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In extreme-value analysis, a central topic is the adaptive estimation of the extreme-value index .
Hitherto, most of the attention in this area has been devoted to the case v > 0, that is, when F is a
regularly varying function with index —1/y. In addition to the well-known Hill estimator, many other
estimators are currently available. Among the most important are the kernel-type estimators and the
weighted least-squares slope estimators based on the Pareto quantile plot or the Zipf plot, as reviewed
by Csorg6 and Viharos. Using an exponential regression model (ERM) for spacings between
successive extreme order statistics, both Beirlant et al. and Feuerverger and Hall introduced bias-
reduced estimators.

For the case where y is real, Hill’s estimator has been generalized to a moment-type estimator by
Dekkers et al. Alternatively, Beirlant er al. introduced a Hill-type estimator that is based on the
generalized quantile plot. Another popular estimation method follows from maximum likelihood
estimation applied to the generalizations of the Pareto distribution. In the present paper, slope
estimators for y > 0 are generalized to the case where y is real-valued. This is accomplished by
replacing the Zipf plot by a generalized quantile plot. We make an asymptotic comparison of our
estimator with the moment estimator and with the maximum likelihood estimator. A case study
illustrates our findings. Finally, we offer a regression model that generalizes the ERM in that it allows
the construction of bias-reduced estimators. Moreover, the model provides an adaptive selection rule
for the number of extremes needed in several of the existing estimators.
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1. Introduction

Let Xy, X»,..., X, be a sequence of independent and identically distributed random
variables with distribution function F and tail quantile function U(x) = inf{y; F(y) =
1 — 1/x}. We denote the order statistics by X, < ... < X, ,. In this paper, the statistical
model is given by the maximum domain of attraction condition that governs extreme-value
theory: suppose that there exist some y € R and sequences of constants (a,; a, > 0) and
(b,), such that

Xn n bn
lim P <7 S x) = G,(x) for all x, (1)
n—00 a,

with G, (x) = exp(—(1 + yx)~/7).
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The main aim of this paper is to discuss the problem of estimating the extreme-value
index y under this model. This tail index is known to be the crucial indicator for the decay
of the tail of the distribution: distributions with finite endpoint have y < 0, exponentially
decreasing tails occur when y = 0, while y > 0 leads to polynomially decreasing Pareto-
type tails. The extreme-value index y should not be confused with the extremal index from
stationary time series, which characterizes the change in the distribution of the sample
maxima due to dependence in the series.

Most research in extreme-value theory concentrates on the heavy-tailed distributions
where y > 0. An excellent overview of the relevant literature can be found in Csorgd and
Viharos (1998). When y is strictly positive, it follows from (1) that X is a Pareto-type

variable, that is,
M—w’l/y as x — oo, for all > 0.
F(x)

The latter condition is equivalent to the regular variation of the tail function U(x) =
O(1 — 1/x) with Q the quantile function of F:

U(x) = x" L(x), 2

where L is a slowly varying function, that is, L satisfies the condition L(#x)/L(x) — 1 as
x — oo for all £ > 0. For this regular variation model, Hill (1975) first proposed the estimator

L
Hpn= %; log Xy—jr1,0n —log Xy ks

of y. For theoretical asymptotic reasons, we consider intermediate sequences k = k, of
positive integers (1 < k < n) satisfying
k — o0, ——0 asn— oo.
n

If L is constant, that is, X has a Pareto distribution, a Pareto quantile plot or a Zipf plot

