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PUERTO†

Department of Mathematics, University of Extremadura, 06071 Badajoz. Spain.

E-mail: *mvelasco@unex.es; **mmolina@unex.es; †idelpuerto@unex.es

We investigate the asymptotic behaviour of discrete-time processes that satisfy a stochastic difference

equation. We provide conditions to guarantee geometric growth on the whole set where these

processes go to infinity. The class of processes considered includes homogeneous Markov chains. The

results are of interest in population dynamics. In this work they are applied to two branching

populations.

Keywords: branching processes; discrete-time processes; homogeneous Markov chains; stochastic

difference equations

1. Introduction

Within the scientific literature on populations dynamics, branching processes arouse great

interest, as has been made clear in recent monographs, such as Kimmel and Axelrod (2002),

Pakes (2003) and Haccou et al. (2005). The study of the asymptotic behaviour of such

processes has been a major focus of attention, in particular the determination of growth

rates in certain populations, and the search for conditions to guarantee their geometric

growth. For instance, some conditions for geometric growth on the corresponding whole

explosion set of the process (i.e., on the whole set where the process goes to infinity) have

been established for the standard Bienaymé–Galton–Watson process (see Jagers 1975), and

for the population-size dependent branching process (see Küster 1985; Pierre Loti Viaud

1994). However, there are still many classes of branching models for which, although

conditions for geometric growth are known, they do not guarantee such growth on the

whole explosion set. Examples are the asexual controlled branching process with random

control functions (see González et al. 2003), and the bisexual Galton–Watson process for

which only particular cases have been investigated (see Haccou et al. 2005). In addition to

the intrinsic interest of solving this problem, its solution will help in the application of

inferential results concerning these branching processes.

In this paper we consider this problem in a more general context. Actually, we investigate

the asymptotic behaviour of a large class of processes fZ ngn>0 that satisfy a stochastic
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difference equation. In particular, we focus our attention on the problem of determining

conditions to guarantee geometric growth of fZ ngn>0 on the whole set fZ n ! 1g. This

class includes homogeneous branching models as particular cases.

The paper is organized as follows. In Section 2, we present the probabilistic setting,

provide the necessary working assumptions, and state the main results. Section 3 deals with

their application to two classes of branching models: asexual controlled branching processes

with random control functions, and bisexual branching processes. Finally, for ease of

reading, the proofs are relegated to Section 4.

2. Probabilistic setting and main results

Let fF ngn>0 be a non-decreasing sequence of � -algebras on some probability space, and

let us denote by fZ ngn>0 a sequence of non-negative integer-valued random variables such

that Z0 . 0, Z n is F n-measurable, n > 0, and the following stochastic difference equation

is almost surely satisfied:

Z nþ1 ¼ Z n þ h(Z n) þ �nþ1, n ¼ 0, 1, . . . , (1)

where h : Rþ ! R is a measurable function, Rþ denoting the non-negative real numbers,

h(0) ¼ 0, and f�ngn>1 is a zero-mean martingale difference sequence with respect to

fF ngn>0.

Remark 1. Note that any discrete-time homogeneous Markov chain fZ ngn>0 can be rewritten

in the form (1) by considering h(k) :¼ E[Z nþ1jZ n ¼ k] � k and �nþ1 :¼ Z nþ1 � E[Z nþ1jZ n],

n > 0.

As the motivation for this study comes from populations dynamics, we keep the usual

terminology in branching theory. Thus, Z n can be viewed as representing the size of some

randomly growing population at time n.

Using the fact that h(0) ¼ 0, it follows that fZ n ¼ 0g � fZ k ¼ 0g, k > n. Consequently,

when the process reaches the zero state it stays in it for ever. We focus our attention on the

set fZ n ! 1g, namely, the explosion event associated with the process. This is obviously

included in the complement of fZ n ! 0g, which is called the extinction event since it

indicates the non-existence of individuals in the population. The aim of this work is to

investigate conditions guaranteeing geometric growth for fZ ngn>0 on the whole explosion

set and not just on a part of it.

