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The aim of this paper is to define the entropy rate of a semi-Markov process with a Borel state space

by extending the strong asymptotic equirepartition property (also called the ergodic theorem of

information theory or Shannon–McMillan–Breiman theorem) to this class of non-stationary processes.

The mean asymptotic equirepartition property (also called the Shannon–McMillan theorem) is also

proven to hold. The relative entropy rate between two semi-Markov processes is defined. All earlier

results concerning entropy for semi-Markov processes, jump Markov processes and Markov chains

thus appear as special cases. Two invariance principles are established for entropy, one for the central

limit theorem and the other for the law of the iterated logarithm.
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1. Introduction

Semi-Markov processes constitute an extension of jump Markov processes and renewal

processes. They allow the use of any distributions for the sojourn times instead of the

exponential (geometric) distributions of Markov processes (chains); therefore, numerous real

phenomena can be modelled by semi-Markov processes (see, for example, Limnios and

Oprişan 2001a).

The concept of entropy was introduced in statistical mechanics by Boltzmann in the

nineteenth century and subsequently in probability by Shannon (1948) in order to study

communication systems. Its different forms (entropy, relative entropy, cross-entropy, mutual

entropy, conditional entropy, entropy rate, etc.) and different names (not only entropy but

also information, divergence, distance, distortion measure, etc.) apply to discrete or

absolutely continuous probability distributions, to random variables or vectors, to discrete or

continuous time stochastic processes of any dimension, defined on any probability space.

Bernoulli 12(3), 2006, 515–533

1350–7265 # 2006 ISI/BS



Entropy is used in communication theory, statistical mechanics, finance, signal analysis,

image reconstruction, and also in psychology, linguistics, etc.

The Shannon entropy of a discrete probability P with countable support E was originally

defined by Shannon (1948) as S(P) ¼ �
P

x2E P(x)log P(x). Kullback and Leibler (1951)

defined the relative entropy of a probability with respect to another, also called the

Kullback–Leibler information or cross-entropy. They apply to random variables and

processes as follows.

Definition 1. Let P be a probability absolutely continuous with respect to a � -finite reference

measure � (P � �). The entropy of P with respect to � is defined by

S(Pj�) ¼ EP �log
dP

d�

� �
¼ �

ð
log

dP(x)

d�(x)
dP(x):

If X is a random variable with distribution PX � �, then

S(PX j�) ¼ E �log
dPX

d�
(X )

� �
:

If Y is another random variable with distribution PY , then the relative entropy of X with

respect to Y is S(X jY ) ¼ S(PX jPY ).

Let Z ¼ (Z t; t 2 T), where T ¼ N or Rþ, be a real stochastic process. Let f T denote the

likelihood function of Z[0,T ] ¼ (Z t)0< t<T with respect to a � -finite reference measure �T .

The entropy of Z up to time T is HT (Z) ¼ �E [log f T (Z[0,T ])]. If HT (Z)=T converges to a

finite limit when T tends to infinity, the limit is called the entropy rate H(Z) of the process.

The relative entropy rate of a process with respect to another is defined similarly. Note that if

Z is defined on its canonical space (RT, B(RT), P), with natural filtration (F t) t2T, then �T

appears as the restriction on F T of a reference measure � on (RT, B(RT)).

Theorem A (Asymptotic equirepartition property). Under suitable conditions on the

process Z, its index space T, its state space E and the reference measure �, the sequence

(�log f T (Z[0,T ])=T ) converges in mean or almost surely to the entropy rate of the process.

The mean convergence result is known in the literature as the Shannon–McMillan

theorem and the almost sure convergence as the Shannon–McMillan–Breiman theorem or

ergodic theorem of information theory. Both are also called mean and strong asymptotic

equirepartition properties, due to their use for characterizing the asymptotic behaviour of

the marginal vectors of the process; see Barron (1985) for details and references. In the

following, for the sake of brevity, we will call them the mean and strong AEP.

Shannon (1948) stated and McMillan (1953) proved the mean AEP and Breiman (1958)

proved the strong AEP, for an ergodic stationary process with finite state space. Perez

(1964) proved the mean AEP for an ergodic stationary discrete or continuous time process

with a measurable state space. The strong AEP for an ergodic stationary discrete time

process was extended to any Borel state space independently by Barron (1985) and Orey

(1985). For the strong AEP to hold for an ergodic stationary process, the weakest possible
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assumption for the reference measure seems to be homogeneous ‘nearly’ Markovian (see

Orey 1985). The strong AEP was proven to hold for a null-recurrent stationary

homogeneous Markov chain by Krengel (1967) using ergodic theory arguments, and for

a non-homogeneous Markov chain by Wen and Weiguo (1996) using specific arguments. It

can be proven to hold for other kinds of discrete or continuous time ergodic stationary

processes by using ergodic theory arguments (see Pinsker 1964; Kifer 1986). Bad

Dumitrescu (1988) proved the mean AEP for an ergodic stationary pure jump Markov

process with a finite state space, by using Perez (1964). See Girardin (2005) for details on

extensions to other stationary processes.

Semi-Markov processes are not stationary, and hence none of the above AEPs apply to

their case. The strong and mean AEPs for a countable semi-Markov process were obtained

in Girardin and Limnios (2003) for the continuous time case and in Girardin and Limnios

(2004) for the discrete time case (by proving convergence results on the number of

transitions from one state to another), with an explicit analytic expression for the entropy

rate. To our knowledge, no other strong AEPs exist for non-stationary processes. The main

aim of this paper is to prove the strong and mean AEPs for any semi-Markov process with

a Borel state space, giving an explicit analytic expression for the entropy rate.

Considering entropy with respect to a given reference probability measure amounts to

considering relative entropy with respect to a given distribution. Different AEPs have been

proven in this context. Bad Dumitrescu (1988) computed the relative entropy rate of a pure

jump Markov process with respect to another. The AEP for the relative entropy between

two finite semi-Markov processes proven in Girardin and Limnios (2003) is here generalized

to Borel state space processes.

