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1. Introduction

Let fX t,a : t ¼ . . . , �1, 0, 1, . . . ; a ¼ 1, . . . , rg be an r-variate stationary time series and

f (º), �� < º < �, be its spectral density matrix (sdm). To analyse time series, parametric

models are often fitted to f (º). With a parametric matrix-valued function gŁ(º), a

parametric model is described as

F¨ :¼ fgŁ(º), Ł 2 ¨ � R pg � F , (1)

where ¨ is a parameter space and F is the set of all possible r 3 r sdms. It follows that

fitting a parametric model is equivalent to identifying a subset in F . Autoregressive moving

average (ARMA) models are typical examples of parametric models. Specifically, the sdms of

these models consist of components which are rational functions of exp(iº) and with

parameters Ł.

Estimation of the parameter Ł has been examined by many authors – see, for example,

Dunsmuir (1979), Brockwell and Davis (1991, Section 10.8) and Hosoya (1997). Moreover,

model selection criteria such as Akaike’s information criterion (AIC, Akaike 1974) have

been proposed for selecting an appropriate model from several candidate parametric models.

In particular, the order determination for ARMA processes by AIC has been investigated
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extensively in the literature. For discussions of the order selection by AIC see, for example,

Brockwell and Davis (1991, Section 9.3), Shibata (1980), Hurvich and Tsai (1989).

Though parametric models (1) provide useful tools for linear time series analysis, we are

often interested in aspects of the component time series which are of such a very different

nature that a radically different approach is called for. For example, we may be interested in

investigating the plausibility of mutual independence of the component time series without

wishing to make as strong an assumption as a rational sdm. Other general aspects of the

component time series that are often of interest include separable correlation, time

reversibility and graphical interaction. For the above purpose, let Gab, a, b ¼ 1, . . . , r, be a

function from Rr2

to R and consider the subset FG � F prescribed by G in the following

way:

FG :¼ fg(º) :¼ (gab(º)) 2 Fj
gab(º) ¼ Gab(Ł, gcd(º), c, d ¼ 1, . . . , r), a, b ¼ 1, . . . , r, almost everywhere in [��, �]g:

(2)

The subset FG � F is defined in a very different way from the parametric models (1) and is

called an sdm model described by Gab, a, b ¼ 1, . . . , r. In general Gab need not depend on a

parameter, although in some cases it may. We give examples of both situations in Section 4,

which will show how FG can easily accommodate the component-time-series-specific aspects

mentioned above.

The purpose of this paper is to propose a selection criterion for sdm models

corresponding to different Gab. Many existing criteria developed for model (1) rely on

penalizing model complexity by reference to ‘the number of parameters’. However, as we

have seen, for an sdm model the notion of a parameter need not be relevant, and even when

it is there is usually no simple way to count the number of parameters. An alternative

approach is cross-validation (CV), which requires no such counting. For examples, see Shao

(1993) for linear model selection, Kavalieris (1989) for order selection of AR models,

Härdle et al. (1988) for a smoothing parameter determination of nonparametric regression

models and Cheng and Tong (1992) for order determination of nonparametric autoregressive

models. CV penalizes the complexity of a model by the leave-one-out approach instead of

an explicit expression for model complexity.

In this paper, we adopt the cross-validated log quasi-likelihood – which we refer to for

convenience as the cross-validated log likelihood (CVLL) – as a criterion for sdm model

selection. The distinctive features are as follows. First, the sdm model having the smallest

CVLL is asymptotically the one with the minimum mean integrated squared estimation

error for f (º). Secondly, in contrast to the inconsistency of CV selection in parametric

situations (Shao 1988, Kavalieris 1989), it should be emphasized that CV can provide

consistent selection procedures outside the parametric context.

This paper is organized as follows. We introduce the CVLL criterion in Section 2, and

show its asymptotic properties in Section 3. In Section 4 we give several examples of the

sdm models. In Section 5 we apply the CVLL criterion to graphical modelling and prove

the consistency of the CVLL selection for graphical models. In Section 6 we use simulation

and real data to show empirical properties of the criterion. In Section 7 we give concluding
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remarks. In Sections 8 and 9 we finally present the proofs of lemmas and theorems,

respectively.

2. The CVLL criterion

Throughout this paper, Aab and Aab are generic symbols for the (a, b)th element of

matrices A and A�1 respectively, and AT is the matrix transpose of A.

Let fX t ¼ (X t,a, a ¼ 1, . . . , r)T, �1 , t , 1g be an r-dimensional stationary time

series with the sdm f (º), �� < º < �. We define f (º) outside the region [��, �] to have a

period of 2�. Suppose X1, X2, . . . , Xn are given. The discrete Fourier transform W (º) and

the periodogram matrix I(º) of X t are defined as follows:

W (º) :¼ (2�n)�1=2
Xn
t¼1

X t exp(�iºt),

I(º) :¼ W (º)W (º)T:

I(º) is defined periodically with the period 2� for º =2 [��, �]. Let º j ¼ 2� j=n,

j ¼ �[(n� 1)=2], . . . , �1, 0, 1, . . . , [n=2], be the jth Fourier frequency and

wk , k ¼ �m=2, . . . , m=2, be a weight sequence. It is well known that the sdm f (º) is

consistently estimated under suitable conditions by the smoothed periodogram

f̂f ab(º j) :¼
Xm=2

k¼�m=2

wk

0
@

1
A

�1 Xm=2

k¼�m=2

wk Iab(º jþk), a, b ¼ 1, . . . , r:

Under an sdm model described by G in (2), define the sdm g(º) ¼ (gab(º)) and the estimator

ĝg(º) ¼ ( ĝgab(º)), a, b ¼ 1, . . . , r, by

gab(º) :¼ Gab(Ł, f cd(º), c, d ¼ 1, . . . , r) (3)

and

ĝgab(º j) :¼ Gab(Ł̂Ł, f̂f cd(º j), c, d ¼ 1, . . . , r), (4)

respectively, where Ł̂Ł is an estimator for Ł. Let us define the CVLL for an sdm model

described by G with the cross-validated version of (4).

Definition 1 Cross-validated log likelihood. For an sdm model described by G, the CVLL is

defined by

CVLL(G) :¼
X[n=2]

j¼1

log det ĝg� j(º j)
� �

þ tr I(º j) ĝg
�1
� j(º j)

� �
, (5)

where ĝg� j(º j) ¼ ( ĝgab,� j(º j)), a, b ¼ 1, . . . , r, and
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ĝgab,� j(º j) :¼ Gab Ł̂Ł, f̂f cd,� j(º j), c, d ¼ 1, . . . , r
� �

,

f̂f cd,� j(º j) :¼
Xm=2

k¼�m=2,k 6¼0

wk

0
@

1
A

�1 Xm=2

k¼�m=2,k 6¼0

wk I cd(º jþk): (6)

The sdm model which minimizes the CVLL over given candidates is the CVLL selected

model. Not the usual spectral estimator (4) but the cross-validated version (6) must be put

in the CVLL (5) to make the CVLL criterion work for sdm model selection, which is

justified empirically and theoretically. See the proof of Theorem 2 in Section 9 for the

theoretical justification, where cross-validation is required to prove that the third term of

(26) is o p(nm�1). Hurvich (1985) and Beltrao and Bloomfield (1987) used the CVLL

criterion to determine the optimal bandwidth for univariate kernel spectrum estimates.

Hurvich’s definition may be viewed as a univariate version of our CVLL, not for sdm model

selection but for bandwidth selection.