Using the fact that Z n is F n-measurable and E[�nþ1jF n] ¼ 0 almost surely, it follows

that E[�nþ1jZ n] ¼ 0 almost surely, n > 0. Therefore,

�k :¼ E[Z nþ1 Z�1
n jZ n ¼ k] ¼ 1 þ k�1 h(k), k ¼ 1, 2, . . . :

By convention, when necessary, we define �0 as an arbitrary positive constant. Notice that

�k can be intuitively interpreted as the expected growth rate per individual when, in a

certain generation, there are k progenitors in the population. These expected values will

play a major role in this paper. In order to obtain geometric growth for fZ ngn>0 on its
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explosion set, it will be assumed that, for a certain � . 0, h(x) � �x as x % 1, hence

�k � � as k % 1, where � :¼ 1 þ �. We prove (Theorem 4(ii)) that, on the whole set

fZ n ! 1g, the process fW9ngn>0, where W 9n :¼ Z n��n, converges almost surely to a

positive and finite random variable. To this end, we use, suitably adapted, some probabilistic

techniques considered by Pierre Loti Viaud (1994) for the particular class of asexual

population-size dependent branching processes.

Since dealing with this problem directly seems to be difficult, we consider a different

approach. Notice that, rewriting Z n in the form Z n ¼ Z0

Qn�1
k¼0 Z kþ1 Z�1

k , a natural

approximation to Z n is given by Z0

Qn�1
k¼0 E[Z kþ1 Z�1

k jZ k] ¼ Z0

Qn�1
k¼0 �Z k

. Consequently, the

geometric growth of Z n can be established through the relation

W 9n ¼ W n�n�
�n a:s:, (2)

where W0 :¼ W 90 and W n :¼ Z n��1
n with �n :¼

Qn�1
k¼0 � Z k

, n > 1.

Thus, by (2), to prove that Z n grows like �n on the whole explosion set it is sufficient to

verify that, in such an event, the two sequences fW ngn>0 and f�n��ngn>1 are almost surely

convergent to positive and finite limits. It is easily checked that the randomly normed

sequence, fW ngn>0, is a non-negative martingale. Hence, from the martingale convergence

theorem, it converges almost surely to a non-negative and finite limit W . It remains to

prove that P(W . 0) . 0, and thence that fW . 0g ¼ fZ n ! 1g almost surely, and

finally that f�n��ngn>1 converges almost surely on fZ n ! 1g to a positive and finite limit.

To this purpose, we introduce, for Æ . 0, the Æ-order absolute variation rates

ªk,Æ :¼ E1=Æ[jZ nþ1 Z�1
n � �Z n

jÆjZ n ¼ k], k > 1, and consider the following working

assumptions:

(A1) For some Æ 2 [1, 2], there exist a positive constant M and a non-increasing positive

function �(x) satisfying
P1

n¼1�(n)n�1 , 1, such that ªk,Æ < M�k�(k), k > 0. (We

assume the existence of ªk,Æ, k > 1, for such an Æ and take ª0,Æ :¼ 0.)

(A2) There exists ~�� such that �k > ~�� . 1, k > 0.

(A3) j�k � �j < º(k), k > 1, where º(x) is a positive and non-increasing function such

that
P1

n¼1º(n)n�1 , 1.

Remark 2. Using the lemma in Klebaner (1985: 52), from the function �(x) in (A1) we can

construct another function ~��(x) that is non-increasing, ~��(x) > �Æ(x),
P1

n¼1 ~��(n)n�1 , 1, and

such that x~��Æ(x1=Æ) is a concave and non-decreasing function on (0, 1). Therefore, there is

no loss of generality in assuming that x�Æ(x1=Æ) is concave and non-decreasing on (0, 1).

Note that, by (A2), �n > ~��n, n > 1. Requirement (A3) concerns the speed of convergence of

f�kgk>1 to �, as k % 1. In particular, for homogeneous Markov chains, (A3) is a sufficient

condition for the almost sure convergence of fW 9ngn>0, and a necessary condition for the

almost sure limit to be a non-degenerate-at-zero random variable. See Cohn and Klebaner

(1986) for details.