Maximization of entropy and minimization of relative entropy are widely used to study

distributions or random variables. The entropy methods are justified by probabilistic or

statistical arguments: see, for example, Garret (2001), Csizár (1996) for Bayesian statistics,

Grendar and Grendar (2001) for links to maximum likelihood, and Johnson (2004) for limit

theorems. An explicit analytic expression of the entropy rate, as computed here, is

necessary for extending these methods to random processes. See Girardin (2004) and

Girardin and Limnios (2004) for application to discrete or continuous time finite ergodic

homogeneous Markov or semi-Markov processes. See also Shannon (1948) for application

to information theory via the well-known first Shannon coding theorem.

The entropy rate was first defined by Shannon (1948) for an ergodic Markov chain Z

with finite state space E as the sum of the entropies of the transition probabilities

(P(x, y)) y2E weighted by the probability of occurrence of each state according to the

stationary distribution � of the chain, namely

H(Z) ¼ �
X
x2E

�(x)
X
y2E

P(x, y)log P(x, y): (1)

Shannon (1948) proved the convergence in probability of the sequence

(�logP(Z1 ¼ x1, . . . , Z n ¼ xn)=n) to this quantity. Bad Dumitrescu (1988) obtained the

entropy rate of an ergodic stationary pure jump Markov process with finite state space E in

the form
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H(Z) ¼ �
X
x2E

�(x)
X
y 6¼x

axy(log axy � 1), (2)

where (axy) is the infinitesimal generator and (�(x)) is the stationary distribution of the

process. Both mean and strong AEPs have been extended in Girardin and Limnios (2003,

2004) to an irreducible positive recurrent semi-Markov process with countable state space E.

The entropy rate has an explicit expression as the sum of the entropies of the derivatives

(qxy) y2E of the semi-Markov kernel weighted by the probability of occurrence of each state

according to the stationary distribution � of the embedded Markov chain, balanced by the

mean m̂m of the mean sojourn times with respect to �:

H(Z) ¼ � 1

m̂m

X
x2E

�(x)
X
y2E

ð
Rþ

qxy(s)log qxy(s)ds (3)

for a continuous time semi-Markov process, and

H(Z) ¼ � 1

m̂m

X
x2E

�(x)
X
y2E

X
k2N

qxy(k)log qxy(k) (4)

for a semi-Markov chain. We generalize these results to a Borel state space, obtaining

H(Z) ¼ � 1

m̂m

ððð
E3E3Rþ

�(dx)q(x, y, s)log q(x, y, s)dy ds, (5)

where q(x, y, s) denotes the derivative of the semi-Markov kernel.

Both AEPs also have many applications linked to central limit theorems or large-

deviations results. We prove here (see Theorems 4 and 5) a weak invariance principle for

entropy, also called the functional central limit theorem, and a strong invariance principle,

also called the functional law of the iterated logarithm, two tools necessary for statistical

purposes; see Billingsley (1968) or Gut (1988) for details. These also induce such results as

the extension to semi-Markov processes of the central limit theorem, proven in O’Neil

(1990), or of the law of the iterated logarithm, proven in Dym (1966), for the entropy of

Markov chains.

This paper is organized as follows. General notation, definitions of semi-Markov

processes and necessary assumptions are given in Section 2. The strong and mean AEPs are

extended to semi-Markov processes with Borel state spaces in Section 3, with an explicit

expression for the entropy rate. The particular cases of countable semi-Markov processes

and chains are derived in Section 4. The important special case of pure jump Markov

processes is studied in Section 5. The AEP for the relative entropy between two semi-

Markov processes is obtained in Section 6, with an explicit relative entropy rate. The weak

and strong invariance principles are given in Sections 7 and 8.
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2. Semi-Markov setting

To define semi-Markov processes, it is natural first to define semi-Markov kernels and

Markov renewal processes (see, for example, Limnios and Oprişan 2001a). All the

following random processes will be supposed to be defined on a complete probability space

(�, F , P).

Definition 2. Let (E, E) be a Borel measurable space. Let Bþ denote the Borel � -algebra of

Rþ. Let (P((x, s); A 3 ˆ), (x, s) 2 E 3 Rþ, A 2 E, ˆ 2 Bþ) be a Markov transition function

on (E 3 Rþ, E 3 Bþ). The function Q defined by

Q(x, A 3 (ˆ� s)) ¼ P((x, s); A 3 ˆ), (x, s) 2 E 3 Rþ, A 2 E, ˆ 2 Bþ,

where ˆ� s ¼ ft 2 Rþ : t þ s 2 ˆg, is a semi-Markov kernel.

For any (x, s) 2 E 3 Rþ, there exist a probability measure P(x,s) on (�, F ) and a sequence of

random variables (J n, Sn; n 2 N), such that P(x,s)(J0 ¼ x, S0 ¼ s) ¼ 1 and, for n > 0, A 2 E,
and ˆ 2 B,

P(x,s)((J nþ1, Snþ1) 2 A 3 ˆ� (J k , Sk ; k < n)) ¼ P(x,s)((J nþ1, Snþ1) 2 A 3 ˆJ n, Sn)

¼ Q(J n, A 3 (ˆ� Sn)):

Let (N (t); t 2 Rþ) be defined by

N (t) ¼ supfn > 0 : Sn < tg: (6)

Definition 3. The stochastic process (J n, Sn; n 2 N) is called a Markov renewal process. The

stochastic process Z ¼ (Z(t); t 2 Rþ), defined by Z(t) ¼ J N ( t) for t > 0 (or J n ¼ Z(Sn) for

n > 0), is the semi-Markov process associated with (J n, Sn).

