} = 0 and F is P-pre-Gaussian, and
(ii) F € CLT(P).

Conclusion (a), as well as the sufficiency part of (b), also applies to other classes of
functions related to the VC property, like VC-hull and VC-major classes (Budley 1987). In
particular, to mention two examples, this theorem (in fact, to be precise, the next corollary),
applies to finite-dimensional spaces of measurable functions (assuming the usual measur-
ability condition) and to the class {K{(-—y/k}:y € R,k > 0}, where K is of bounded
variation, important in density estimation.

Theorem 4 contains the following very useful result due to Pollard (1982). It requires the
notion of the metric entropy of a metric or pseundo-metric space (T,d ). The e-covering
number N(T,d, €) of (T,d) is the smallest number of d-balls of radius not larger than ¢
needed to cover T. The e-entropy or the metric entropy of (T, d) is the logarithm of the
covering number.

Corollary 8. Let & be a measurable class of functions f such that [f| < F € L;(P}, set
| Fll5g = ([F?dQ)"? and D, p(x,F):=sup N(x, I/ || Fll ;.0 %, Ls(Q)), where the
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supremum is over all probability measures Q of finite support; then, if
1
J (lOg DZ‘F(x: ‘g))]ﬁ dx < o0,
0

the class of functions & is P-Donsker (ie., ¥ € CLT(P)).

If these results do not apply to the problem at hand, the next thing to try is a result on
metric entropy with bracketing. Define

[](J' Pe), €>0,

to be the minimum number of pairs of measurable functions FiL. ¥ such that

(1) for all f € & there is 2 pair with f;* < f < £;, and

@ P -y <e
log | 4 (.9" P, ¢) is called the metric entropy with L,-bracketing of #. For example, if £ is
Lebesgue measure on the unit square of R? and € is the family of closed convex sets, then
log N, [”] (&, P,¢) is of the order of ¢! (Brondtein 1976). Dudley (1984) contains estimates of

the metric entropy with bracketing for classes of differentiable functions and classes of sets
with differentiable boundaries.

Theorem 6.

(i) ( Bhum 1955, Dehardr 1971.) IfN[l] (F,Pe)<ocforalle > 0then||P,~ Pllz — 0
a.s.

(i) (Ossiander 1987.) If [~ Vo, 2](? P.¢)de < cc, then F € CLT(P).

Andersen et al. (1988) contains a best possible improvement of Ossiander’s theorem where
the size of the brackets is measured by the weak-L, distance and their cardinality is controlled
by ‘majorizing measures’. Estimating the L,-bracketing entropy requires controlling

E{ sup (f~g)2(X)},
FiE(f-gf<é

which need not be ¢asy, but which is much easier than the original problem. The example in
Section 5 uses Theorems 4 and 6.

During the 1970s and early 1980s, the limit theory for random vectors taking values in
separable Banach spaces was developed; since £ (%) is not separable that theory does not
apply in general to our situation (although its methods have been of importance for
empirical process theory). However, it does apply in some instances, e.g. if P lives in the unit
ball of a type 2 or a cotype 2 Banach space and % is a bounded set of its dual. This gives, for
example, the following more particular results (which can be obtained by observing that the
classes # are in the unit ball of the dual of an L, space):

Theorem 7.

(i} ( Borisov 1981; Dudley and Durst 1980.) If P is discrete then the family af all subsets of
S satisfies the law of large numbers, and it satisfies the CLT if and only if 5 p: /2 ¢ .
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(ii}) (Giné and Zinn 1986b. ) The class F of all the real functions fsuch that || f || o < 1 and

|.f ||Lip < 1 satisfies the law of large numbers, and it satisfies the CLT for P if and_only if
STPi < | x| < i+ 1}Y% < 0. If boundedness is not required, then the condition for the CLT

is SP{| x| >i}'? < .

The above is a very partial overview of the type of results one can find in empirical
process theory. There is much that has not even been mentioned, in particular exponential
bounds, universal, uniform Donsker classes, U-processes, etc., but we stop the review here
in order to comment, in what follows, on a typical application and on the bootstrap. We
should mention that there is a general description of all the P-Donsker classes & of
functions due to Ledoux and Talagrand (1989) (see, for example, Ledoux and Talagrand
1991; or Giné and Zinn 1986), partly in Gaussian terms, which we believe best captures the
structure of these classes.