Henceforth, Æ remains fixed by requirement (A1).

Next, we state the main results of the present work. The first theorem establishes the LÆ-

convergence of fW ngn>0 to its almost sure limit W .
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Theorem 1. Assume (A1) and (A2). Then,

(i) fW ngn>0 converges in LÆ to W ,

(ii) kW n � WkÆ < K
Ð1
~��n �(x)x�1 dx, for some positive constant K, where kXkÆ :¼

E1=Æ[jX jÆ].

Remark 3. Taking into account that E[W n] ¼ E[Z0] . 0, n > 0, as a consequence of

Theorem 1, we deduce that P(W . 0) . 0, and therefore (A1) and (A2) are conditions

which guarantee that P(Z n ! 1) . 0. Kersting (1986) used other probabilistic procedures

and also assumed the existence of moments with a higher order than that considered in (A1)

to derive a positive probability for non-extinction.

It is clear that fW . 0g � fZ n ! 1g. A first step in determining the behaviour of

fW ngn>0 on the whole explosion set is the following theorem.

Theorem 2. Assume (A1) and (A2). Then, on fZ n ! 1g, fW nþ1W�1
n gn>0 converges almost

surely to 1.

From the previous results, we can state the following theorem.

Theorem 3. Assume (A1) and (A2). Then fW . 0g ¼ fZ n ! 1g almost surely.

Remark 4. At this point, we know that, under (A1) and (A2), fW ngn>0 converges almost

surely and in LÆ to W with P(W . 0) . 0, and also that fW . 0g ¼ fZ n ! 1g almost

surely. Note that (A3) was not used to obtain these results. It will be required, however, to

determine the limiting behaviour of f�n��ngn>1 and to obtain, finally, that fZ ngn>0 grows

geometrically like f�ngn>0 on the whole explosion set.

Theorem 4. Assume (A1), (A2), and (A3). Then,

(i) f�n��ngn>1 converges almost surely to a positive and finite random variable on

fZ n ! 1g,

(ii) fW 9ngn>0 converges almost surely to W 9 with P(W 9 . 0) . 0, and

fW 9 . 0g ¼ fZ n ! 1g almost surely.

Remark 5. In the framework of homogeneous Markov chains, this result is connected with

that derived in Cohn and Klebaner (1986) who considered Æ ¼ 1. Indeed, that paper proved

the almost sure convergence of the normed process to a non-degenerate-at-zero limit. We

have completed their result here by showing that such a limit is non-degenerate at zero on the

whole explosion set. Also, using a method similar to that considered in Fujimagari (1976),

one could weaken requirements (A1) and (A2) by imposing that they are satisfied from some

k0 onwards.
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3. Applications to branching populations

The results clearly are applicable to the great family of homogeneous branching processes

owing to their Markovian property. But it is now our intention to particularize them to two

branching models of especial importance in the recent literature. We first consider asexual

controlled branching processes with random control functions, and then bisexual branching

processes.

3.1. Asexual controlled branching processes with random control

functions

First studied in Yanev (1975), the asexual controlled branching process with random control

functions is defined as follows:

Z0 ¼ N ,

Z nþ1 ¼
X�n, Z n

j¼1

X n, j, n ¼ 0, 1, . . . (3)

where the empty sum is considered to be 0, N is a positive integer, and

fX n, j : n > 0; j > 1g, f�n,k : n, k > 0g are independent sets of non-negative integer-valued

random variables defined on the same probability space. The variables X n, j are independent

and identically distributed; their common probability law is called the offspring probability

distribution. For n > 0, f�n,kgk>0 are independent stochastic processes such that �n,k , n > 0,

are identically distributed. Intuitively, X n, j is the number of offspring of the jth individual in

the nth generation, and Z nþ1 represents the total number of individuals in the (n þ 1)th

generation. The individuals give rise to descendants independently with the same offspring

probability distribution for each generation, but, when in a certain nth generation there are k

individuals, the random variable �n,k controls the process in such a way that, if �n,k ¼ j,

then j progenitors will take part in the reproduction process that will determine Z nþ1.