To be exact, Z is an (E, E)-valued cadlag homogeneous semi-Markov process. The process

J ¼ (J n; n 2 N) (called the embedded Markov chain of Z) is a Markov chain with state

space (E, E) and transition probability kernel P(x, dy) ¼ Q(x, dy 3 Rþ). The process (Sn) is

the sequence of jump times of Z, with S0 < S1 < . . . < Sn < Snþ1 < . . . , and inter-jump

times X n ¼ Sn � Sn�1, for n > 1. The process (J n, X n; n 2 N�) is a Markov chain with

state space (E 3 Rþ, E 3 Bþ) and transition probability kernel Q(x, dy 3 dt). The point

process (N (t); t 2 Rþ) counts the jumps in the time interval (0, t].

Let H denote the distribution function of the sojourn times, that is, H(x, t)

¼ Q(x, E 3 [0, t]) for (x, t) 2 E 3 Rþ, and set H ¼ 1� H . Let r be the hazard function

of H , defined by

r(x, t) ¼
� @H

@ t
(x, t)

H(x, t)
,

so that
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log[H(x, t)] ¼ �
ð t

0

r(x, u)du, x 2 E, t 2 Rþ: (7)

Also let mk(x) denote the kth moment of the sojourn time in state x 2 E, that is,

mk(x) ¼
ð
Rþ

Q(x, E 3 ds)s k ¼
ð
Rþ

H(x, ds)s k , k 2 N�, x 2 E; (8)

we set m(x) ¼ m1(x) for the mean sojourn time in state x 2 E.

We will also need the following definitions. Let P(E) be the set of all probability

distributions Æ on (E, E); note that Æ will denote both the distribution and its density when

it exists.

Definition 4. Let Æ be a probability measure in P(E). The probability measure PÆ is defined

on (�, F ) by

PÆ(C) ¼
ð

E

Æ(dx)Px(C), C 2 F ,

where Px(C) ¼ P(C j J0 ¼ x).

Let � be a probability measure on (E 3 Rþ, E 3 Bþ). The probability measure P� is

defined on (�, F ) by

P�(C) ¼
ð ð

E3Rþ

�(dx 3 ds)P(x,s)(C), C 2 F ,

where P(x,s)(C) ¼ P(CjJ0 ¼ x, S0 ¼ s).

Let L1(�Q) be the space of all real �Q-measurable integrable functions g defined on

E 3 E 3 Rþ. The functional �Q is defined on L1(�Q) by

�Qg ¼
ð ð ð

E3E3Rþ

�(dx)Q(x, dy 3 ds)g(x, y, s), g 2 L1(�Q):

We set ĝg ¼ �Qg, and, if g is a function of only one variable x 2 E, we put

�g ¼ �Qg ¼
Ð

E �(dx)g(x).

We will denote by E� the expectation, by var� the variance, and by cov� the covariance with

respect to P�.

The following assumptions are stated here for future reference. Note that � is some

reference measure on (E, E).

Assumption 1. The Markov chain J is Harris positive with a stationary distribution �.

Assumption 2. The mean sojourn times are integrable with respect to the stationary

distribution of J, that is, m̂m ¼
Ð

E�(dx)m(x) , þ1.

Assumption 3. The semi-Markov process Z is regular, that is, P(x,0)(N (t) , þ1) ¼ 1, for

(x, t) 2 E 3 Rþ.
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Assumption 4. For every x 2 E, the semi-Markov kernel is absolutely continuous with respect

to �3 º, with Radon–Nikodym derivative q, that is Q(x, A 3 ˆ) ¼
Ð Ð

A3ˆq(x, y, s)�(dy)ds,

for x 2 E, A 2 E, and ˆ 2 Bþ.

Assumption 5. The logarithm of q is �Q-integrable, that is,
Ð Ð Ð

E3E3Rþ jlog q(x,

y, s)j�(dx)Q(x, dy 3 ds) , þ1.

Assumption 6. The initial distribution of the process is absolutely continuous with respect to

�3 º, with density Æ, that is, P((J0, S0) 2 B 3 ˆ) ¼
Ð Ð

B3ˆÆ(x, s)�(dx)ds for B 2 E and

ˆ 2 Bþ, with Æ bounded away from 0 and infinity.

Assumption 7. The hazard function r is uniformly bounded on E by an increasing function:

supx2E r(x, t) <
ffiffi
t

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log log t

p
, for t > t0, for some t0 . 0.

Assumption 8. We have C1 ¼ E supk>1jlog q(J k�1, J k , X k)j , þ1.

Assumptions 1–3 amount to the ergodicity of the semi-Markov process Z. Assumptions 4

and 6 are necessary for the log-likelihood of Z to be defined; Assumption 6 is especially

satisfied for Æ ¼ �(x,s), that is, if the process is known to start from state x at time s.

Assumption 5 is necessary for the entropy rate of Z to be defined (see relation (5)).

Assumption 7 is sufficient for the backward recurrence time of Z to be asymptotically

negligible; it is trivially fulfilled by Markov processes with bounded infinitesimal generators,

and more generally by semi-Markov processes with decreasing hazard functions — for

example, with Weibull transition functions with shape parameters less than 1. Assumption 8

is classical for inducing mean convergence from almost sure convergence.

3. Entropy of a semi-Markov process

Suppose we are given one observation of the semi-Markov process Z on the time interval

[0, T ] for some T . 0, that is, Z[0,T ] ¼ (Z(t); 0 < t < T ), or equivalently (J0, S0, J1,

X 1, . . . , J N(T ), X N(T ), UT ), with UT ¼ t � SN(T ). Clearly, the likelihood of Z[0,T ] with

respect to �3 �3 º is

f T (Z[0,T ]) ¼ Æ(J0, S0)
YN (T )

k¼1

q(J k�1, J k , X k)

" #
H(J N (T ), UT ): (9)

The proof of the strong AEP will be based on the following four lemmas. First, it is easy

to see that (J n�1, J n, Sn; n 2 N�) is a Markov renewal process with state space

E 3 E 3 Rþ and semi-Markov kernel defined by

~QQ((x, y), A 3 B 3 ˆ) ¼ 1A(y)Q(y, B 3 ˆ), x, y 2 E, A, B 2 E, ˆ 2 Bþ, (10)

where 1A is the indicator function of the set A.
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Lemma 1. The distribution probability �] ¼ �Q is a stationary distribution of the Markov

chain (J n�1, J n, X n; n 2 N).