A useful way to apply the CLTs above would be for confidence regions: if # captures
features of a distribution that are interesting, and if it is P-Donsker for a large enough set of
Ps (maybe all Ps, or all Ps with PF2 < oc), one may be interested in confidence regions of the
form || P, — P||&# < &n~1/2, This is how Theorems 1 and 2 (or Pollard’s theorem) are used
by Beran and Millar (1986} in the exampie mentioned in the Introduction.

Another way to use the above limit theorems is in the delta method: 4(P) could be a
function of probability measures that is Fréchet (or Hadamard) differentiable in €°°(%);
for example,

HQ) - 6(P) = pr d(Q—P)+o(llQ - Plls).
Then, if f is in L,{P) and if # is P-Donsker (a little less suffices), we have

n3(8(P,) — 8(P)) % N(O, var, fp).

The bootstrap of empirical processes ‘commutes’ with differentiation (as is easy to see and
as was observed by Bickel and Freedman, 1981).

And, of course, we have the maximal inequalities that are being applied very successfully
to function estimation and to the asymptotic theory of difficult statistics.

Wellner (1992) comments at length on applications of empirical processes and, at a recent
meeting, D. Nolan handed outa iist of more than 90 recent references (for the last ten years)
using some of the empirical process theory described above.

Next we present some elements of the proof of Theorem 3, with the intention of
introducing the reader to some important techniques.

Partial proof of the safficiency part of Theorem 3 for VC classes. This is done by transferring
10 empirical processes a property of Gaussian processes that is basic to the theory: a
maximal inequality in terms of emrogy. Here is the simplest instance. Let {G(1) : 1€ T} be
a centred Gaussian process and let eZ(s, f) = E(G(r) — G(s))%. Recall the covering number
N(T,eg, ¢) of the (pseudo-)metric space (T, es} as the minimum number of balls of radius
not larger than ¢ for e needed to cover T. Then there is a universal constant X such that, for
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any separable version of G, and forany f, € T,
Esup|G(1)| <E|G{f) | + KL V1eg N(T,eq,€) de. (3.1)
el

(Separable versions of G exist if and only if (T, eg) is a separable pseudo-metric space, in
particular if the bound on the right-hand side of (3.1) is finite.) This is a simplified form of
Dudley’s theorem, Pisier’s version. Here is a proof. It suffices to prove the bound for T
finite, For each k € N take a set of N(27%) points of T, 2 *-dense in (T, eg), and assign one
to each point 7 € T, say, mt, with eg{m, {) < 27%. Then (assuming that T has diameter 1
and that G(my?) = 0)

Esup|G| < ZE[sup|G(7rk_|r) - G(m)|,
T T

and now we can apply the estimate (2.4), noting that for each k the supremum is over less
than N(27%)? terms and the standard deviations of the differences are not larger that
3 x 27* (since 7, and m_, ¢ are both close 1o 7). The resulting series is equivalentt to the
integral condition.

To apply mequality (3.1) to VC classes, we need another beautiful property of these
classes of sets (Dudley 1978): If ¢ is a VC class, there are finite positive constants ¢;, ¢; such
that, for all probability measures Q on S,

N(E,Ly(0).€) < e, e<i

Now we plug these two inequalities into one of our previous computations:
1 M
1/2 Z 8i0x,
n i=1

1
< sup KEXJ VIeg N(€ Ly (P,),e) de + X
n Q

I
< Kj ﬂloglde< o0
0 €

(where the constant X varies from line to tine). This gives stochastic boundedness, and one
does not really have to work much harder to obtain the full CLT. O

supEn'/?|| P, - Pll¢ < sup KEyE,

¢

The last inequality is an instance of a maximal inequality for empirical processes and
shows how the (random) entropy of the class & as a subset of L,(P,) is relevant for the
empirical processes CLT.

Theorem 3 in full generality and the converse of Theorem 2 can also be proved using more
refined Gaussian theory, more refined counting, and a reverse Gaussian randomization
inequality that we see just below. Actually Gaussian randomization is not strictly needed in
the above proofs (although it made them look nicer) but is essential for their converses.

We conclude this section with an interesting randomization inequality that is key both to
the converse part of the above theorems (which we do not treat here) and to the bootstrap
of empirical processes. It is a small modification of a result obtained (independently) by
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Pisier and by Fernique (Giné and Zinn 1984), and the present proof is different to other
published ones. As we have seen above, it is clear by Jensen’s inequality that || 3 g8y {|
is stochastically larger than || 3" €; 8y ||. What is surprising is that these variables are, in
some sense, comparable. Instead of normal variables, we will consider more general
multipliers.