3. Asymptotic properties of the CVLL

An sdm model described by G is correct for X t if f (º) 2 FG; it is incorrect if f (º) =2 FG.

Following the notation of Shao (1993), we designate the latter models as category I, and the

former as category II. Note that if an sdm model G is in category II, any model G2 such

that FG2
� FG is in category II.

We evaluate the asymptotic behaviours of the CVLL for an sdm model described by G.

They are shown to depend on the category to which G belongs by Theorems 1 and 2 under

the following assumptions:

Assumption 1. fX tg is an r-dimensional Gaussian stationary process.

Assumption 2. f (º) is positive definite for �� < º , �.

Assumption 3. f ab(º), a, b ¼ 1, . . . , r, �� < º , �, is twice continuously differentiable.

Assumption 4. m ¼ O(n�), 1=2 , � , 3=4, and the weight function wk , k ¼ �m=2,

. . . , m=2, is given with a positive continuous even function u(x) on [�1=2, 1=2] by

wk ¼ u
k

m

� �
, k ¼ �m=2, . . . , m=2:

Assumption 5. When Gab, a, b ¼ 1, . . . , r, depends on a parameter Ł, there exists a Ł0 such

that Ł̂Ł� Ł0 ¼ Op(n
1=2) and satisfing

f ab(º) ¼ Gab(Ł0, f cd(º), c, d ¼ 1, . . . , r), a, b ¼ 1, . . . , r,

if G is in category II.
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Theorem 1. Under Assumptions 1–5, if Gab(Ł, ycd , c, d ¼ 1, . . . , r), a, b ¼ 1, . . . , r, is

continuously differentiable with respect to Ł and ycd,

CVLL(G) ¼
X[n=2]

j¼1

log det f (º j) þ r
� �

þ nKL( f , g) þ o p(n),

where g(º) is the sdm (3) under G in which Ł is replaced with Ł0 and KL( f , g) is the

Kullback–Leibler divergence between the two Gaussian stationary processes whose sdms are

f (º) and g(º), that is,

KL( f , g) :¼ 1

2�

ð�
0

ftr( f (º)g�1(º) � Er) � log det( f (º)g�1(º))gdº:

See Section 9 for the proof of Theorem 1. Theorem 1 implies that an sdm model whose

KL( f , g) is smallest gives the smallest CVLL asymptotically. Theorem 1 is, however,

powerless to distinguish among the sdm models in category II, since KL( f , g) ¼ 0 for all

the models in category II. It is necessary to evaluate the terms of smaller order than n in

probability when G is in category II, which is expressed by the asymptotic mean integrated

squared error (AMISE) of G.

Definition 2 Asymptotic mean integrated squared error. When G is in category II, the

asymptotic mean integrated squared error of G is defined by

AMISE(G) :¼ p lim
n!1

m

n

X[n=2]

j¼1

trf( ĝg(º j) � f (º j)) f
�1(º j)g2,

where ĝg(º j) is the estimated sdm (4) under G.

Theorem 2. Under Assumptions 1–5, if G is in category II and Gab(Ł, ycd , c, d ¼ 1, . . . , r),

a, b ¼ 1, . . . , r, is three times continuously differentiable with respect to Ł and ycd, then

CVLL(G) ¼
X[n=2]

j¼1

flog det f (º j) þ tr(I(º j) f
�1(º j))g þ

n

m

1

2
AMISE(G) þ o p

n

m

� �

and

AMISE(G) ¼ Cu

2�

ð�
0

Xr
Æ,�,ª,�¼1

�Æ�ª�(º) fÆ�(º) fª�(º)dº, (7)

where
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Cu :¼
ð1=2

�1=2

u(x)dx

 !�2ð1=2

�1=2

u2(x)dx,

�Æ�ª�(º) :¼
Xr
a,b¼1

Xr
e1,e2¼1

hae1,Æ�( f (º))hbe2,ª�( f (º)) f e1b(º) f e2a(º),

hae1,Æ�(y) :¼ @Gae1
(Ł0, ycd , c, d ¼ 1, . . . , r)

@ yÆ�
:

The proof of Theorem 2 is given in Section 9. Theorem 2 implies that the sdm model in

category II which attains the smallest AMISE gives the smallest CVLL asymptotically.

Corollary 1 summarizes the consequences of Theorems 1 and 2.

Corollary 1. Let Gi, i ¼ 1, 2, describe sdm models. Under Assumptions 1–5, and if Gi,

i ¼ 1, 2, is three times differentiable,

1. if G1 is in category I and G2 is in category II, then

lim
n!1

P(CVLL(G1) . CVLL(G2)) ¼ 1;

2. if both G1 and G2 are in category II and AMISE(G1) . AMISE(G2), then

lim
n!1

P(CVLL(G1) . CVLL(G2)) ¼ 1:

Let us define consistency of CVLL selection here. Let S be a set of candidate sdm

models from which the CVLL criterion selects.

Definition 3 Consistency of CVLL selection for S. Let Gi, i ¼ 1, 2, describe two sdm models

in S \ fcategory IIg. CVLL selection is consistent for S, if FG1
� FG2

implies

limn!1 P(CVLL(G1) . CVLL(G2)) ¼ 1.

It follows from Corollary 1 that the consistency for S is equivalent to the statement:

FG1
� FG2

implies AMISE(G1) . AMISE(G2) for Gi, i ¼ 1, 2 in S \ fcategory IIg. We

shall show in Sections 4 and 5 that CVLL selection is consistent for some important

specific cases: the decomposition into independent subseries and graphical modelling. We

leave it to future studies to investigate if the consistency holds true for general sdm model

selection, namely to show whether FG1
� FG2

implies AMISE(G1) . AMISE(G2) for any

Gi, i ¼ 1, 2, in category II.

Remark 1. The same weight function should be used for all the candidates to evaluate their

CVLLs, since their AMISEs depend on weight functions. In choosing the bandwidth m, it

seems plausible in practice to adopt the one which satisfies Assumption 4 and minimizes the

CVLL.
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4. Examples of sdm models

In this section, we show typical examples of sdm models and derive their AMISE values by

(7). In the following, for a condition C, let IC take the value 1 if C is satisfied and 0

otherwise. Let y be an r3 r positive definite matrix. In this sections Assumptions 1–4

hold, and in addition Assumption 5 holds in Example 3.

Example 1 No constraint. Consider the sdm model described by

Gab(ycd , c, d ¼ 1, . . . , r) :¼ yab, a, b ¼ 1, . . . , r: (8)

In this case FG reduces to F , which means that (8) is always in category II. Since

hae1,Æ�( f (º)) ¼ I (a,e1)¼(Æ,�), we have �Æ�ª�(º) ¼ f �ª(º) f �Æ(º). Hence,

AMISE(G) ¼ Cu

2�

ð�
0

Xr
Æ,�,ª,�¼1

f �ª(º) f �Æ(º) fÆ�(º) fª�(º)dº

¼ Cu

2

Xr
Æ¼1

1
Xr
�¼1

1 ¼ Cur
2

2
:

Example 2 Mutual independence among subseries. Let M1 [ . . . [ M p be a partition of

the set f1, 2, . . . , rg. Suppose that an r-dimensional time series is grouped into p

independent subseries X t ¼ (X t,M1
, . . . , X t,M p

)T such that fX t,Mi
g and fX t,M j

g are mutually

independent for i 6¼ j. This is the sdm model described by

Gab(ycd , c, d ¼ 1, . . . , r) :¼
yab, if a 2 Mi and b 2 Mi for some i,

a, b ¼ 1, . . . , r:
0, otherwise

8<
:

(9)

Put E :¼ f(a, b)ja 2 Mi and b 2 Mi for some ig. Since

hae1,Æ�( f (º)) f e1b(º) ¼ I (Æ,�)2E I a¼Æ I e1¼� f
e1b(º),

we have �Æ�ª�(º) ¼ I (Æ,�)2E I (ª,�)2E f
�ª(º) f �Æ(º). By noting that f (º) is block diagonal,

AMISE(G) ¼ Cu

2�

ð�
0

X
(Æ,�)2E

X
(ª,�)2E

f �ª(º) f �Æ(º) fÆ�(º) fª�(º)dº

¼ Cu#fEg
2

¼ Cu(#fM1g2 þ . . . þ #fM pg2)

2
, (10)

where # denotes the cardinality of a set.