Let us write m :¼ E[X0, j], mÆ :¼ E[jX0, j � mjÆ], �k :¼ E[�0,k], and �k,Æ :¼
E[j�0,k � �k jÆ], k > 0, Æ . 0. Then, from Theorem 4, we can establish the following result.

Proposition 1. Assume:

(a) �k ¼ mk�1�k � � . 1, as k % 1, with �k . 1, k > k0 > 1;

(b) j�k � �j < º(k), k > 1, where º(x) is a positive and non-increasing function such thatP1
n¼1º(n)n�1 , 1;

(c) the existence of a positive and non-increasing function �(x) with
P1

n¼1�(n)n�1 , 1,

and some Æ 2 [1, 2], such that for k > k0,

(mÆ�k)1=Æ < m�k�(k) and (�k,Æ)1=Æ < �k�(k):

Then fZ n��ngn>0 converges almost surely, as n % 1, to a finite and non-degenerate-at-zero

random variable W 9, with fW 9 . 0g ¼ fZ n ! 1g almost surely.
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Indeed, using the CÆ-inequality, namely ja þ bjÆ < 2Æ�1(jajÆ þ jbjÆ), Æ 2 [1, 2], and the Von

Bahr–Esseen inequality (see Von Bahr and Esseen 1965), it follows that ªk,Æ <

2k�1 m�k�(k): Hence, as a consequence of Theorem 4(ii), the proposition follows.

As was noted in the Introduction, the results concerning the inference problems arising

from asexual controlled branching processes (see González et al. 2004, 2005) have

improved applicability. In those papers, most of the asymptotic results were established

on the set fW 9 . 0g, but a doubt was raised there as to how one can possibly know that

one is in such a set when only a finite sample is available. From Proposition 1,

fW 9 . 0g ¼ fZ n ! 1g almost surely, and, using Lemma 2.3 of Guttorp (1991), those

asymptotic results are also obtained on fZ n . 0g, providing a verifiable condition that

resolves the doubt.

3.2. Bisexual branching processes

Introduced in Daley (1968), the bisexual Galton–Watson process is a bivariate sequence

f(Fn, M n)gn>1 defined recursively in the form

Z0 ¼ N , (Fnþ1, M nþ1) ¼
XZ n

i¼1

( f n,i, mn,i), Z nþ1 ¼ L(Fnþ1, M nþ1), n ¼ 0, 1, . . . ,

with the empty sum considered to be (0, 0), where N is a positive integer,

f( f n,i, mn,i) : i > 1; n > 0g is a sequence of independent and identically distributed non-

negative and integer-valued random variables, and L : Rþ 3 Rþ ! Rþ is a function assumed

to be monotonic non-decreasing in each argument, integer-valued on the integers, and such

that L(x, y) < xy. Intuitively, the process starts with Z0 ¼ N > 1 couples (female–male

mating units), and the variables f n,i and mn,i represent the number of females and males

descending from the ith couple of the nth generation, respectively. Consequently, Fnþ1 and

M nþ1 are, respectively, the number of females and males in the (n þ 1)th generation, n > 0,

which form Z nþ1 ¼ L(Fnþ1, M nþ1) couples. These couples reproduce independently with the

same offspring probability distribution for each generation. Recent reviews of this branching

model are provided in Hull (2003) and Haccou et al. (2005).

A bisexual Galton–Watson process is said to be superadditive if L(x1 þ
x2, y1 þ y2) > L(x1, y1) þ L(x2, y2), x1, x2, y1, y2 2 Rþ. For superadditive bisexual branch-

ing processes, Daley et al. (1986) proved that limk!1�k ¼ supk>1�k ¼: �. Again, from

Theorem 4 we establish the following result.