Proposition 8 (Pisier, private communication; Giné and Zinn 1984). Let ¥V, Y, i ¢ N, be iid.
Banach space valued random variables and let £,£ ;.1 € N, be real symmetric i.id., independent

of the Y;. Assume E||Y;|| < oo and Ay ;= 7 (Pr{|€| > u}Y? du < co. Then we have, for
allneNandallng <n,

1 n
E ;’f‘;@;ffyf

i
! |

Proof. For simplicity, we first consider the case ng = 0, which is Pisier’s inequality. The
following chain of inequalities, which are self-explanatory, gives the proof:

l " 1 N
E ;ﬁj;&)’s E W;QMHY;"
=E UZZ(J It < g, |)dr)e,Y ‘
=E WJ (ZI(:<|§|)5Y)dt

maXg <, |£;
< meli7 | E(Z2580) 0y (6 ma ®

kuz Z &Y

ﬂn{l"(k

<| mzf(m;& D&Y
o 1 #{ign || 20
=‘0E E - G;Y; de

- (ZPT{ZI|§|>f } }Flﬁie"y"‘
(,,11;2 prr{z; 20 = }dt)maxE

1 e n l
(—, 1/;1(|ef|zr)dr)gasagﬁ]ﬁgem1

( VEPr{{£] > r}dt> 1;12515 ‘ﬁgeﬂ’;

) d (32)

fze' \

1A

I
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In the case ny > 0 we continue after (3.2} in the following way:

(J {ZI|£|>t)>0}dt)maxE uzZEY
( 172 Z \/_PI‘{ZI{|§ | > )= } )anlg,)é"E

ke==pig+1

1 k
ﬁ;qu
Zel i

< (J:Pr{f}lj'ﬂfflzf}d’) l,rzE“Y”"'Al'(f) max E

kuz Z ¥

g ik

max; ., E.l‘
=%E||Y||E(f§7”) +A2‘](§)nnmax E

<k<n

(W

The inequality in Proposition 8 also holds, changing E to E*, even if ¥ is not measurable.

4. The bootstrap

The Kolmogorov—-Smirnov test in more than one dimension is already difficult to apply
because the limit law of n'/*||F, — F ||« depends on F. The same problem occurs with
Beran and Millar’s goodness-of-fit statistic in R? mentioned in the Introduction. So the
bootstrap should considerably enhance the applicability of the CLT to empirical processes.
Bickel and Freedman (1981} proved, using methods that apply satisfactorily only on the
real line (almost sure representations}, that the Kolmogorov statistic in B can be boot-
strapped. Gaenssler (1987) extended this to VC classes of sets using the very good uniform
(in P) entropy estimates for these classes; thus, his result applies to the Beran—Miilar
statistic 7, mentioned in the Introduction and, as a consequence, this statistic can be used
to determine approximate confidence regions for probability laws in R?. Giné and Zinn
(1990) prove that the central limit theorem for the empirical process can always be
bootstrapped, at least under the usual measurability conditions. Our results have recently
been extended to the bootstrap with general exchangeable weights and arbitrary bootstrap
sample size by Prastgaard and Wellner (1993), partly using similar methods. We will
comiment on our results and on the common methods, which may be of interest elsewhere.
Model based bootstraps will also be briefly considered.

As before, we have (§,%,P), a general probability space, the sample {X;}, and,
whenever needed, a supply of muitipliers independent of the sampie, Rademacher {¢,},
standard normal {g;} and Poisson with parameter §, {N;}, or symmetrized Poisson,
{N, - N/= N}, (al] mdepcndent sequences).

Let X,;, i = 1,...,n, be conditionally i.i.d. given the sample, with conditional Jaw

P X=X} =1,

(The superscript * on &, Pr or E will denote conditional law, probability or expectation
given the sample — not outer probability or integral as in previous sections.) Let P}, be the



16 E. Giné

bootstrap empirical measure
]_ R
Py==% by, neN (4.1)
=1
We say that the bootstrap works almost surely for # and P if

n2P: — PYL Gpin £°(F), as. (4.2)

If this happens then, for every continuous measurable functional H on £*(#), we have

Hn' (P - POV L HG,) as.,

in particular for H(n'?(P; — P,)) = supfef|n1”2(P;(f) - P,(/))|. Often one only
needs the bootstrap in probability. Convergence in law in £%°{#) can be metrzed by a
distance d (for instance, the dual-bounded Lipschitz distance, dg; -}, and we say that the
bootstrap works in probability if

d(L* (W (Py — P,)), £(Gp)) — 0 in pr.
If this happens then, for every continuous measurable functional H on £*{F), we have
| Fagngp: - (%) = Friey(*) |l — 0 in pr.