Proof. We have

�] ~QQ(A 3 B 3 ˆ) ¼
ððð

E3E3Rþ

�](dx 3 dy 3 ds) ~QQ((x, y), A 3 B 3 ˆ)

¼
ð ð ð

E3E3Rþ

�(dx)Q(x, dy 3 ds)1A(y)Q(y, B 3 ˆ)

¼
ð ð

E3A

�(dx)P(x, dy)Q(y, B 3 ˆ)

¼
ð

A

�(dy)Q(y, B 3 ˆ)

¼ �](A 3 B 3 ˆ):

Moreover, �](E 3 E 3 Rþ) ¼
Ð

E�(dx)Q(x, E 3 Rþ) ¼ 1, which completes the proof. h

Note that under Assumption 1, the Markov chain (J n�1, J n, X n) has a unique stationary

distribution, given by Lemma 1.

Lemma 2. Let (N (t); t 2 Rþ) be as defined in (6). Under Assumptions 1–3, if g 2 L1(�Q),

the following convergence holds for any Æ 2 P(E):

1

N (t)

XN ( t)

k¼1

g(J k�1, J k , X k) ! ĝg, t ! þ1, PÆ-a:s:

Proof. From the ergodic theorem for Markov chains (see, for example, Meyn and Tweedie

1996, Theorem 17.0.1) we know that n�1
Pn

k¼1 g(J k�1, J k , X k) converges to

E�] [g(J0, J1, X 1)]. From Lemma 1 applied to the Markov chain (J n�1, J n, X n), we obtain

that E�] [g(J0, J1, X1)] ¼ �] g ¼ ĝg, and hence n�1
Pn

k¼1 g(J k�1, J k , X k) tends PÆ-a.s. to ĝg

when n tends to infinity. From Assumption 3, we know that N (t) tends PÆ-a.s. to infinity as t

tends to infinity (see, for example, Limnios and Oprişan 2001a). Then the law of large

numbers for a sum of a random number of terms (see, for example, Gut 1988, Theorem I.2.1)

yields the result. h

The following lemma is proven for example in Limnios and Oprişan (2001a) for a

countable state space. For the sake of completeness, we will here give a proof for a Borel

state space.

Lemma 3. Under Assumptions 1–3, the following convergence holds for any Æ 2 P(E):
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N (t)

t
! 1

m̂m
, t ! þ1, PÆ-a:s:

Proof. From Grigorescu and Oprişan (1976) (see also Limnios and Oprişan 2001a, Theorem

3.13, p. 79), we know that n�1
Pn

k¼0X k tends PÆ-a.s. to m̂m as n tends to infinity. Since N (t)

tends PÆ-a.s. to infinity as t tends to infinity, we obtain that N (t)�1
PN ( t)

k¼0 X k tends PÆ-a.s. to

m̂m as t tends to infinity (see the proof of Lemma 2). We have
PN ( t)

k¼0 X k ¼ SN ( t) and

SN ( t)

N (t)
<

t

N (t)
,

SN( t)þ1

N (t)
:

For t tending to infinity, this yields the result. h

Lemma 4. Let H be given as in (7). Under Assumptions 1–3 and 7, the following

convergence holds for any Æ 2 P(E):

log[H(J N (T ), UT )]

T
! 0, T ! þ1, PÆ-a:s:

Proof. We have, for Bt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t log log t

p
,���� 1T log[H(J N (T), UT )]

���� ¼ 1

T

ðUT

0

r(J N(T ), u)du < UT

UT

TBUT

<
UT

BT

<
X N (T )þ1

BT

:

Let us prove that

X N (T)þ1

BT

¼ X N(T )þ1

BN (T )þ1

BN (T)þ1

BT

! 0, T ! þ1, PÆ-a:s: (11)

Using Lemma 3, it is easy to prove that

BN (T)þ1

BT

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

log N (T )

log T

� �s ffiffiffiffiffiffiffiffiffiffiffi
N (T )

T

r
! 1ffiffiffiffî

mm
p , T ! þ1, PÆ-a:s:

Since the inter-jump times process (X n) satisfies the law of the iterated logarithm (see

Limnios and Oprişan 2001a, Theorem 3.14, p. 79), we know that X n=Bn tends PÆ-a.s. to

zero as n tends to infinity. Finally, since log log(n þ 1)=log log n tends to 1 as n tends to

infinity and N (t) tends PÆ-a.s. to infinity as t tends to infinity, (11) holds true (see the proof

of Lemma 2), which proves the lemma. h

The AEPs for semi-Markov processes with Borel state spaces follow.

Theorem 1 (Strong AEP for a semi-Markov process). Let Z be a semi-Markov process

with Borel state space (E, E). If Assumptions 1–7 are fulfilled, then the following

convergence holds for any Æ 2 P(E):

� 1

T
log f T (Z[0,T ]) ! H(Z) ¼ � �Q log q

m̂m
¼ �

dlog qlog q

m̂m
, T ! þ1, PÆ-a:s:, (12)
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where log q stands for the composite function log s q.

This defines the entropy rate of the process Z, which can also be written as in (5).

Proof. Under Assumption 4, the entropy HT (Z) of Z up to time T is defined for any T 2 Rþ.
By (9), the log-likelihood of Z[0,T ] is

log f T (Z[0,T]) ¼ logÆ(J0, S0)þ
XN (T )

k¼1

log q(J k�1, J k , X k)þ log[H(J N (T ), UT )]: (13)

From Assumption 6, we deduce that [logÆ(J0, S0)]=T tends PÆ-a.s. to 0 as T tends to

infinity. From Lemma 4, [log H(J N (T ), UT )]=T tends PÆ-a.s. to 0. From both Lemmas 2 and

3 and Assumption 5, we obtain that T �1
PN (T )

k¼1 log q(J k�1, J k , X k) tends PÆ-a.s. to dlog qlog q=m̂m,

which concludes the proof. h

Theorem 2 (Mean AEP for a semi-Markov process). If Assumptions 1–8 are fulfilled, then

the convergence in (12) holds also in mean.