1
<10g(%>7 lOan—j+l,n>) ] = 17 s 1 (3)

is nearly linear, with its slope approximately equal to y. If L is not constant, the Pareto
quantile plot exhibits this feature only for smaller values of j. Hence, for y > 0, a wide
variety of estimators of y emerges from different regression fits to Pareto quantile plots.
Beirlant ef al. (1996a) pointed out that a constrained weighted least-squares fit to an upper
part of the Pareto quantile plot (3) leads to the class of kernel estimators

ek SO kT KK D108 X i1 — l0g X ]
b kTS K (K

with a kernel K integrating to 1. For example, Hill’s estimator is obtained for K = I .
Kratz and Resnick (1996) and Schultze and Steinebach (1996) introduced the Zipf estimator,
an unconstrained least-squares estimator based on (3):
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o7 _ S log(j ! (k+ log X, i1, — k'3 log(j ™ (k+ 1)1 log X ji1n
_ 1 ,
S log (! (K + 1) = k= () Tog( " (k + 1)

k,n
Due to the asymptotic nature of the definition of the Pareto-type model, any estimator of y
will contain quantities whose selection plays a crucial role in the successful application of the
estimator. Adaptive selection rules for the number of extremes & to be used in the estimation
procedures have been proposed in Beirlant er al. (1996a), Resnick and Starica (1997), Drees
and Kaufmann (1998), Drees et al. (2000) and Danielsson et al. (2001). The choice of & is
important: Hill plots {(k, Hy,) : 1 < k < n} often exhibit strong trends, so guidelines for
the choice of k are most helpful. Moreover, the lack of smoothness of these plots results in
different estimates for neighbouring values of k. The minimization of the mean squared error
of the estimator has been a paradigm in most publications: due to the asymptotic nature of
the nuisance part of the model, the bias diminishes with decreasing &, while the variance
decreases with increasing k.

However, next to the choice of &, another crucial problem is the appearance of substantial
bias. In the Hall (1982) model given by

L(x) = Mi(1 + MaxP{1 + o(1)}), 4)

this problem appears when 5 > 0 is small. In this model M; > 0 and M, € R. In Beirlant et
al. (1999) and Feuerverger and Hall (1999), the introduction of such a second-order slow-
variation condition leads to nonlinear regression fits on the upper part of a Pareto quantile
plot. With this approach, the bias can be reduced. Moreover, an adaptive estimation procedure
for the proper choice of k can be constructed. See Beirlant ef al. (2002).

The estimation of the more general case where y € R has been studied less extensively.
There are two main classes of solutions that result from different formulations of the model
and that are equivalent to (1).

The first is the peaks over threshold method (see, for instance, Smith 1987; 1989;
Davison and Smith 1990). This method is based on results given by Balkema and de Haan
(1974) and Pickands (1975) that state that the limit distribution of the exceedances over a
threshold u is a generalized Pareto distribution when u# — oco. The fit of the generalized
Pareto distribution over a high threshold can, therefore, be performed by a number of
alternative procedures: maximum likelihood (Smith 1987), probability-weighted moments
(Hosking et al. 1985), Bayesian analysis methods (see Coles and Powell 1996), or a
percentile method given by Castillo and Hadi (1997). Most of these estimating methods are
only valid if additional restrictions are placed on the value of y.

The second procedure is based on the use of & upper order statistics. The method is
motivated by the following asymptotic relation which is equivalent to (1): there exists a
positive function a such that, for all > 0,

U(tx) — U(x) [ logt =0,
"=y 2o

Assuming U(oo) > 0, condition (5) implies (see, for instance, Dekkers et al. 1989)

lim

x—00 a(x)

)



952 J. Beirlant, G. Dierckx and A. Guillou

AT /U

log U(tx) —log U(x) { log ¢ y =0,

yl -1  y<o. ©)

Based on (6), Dekkers et al. (1989) proposed the moment estimator that can be considered to
be an adaptation of the Hill estimator to the case where y € R:

-1
RV 1 Hi,
yiA::V%n:Hk,nH—z(l—Sk’; ,

where in turn

1 k
Sk,n = %;(IOan—j-H,n - lOan—k,n)z'

Also based on (6), Beirlant ef al. (1996b) proposed an estimator of y € R using the slope on
a generalized quantile plot. This method puts the Pareto quantile plot in a more general
setting. To construct such a plot, observe that, under (6), UH is regularly varying at infinity
with index y where H(x) = E[log X — log U(x)|X > U(x)], i.e.