(assuming Fgg,)(x) continuous, otherwise we have this for any distance metrizing
convergence in distribution on the line). And one has the bootstrap of any functional
differentiable at P for ||+ || ». So, the bootstrap of the empirical process automatically
validates the bootstrap of a wealth of statistics. It is this generality that makes it appealing.
Our proof is based on bootstrapping the maximal inequalities that lead to the limit
theorems, therefore the methods should also vield the bootstrap of estimators whose
asymptotic behaviour is governed by this type of inequality, for instance quite non-smooth
M-estimators {(Romo, 1991, unpublished; Arcones and Giné 1992),
Formally, the theorem is as follows:

Theorem 9 (Giné and Zinn, 1990). Under the usual measurability,

{a) the bootstrap for & and P works in probability if and only if & is P-Donsker.
(b) the bootstrap for ¥ and P works a.s. if and only if both, F is P-Donsker and PF ? ¢ .

(Contrary to what happens in finite dimensions, in infinite dimensions one can have CLT
and PF* = co, but one must have *Pr{F > ¢} — 0.)

If the bootstrap empirical process converges, it must converge to Gp because of the
bootstrap CLT in finite dimensions. The only problem is the conditional tightness (i.e. the
conditional Prohorov-type condition). In other words, we musi relate the quantities

[ osup  1RYHEY - PO(S - g
E f.geF
P(f-gi<é
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and

sup  |n'2(P, - P)(f - 2)I]-
E rze#
Pf-gP<é

The second should control the fitst in probability or a.s. and vice versa. Let us ease notation
and denote these suprema by generic norm signs.

The bootstrap 15 a swum with multinomial (r; 1/n,...,1/n) weights, 2 M, by,
and asymptotically one can replace the multinomials by independent Poisson variables. So,
it is plausible that we will be able to compare

1 & -
FﬁZNféXf

i=]

Eyx

and

Et

1 "
Dby,
=1

By the standard symmetrization inequalities, the first quantities control and are controlled
by the bootstrap CLT, and by Proposition 8 the second quantities control and are
controlled as well by the regular CLT (note that A, (V) < 00). So, if the above quantities
can be compared, we obtain the bootstrap in probabitity. For the bootstrap a.s. we further
require a.s. control of the second random variable. In more concrete terms, the theorem
follows from the following three facts:

(A) Bootstrap inequalities.

e—1 n "
_\/_Ee_-EE ;656;{‘. ;6,—(%(;‘_

(B) The multiplier inequality. For all ny < n,

<E <

e
e—-1"

I & 5 maxmlﬁki) 1
El|l=—= > Ny || <ng(PF)E|—F——— | +M max E €6
nuz; X, o PF) ( nif ny <k <n 1/2 nn;{g{ X;
where M = [*(Pr{|N|>u})'/? du.
(C) Almost sure multiplier bound. If PF? < o0,
. I« - , 1 & -
hnm_ﬁp Ex WZIN,-&G < 411:115;p E n—lﬁzl N;dy || as.

A and B show that the bootstrap in probability holds for # and P if and only if # is P-
Donsker. When C is added, we obtain the a.s. result (except for necessity of PF? < oo
which is easy and holds even in R).

These inequalities can be stated in more generality, for Banach space valued random
elements and, in the case of the second and third, for not necessarily Poisson multipliers.
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Actually Zinn and  have been using inequality B for normal multipliers since 1984: it is
crucial for the necessity part in the limit theorems of Section 3.

Inequality C is trivial in R at least if first moments are replaced by second moments: if ¥;
are centred, real i.i.d. with finite second moments, and £; are real i.i.d. symmetric (centred
suffices), with second moment 1, and independent of Y;, then

2
Eg LWZ&Y:} =;ZI: Y? - EY{.

i=1

But this is a deep inequality in infinite dimensions. Curiously enough, its authors, Ledoux,
Talagrand and Zinn, were unaware of the bootstrap when they derived it (Ledoux and
Talagrand 1988).