Proof. From Assumption 6, logÆ(J0, X0) is finite so logÆ(J0, X0)=T is bounded for T large

enough, say by C2. From Lemma 4, we deduce that log[H(J N (T ), UT )]=T is also bounded for

T large enough, say by C3. From Lemma 3, N (T )=T tends PÆ-a.s. to a constant, and, thanks

to Assumption 3, N (T )=T is PÆ-a.s.finite, so N (T )=T is bounded for T large enough, say by

K. Therefore, we deduce from (13) that for T large enough,���� log f T (Z[0,T])

T

���� < K sup
k>1

jlog q(J k , J k�1X k)j þ C2 þ C3, PÆ-a:s:

Hence, thanks to Assumption 8, the dominated convergence theorem applies to prove that the

convergence in (12), which holds PÆ-a.s., also holds in mean. h

It is worth noticing that convergence in distribution instead of almost sure convergence is

sufficient to induce convergence in mean in Theorem 2 under Assumption 8.

4. Some particular semi-Markov processes

For some subclasses of semi-Markov processes, that are especially used in applications, the

entropy rate and the assumptions for the AEP to hold deserve to be specifically stated. First,

we consider the AEP for countable semi-Markov processes already obtained in Girardin and

Limnios (2003) by proving convergence results on the number of transitions from one state

to another. Then we consider semi-Markov chains with Borel state spaces for which no

AEP has ever been proven before. Finally, we recall the conditions for the AEP to hold for

countable semi-Markov chains, a result already obtained in Girardin and Limnios (2004)

through specific means too. Note that the setting here is even more general than the
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particular cases generally encountered in the literature, since time 0 need not be a renewal

time.

4.1. Countable semi-Markov processes

We deduce from Theorem 1 the explicit expression for the entropy rate of a countable

semi-Markov process Z. The semi-Markov kernel of the process Z can be written

Q ¼ (Qxy(t); x, y 2 E, t > 0), where Qxy(t) ¼ Q(x, fyg3 [0, t]) ¼ P(J nþ1 ¼ y, Snþ1 � Sn

< tjJ n ¼ x). The reference measure � is the counting measure on E.

Assumption 6 is naturally fulfilled since Æ denotes here the initial distribution itself, and

Assumptions 1–5 and 8 can respectively be restated as follows:

Assumption 19. J is recurrent positive with a stationary distribution �.

Assumption 29.
P

x2E �(x)m(x) , þ1.

Assumption 39. Z is regular.

Assumption 49. Qxy � º with derivative qxy.

Assumption 59. log q 2 L1(�Q).

Assumption 89. E supk>1jlog qJ k�1,J k
(X k)j , þ1.

The expression for the entropy rate follows straightforwardly.

Corollary 1 (AEP for a countable semi-Markov process). Let Z ¼ (Z(t); t 2 Rþ) be a

semi-Markov process with countable state space E. If Assumptions 19–59 and 7 are fulfilled,

then �log f T (Z[0,T ])=T tends PÆ-a.s. to H(Z) for any Æ 2 P(E), where H(Z) is given by (3),

with m̂m ¼
P

x2E�(x)m(x). If Assumption 89 is fulfilled, the above convergence also holds in

mean.

4.2. Semi-Markov chains

The strong AEP specializes to discrete time semi-Markov processes, also called semi-

Markov chains, in the following way. The counting measure on N replaces the Lebesgue

measure º and we set q(x, A, k) ¼ Q(x, A 3 fkg) ¼ P(J nþ1 2 A, Snþ1 � Sn ¼ kJ n ¼ x),

for k 2 N (see, for example, Barbu et al. 2004).

Assumption 3 is always fulfilled and Assumption 4 is irrelevant. Since the hazard rate is

a probability here, Assumption 7 is also always fulfilled.

Corollary 2 (AEP for a semi-Markov chain). Let Z ¼ (Z n; n 2 N) be a semi-Markov chain
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with Borel state space (E, E). If Assumptions 1, 2, 59 and 6 are fulfilled, then the following

convergence holds PÆ-a.s. for any Æ 2 P(E):

� 1

n
log f n(Z[0,n]) ! H(Z) ¼ � 1

m̂m

X
k2N

ð ð
E3E

�(dx)q(x, dy, k)log q(x, y, k), n ! þ1:

If Assumption 8 is fulfilled, the above convergence also holds in mean.

The AEP for a countable semi-Markov chain also appears as a direct consequence of

Theorem 1. The semi-Markov kernel of the process is (qxy(k); x, y 2 E, k 2 N�) with

qxy(k) ¼ P(J nþ1 ¼ y, Snþ1 � Sn ¼ kjJ n ¼ x). The mean sojourn time in x 2 E is m(x)

¼
P

k>0

P
y2E qxy(k).

Assumptions 3 and 7 are always fulfilled and Assumptions 4 and 6 are irrelevant. Under

Assumptions 19, 29 and 59, we easily obtain (4), with m̂m ¼
P

x2E �(x)m(x).

The expression (1) for the entropy rate of a countable Markov chain follows

straightforwardly.

5. AEP for pure jump Markov processes

Jump Markov processes and Markov chains also constitute particular cases of semi-Markov

processes. Due to their paramount importance, we present them separately.

If the process Z is an ergodic homogeneous Markov process, it is stationary with respect

to P�, where � is its stationary distribution. Thus, for a Markov chain with a Borel state

space, the strong AEP with respect to P� and the mean AEP can be obtained by applying

Barron (1985) or Orey (1985). The process may be asymptotically mean stationary or

Markovian with order more than 1 (see Barron 1985) or nearly Markovian (see Orey 1985).