Let S be the set of sdm models which decompose the original time series into all
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possible independent subseries. It follows from (10) and Theorem 2 that CVLL selection is

consistent for S in the sense of Definition 3.

Example 3 Separable correlations. A separable correlation is defined to satisfy

cov(X t,a, X s,b) ¼ � abr(t � s), a, b ¼ 1, . . . , r,

for all t, s, where (� ab), a, b ¼ 1, . . . , r, is an r 3 r positive definite matrix and r is a

positive definite function on integers (Haslett and Raftery 1989; Martin 1990; Matsuda and

Yajima 2004). A separable model includes a mutually independent component model with an

identical autocorrelation as the special case when �Æª ¼ 0 for Æ 6¼ ª, which is often useful

for longitudinal data analysis (Diggle et al. 1994, Chapter 4).

By applying an inverse Fourier transform to the separable correlation, the spectral density

matrix is

f ab(º) ¼ � ab
~ff (º), (11)

where ~ff (º) is a scalar-valued non-negative integrable function on [��, �]. Hence the

separable model is the sdm model described by

Gab(� , ycd , c, d ¼ 1, . . . , r) :¼ � ab

r

Xr
i¼1

yii

� ii

, a, b ¼ 1, . . . , r, (12)

where � ¼ (� ab), a, b ¼ 1, . . . , r, is the parameter vector. This model is an example of the

case where G depends on a parameter. Noting that

hae1,Æ�( f (º)) f e1b(º) ¼ IÆ¼�
� ae1

f e1b(º)

r�ÆÆ
,

from (11) we have

�Æ�ª�(º) ¼ IÆ¼� Iª¼�
1

r�ÆÆ�ªª
~ff (º)2

:

Hence

AMISE(G) ¼ cu

2r

Xr
Æ,ª¼1

� 2
Æª

�ÆÆ�ªª
,

which reduces to Cu=2 in the special case where �Æª ¼ 0 for Æ 6¼ ª. It follows that CVLL

selection is consistent for the set of the sdm models obtained from (8) and the separable

models in the sense of Definition 3. See Remark 2 below for a practical application.

Example 4 Time reversibility. An r-dimensional time series fX tg is said to be time-

reversible if, for any k ¼ 1, 2, . . . and any k-tuple t1 , . . . , t k , the joint distribution of

(X t1 , . . . , X t k ) is the same as that of (X� t1 , . . . , X� t k ). See Chan et al. (2005) for a recent

discussion of time reversibility for multivariate time series. The necessary and sufficient

condition of time reversibility for Gaussian time series is that the spectral density matrix is

real-valued. Hence time reversibility is identified with the sdm model described by
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Gab(ycd , c, d ¼ 1, . . . , r) :¼ yab þ yba

2
, a, b ¼ 1, . . . , r:

Noting that

hae1,Æ�( f (º)) ¼ I a¼Æ I e1¼� þ I a¼� I e1¼Æ

2
,

�Æ�ª�(º) ¼ f �ª(º) f �Æ(º) þ f ��(º) f ªÆ(º) þ f Æª(º) f ��(º) þ f Æ�(º) f ª�(º)

4
,

we have

AMISE(G) ¼ Cu(r
2 þ r)

4
:

It follows that CVLL selection is consistent for the set of the sdm models obtained from (8)

and the time reversibility in the sense of Definition 3. See Remark 2 below for a practical

application.

Example 5 Graphical models. Graphical models were originally defined for a random vector

and were estimated based on its independent realizations. See Lauritzen (1996) for the basic

notation and definitions of graphical models. Dahlhaus (2000) extended the concept of

undirected conditional independence graphs to multivariate time series. The key idea is to

regard a graphical model for multivariate time series as a kind of sdm model, which makes it

possible to apply the CVLL criterion to graphical modelling. In the next section, we discuss

this application specifically.

Remark 2. The CVLL criterion can be applied to the following testing problem. For an sdm

model described by G,

H0 : G is in category II versus H1 : G is in category I:

Accept H0 if the CVLL of G is smaller than that of (8), and accept H1 otherwise. Then the

testing procedure is consistent if AMISE(G) is smaller than Cur
2=2.

Remark 3. The expression for an sdm model is not always unique. It is desirable to adopt the

one having the smaller AMISE if possible, which makes it easier to distinguish it from other

redundant sdm models. For example, the separable correlations can be expressed in another

way:

G2,ab(� , ycd , c, d ¼ 1, . . . , r) :¼ � ab

y11

�11

, a, b ¼ 1, . . . , r, (13)

whose AMISE is equal to Cur=2, which is larger than that of (12). Hence expression (12) is

preferable to (13).
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5. Application to graphical models

We will show in this section that the CVLL criterion is an effective tool to identify the

undirected graph for multivariate Gaussian time series fX t,a, a ¼ 1, . . . , rg. Set Xa ¼
fX t,a, �1 , t , 1g, Yt,ab ¼ fX t, j, j 6¼ a, bg and Yab ¼ fYt,ab, �1 , t , 1g. The

conditional independence between X a and Xb given Yab is defined by

Xa?X bjYab , cov(�ajfa,bgc (s), �bjfa,bgc (t)) ¼ 0, for all s, t 2 Z, (14)

where

�ajfa,bgc (t) ¼ X t,a � �opt
a �

X1
u�1

dopt
a (t � u)Yu,ab,

which minimizes

E X t,a � �a �
X1
u�1

da(t � u)Yu,ab

 !2

:

Now let us recall the definition of an undirected graph (V , E) due to Dahlhaus (2000).

Definition 4 Partial correlation graph. Let V ¼ f1, . . . , rg be the set of vertices and

E(� V 3 V ) be a set of edges. Let (a, b) =2 E if and only if X a?XbjYab. Then (V , E) is

called a partial correlation graph for time series.

Dahlhaus (2000, Theorem 2.4) proved that (14) is equivalent to

f ab(º) � 0, �� < º , �: (15)

It follows that the missing edges in the partial correlation graph can uniquely be identified

from the zeros in the inverse of the sdm f (º). With a suitable estimator f̂f (º), Dahlhaus

(2000: 171) used the test statistic

sup
º

j f̂f ab(º)j2

f̂f aa(º) f̂f bb(º)

to detect the zeros in his empirical studies. Though the statistic is intuitively appealing and

easy to construct, it is difficult to determine the null distribution when (15) is true, as he

mentioned.