Proposition 2. Assume:

(a) � . 1 and j�k � �j < º(k), k > 1, where º(x) is a positive and non-increasing

function such that
P1

n¼1º(n)n�1 , 1;

(b) fªk,1gk>1 is non-increasing and
P1

k¼1 ªk,1 k�1 , 1.

Then fZ n��ngn>0 converges almost surely to a finite and non-degenerate-at-zero limit W 9,

with fW 9 . 0g ¼ fZ n ! 1g almost surely.
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Indeed, it is easy to verify that requirements (a) and (b) imply assumptions (A1), (A2) and

(A3) in Theorem 4(ii).

Conditions (a) and (b) were introduced in González and Molina (1996) to prove the L1-

convergence of fZ n��ngn>0 to W 9, but it was not established in that work that

fW 9 . 0g ¼ fZ n ! 1g almost surely. The importance of investigating conditions which

guarantee that equality is pointed out by G. Alsmeyer in Haccou et al. (2005: 177).

Proposition 2 solves this question.

Recently, a generalization of this model called the ‘bisexual branching process with

population-size dependent mating’ was investigated in Molina et al. (2002, 2004). This

branching model considers a sequence fLkgk>0 of mating functions, in which the mating

not only depends on the number of females and males in the generation but also on the size

of the previous generation. It can be verified that, under the conditions imposed in Molina

et al. (2004), requirements (A1), (A2) and (A3) hold, so that again we deduce the geometric

growth of fZ ngn>0 on the whole explosion set.

As was noted above for the asexual controlled branching process, these results complete

the inferential theory developed for bisexual branching processes (see González et al. 2001).

4. Proofs

Proof of Theorem 1. (i) It is sufficient to show that fW ngn>0 is a Cauchy sequence in LÆ.

First, let us prove that supn>0kW nkÆ , 1. Using (A1) and (A2), we have almost surely

E1=Æ[jW nþ1 � W njÆjF n] ¼ W n�
�1
Z n
ªZ n,Æ < MW n�(Z n)

< MW n�((WÆ
n
~��Æn)1=Æ), n > 0: (4)

Since ��(x) :¼ x�Æ(x1=Æ) is concave (see Remark 2), applying Jensen’s inequality, we

have from (4) that

kW nþ1 � W nkÆ < MkW nkÆ�(kW nkÆ~��n), (5)

and therefore

kW nþ1kÆ < kW nþ1 � W nkÆ þ kW nkÆ < kW nkÆ(1 þ M�(kW nkÆ~��n)): (6)

Since �(x) is non-increasing and kW nkÆ > E[Z0] . 0, from (6),

kW nkÆ < kZ0kÆ
Yn�1

j¼0

(1 þ M�(~�� jE[Z0])):

Hence supn>0kW nkÆ , 1 if and only if
Q1

j¼0(1 þ M�(~�� jE[Z0])) , 1 or, equivalently,P1
j¼0�(~�� jE[Z0]) , 1. But the latter is true by (A1).

We now verify that fW ngn>0 is a Cauchy sequence in LÆ. Since ��(x) is an increasing

function on (0, 1), and from (5), we have for n . m . 0,
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kW m � W nkÆ <
Xn�1

j¼m

kW jþ1 � W jkÆ < M
Xn�1

j¼m

L�(L~�� j),

where L denotes a constant satisfying L > supn>0kW nkÆ. Finally, again using (A1), we

deduce that kW m � W nkÆ ! 0 as n, m ! 1.

(ii) First, observe that

W � W n ¼
X1
k¼0

(W nþkþ1 � W nþk), n > 0:

Hence

kW � W nkÆ <
X1
k¼0

kW nþkþ1 � W nþkkÆ < ML
X1
k¼0

�(L~��nþk)

¼ ML
~��

~��� 1

X1
k¼0

�(L~��nþk)

L~��nþk
(L~��nþk � L~��nþk�1)

< ML
~��

~��� 1

ð1
L~��n�1

�(x)x�1 dx:

Thus, choosing L > ~��, the proof is complete. h

Proof of Theorem 2. For simplicity we assume that P(Z n ! 1) ¼ 1. Note that

limn!1W nþ1W�1
n ¼ 1 almost surely on fZ n ! 1g is equivalent to

P
[1
k¼0

\1
n¼k

Bn

 !
¼ 1, where Bn :¼ fjW nþ1W�1

n � 1j < �g

for any sufficiently small � . 0.