If the process is not ergodic, convergence to an invariant function can still be proven to

hold (see Barron 1985). For a continuous time Markov process, the mean AEP can be

obtained by applying Perez (1964). None of these AEPs include an explicit expression for

the limit entropy rate. Note that Bad Dumitrescu (1988) computes the explicit entropy rate

(2) of a pure jump Markov process with finite state space as the limit of its entropy up to

time ar T divided by T.

The ergodic homogeneous Markov process Z is no longer stationary with respect to PÆ

for any initial distribution Æ on E and the above results do not apply. The strong AEP with

respect to PÆ, and the mean AEP for any pure jump Markov process or Markov chain with

a Borel state space, with an explicit expression for the entropy rate, are obtained here as

special cases of Theorem 1.

5.1. Borel state space jump Markov processes

Let us consider a pure jump Markov process Z with generating operator A, defined on the

set of continuous functions j on E by Aj(x) ¼ a(x)
Ð

E P(x, dy)[j(y)� j(x)], where

(P(x, A); x 2 E, A 2 E) is the transition function of the embedded Markov chain J, and
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(a(x); x 2 E) is the intensity of the jump function (see Limnios and Oprişan 2001a). The

semi-Markov kernel of Z is given by Q(x, A 3 [0, t]) ¼ P(x, A)[1� e�a(x) t] for x 2 E,

A 2 E, and t > 0, where P is the transition function of J. Note that r(x, t) ¼ a(x) and

H(x, t) ¼ 1� exp[�a(x)t] for x 2 E and t 2 Rþ.
A jump Markov process Z fulfilling Assumptions 1–3 is said to be ergodic. These three

assumptions are equivalent to the two following conditions: 0 is a simple eigenvalue of the

generator of Z and kPt(x, A)� �(A)k tends to zero as t tends to infinity, for x 2 E and

A 2 E (for the total variation norm), where Pt(x, B) ¼ P(Z t 2 BjZ0 ¼ x) is the transition

function and � the stationary distribution of Z. Assumptions 4–8 can here respectively be

restated as follows:

Assumption 40. P(x, A) ¼
Ð

A p(x, y)�(dy), for x 2 E and A 2 E.

Assumption 50.
Ð Ð

E3E p(x, y)log[p(x, y)a(x)]�(dx)�(dy) , þ1.

Assumption 60. P(J0 2 A) ¼
Ð

A Æ(x)dx with Æ bounded away from 0 and infinity.

Assumption 70. Z has a bounded generating operator, that is, supx2E a(x) , þ1.

Assumption 80. E supk>1 p(J k�1, J k) , þ1.

Corollary 3 (AEP for a jump Markov process). Let Z ¼ (Z(t); t 2 Rþ) be a pure jump

Markov process with Borel state space (E, E). If Assumptions 1–3 and 40–70 are fulfilled, the

following convergence holds PÆ-a.s. for any Æ 2 P(E):

� 1

T
log f T (Z[0,T ]) ! H(Z) ¼ �

ð ð
E3E

�(dx) p(x, y)a(x) log[ p(x, y)a(x)]� 1ð Þ�(dy),

T ! þ1:

If, moreover, Assumption 80 is fulfilled, then the convergence also holds in mean.

Proof. Thanks to Assumption 40, Q is absolutely continuous with respect to �3 º. Its

Radon–Nikodym derivative is q(x, y, s) ¼ p(x, y)a(x)e�a(x)s. Theorem 1 gives

H(Z) ¼ � 1

m̂m

ð ð ð
E3E3Rþ

�(dx) p(x, y)a(x)e�a(x)s log[ p(x, y)a(x)e�a(x)s]�(dy)ds

¼ � 1

m̂m

ð ð
E3E

�(dx)p(x, y)(log[p(x, y)a(x)]� 1)�(dy):

The stationary distributions � of J and � of Z are linked through �(dx)a(x) ¼
�(dx)

ð
E

a(y)�(dy). We compute

m̂m ¼
ð

E

�(dx)

a(x)
¼
ð

E

�(x)Ð
Ea(z)�(dz)

¼
ð

E

a(z)�(dz)

� ��1

,
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and the result follows. h

For a countable state space, the semi-Markov kernel takes the form Qxy(t) ¼
P(x, y)(1� exp[�a(x)t]), and the stationary distributions of the process and of its

embedded chain are linked through �(x)a(x) ¼ �(x)
P

x2E�(x)a(x). The expression (2)

follows straightforwardly.

5.2. Borel state space Markov chains

The semi-Markov kernel Q of a Markov chain Z with Borel state space (E, E) and

transition function P is as follows. Set r(x) ¼ P(x, fxg) for x 2 E. If r(x) ¼ 0 then

Q(x, A 3 fkg) ¼ P(x, A)1(k¼1). If r(x) 6¼ 0 (i.e. if x is an atom of P), then

Q(x, A 3 fkg) ¼ P0(x, A)r(x)k�1[1� r(x)], where P0(x, A) ¼ P(x, A)=r(x) if A 6¼ fxg,
and P0(x, fxg) ¼ 0, are the transition probabilities of the embedded chain J.

Assumption 5 amounts to
Ð Ð

E3E�(dx)P(x, dy)jlog p(x, y)j , þ1, where � is the

stationary distribution of Z. Assumptions 1–3 amount to the ergodicity of Z. Assumptions 4

and 6 take the form of Assumptions 40 and 60. Assumption 7 is always fulfilled. Under

these assumptions, we compute

H(Z) ¼
ð ð

E3E

�(dx)P(x, y)log P(x, y)dx dy:

6. Relative entropy

The relative entropy up to time T of a process Z with respect to another W, say HT (ZjW),

is defined as the relative entropy between their marginal distributions on [0, T ]. If

HT (ZjW)=T converges, the limit H(ZjW) is called the relative entropy rate of Z with

respect to W.

Note that the entropy HT (Z) with respect to a probability reference measure can also be

seen as the relative entropy HT (ZjW) of the marginal distribution of Z with respect to the

marginal distribution �T of some process W; for this, see especially Pinsker (1964) and

Perez (1964).