Inequality B, more precisely the more general inequality from Proposition 8 in the
particular case ng = 0, has to do with a problem in the theory of Probability in Banach
spaces which is also trivial in R, namely: what £ real and symmetric verify that if a Banach
space valued random vector X satisfies the CLT and 1s independent of £, then also £X
satisfies the CLT? In R the answer is: if and only if E£? < oc. Pisier obtained the sufficient
condition given by this inequality (finiteness of the integral of the square root of the tail of
£) probably in 1976, told us in 1977, and it was not until 1984 that we first used it — with
normal £; Zinn and [ were so sure that normal &s were the only multipliers that one would
ever use that we did not bother to write it down in general. Ledoux and Talagrand (1986)
proved that Pisier’s condition is in general the best possible.

Inequality A (Giné and Zinn 1990) also adapts techniques invented in the Banach space
context. Its interest lies in that it shows a quantitative relationship between the original and
the bootstrap statistics (symmetrized, but this is not critical). We will sketch the right-hand
side.

Proaof of the right side of inequality A. The inequality to be proved will become clearer if we
restate 1t in more abstract terms. Consider

(i) fixed points x;, . .., x, of a Banach space B (in our case, B = {*(#) and x; = by (,));
(i) i.i.d. B-valued random variables x|, ..., x,; such that
1
Pr{x/ = x;} = -, i=1,...,n
n

(in our case, x;' = 6X".j).

We will show

£ So ] <55 S|

which becomes inequality A when x, is replaced by 8y, . The main argument is inspired by a
Poissonization argument due to Le Cam (1970) which he used in order to show that, in
general spaces, tightness of the accompanying Poisson laws implies tightness of the sums (of
independent random vectors). Let us recall the following on compound Poisson laws:
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(a) If 12 is a finite measure with total mass | |, if ¥;arei.i.d. withlaw g/ | u]and N(|u|)
is Poisson with parameter | |, then the law of the random variable

N{lul)

2 T

i=0
(with ¥, =0) is
) ] o0 #k
Poisson( ) = e '#| ;E

(where the powers are in the sense of convolution).
(b) Because of the properties of exponentials, Poisson({u + v} = (Poisson{ )}

* (Poisson(y})), in particular, if ¥; are independent and for each i<n <o, ¥;; are

independent copies of Y, with the convention ¥;; =0, all independent, and N;(1) are
ii.d. Poisson with parameter 1, independent of the Y;;, then the law of

n_ Ni(1)

2

=1 j=0
is
i=1

Poisson (i £ Y,—)) ,

where Z(Y,) denotes the probability law of the random vector ¥,

The modification to Le Cam’s Poissonization is the following: (we drop the argument (1)
from N;) using Jensen’s inequality and Fubini’s theorem,

(1 _eul)EHZ Y; {= E]’ENHZ(N;'A 1} Y H

= ENEY”Z(NEA DYy H

Zi Y,

i =D

= J [E3l d(Poisson(Z Z( Y,-)))(x)-

Let us try to apply this inequality in our situation:

. 1 &
Yimex!,  L(Y)=323 (b +6-x),
k=]

<ExEy

hence,

> 2(x) =%Z(5n +6_).
k=1

=1
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So,

. M i 1 n
Potsson (Z 2 Y,-)) = Poisson [:—2 Z(‘Sxk +é_x, )]
p =1
= Poisson(}6, }#Poisson(}5_,, )% -- - ¥Poisson(1é, PPoisson(4s_, ).

Now we notice that

Poisson(14,) _3*1/22 k' _e-lflzz‘iic;l

which gives mass e_"Q/Zkk! to kx. So it is the law of the variable
N(7)x,
that is,
Poisson (Z .‘Z’(Y,-)) =9 [Z(N*(%} - Nk’(%))xk}
=1 k=1

with the Ns and N's independent. Then, the Poissonization inequality translates into

|| ey H

as desired. [Note the two key elements of this proof: the Poissonization inequality and the
obvious fact that if 3 u; = 3 v; then IT Poisson( i;) = 11 Poisson(v;) ] 1

It is interesting to point out here the curious (but not exceptional) fact that the definitive
solution to the bootstrap question for empirical processes, a problem that we could qualify
as ‘applied’, follows from rtesults in the theory of probability in Banach spaces (more
‘abstract’) which were obtained without this particular application in mind.