Instead we apply the CVLL criterion to graphical model selection. Let (V , E) be a graph

for X t with the sdm f (º). For the graph (V , E), consider the sdm g(º) which satisfies

gab(º) ¼ f ab(º), for (a, b) 2 E,

gab(º) ¼ 0, for (a, b) =2 E:
(16)

The unique existence of the sdm g(º) is guaranteed in Lemma 7. Let us define the function

Gab by

Gab( f cd(º), c, d ¼ 1, . . . , r) :¼ gab(º), a, b ¼ 1, . . . , r: (17)
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It follows from (15) that the graph (V , E) is identified with the sdm model described by the

function Gab. We derive the AMISE of a graphical model by applying the implicit function

theorem to (16) in (7).

Theorem 3. Let G describe a graphical model (V , E). Then under Assumptions 1–4,

AMISE(G) ¼ Cu(r2 � 2ME)

2
,

where ME :¼ #f(a, b)j(a, b) =2 E, a , bg, which is the number of conditional independent

pairs of (V , E).

The proof of Theorem 3 is given in Section 9. Let S be the class of 2rC2 graphical

models f(V , E)jME ¼ 0, 1, . . . , rC2g. It follows from Theorems 2 and 3 that CVLL

selection is consistent for S in the sense of Definition 3.

In the following, we show a practical way to perform graphical model selection with the

CVLL. The explicit form of G defined by (17), which is necessary to evaluate the CVLL

by (5), cannot be given for ME . 1. Hence we use the recursion introduced by Wermuth

and Scheidt (1977) as an alternative way. For a positive definite matrix y, let us show the

recursion to obtain the matrix g which satisfies

gab ¼ yab, (a, b) 2 E,

gab ¼ 0, (a, b) =2 E:
(18)

Let Fi ¼ f(ai, bi), (bi, ai)g, i ¼ 0, 1, . . . , ME � 1, be the elements of ff(a, b),

(b, a)gj(a, b) =2 Eg, and put n9 ¼ n (mod ME). Set g0 ¼ y and calculate gn, n ¼ 1,

2, . . . , recursively by

gn,ab ¼
gn�1,ab þ

gab
n�1

gaa
n�1 g

bb
n�1 � gab

n�1 g
ba
n�1

, for (a, b) 2 Fn9,

gn�1,ab, for (a, b) =2 Fn9:

8><
>: (19)

Then it follows from Proposition 3 of Speed and Kiiveri (1986) that g :¼ limn!1 gn satisfies

(18).

The graph with the smallest CVLL among the 2 rC2 candidate graphs is the CVLL

selected graph. However, it is difficult to perform the search in practice, especially for large

r. This and the recursion (19) lead to a backward stepwise selection procedure. Let Gk

describe the graphical models (V , Ek), k ¼ 0, 1, . . . , in the following procedure.

0. Put k ¼ 0, set (V , E0) as the graph with no conditional independent pairs and

calculate CVLL(G0).

1. Calculate the CVLLs of the candidates (V , Ei
kþ1), i ¼ 1, . . . , rC2 � k, via (19), each

of which has one more conditional independent pair than the graph (V , Ek).

2. Select the best graph (V , Ekþ1) minimizing the CVLL among the candidates.

3. If CVLL(Gkþ1) , CVLL(Gk), set k ¼ k þ 1 and return to step 1. Otherwise, stop the

procedure and take (V , Ek) as the selected model.
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Remark 4. Speed and Kiiveri (1986, pp. 146–147) showed that the recursion (19) was a

special case of the first cyclic algorithm (FCA). In the FCA, they set Fi, i ¼
0, 1, . . . , ME � 1, as the off-diagonal elements of the cliques of the complimentary graph

(V , ~EE) instead of the conditional independent pairs. The FCA is more effective and accurate

than (19), since ME, which is the number of the cycle, can be made smaller in the FCA.

Equation (19) is, however, more suitable for practical use, since it is hard to find a clique in

computer programming.

6. Empirical studies

In this section, our interest is focused on the empirical properties of CVLL selection. We

shall conduct computational simulation and analyse hospital admissions data in Hong Kong

to examine the properties. Throughout this section, we use the weight function wk ¼
cos(�k=m), k ¼ �m=2, . . . , m=2, with the bandwidth m which was set to minimize the

CVLL.

First we apply the CVLL criterion to sdm model (9) which stipulates independence of

component time series. Consider a three-variate time series generated by

X t,1

X t,2

X t,3

0
@

1
A ¼

0:2 x 0:0
x �0:2 0:0

0:0 0:0 0:3

0
@

1
A X t�1,1

X t�1,2

X t�1,3

0
@

1
Aþ

� t,1
� t,2
� t,3

0
@

1
A, (20)

where f� t,a, a ¼ 1, 2, 3g is a sequence of normally distributed random vectors with mean 0

and variance matrix E3. Note that fX t,1, X t,2g and fX t,3g are independent for x 6¼ 0, and

fX t,1g, fX t,2g and fX t,3g are mutually independent for x ¼ 0. We consider the following

four sdm models as candidates:

I. No constraint (8).

II. M1 ¼ f1g, M2 ¼ f2, 3g in (9).

III. M1 ¼ f1, 2g, M2 ¼ f3g in (9).

IV. M1 ¼ f1g, M2 ¼ f2g, M3 ¼ f3g in (9).

For x 6¼ 0, cases II and IV are in category I and cases I and III are in category II. For x ¼ 0,

all the cases are in category II.

We select the case which has the smallest CVLL 1000 times. Table 1 shows the empirical

frequencies of the CVLL selection for x ¼ 0:0, 0:1 and 0.2 when the sample sizes are 101,

201 and 401. Table 1 clearly lends support to the consistency of the CVLL selection. The

CVLL tends to select the optimal model – case III for x 6¼ 0 and case IV for x ¼ 0 – more

frequently as the sample size increases.
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Next we apply the CVLL criterion to graphical modelling. Consider the following vector

autoregressive model:

X t,1

X t,2

X t,3

X t,4

X t,5

0
BBBB@

1
CCCCA ¼

0:2 0:0 0:3 0:0 0:3
0:3 �0:2 x 0:0 0:0
0:2 x 0:3 0:0 0:0
0:2 0:3 0:0 0:3 0:0
0:3 0:0 0:0 0:2 0:3

0
BBBB@

1
CCCCA

X t�1,1

X t�1,2

X t�1,3

X t�1,4

X t�1,5

0
BBBB@

1
CCCCA

� t,1
� t,2
� t,3
� t,4
� t,5

0
BBBB@

1
CCCCA, (21)

where f� t,a, a ¼ 1, . . . , 5g is a sequence of normally distributed random vectors with mean 0

and variance matrix E5. By Dahlhaus (2000: 164), this process provides an example of a

graph (V , E) such that

f(a, b)j(a, b) =2 E, a , bg ¼ (2, 5), (3, 4)g, if x 6¼ 0,

f(2, 5), (3, 4), (2, 3)g, if x ¼ 0:

�

We consider the following four candidate graphs (V , Ei), i ¼ 1, . . . , 4:

I. f(a, b)j(a, b) =2 E1, a , bg ¼ ˘, which is equivalent to no constraint.

II. f(a, b)j(a, b) =2 E2, a , bg ¼ f(2, 5)g.

III. f(a, b)j(a, b) =2 E3, a , bg ¼ f(2, 5), (3, 4)g.

IV. f(a, b)j(a, b) =2 E4, a , bg ¼ f(2, 5), (3, 4), (2, 3)g.

Note that all the graphs except graph IV are in category II for x 6¼ 0, and all the graphs are in

category II for x ¼ 0.