UH(x) = U(x)H(x) = x" L(x), (7

with L again a function slowly varying at infinity. Introduce

J
UH;, =X, ;. (j_l Z log X, _i1., — log an’n>

i=1

as an empirical substitute for UH((n+ 1)/j). It can then be seen that for small j the
generalized quantile plot

1
(1og(%), log UHM>, i=1,...,n (8)

becomes ultimately linear.
For vy >0, one can construct regression-based estimators of y € R. Among them, the
generalized Hill estimator

w1
'}/Il;l,n — %Z log UH/JL — 10g UHkJrl,n»
=

is the simplest. Formal replacement of X ,_ ;.1 , by UH;, leads to kernel estimators 372{ , that
generalize the Pareto index estimators ﬂ'f as shown in Beirlant et al. (1996a). Different
generalizations of the kernel estimators ﬁ’f can be found in Groeneboom et al. (2003).

The estimators )?%n, y?lgn as well as the kernel estimators are all based on the logarithms
of the observed data, hence they are not shift-invariant. In an attempt to apply these
estimators to negative observations, one needs to shift the observations to positive values.
But this operation has its influence on the estimates. Furthermore, taking logarithms often
introduces further bias. As shown by Drees (1998), this new bias might even dominate the
bias of shift-invariant estimators. We will take this up in Section 2.
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In Section 2 we study the generalized unconstrained least-squares estimator for the case
where y € R:

Y log(j7(k + D)log UH;, — k™' Y00 log(j~'(k + 1)X)_ log UH, ,
k.n T 5 .
S log (G (k+ 1) = k! (S0 log( ! (k + 1))

Because

2
1< k41 (1 k41 k
%Zlogzi.—(%z:log+>~l ask—>ooand;—>0,

the above estimator can be approximated by

Z( ———Zl >1ogUH,,,

Remark 1. Following Csorgd and Viharos (1998), we can generalize 7?%,71 to a class of
weighted estimators

/ 1[f 1J(S)dS]log UH,;
j l[f 1J(S)ds]10g(k/j)

with a weight function J integrating to 0, such as Ja(s) = ((1 + 60)/6)(1 — (1 + 6)s?),
s € [0, 1] with 8 > 0. The estimator )?%m is then retrieved for 0|0, leading to the Zipf weight
function Jy(s) = —log(s) — 1. This potential extension will not be pursued further.

Remark 2. The new estimator j?%n can, of course, be used for the estimation of extreme tail
probabilities and extreme quantiles. Using the general technique presented, for instance, in
Dekkers et al. (1989), we obtain:

. ~ k kn —
O(1/p) = 00 = p) = Xy pn + aln /k)(/%, for some p € (0, 1/1],
k,n
and
- k — X\
F(x)zzmax{O, <1 +?%*”W> }, for some x = X, 4.,
where

&(n/k) = Xn—k,nHk,n max(l - ?lzc,n’ 1)

With the help of the asymptotic results obtained in Section 2, asymptotic results for the above
estimators can be developed by analogy with the results given, for instance, in de Haan and
Rootzén (1993), Ferreira et al. (2003) and Ferreira (2002).
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In the next section, we give a detailed theoretical asymptotic comparison of the
estimators, together with a practical example from insurance. The approach in Beirlant ez
al. (1999) and Feuerverger and Hall (1999) is then extended to the case of a real-valued y.
Starting from the generalized quantile plot, we investigate the induced regression problem in
more detail. In Section 3 we derive the regression model that leads to bias-reduced
estimators of y. Furthermore, estimates for the bias of the four estimators considered in
Section 2 are derived. The latter are obtained through estimation of the parameters of the
regression model. A major result of this is a diagnostic selection procedure for the number
of extremes k needed in the estimators. Proofs and technical results are deferred to
Appendix B.

2. Asymptotic results and comparisons

In this section, we derive the basic asymptotic results for the estimators )?En and 7%, that
are based on the generalized quantile plot (8). We discuss the asymptotic bias in detail and
compare the asymptotic mean squared errors of these estimators with those of the maximum
likelihood and moment estimators at their respective asymptotic optimal k-values.