For N . 0, we define K N :¼ minfn : Z n > Ng. Since P(Z n ! 1) ¼ 1 it is clear that

P(K N , 1) ¼ 1. We have

P
[1
k¼0

\1
n¼k

Bn

 !
> P

\1
n¼K N

Bn

 !
¼
X1
k¼0

P
\1

n¼K N

BnjK N ¼ k

 !
P(K N ¼ k):

Now

P
\1

n¼K N

BnjK N ¼ k

 !
¼ P

\1
n¼K N

BnjZ t , N , t ¼ 0, 1, . . . , k � 1; Z k > N

 !

¼ P
\1

n¼K N

BnjZ k > N

 !

and consequently
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P
[1
k¼0

\1
n¼k

Bn

 !
>
X1
k¼0

P(K N ¼ k) �
X1
k¼0

inf
t>N

P
[1
n¼k

Bc
njZ k ¼ t

 !
P(K N ¼ k): (7)

Note that

P
[1
n¼k

Bc
n

����Z n ¼ k

" #
¼
X1
n¼k

P[CnjZ k ¼ t],

where

Ck :¼ Bc
k ,

Cn :¼ Bc
n \ Bn�1\ . . . \Bk , n ¼ k þ 1, k þ 2, . . . :

It follows that

P[Cn Z k ¼ t] ¼ E[1Bc
n\Bn�1\...\Bk

jZ k ¼ t]

¼ E[E[1Bc
n\Bn�1\...\Bk

jF n]jZ k ¼ t]

¼ E[1Bn�1\...\Bk
E[1fjZ nþ1 Z�1

n �� Z n j>� Z n �gjF n]jZ k ¼ t],

where 1C denotes the indicator function of the set C. Now, for some constant M� . 0,

P(jZ nþ1 Z�1
n � �Z n

j > �Z n
�jF n) <

ªZ n,Æ

� Z n
�

� �Æ

< M��Æ(Z n):

Moreover, since \n�1
j¼kfjW jþ1 � W jj , �g � fZ n , Z k ~��n�kg and �(x) is non-increasing, it

follows that P(CnjZ k ¼ t) < M��Æ(~��n�k t).

Thus, from (7),

P
[1
k¼0

\1
n¼k

Bn

 !
> 1 � M�X1

k¼0

inf
t>N

X1
n¼k

�Æ(~��n�k t)P(K N ¼ k):

By considering the properties of �(x), we deduce that
P1

n¼1�
Æ(n)n�1 , 1 and therefore

lim t!1
P1

n¼k�
Æ(~��n�k t) ¼ 0, which concludes the proof. h

Proof of Theorem 3. Clearly fW . 0g � fZ n ! 1g. Now consider the other inclusion. Let

A :¼ f
P1

n¼0E[j	nþ1jÆjF n] , 1g, where 	nþ1 :¼ (W nþ1W�1
n � 1)1fZ n.0g. We prove that

fZ n ! 1g � A � fW . 0g almost surely. Since
P1

n¼0E[j	nþ1jÆjF n] < MÆ
P1

n¼0�
Æ(Z n), it

is sufficient to show that

X1
n¼0

�Æ(Z n) , 1 a:s: on fZ n ! 1g: (8)

By Theorem 2, and since Z nþ1 Z�1
n > W nþ1W�1

n
~��, it follows that

lim inf
n!1

Z nþ1 Z�1
n . 1 a:s: on fZ n ! 1g:

Hence, given the requirements imposed on the function �(x), (8) holds.
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We now prove that A � fW . 0g. Applying Theorem 2.17 of Hall and Heyde (1980), we

have

X1
n¼1

	n converges a:s: on A: (9)

Moreover, on A,

X1
k¼0

E[j j	kþ1jÆ � E[j	kþ1jÆjF k]j jF k] < 2
X1
k¼0

E[j	kþ1jÆjF k] , 1:

Again using Theorem 2.17 of Hall and Heyde (1980),

X1
k¼0

(j	kþ1jÆ � E[j	kþ1jÆjF k]) converges a:s: on A:

Therefore
P1

n¼1j	njÆ converges almost surely on A, and, since Æ < 2,

X1
n¼1

j	nj2 also converges a:s: on A: (10)

Note that

W n ¼ W0

Yn

i¼1

(1 þ 	i), n > 1:

Finally, taking into account (9) and (10), and applying Theorem 7.30 of Stromberg (1981), we

complete the proof. h

Proof of Theorem 4. (i) The proof follows the steps of Lemma 10 in Pierre Loti Viaud

(1994) for population-size dependent branching processes. Let us consider ª 2 (1, ~��) (~�� given

in (A2)) and, for each ‘ > 0, let �‘ ¼ fZ n > ªn, n > ‘g. From Theorem 3,

fZ n ! 1g ¼
[
‘>0

�‘ a:s:

Thus it suffices to show, for each ‘ > 0, that f�n��ngn>1 converges almost surely to a

positive and finite limit on �‘:
Let B 2 (1, �) be fixed, and L > ‘ be such that inff�k , k > ªLg > B. We have almost

surely on �‘, for n > L,

�n�L

�n�L

¼ exp
Xn�1

k¼L

log(1 þ (�Z k
� �)��1)

( )
< exp B�1

X1
k¼L

j�Z k
� �j

( )
(11)

and

�L�n

�L�n

¼ exp
Xn�1

k¼L

log(1 þ (�Z k
� �)��1

Z k
)

( )
< exp B�1

X1
k¼L

j� Z k
� �j

( )
: (12)
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By the properties of º(x) and the definition of �‘, we have almost surely on �‘ that

X1
k¼L

j�Z k
� �j <

X1
k¼L

º(Z k) <
X1
k¼L

º(ªk) ! 0 as L ! 1: (13)

Therefore from (11), (12) and (13), we deduce that, almost surely on �‘, f�n��ngn>1 is a

Cauchy sequence in (0, 1). Hence there exists the almost sure limit of f�n��ngn>1 on �‘,

and (11) and (13) imply that supn>1�n��n , 1 almost surely on �‘, while (12) and (13)

imply that supn>1�n��1
n , 1 almost surely on �‘.

(ii) The proof is straightforward using (2) and Theorems 1, 3 and 4(i). h

Acknowledgements

We thank the anonymous referee and the Associate Editor for their constructive comments

and interesting suggestions that have improved this paper. This research was supported by

the Ministerio de Ciencia y Tecnologı́a and the FEDER through the Plan Nacional de

Investigación Cientı́fica, Desarrollo e Innovación Tecnológica, grant BFM2003-06074.

References

Cohn, H. and Klebaner, F. (1986) Geometric rate of growth in Markov chains with applications to

population-size-dependent models with dependent offspring. Stochastic Anal. Appl., 4, 283–307.

Daley, D.J. (1968) Extinction conditions for certain bisexual Galton–Watson branching processes.

Z. Wahrscheinlichkeitstheorie Verw. Geb., 9, 315–322.

Daley, D.J., Hull, D.M. and Taylor, J.M. (1986) Bisexual Galton–Watson branching processes with

superadditive mating functions. J. Appl. Probab., 23, 585–600.

Fujimagari, T. (1976) Controlled Galton–Watson process and its asymptotic behaviour. Kodai Math.

Sem. Rep., 27, 11–18.
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González, M., Martı́nez, R. and del Puerto I. (2005) Estimation of the variance for a controlled

branching process. Test, 14, 199–213.
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