We select the graph which has the smallest CVLL 1000 times. Table 2 shows the

empirical frequencies of the CVLL selection when x ¼ 0:0, 0:1 and 0:2 and sample sizes

are 101, 201 and 401. Table 2 lends support to the consistency of the CVLL selection for

graphical modelling. The CVLL tends to select the optimal graph – graph III for x 6¼ 0 and

graph IV for x ¼ 0 – more frequently as the sample size increases.

Finally, we consider a seven-variate time series of pollutants, weather and daily hospital

admissions of patients suffering from circulatory and respiratory problems. The pollutant

Table 1. Empirical frequencies of selection by the CVLL criterion based on 1000 replications. The

case which has the smallest CVLL is selected from cases I–IV for time series (20)

Sample size x Case I Case I Case III Case IV

101 0.0 0.019 0.146 0.162 0.673

0.1 0.052 0.127 0.320 0.501

0.2 0.103 0.056 0.664 0.177

201 0.0 0.021 0.144 0.139 0.69

0.1 0.053 0.082 0.461 0.404

0.2 0.089 0.012 0.867 0.032

401 0.0 0.015 0.117 0.108 0.760

0.1 0.031 0.056 0.639 0.274

0.2 0.062 0.000 0.938 0.000
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and weather data are the daily average levels of sulphur dioxide (SO2, �g m�3), nitrogen

dioxide (NO2, �g m�3), respirable suspended particulates (�g m�3), ozone (O3, �g m�3),

temperature (degrees Celsius) and relative humidity (%), which were collected daily in

Hong Kong from 1 January 1994 to 31 December 1995 (Figure 1). Taking the admissions

series as the response variable and the other series as the explanatory variables, Xia et al.

(2002) analysed the data using a semiparametric regression model. Their method is

motivated by the nonlinearity expected to exist in some parts of the very complex weather–

pollutant interaction.

Here, we explore the extent to which our simple linear-based technique can yield useful

results even in a complex situation. We apply graphical models to the data. All the series are

detrended by extracting the 15-day moving averages. For the hospital admissions series, the

trend component caused by the day-of-the-week effect (Xia et al. 2002: 378) is removed by a

simple regression method using dummy variables. For the seven-variate detrended time series,

we estimate the spectral coherency j f ab(º j)j2=f f aa(º j) f bb(º j)g, a, b ¼ 1, . . . , 7, and the

spectral partial coherency j f ab(º j)j2=f f aa(º j) f
bb(º j)g, a, b ¼ 1, . . . , 7, as shown in Figure

2. The alignment technique for the coherency estimation (see Priestley 1981, Section 9.5.4) is

used to increase the estimation accuracy, though it is not used for the partial coherency

estimation, since the technique does not preserve the positive semi-definiteness of the

estimated density matrix required for the matrix inversion. In Figure 3, we show the partial

correlation graph estimated by the backward stepwise selection mentioned in Section 5.

Figures 2 and 3 suggest the following features:

1. The number of hospital admissions (HA) is conditionally independent of SO2,

humidity and particulates, while it is conditionally dependent on NO2, O3 and

temperature especially at low frequencies, which suggests a long-range dependence

between HA and the latter pollutant variables. Xia and Tong (2005) used a weighted

average of the past levels of the pollutant variables up to time point L (they took

L ¼ 365) for the explanatory variables. Our observation lends support to the findings

based on their cumulative model.

Table 2. The empirical frequencies of selection by the CVLL criterion based on 1000 replications.

The graph which has the smallest CVLL is selected from graphs I–IV for time series (21)

Sample size x Graph I Graph II Graph III Graph IV

101 0.0 0.025 0.037 0.134 0.804

0.1 0.024 0.074 0.271 0.631

0.2 0.035 0.099 0.638 0.228

201 0.0 0.033 0.039 0.119 0.809

0.1 0.033 0.089 0.383 0.495

0.2 0.049 0.099 0.801 0.051

401 0.0 0.010 0.036 0.109 0.845

0.1 0.021 0.064 0.578 0.337

0.2 0.025 0.095 0.878 0.002
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Figure 1. Average levels of (a) sulphur dioxide, (b) nitrogen dioxide, (c) respirable suspended

particulates, (d) ozone, (e) temperature, (f) humidity, and (g) total number of daily hospital admissions

of circulatory and respiratory patients, from 1 January 1994 to 31 December 1995, with trends

estimated by 15-day moving averages.
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Figure 2. Spectral coherence (above diagonal) and partial spectral coherence (below diagonal) for the

detrended time series of (a) SO2, (b) NO2, (c) particulates, (d) O3, (e) temperature, (f) humidity and

(g) hospital admissions.
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2. Temperature is the most influential of the three variables dependent conditionally on

HA, which reinforces the observation of Xia et al. (2002) that weather has an

important role to play for HA.

3. Humidity shows its strong dependence on NO2, O3 and particulates. Humidity is a

factor which may boost the impact of the pollutants under certain conditions, and is

therefore considered to have an indirect but principal effect for HA.

4. Figure 3 supports the fact that NO2 plays an important role in the process of O3

generation (Dahlhaus 2000: 168).

7. Concluding remarks

This paper proposes the CVLL criterion for sdm model selection for time series. Regarding

a graphical model for time series as an example of sdm models, we provide a consistent

method for graphical modelling by the CVLL criterion. There are interesting extensions of

graphical modelling to the following two cases. One is directed graphs which can detect

causal relationships among variables. Undirected graphs only describe mutual relations

which cannot make clear which variables are the cause and which the effect. The extension

to directed graphical modelling is a challenging problem. The other is nonlinear undirected

graphical modelling. Our approach considers only linear relationships among variables, and

is powerless to detect nonlinear relationships, such as the nonlinear dependency between the

������������������������������������	������������������������������ ����	
����
�

��
�� ��������������������������������������


���	
���

Figure 3. Estimated partial correlation graph for the detrended time series of Figure 1.
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hospital admissions and the pollutant variables identified by Xia et al. (2002). We leave

these interesting extensions of graphical modelling to future studies.

8. Lemmas

We require a number of lemmas. The proofs of Lemmas 1–4 are given by Yajima and

Matsuda (2003, Lemmas 1–4).

Lemma 1. Under Assumptions 1, 3 and 4,

E(Wa(º j)Wb(º j)) � f ab(º j) ¼ O(n�1 log n),

� m=2 þ 1 < j < [n=2] þ m=2,

E(Wa(º j)Wb(ºk)) ¼ O(n�1 log n), �m=2 þ 1 < j < k < [n=2] þ m=2, jþ k 6¼ 0, n,

E(Wa(º j)Wb(ºk)) � f ab(º j) ¼ O(n�1 log n),

� m=2 þ 1 < j < k < [n=2] þ m=2, jþ k ¼ 0, n,

E(Wa(º j)Wb(ºk)) ¼ O(n�1 log n), �m=2 þ 1 < j , k < [n=2] þ m=2,

uniformly in j and k for a, b ¼ 1, 2, . . . , r.

Lemma 2. Under Assumptions 1, 3 and 4,

E( f̂f ab(º j)) � f ab(º j) ¼ O(m2n�2),

uniformly in j ¼ 1, 2, . . . , [n=2], for a, b ¼ 1, 2, . . . , r.