We consider here two semi-Markov processes Z and W with the same Borel state space.

We will denote with a W or Z superscript the functions linked to W or Z, respectively. The

following assumptions are necessary for stating the strong and mean AEPs for the relative

entropy:

Assumption 9. The initial distribution of Z is absolutely continuous with respect to the initial

distribution of W, that is, ÆZ � ÆW, and qZ is supported within the support of qW.

Assumption 10. The logarithm of qW is �ZQZ integrable.

Assumption 11. E supk>1j log qW(JZ
k , JZ

k�1, XZ
k )j , þ1.

528 V. Girardin and N. Limnios



Note that Assumption 9 is necessary for the relative entropy HT (ZjW) to be defined for any

t 2 Rþ, and implies Assumption 6 for Z.

Theorem 3 (Relative entropy rate). Let Z and W be two semi-Markov processes with the

same Borel state space (E, E). If Assumptions 1–5 and 7 for Z, Assumptions 1–4 and 6–7

for W and Assumption 9 and 10 are fulfilled, then the following convergence holds PZ
Æ-a.s.

for any Æ 2 P(E):

1

T
log

f ZT

f WT
(Z[0,T ])

" #
! 1

m̂mZ
�ZQZ log

qZ

qW

 !
, T ! þ1:

If, moreover, Assumption 8 for Z and Assumption 11 are fulfilled, then the above convergence

also holds in mean.

This defines the relative entropy rate of Z with respect to W: explicitly,

H(ZW) ¼ 1

m̂mZ

ð ð ð
E3E3Rþ

�Z(dx)qZ(x, y, s)log
qZ(x, y, s)

qW(x, y, s)

" #
�(dy)ds:

Proof. On the one hand, by Theorem 1, PZ
Æ-a.s., as T tends to infinity,

1

T
log f ZT (Z[0,T ]) ! �H(Z) ¼ 1

m̂mZ

ð ð ð
E3E3Rþ

�Z(dx)qZ(x, y, s)log qZ(x, y, s)dy ds:

On the other hand, by Assumption 6 for W, by Lemma 4 applied to HW(JZ
NZ(T ), UZ

T ) and

by Lemma 2 applied to the function g ¼ log qW, we obtain that �[NZ(T )]�1 log f WT (Z[0,T ])

tends PZ
Æ-a.s. to ��ZQZ(log qW) as T tends to infinity. Therefore, by Lemma 3,

�[log f WT (Z[0,T ])]=T tends PZ
Æ-a.s. to ��ZQZ(log qW)=m̂mZ and the proof is complete. h

Explicit expressions for the relative entropy rate between Markov processes, semi-Markov

chains or countable semi-Markov processes can be derived straightforwardly.

For application in information theory, mutual information is widely used; see Pinsker

(1964), Perez (1964) or Barron (1985). The mutual information between two random

variables X and Y with respective marginal distributions PX and PY and joint distribution

P(X ,Y ) can be written as

I(X , Y ) ¼ S(PX )þ S(PY )� S(P(X ,Y )) ¼ S(PY )� S(PYPX ) ¼ S(PX )� S(PXPY ):

The definition of the mutual information rate of two processes follows. Mutual information

thus appears just as a special case of relative entropy; therefore, all results concerning mutual

entropy derive straightforwardly from the above results on entropy and relative entropy rate.
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7. The weak invariance principle

The following additional assumptions are necessary for stating the functional central limit

theorem for entropy for a semi-Markov process:

Assumption 12. The means, with respect to the stationary distribution of the embedded chain,

of the second moments of the sojourn times defined in (8) are finite, that is,Ð
E�(dx)m2(x) , þ1.

Assumption 13. The logarithm of the Radon–Nikodym derivative q of Q is �Q-square

integrable.

Assumptions 12 and 13 are necessary to define the asymptotic variance (14) below. Note that

Assumption 13 obviously implies Assumption 4.

The weak invariance principle will be deduced from the invariance principle for an

additive functional of a two-dimensional Markov renewal process. Let us consider the

Markov renewal process (J n�1, J n, X n; n 2 N), with the notation of Section 2. Its semi-

Markov kernel is given by (10). As shown in Lemma 1, its stationary distribution is

�] ¼ �Q. Its embedded Markov chain ~JJ ¼ (J n, J nþ1; n 2 N) has the transition kernel
~PP((x, y); dx9 3 dy9) ¼ 1 y(dx9)P(y, dy9) and the stationary distribution ~��(dx 3 dy) ¼
�(dx)P(x, dy).

Let V : E 3 E ! [1, þ1) be an E 3 E-measurable function, and let L1
V (E 3 E)

denote the space of all Borel functions j : E 3 E ! R such that jjjV ¼
sup(x, y)2E3E[jj(x, y)j=V (x, y)] , þ1.

Let ª be a signed measure on (E 3 E, E 3 E), bounded for the V -norm defined by

kªkV ¼ supfjªjjV : j 2 L1
V (E 3 E), jjjV < 1g ¼ supj2L1

V
(E3E)[jªjjV=jjjV ]. Note that for

V constant and equal to 1, the V -norm k � k1 is the total variation norm.

Assumption 14. There exists a function � : N ! Rþ, with
P

n>1

ffiffiffiffiffiffiffiffiffiffi
�(n)

p
, þ1, such that

k ~PPn((x, y), �3 �)� ~��(�3 �)kV < �(n), for x, y 2 E and n 2 N�.

Assumption 14 is a mixing condition. It is fulfilled if ~JJ is V -uniformly ergodic (with

�(n) ¼ Rr�n for non-negative constants R 2 Rþ and r 2 [0, 1[), or equivalently if there

exists a small set ˜ 2 E 3 E such that the drift condition
Ð

E P(y, dy9)V (y9, y9) <

cV (x, y)þ b1˜(x, y), for x, y 2 E, holds for some constants c 2]0, 1[ and b 2 Rþ
�; see

Meyn and Tweedie (1996) for details.