Back to the bootstrap: we could now ask whether there is an equally general result for the
model based or parametric bootstrap. Suppose we resample, not from the empirical, P, but
from some ‘function’ of it, 7,(P,). Let P2 be the empirical measure of the pseudo sample.
Under what conditions do we still have, a.s. or in probability,

WP - (P L Gpin ()7

For instance, 7,(P,) could be the symmetrization or the smoothing of P,, orif we are in a
parametric model and 8, is an estimator of €, 7,(P,) couid be Py .

In the bootstrap theorem described before, Poissonization was very important, and tied
very closely to the structure of the procedure: the use of multinomial multipliers. Here we
are making only a few hypotheses on the structure of the resampling procedure. However,
there is a relatively general positive answer if the class # is not too large.

Suppose that the class & verifies the following two conditions:

{1} Given probability measures R,, R, whenever
covg { f,g) — cove(f.g)
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uniformly in f, g € &, we have
GR _‘GR

in £°(F).
() n2(P, — P)Z Gp in £°(F) uniformly in P.

Denote by #~ the class of functions {f, f-g:f, g€ }. Then, a simple triangle
inequality shows:

|| Tw(Py) — P|| 52 — 0 a.s. {or in probability)
= n'2(PB — 7.(P,))Z Gp a.s. (or in probability).
(Proof: If 4 metrizes convergence in law, we have

d(L* (PR — 7 (P)), £(Gp)) € AL (0 (PE - (P))), £ (G (p))
+ d(g(GP)ag*(Gf,,(P,}));

since Py is the empirical measure corresponding to the probability measure 7,(P,) and the
CLT holds uniformly in P, hence in #,{P,), the first summand tends to zere; and the second
summand tends to zero a.s. — or in probability — by (1) and the hypothesis.)

If 7, 1s the identity this gives a very simple proof of the bootstrap CLT for these particular
classes #. For instance, the bootstrap of the Kolmogorov—S8mirnov limit theorem, or the
CLT for the Beran-Millar statistic 7, mentioned above, is justified by just this simple
argument because VC classes of seis satisfy the properties (1) and (2).

As observed by Sheehy and Wellner (1988), if the Hellinger distance between 7,(P,) and
P tends to zero (a.s. orin pr.) then also || 7,(P,) — P|| 2 — 0 a.s. orin probability. Thisisa
forerunner to a theorem announced by van Zwet in the 1992 Wald Lectures more or less to
the effect that if the Hellinger distance between P, and P, tends to zero and if 6, is smooth,
then the parametric bootstrap works (this citation may not be strictly correct).

So, the question becomes: what classes of functions satisfy (1) and (2)? The answer is
highly non-void. These classes include the uniformly bounded VC-subgraph classes, and
more. In fact they are those classes for which all the Gaussian processes

Y oif(x)gn fEF,
i=1

for m < oc, g; 1id. N(0,1), x; € Sand 3_ o = 1, behave uniformly well. Giné and Zinn
(1991) proved that this condition implies (1) and is essentially equivalent to (2}, We called these
classes uniformly pre-Gaussian or untform Donsker. Credit for their introduction should also
go o Sheehy and Wellner (1992) who have done further work on these classes of functions and
their applications, as well as on the CLT uniform not for all £, but for certain families of Ps.
Previously, Dudley (1987) had introduced universal Donsker classes: classes on which the
empirical process satisfies the CLT for all P. Actually, most of the examples in his paper satisfy
the CLT uniformly in P. It is interesting that the uniform CLT can be described in terms of a
Gaussian property, but that there does not seem to be any such description of universal
Donsker classes.
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5. Another application: asymptotic normality of the empirical
simplicial median

Let P be a probability law in the plane. Its simplicial median is the point (or set of points)
that is most likely to be contained in the triangle determined by three independent
observations from P. In formulae: For § € R® (or R, but we take 4 = 2 for simplicity)
let C,CR*xR>xR? be the set of all triplets (x;,x,x;) € (R?)’ such that
¢ € S(x;,x>,x3), the (open)} triangle determined by the points x;, x7, x3. The simplicial
median of P is defined as

8o(= 8(P)} = argmax P°C,.