To control the asymptotic bias resulting from the slowly varying parts of the models, one
needs a second-order condition on the tail quantile function U. From the theory of
generalized regular variation of second order outlined in de Haan and Stadtmiiller (1996),
one assumes the existence of a positive function a and a second ultimately positive
auxiliary function a, with a;(x) — 0 when x — oo, such that the limit

1 U(ux) — U(x)
{ a

i
oo ay(x)

hy(u)} = k(u) ©)

exists on (0, c0).
It follows that there exists a real constant ¢ and a value p < 0 for which the auxiliary
function « satisfies

a(ux)
atx)

with h,(u) = 1" zP~1dz. The function k that appears in (9) admits the representation

lim a;l(x){ zﬂ} = cu” hy(u), (10)

k(u) = ch " hy(H)dt + Ay p(u), (11)

where 4 € R. We denote the class of generalized second-order regularly varying functions U
(satisfying (9)—(11)) by GRV,(y, p; a(x), ax(x); ¢, A).

We restrict ourselves to the case where p < 0. In this case, a clever choice of the
auxiliary function a, results in a simplification of the limit function & when ¢ = 0.

In Appendix A, we give an overview of possible forms of GRV, functions and the
corresponding representations for U and log U as given in Vanroelen (2003). From this list
it follows that the second-order rate for log U in (9) is worse than for U when p <y <0
and in some cases when 0 <y < —p. In such cases, the asymptotic relative efficiency for
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estimators based on log-transformed data compared to shift-invariant estimators (such as the
maximum likelihood estimator) reduces to 0, the proviso that all estimators are based on the
optimal number of order statistics.

When 0 <y < —p, the above rate problem for log U is due to the appearance of the
constant D in the characterization of U for that case. Indeed, U is then given by

Ux) = €+x7’{l+ Dx77 + 4 ay(x)(1 + 0(1))}.
14 y+p
When D = 0, the original a,-rate is kept for log U. This is not so when D # 0, in which case
ap is replaced by a regularly varying function with index —y. Within the Hall class (4) of
Pareto-type distributions, the case D # 0 occurs when 8 = y. Examples are the Fisher F and
the generalized extreme-value distributions.
In the statement of our results, we use the following notation:

Aplp +y( —p)] : - :
———ax(x) if0<—p<yorif 0 <y<—pwith D=0,
o —p)
3
4 x 7 Ly(x) if y=—p,
I+
3
y°D —y . .
— X if 0 <y < —p with D=0,
I+
1
b(x) = —— if y=0
=1 o2 =0
Ap(l =) .
————a(x) if y <p,
I—y—p) "
4 b, .
_ fp<y<O
1= 2y U(oo) ™ np=r=5
V4 o .
—— |A(1 —y)— x7 if y=p,
=2y = U() y=p
and
—y if 0 <y < —p with D#0,
p if0<—-p=<yorif 0 <y <—pwith D=0,
pF=1<0 if y=0,
p if y <p,
y if p<y<0.

We assume here that & = k, is an intermediate sequence, that is, k, — oo and k,/n — 0, as
n — oo. Our main asymptotic result is as follows.

Theorem 1. Suppose that \/kb(n/k) — A € R. Then
VKL, =) = aN(un, of)
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and
Vk@%, =) = aN(uz, 03),
where
1 +9y? if v=0,
oh=14 (1 -yl 297
H (I =1 +y+2y9) if v <0,
(1-2y)
21 + 9> +y] if y =0,
2
0O, = _ 2 _ 3
z 20—l +2y+y 2v°] if y <0,
(I =2y)(1 -7y
2
Uy = —1 —
and
A
R

The asymptotic variance and bias of the estimators ]!, and p% , can be derived using the
following asymptotic representations for logUH,,, j=1,..., k, as k, n — oo, k/n — 0:

logUH; , =

1 ZO,k,n(j/k)

log U7, +log(lo(k/j)) + 4 —= 20k T
ylog Uiy, + log(y(k/j)) ﬂﬁ Tk

Here, Uy, =< ...
uniform (0,1) distribution. Further,

d W(Jk)
10g<1 jy(nk)7> + log(k/j) + {(1 _V)\/l%erp "

N 1ol
7'5(3) ({;) }(1 +0,(1))

1 PG/ -
log ¢, + {\/—%% - <10g ;) (1+0,(1))

if y >0,

if y =0,

(%) (f{) lﬁl}(l +o,()

if y <O0.