Let us set qk ¼ q(J k�1, J k , X k) for k 2 N� and Gn ¼
Pn

k¼1[�log qk �H(Z)] for n > 1,

and define the asymptotic variance

� 2 ¼ var~��[log q(J0, J1, X 1)]þ 2
X
k>2

cov~��[log q(J0, J1, X1), log q(J k�1, J k , X k)]: (14)

Let ) denote weak convergence in the Skorohod space D[0, þ1), with respect to the

probability P ~��, where ~��(dx, dy) ¼ �(dx)P(x, dy) for a probability measure � on (E, E).
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Theorem 4 (Weak invariance principle for entropy). If Assumptions 1–7 and 12–14 hold,

then 0 < � 2 , þ1. If, moreover, � 2 . 0, then

1ffiffiffi
n

p [�log f nt(Z[0,nt])� N (nt)H(Z)] ) bW , n ! þ1,

where b ¼ �=
ffiffiffiffî
mm

p
and W is the standard Brownian motion.

Proof. On the one hand, thanks to Assumption 14, we can prove as in Limnios and Oprişan

(2001b, Lemma 2) that jP~��(A \ B)� P~��(A)P~��(B)j < jP~�� (n)P~��(A), for all A 2 � (J m�1,

J m, X m; m < k), B 2 � (J m�1, J m, X m; m > n þ k), and n, k 2 N�, where jP~��(n) ¼
�(n � 1) with � given in Assumption 14. Since �(n) tends to zero as n tends to infinity,

the Markov chain (J n�1, J n, X n) is �-mixing under P~��.

On the other hand, we obtain in the same way that jP~��(B)� P�(B)j < �(n), for all

B 2 � (J m�1, J m, X m; m > n + k). Thanks to Assumptions 12 and 13, � 2 is well defined.

Therefore we deduce from Limnios and Oprişan (2001b, Theorem 2) that

(�
ffiffiffi
n

p
)�1G[nt] ) W as n tends to infinity. Finally, Lemma 3 and Gut (1988, Theorem V

2.1) together imply that (
ffiffiffi
n

p
)�1GN (nt) ) bW as n tends to infinity. h

8. The strong invariance principle

The following technical assumptions are necessary for stating the invariance principle for

the law of the iterated logarithm:

Assumption 15. The quantity log qn=Bn tends PÆ-a.s. to zero as n tends to infinity.

Assumption 16. The quantity sup(x, t)2E3Rþ r(x, t) is finite.

Theorem 5 (Strong invariance principle for entropy). Under Assumptions 1–6 and 13–16,

for any t 2 Rþ, the sequence ffiffiffiffî
mm

p
[�log f nt � N (nt)H(Z)]

� Bn

; n > 3

 !
,

where Bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n log log n

p
, is PÆ-a.s.a relatively compact subset of D[0, þ1) (in the uniform

topology). The set of its limit points coincides with

K ¼ h 2 AC[0, 1) : h(0) ¼ 0,

ðþ1

0

dh

dt
(t)

� �2
dt < 1

( )
,

in which AC[0, 1) stands for the space of absolutely continuous functions defined on Rþ.

Proof. Let us set �n(t) ¼ � �1[G[nt] � (nt � [nt])log q[nt]þ1]. According to Herkenrath et al.

(2003) (see also Heyde and Scott 1973), the sequence (�n=Bn; n 2 N) is PÆ-a.s. a relatively

compact subset of D[0, þ1) and the set of its limit points coincides with K.
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Since B[nt]þ1=Bn tends to
ffiffi
t

p
for any t . 0, thanks to Assumption 15, we obtain that

[log q[nt]þ1]=Bn tends PÆ-a.s. to zero as n tends to infinity. Thanks to Assumptions 12 and

13, � 2 is well defined. Hence, the sequence (G[nt]=� Bn; n > 3) is also relatively compact,

with limit set K, PÆ-a.s.

Using Lemma 3, we obtain from Gut (1988, Theorem V 7.1) that

(
ffiffiffiffî
mm

p
GN (nt)=� Bn; n > 3) is also PÆ-a.s. relatively compact, with limit set K. We have

�log f SN (nt)
¼ �logÆ(J0, S0)� GN(nt) þ N (nt)H(Z). Thus, due to Assumption 6,

(
ffiffiffiffî
mm

p
[�log f SN (nt)

� N (nt)H(Z)]=� Bn; n > 3) is also relatively compact, with limit set K.

Finally, �log f nt ¼ �log f SN (nt)
� log[H(J N (nt), Unt)], so

M N(nt) ¼ sup
SN (nt)<s,S N( nt)þ1

jlog f s � log f SN (nt)
j ¼ sup

SN (nt)<s,SN ( nt)þ1

log[H(J N (nt), Us)]:

Thanks to Assumption 16, (
ffiffiffi
n

p
)�1M N (nt) tends PÆ-a.s. to zero, and the conclusion follows.

h

Note that if Assumption 15 is not fulfilled, the result still holds true at the jump times,

that is, for all n 2 N and t 2 Rþ such that nt ¼ Sn.
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Baeza-Yates, J. Glaz, H. Gzyl, J. Hüsler and J.L. Palacios (eds), Recent Advances in Applied

Probability, pp. 163–179. New York: Springer-Verlag.

Girardin, V. and Limnios, N. (2003) On the entropy of semi-Markov processes. J. Appl. Probab., 40,

1060–1068.

Girardin, V. and Limnios, N. (2004) Entropy rate and maximum entropy methods for countable semi-

Markov chains. Comm. Statist. Theory and Methods, 33, 609–622.

Grendar, M. and Grendar, M. (2001) What is the question MaxEnt answers? A probabilistic

interpretation. In M. Mohammad-Djafari (ed.), Bayesian inference and Maximum Entropy

Methods in Science and Engineering, pp. 83–93. Melville, NY: American Institute of Physics.
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