This definition is due to Liu (1990) (she uses closed simplices, but this makes no difference in
this definition if P gives zero mass to lines, which we assume; it makes a difference in the
following definition}. If X}, i < n, are » independent observations from P, the correspond-
ing empirical simplicial median is the point or set of points that belong to the largest
number of sample triangles S(X;, X;, X;). That is, the empirical simplicial median is any
random variable 8, such that

8, € {argmax D,{(8}},
where

DO = UG = e T LXK o).

(n) i< j<k<n
3

(Actually, since we are considering open triangles, D,{#) = P.C,, but we prefer the U-
statistic notation.) The process {D,(8) : & € R?} is called the empirical depth process. If Pis
angularly symmetric about &, and has a non-vanishing density there, then Liu observed
that @, is its unique simplicial median; we also make these assumptions on P {(actually we
will further assume that # has a continuous density, and more). The question is how well 6,
approaches 6. D,(8) is not an empirical process but a U-process: for each 8, it is not a sum
of independent variables, but a U-statistic. Nolan and Pollard (1987; 1988), and Arcones
and Giné (1991) developed some U-process theory; in particular we have complete
analogues of Theorems 2 and 6 and Corollary 5 and, partially, of Theorem 3 and 4. The
corollary of these results that is relevant for the empirical simplicial median is the following:

Proposition 10 (Arcones and Giné 1991). Under measurability, if € is a VC class of
measurable sets of S™ then

(1) §UPUS(C)) ~ P™M(C)l ¢ — O as. (uniform LLN);

(2) U (s(C)) ~ PT(C)) £, a Gaussian process in £7(€ ),

(3) n* (U P (mes(C)) % a chaos process of order k in £%(€) for l <k < m.

Here s denotes symmetrization and =, are the Hoeffding projections. In our case, Cj 15
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symmetric so 5 does not apply, and (m C)(xy,...,xg) = {8, = P) ... (&5, — PYP™*C eg.
™ Colx) = (8, — P) P2Cy
= (P*Cy)(x) - P°C,

= [ [ 11,32, ) aP(x1) aPx) - PoC.

The class 6 = {Cy : 8 € R?} is VC: given n triplets of points Sy,..., S, € (R?)? we have, e.g.
Cgﬂ{S},...,S,,} = {SlrSZ} = fe S[ ﬂS; ﬂSfﬂ“‘ﬂS,f,

where Si denotes the complement of the set S,
So, A¥(S,,...,S,) is less than or equal to the largest possible number of regions that 3n
lines determine in the plane, a number that is easily seen by recurrence to be

3non+ 1)
2

{(each summand corresponds to the addition of an extra line in the plane). So, € is VC and
Proposition 10 applies to the simplicial depth process.

The proof of Proposition 10 bears many similarities with the proofs discussed in Sections
2 and 3: it is based on slightly more complicated Gaussian and Rademacher randomization
and on the transfer of properties of Rademacher and Gaussian chaos processes to U-
Processes.

Here is how to use the uniform LLN to get consistency of the empirical simplicial median
(this is a general procedure to deduce consistency of M-estimators from Glivenko—Cantelli
type theorems): Suppose P has a unique simplicial median 8y and gives mass 0 to lines.
Then, it immediately follows that

2424+3+--+3m=1+

(i) tightness of P° =» lim g, P Cy = 0.
(i) 8, — 8 = limsup P°Cy_ < P*C,.

(Note P*8C,y = 0.) These two elementary facts, together with uniqueness, imply identifia-
bility, namely,

5. :=PCy— sup PCy>0 foralle>0.
[8—6g[ >

This and the LLN in Proposition 10 for the class € give
Pr{sup |6, —8y| > ¢ } <Prdsup(P’Cy — PiCy) >é
k>n k>n o 2
8,
= Pr{:l:p(f"scen — Di(80) + Dil(60) — Dil(8) + Di(6) — PP(6y)) > ‘25}

< Pr{Zsup|IP3C3 — D) > %} — 0.

k=n
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For the rate of convergence (and asymptotic normality) of 6, we will follow a procedure
due to Pollard (1985) for M-estimators. Van de Geer (1993) and Birgé and Massart (1991)
have other ways to use empirical process theory in estifnation.