Lemma 3. Under Assumptions 1, 3 and 4,

cov( f̂f ab(º j), f̂f cd(ºk)) ¼ O(m�1), if j j� kj < m,

O(n�2 log2 n), if j j� kj . m,

�

uniformly in j, k ¼ 1, 2, . . . , [n=2], for a, b, c, d ¼ 1, 2, . . . , r.

Lemma 4. Under Assumptions 1, 3 and 4,

cum( f̂f a1b1
(º j1 ), f̂f a2b2

(º j2 ), . . . , f̂f ak bk
(º j k )) ¼ O(m1�k),

uniformly in 1 < ji < [n=2] for any k > 3 and 1 < ai, bi < r, i ¼ 1, . . . , k.

Lemma 5. For an invertible r 3 r matrix A,

@A pq

@AÆ�
¼ �A pÆA�q,
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for p, q, Æ, � ¼ 1, . . . , r.

Proof. The result is derived simply by componentwise calculaton using rule 9 of Lütkepohl

(1991: 471). h

Lemma 6. Let U ¼ (U1, . . . , U p)T and V ¼ (V1, . . . , Vq)T be mutually independent random

vectors whose covariance matrices are positive definite. Then the covariance matrix of the

pq-dimensional random vector (UiV j), i ¼ 1, . . . , p, j ¼ 1, . . . , q, is positive definite.

Proof. The covariance matrix of (UiV j), i ¼ 1, . . . , p, j ¼ 1, . . . , q, is the Kronecker

product of the covariance matrices of U and V. Hence the assertion follows from Lütkepohl

(1991, A.11 (6)). h

Let (V , E) be a graphical model for r-dimensional time series with ME :¼
#f(a, b)j(a, b) =2 E, a , bg, and let (ai, bi), i ¼ 1, . . . , 2ME, and ( pi, qi), i ¼ 1, . . . ,

r2 � 2ME, be the elements of the sets f(a, b)j(a, b) =2 Eg and f( p, q)j(p, q) 2 Eg,

respectively.

Lemma 7. Let y be a positive definite r3 r matrix with the property that yab ¼ 0 for

(a, b) =2 E. Then there exist holomorphic functions Gaibi , i ¼ 1, . . . , 2ME, on a

neighbourhood of (ypjq j
), j ¼ 1, . . . , r2 � 2ME, such that

yaibi ¼ Gaibi(ypjq j
, j ¼ 1, . . . , r2 � 2ME), i ¼ 1, . . . , 2ME: (22)

Define the derivatives of Gaibi as haibi , pjq j
(y) :¼ @Gaibi(y)=@ ypjq j

, i ¼ 1, . . . , 2ME,

j ¼ 1, . . . , r2 � 2ME. Then

A(y)H(y) þ B(y) ¼ O2ME ,r2�2ME
, (23)

where A(y), H(y) and B(y) are 2ME 3 2ME, 2ME 3 (r2 � 2ME) and 2ME 3 (r2 � 2ME)

matrices, respectively, given by

A(y) :¼ �yaia j yb jbi ), i, j ¼ 1, . . . , 2ME,

H(y) :¼ (haibi , pjq j
(y)), i ¼ 1, . . . , 2ME, j ¼ 1, . . . , r2 � 2ME,

B(y) :¼ (�yai p j yq jbi), i ¼ 1, . . . , 2ME, j ¼ 1, . . . , r2 � 2ME:

Proof. y satisfies the following 2ME restrictions:

yaibi ¼ 0, i ¼ 1, . . . , 2ME:

The Jacobian for the 2ME equations is, by Lemma 5, jA(y)j. Note that �A(y) is equal to the

covariance matrix of a random vector c :¼ (Xa1
� Yb1

, . . . , Xa2ME
� Yb2ME

)T, where

(Xai , i ¼ 1, . . . , 2ME) and (Ybi , i ¼ 1, . . . , 2ME) are zero-mean and mutually independent

random vectors with E(Xai X a j
) ¼ yaia j , E(Ybi Yb j

) ¼ yb jbi , for i, j ¼ 1, . . . , 2ME. Let

ai1 , . . . , ai p be the largest subset of a1, . . . , a2ME
with distinct elements aim 6¼ ain , (m 6¼ n).

Define bi1 , . . . , biq in the same way. Then the covariance matrices U ¼ (Xai1
, . . . , X ai p

)T

and V ¼ (Ybi1
, . . . , Ybiq

)T are positive definite. Noting that c is a subvector of (UiV j),
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i ¼ 1, . . . , p, j ¼ 1, . . . , q, and applying Lemma 6 to the U , V , we have j � A(y)j . 0. The

assertion follows from the implicit function theorem. h

Lemma 8. For a positive definite r3 r matrix y with the property that yab ¼ 0 for (a, b) =2 E,

define

x(Æ, �, a, b, y) :¼
X

( p,q)2E

hab, pq(y)yÆq yp� � yÆb ya�:

(i) If (Æ, �) 2 E, then for (a, b) =2 E,

x(Æ, �, a, b, y) ¼ 0:

(ii) If (Æ, �) =2 E, then for (c, d) =2 E,X
(a,b)=2E

x(Æ, �, a, b, y)yca ybd þ I c¼� I d¼Æ ¼ 0:

Proof. (i) Define the (r2 � 2ME) 3 1 vector

u(y) :¼ (yÆqi y pi�), i ¼ 1, . . . , r2 � 2ME

and 2ME 3 1 vector

v(y) :¼ (yÆbi yai�), i ¼ 1, . . . , 2ME:

Multiplying (23) on the right by u(y), we have

A(y)H(y)u(y) þ B(y)u(y) ¼ O2ME ,1:

Hence

A(y)(H(y)u(y) � v(y)) ¼ �(B(y)u(y) þ A(y)v(y))

¼ O2ME ,1,

since the ith component of the right-hand side in the first equation is equal to

X
( p,q)2E

yai p yqbi yÆq yp� þ
X

( p,q)=2E

yai p yqbi yÆq yp� ¼
Xr
p,q¼1

yai p yqbi yÆq yp�

¼ I�¼ai IÆ¼bi (24)

¼ 0:

(ii). Let us define the 2ME 3 1 vectors

X (Æ, �) :¼ H(y)u(y) � v(y),

J (Æ, �) :¼ (I�¼ai IÆ¼bi ), i ¼ 1, . . . , 2ME:

240 Y. Matsuda, Y. Yajima and H. Tong



Then from (24),

X (Æ, �) � A(y)�1J (Æ, �) ¼ O2ME ,1:

Multiplying the above expression on the left by the 1 3 2ME vector (ycai ybid),

i ¼ 1, . . . , 2ME, we obtain the result. h

9. Proofs of theorems

Throughout this section, assume that
Pm=2

k¼�m=2
wk ¼ 1 without loss of generality.

Proof of Theorem 1. For notational simplicity, put Wj ¼ W (º j), I j ¼ I(º j), f j ¼ f (º j),

g j ¼ g(º j), f̂f� j, j ¼ f̂f� j(º j), ĝg� j, j ¼ ĝg� j(º j). Then

CVLL(G) ¼
X[n=2]

j¼1

(log det f j þ r) þ
X[n=2]

j¼1

ftr( f j g
�1
j ) � log det( f j g

�1
j ) � rg

þ
X[n=2]

j¼1

log det ĝg� j, j g
�1
j

� �
þ tr ĝg�1

� j, j � g�1
j

� �
f j

n
(25)

þ tr I j � f j
� �

ĝg�1
� j, j � g�1

j

� �
þ tr I j � f j

� �
g�1
j

o
:

We will show that each of the last four terms is o p(n). Then Theorem 1 is proved since the

second term is nKL( f , g) þ o(n).

Put Dj ¼ ( ĝg� j, j � g jÞg�1
j . Since max jjDj,abj ¼ o p(n

�1=4) for a, b ¼ 1, . . . , r by

Proposition 1 of Matsuda and Yajima (2004),

X[n=2]

j¼1

log det ĝg� j, j g
�1
j

� �
¼
X
j

log det(Dj þ E)

¼ O
X
j

jtr(Dj)j
 !

¼ o p(n):

In the same way,
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X[n=2]

j¼1

tr ĝg�1
� j, j � g�1

j

� �
f j ¼

X
j

tr ĝg�1
� j, j g j � ĝg� j, j

� �
g�1
j f j

� �

¼ o p(n):

By Lemma 1,
P

j tr(I j � f j)g
�1
j ¼

P
jtr(I j � E(I j))g

�1
j þ O(log n), and

E
X[n=2]

j¼1

tr(I j � E(I j))g
�1
j

 !2

¼
Xr

a,b,c,d¼1

X[n=2]

j,k¼1

E I j,ab � E(I j,ab)
� �

I k,cd � E(I k,cd)ð Þgba
j gdc

k

¼
X
a,b,c,d

X
j

f j,ad f j,cb g
ba
j gdc

j þ O(log n)

¼ O(n):

Hence
P

j tr(I j � f j)g
�1
j ¼ Op(n1=2). Finally, by Proposition 1 of Matsuda and Yajima

(2004),

����X
[n=2]

j¼1

tr I j � f j
� �

ĝg�1
� j, j � g�1

j

� ����� < Xr
a,b¼1

max
j
j ĝgba

� j, j � gba
j j
X
j

jI j,ab � f j,abj

¼ o p(n
�1=4)Op(n)

¼ o p(n):

h

Proof of Theorem 2. Since f j ¼ g j for all j ¼ 1, . . . , [n=2], the second term of (25) is 0 and

we have

CVLL(G) ¼
X[n=2]

j¼1

flog det f j þ r þ tr(I j � f j) f
�1
j g

þ
X[n=2]

j¼1

log det ĝg� j, j f
�1
j

� �
þ tr ĝg�1

� j, j � f �1
j

� �
f j

n o
(26)

þ
X[n=2]

j¼1

tr I j � f j
� �

ĝg�1
� j, j � f �1

j

� �
:

First we shall show that the third term is o p(nm�1). For simplicity, we give a proof for r ¼ 1

and one-dimensional Ł, but the general case is proved in essentially the same way. By

applying Taylor’s expansion,
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ĝg�1
� j, j � f �1

j ¼ G�1(Ł̂Ł, f̂f� j, j) � G�1(Ł0, f j)

¼
X2

iþk¼1,i>0,k>0

@ iþkG�1(Ł0, f j)

@Łi@ yk
(Ł̂Ł� Ł0)i( f̂f� j, j � f j)

k

þ
X

iþk¼3,i>0,k>0

@ iþkG�1(Ł�, y�)

@Łi@ yk
(Ł̂Ł� Ł0)i( f̂f� j, j � f j)

k

¼
X2

iþk¼1,i>0,k>0

Mik, j(Ł̂Ł� Ł0)i( f̂f� j, j � f j)
k þ

X
iþk¼3,i>0,k>0

Nik, j(Ł̂Ł� Ł0)i( f̂f� j, j � f j)
k ,

say, where y� and Ł� are mean values of ( f j, f̂f� j, j) and (Ł0, Ł̂Ł), respectively. Note that Nik, j

is random, while Mik, j is a constant. It suffices to show that

X[n=2]

j¼1

I j � f j
� �

M10, j(Ł̂Ł� Ł0) ¼ o p(nm
�1),

X[n=2]

j¼1

I j � f j
� �

M01, j( f̂f� j, j � f j) ¼ o p(nm
�1),

X[n=2]

j¼1

I j � f j
� �

N03, j( f̂f� j, j � f j)
3 ¼ o p(nm

�1),

since these terms dominate the others. First,

����X
[n=2]

j¼1

(I j � f j)M10, j(Ł̂Ł� Ł0)

���� ¼ jŁ̂Ł� Ł0j
����X

j

(I j � f j)M10, j

����
¼ Op n1=2

� �
Op n1=2
� �

¼ Op(1):

Next, by Lemmas 1 and 2,

X[n=2]

j¼1

(I j � f j)M01, j( f̂f� j, j � f j) ¼
X[n=2]

j¼1

(I j � E(I j))M01, j( f̂f� j, j � E( f̂f� j, j)) þ Op(m2n�3=2),

and by Theorem 2.3.2 of Brillinger (1981),

Selecting models by the cross-validated log likelihood criterion 243



E
X[n=2]

j¼1

(I j � E(I j))M01, j( f̂f� j, j � E( f̂f� j, j))

( )2

¼
X[n=2]

j1, j2¼1

Xm=2

k1,k2¼�m=2,k1,k2 6¼0

M01, j1 M01, j2wk1
wk2

3 Ef(I j1 � E(I j1 ))(I j2 � E(I j2 ))(I j1þk1
� E(I j1þk1

))(I j2þk2
� E(I j2þk2

))g

¼
X
j1, j2

X
k1,k2 6¼0

M01, j1 M01, j2wk1
wk2

fcum(I j1 , I j2 )cum(I j1þk1
, I j2þk2

)

þ cum(I j1 , I j1þk1
)cum(I j2 , I j2þk2

) þ cum(I j1 , I j2þk2
)cum(I j2 , I j1þk1

)

þ cum(I j1 , I j2 , I j1þk1
, I j2þk2

)g

¼ O m�2nm
� �

þ O m�2n2m2(log n)4n�4
� �

þ O m�2nm
� �

þ O m�2nm
� �

¼ O nm�1
� �

,

where Lemma 1 is used in the last equality. It follows thatX
j

(I j � f j)M01, j( f̂f� j, j � f j) ¼ Op n1=2m�1=2
� �

þ Op m2n�3=2
� �

¼ o p(nm�1):

Finally, by Proposition 1 of Matsuda and Yajima (2004),

����X
[n=2]

j¼1

(I j � f j)N03, j( f̂f� j, j � f j)
3

���� < max
j
jN03, jj

X
j

(I j � f j)
2

( )1=2 X
j

( f̂f� j, j � f j)
6

( )1=2

¼ fOp(n)g1=2fo p nn�3=2
� �

g1=2 ¼ o p(n
1=4):

Put � j ¼ ( ĝg� j, j � f j) f
�1
j . Then the second term of (26) is

X[n=2]

j¼1

log det(� j þ EÞ � trf� j(� j þ E)�1g

¼
X
j

tr � j �
1

2
�2
j

� �
� tr � j(E � � j)

� �
þ O

X
j

max
a,b

j�3
j,abj

 !

¼ 1

2

X
j

tr �2
j

� �
þ o p n1=4

� �
:

By Taylor’s expansion,
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X[n=2]

j¼1

tr(�2
j)

¼
X[n=2]

j¼1

Xr
a,b¼1

� j,ab� j,ba

¼
X[n=2]

j¼1

Xr
a,b¼1

Xr
e1,e2¼1

ĝg� j, j,ae1
� f j,ae1

� �
ĝg� j, j,be2

� f j,be2

� �
f e1b
j f e2a

j

¼
X
j

X
a,b

X
e1,e2

@Gae1
(Ł0, f j)

@Ł
(Ł̂Ł� Ł0) þ

Xr
Æ,�¼1

@Gae1
(Ł0, f j)

@ yÆ�
( f̂f� j, j,Æ� � f j,Æ�)

 !