Assume 8 = 0 and set U(8) = P>C,. Under reguiarity of the density 7 of P we have

U(8) = U(0) —46-4-6T + o(|6 %)

for # small, where 4 is symmetric positive definite. (In our case, under sufficient regularity,
4= ‘J Lf 1" (x1, %2, X3) dxy doxy doxs
G

where [I1 £]" is the matrix of second derivatives with respect to # at § = 0 of the function
T2, f(x; + 8); for instance, if P = N(0,1) then 4 = (3/27)Id.) Since 6, — 0 in probability
(actually a.s.) there exists ¢ > 0 such that

en | 6,12 < n(U(0) - U(8,)) +0p(1) < (U = P*)(Cy, = Cy,) + n(D,(0) = D,(6,)) + 0p(1)

Now we use Hoeffding’s decomposition to get that
3./3
AU = P)(Ca, = Ca) =P = PYP*Ca, = P'Co) + 134 ) US(m(Co, = Ca)
k=2
It turns owt that P3{Cy — Cp)* — 0 as @ — 0, and therefore Proposition 10 implies (by the

necessary and sufficient Prohorov type condition)

imlimsup E sup n*2| U (5,(Co — Cp)) | = 0.

1
=0 poc”  |B|<d
This takes care of the higher-order terms, to give
en|8,)7 < n(P, — P)(P’Cy, — P2Co) + 0p(1).

Suppose that PC s behaves well (as it should because of the two integrations) in the sense
that for some ‘good” A and r,

(PCo)(x) = (P*Co)(x) + 8 Alx) +| 8] r(x,0). (5.1)
Then
on | 6,17 < 0" |6, ({n' (P, — PYA)| + |02 (Py = P)(r (-, 0a)) [} + 0p(1).
If we had

ElA’<o  and  supE sup |32, — P}(r(-,8))] < o, (5.2)
no 18]<é

then we would have
o(n'?16,1 Y < ((0p(1))(n'7?]8,]) + 05(1),
giving
17218, = Op(1).
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In fact, if the class {r(x,0):]#| < 6} is P-Donsker with Er*(X,8) — 0 as 8 — 0, this
argument can be refined to get

28, 4 N(0, 47 (covpA) A7),

which is what happens in this case. Actually,
A = | T3, 01T (o1 30) i iy,

where [I1f]’(x;,x;) is the vector of partial derivatives with respect to ¢ at 8 =0 of the
function f(x; + 8) f(x, +8). For P = N(0,1), A(x} = (2/2*)""x/| x|, x # 0 and the limit
is N(0,4/=I).

So the problem is reduced to showing that the class of functions {r(x,8) : |8| < 6} is P-
Donsker. In spite of the power of the results in Section 3, to prove that a particular class of
functions is P-Donsker or, almost equivalently, to prove the maximal inequality in (5.2),
always involves a certain amount of work. We sketch very briefly how to proceed in the
present situation, By angular symmetry P2Cy(x) = 1 for x # 0 (Liu, 1990), and because we
took the triangles to be open, 8, # X; using this in the definition (5.1) of r yields, for x # 0,

(5,0 = g (PACo(x) = PGl ~0) ~ - (Ax — 0) + (A(x —0) ~ )]

= ?%leca(xlrx2:x — )L, f{x,+8) ~TIL, f(x;) ~ 8- [T £] (x1, %)) dx; dx,

8
+m (Alx—8) - Alx)).
The second summand is a sum of integrals of the form

9.
l?“ifc.,(xl,xz,x = 0) — I, (X1, %2, X)) fi (1) f(x3) dx; dx;.

For x;,x,,@ fixed, the set of xs such that (x;,x,,x) € C; is the cone with vertex # and
boundary the half-lines {)\x; : A < 0},{Ax; : A < 0}, and this family of subsets of R? is VC.
Then, if we assume f, f; and sup|, <4 f;;(x + %) (for some & > 0) Riemann integrable, it
follows that for some M > 0, the functions (1/M )7 (-, @) are in the pointwise closure of the
symmetric convex hull of the set of indicators of such cones. This is known to imply that the
class {r(x,0):|8| < 6} is P-Donsker (Dudley 1985).

Under less restrictive assumptions on f, f;, f;;, even without the existence of ; ;» we can still
prove that this class is P-Donsker by applying Ossiander’s theorem. This involves estimating

E[sup rz(X,ﬂ)l
8| <e
and

EL sup  [r{x, 8} — r(Xsﬂ’)lzl

i8-8 <
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for |#] > e. These quantities turn out to be dominated by positive powers of ¢, which means
that the bracketing covering numbers of our class are small. (This section is based on work
by Arcones et al. (1994).)
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