3
@Gbe2

(Ł0, f j)

@Ł
(Ł̂Ł� Ł0) þ

Xr
ª,�¼1

@Gbe2
(Ł0, f j)

@ yª�
( f̂f� j, j,ª� � f j,ª�)

 !
f
e1b
j f

e2a
j

þ O
X
j

max
a,b

j f̂f� j, j,ab � f jj3
 !

¼
X
j

X
a,b

X
e1,e2

X
Æ,�

X
ª,�

hae1,Æ�( f j)hbe2,ª�( f j) f̂f� j, j,Æ� � f j,Æ�

� �
f̂f� j, j,ª� � f j,ª�

� �
f e1b
j f e2a

j

þ o p(n
1=4)

¼
X
j

X
a,b

X
e1,e2

X
Æ,�

X
ª,�

hae1,Æ�( f j)hbe2,ª�( f j) f̂f� j, j,Æ� � E( f̂f� j, j,Æ�)
� �

3 f̂f� j, j,ª� � E( f̂f� j, j,ª�)
� �

f e1b
j f e2a

j þ o p m2n�3=2
� �

þ o p(n1=4),

where the fourth and fifth equalities follow from Proposition 1 of Matsuda and Yajima (2004)

and Lemmas 1, 2, respectively. Let us define

�Æ�ª�(º j) :¼
Xr
a,b¼1

Xr
e1,e2¼1

hae1,Æ�( f j)hbe2,ª�( f j) f
e1b
j f e2a

j ,

yÆ�, j :¼ f̂f� j, j,Æ� � E( f̂f� j, j,Æ�):

We shall prove that
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E
X[n=2]

j¼1

Xr
Æ,�,ª,�¼1

�Æ�ª�(º j)yÆ�, j yª�, j

 !
¼ n

m

Cu

2�

ð�
0

Xr
Æ,�,ª,�¼1

�Æ�ª�(º) fÆ�(º) fª�(º)dº

þ o(nm�1), (27)

var
X[n=2]

j¼1

Xr
Æ,�,ª,�¼1

�Æ�ª�(º j)yÆ�, j yª�, j

 !
¼ O nm�1

� �
(28)

and thus complete the proof of Theorem 2.

By Lemma 1,

E(yÆ�, j yª�, j) ¼
Xm=2

k, l¼�m=2,k, l 6¼0

wkwlfE(IÆ�, jþk Iª�, jþ l) � E(IÆ�, jþk)E(Iª�, jþ l)g

¼
Xm=2

k¼�m=2,k 6¼0

w2
k fÆ�, jþk fª�, jþk þ O (nm)�1log n

� �

¼
X
k

w 2
k

 !
fÆ�, j fª�, j þ O mn�2

� �
þ O((nm)�1log n):

The last equality is given by Taylor’s expansion. It follows from Exercise 1.7.14 of Brillinger

(1981) that the left-hand side of (27) is

X
Æ,�,ª,�

X
j

�Æ�ª�(º j)
Cu

m
fÆ�, j fª�, j þ O(mn�1)

¼ n

m

Cu

2�

ð�
0

X
Æ,�,ª,�

�Æ�ª�(º) fÆ�(º) fª�(º)dºþ o(nm�1):

We can put �Æ�ª�(º j) ¼ 1 without loss of generality. By Lemmas 3 and 4, the left-hand side

of (28) is evaluated as

var
X
j

yÆ�, j yª�, j

 !
¼ cov

X
j

yÆ�, j yª�, j,
X
k

yÆ�,k yª�,k

 !

¼
X
j,k

fcum(yÆ�, j, yª�, j, yÆ�,k , yª�,k)

þ cum(yÆ�, j, yÆ�,k)cum(yª�, j, yª�,k) þ cum(yÆ�, j, yª�,k)cum(yÆ�,k , yª�, j)g

¼ O(n2m�3) þ 2 O(nmm�2) þ O(n2(log n)2n�2)
� �

¼ O(nm�1),

which proves (28). h
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Proof of Theorem 3. We derive the AMISE of the graph (V , E) for a time series

fX t,a, a ¼ 1, . . . , rg applying (7).

Since hab,cd( f (º)) ¼ 0 for (a, b) =2 E, (c, d) =2 E (see (22)), and

Xr
e1¼1

hae1,Æ�( f (º)) f e1b(º) ¼ I a¼Æ,(Æ,�)2E f
�b(º) þ

Xr
e1¼1

I (a,e1)=2Ehae1,Æ�( f (º)) f e1b(º),

the integrand of AMISE(G) is

X
(Æ,�)2E

X
(ª,�)2E

f �ª(º) f �Æ(º) fÆ�(º) fª�(º)

þ
X

(Æ,�)2E

X
(ª,�)2E

X
(b,e2)=2E

hbe2,ª�( f (º)) f �b(º) f e2Æ(º) fÆ�(º) fª�(º)

þ
X

(ª,�)2E

X
(Æ,�)2E

X
(a,e1)=2E

hae1,Æ�( f (º)) f e1ª(º) f �a(º) fÆ�(º) fª�(º)

þ
X

(Æ,�)2E

X
(ª,�)2E

X
(a,e1)=2E

X
(b,e2)=2E

hae1,Æ�( f (º))hbe2,ª�( f (º)) f e1b(º) f e2a(º) fÆ�(º) fª�(º)

¼ �1(º) þ �2(º) þ �3(º) þ �4(º),

say. Then

�1(º) ¼ r2 � 4ME þ
X

(Æ,�)=2E,(ª,�)=2E

f �ª(º) f �Æ(º) fÆ�(º) fª�(º):

By Lemma 8(i),

�2(º) ¼
X

(Æ,�)2E

X
(b,e2)=2E

f �b(º) f e2Æ(º) fÆe2
(º) f b�(º)

¼ 2ME �
X

(Æ,�)=2E

X
(b,e2)=2E

f �b(º) f e2Æ(º) fÆe2
(º) f b�(º):

In the same way,

�3(º) ¼ 2ME �
X

(ª,�)=2E

X
(a,e1)=2E

f e1ª(º) f �a(º) f a�(º) fªe1
(º):

By Lemma 8(i) and (ii),
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�4(º) ¼
X

(a,e1)=2E,(b,e2)=2E

X
(ª,�)2E

hbe2,ª�( f (º)) f e1b(º) f e2a(º)
X

(Æ,�)2E

hae1,Æ�( f (º)) fÆ�(º) fª�(º)

¼
X

(a,e1)=2E,(b,e2)=2E

f e1b(º) f e2a(º)
X

(ª,�)2E

hbe2,ª�( f (º)) f a�(º) fªe1
(º)

¼
X

(a,e1)=2E,(b,e2)=2E

f e1b(º) f e2a(º) f ae2
(º) f be1

(º) þ x(a, e1, b, e2, f (º))ð Þ

¼
X

(a,e1)=2E,(b,e2)=2E

f e1b(º) f e2a(º) f ae2
(º) f be1

(º) �
X

(a,e1)=2E

1

¼
X

(a,e1)=2E,(b,e2)=2E

f e1b(º) f e2a(º) f ae2
(º) f be1

(º) � 2ME,

which completes the proof. h
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