(12)

< U,., denote the order statistics from a random sample of size n from the
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PR (j/k) = (){ Zl ( ’“”)—1}, j=1 ...,k

which can be asymptotically represented by fO(W(s) /$)ds — W(t) with W denoting a Wiener
process. Moreover, {Zo.(1); t € (0, 1)} and {Z, s ,(7); t € (0, 1)} are stochastic processes
that are asymptotically represented by the Gaussian processes

J (s)d + (= DWW —ytw (1) = WO@) —ytw(1), y=0
0
and
"W(s) -
W (1) = Josl—fyds — W,y <0,

respectively, with covariances given by
cov(ITO(s), WO() = s[1+ 7> + y log(t/5)],

@) Wiy S _
cov(W(s), W) = d =1 =27 [2s (14 p)(d =2y)],
with 0 ss<r=<1.

The above expressions lead to the asymptotic mean squared errors of the different
estimators as given in Appendix C. If y > 0, the estimator j?l,jn and the moment estimator
771,\(’{" have the same asymptotic mean squared error (AMSE). In Appendix E, the minimal
AMSE values of the different estimators are given as a function of £ (under the assumption
that the slowly varying parts of a, and L, are equivalent to a constant). To facilitate the
comparison of these minimal AMSE values, Figure 1 provides plots with contour lines for
the ratios of AMSE()?%WU") to the minimum values of the other estimators together with an
indication of the (y, p) area, taken from (—2, 2) X (-2, 0), where the Zipf-type estimator is
best.

In Figure 1(a)—(c), we compare the Zipf and Hill-type estimators. For small values of y
and p, the Zipf approach is better. When 0 < y < —p (whence p = —y), the Zipf estimator
performs better when y < 0.22. When y < 0, the AMSE ratio is less than 1 over the whole
(v, p) area. In Figure 1(d) the Zipf and moment estimators are considered for y < 0. The
AMSE fraction is here always in favour of the Zipf estimator. Finally, in Figure 1(e)—(f) we
show the ratios with respect to the maximum likelihood estimator. When y > 0, the
comparison does not hold if D # 0 (Figure I(e)) since then the maximum likelihood
estimator always performs better.

An interesting feature of the Zipf estimator is the smoothness of the realizations as a
function of &, which alleviates to some extent the problem of choosing k. This is illustrated
in Figure 2 for an insurance example. In reinsurance, protection against extreme claims is
regularly sought through an excess-of-loss reinsurance contract, where the reinsurance
company pays the amount X — R if X > R, where R denotes a preset priority level. The
example combines 252 claims from a single line of business. All of the claims were for a
minimum of €1.1 million and were submitted between 1988 and 2000. They were gathered
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Figure 1. Contour lines of AMSE()?%OW")/AMSE(Q?I,'('OPM) for (a) y>0 and D=0, (b) y >0 and
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best (except in cases where the Zipf estimator is always best).
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Figure 2. (a) Zipf quantile plot; (b) generalized quantile plot for the insurance data set (n = 252).

from different companies. Figure 2 offers the Zipf and generalized quantile plot for these
data. Figure 3 compares four estimators of the index. Note that the generalized Zipf
estimator is extremely stable from k& = 50 up to the end.

The authors also performed a simulation study. The results are available from the authors.
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Figure 3. 7} (long dashes), 7}, (dotted line), 7, (solid line) and p}" (dashed-dotted line) as a
function of & for the insurance data set (n = 252).
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In most cases the finite-sample comparisons of the estimators are in line with the
asymptotic analyses: )7%’" performs best when |p| is small.

3. Regression based on the generalized quantile plot and
adaptive threshold selection

In this section, we first construct a regression representation for the tail of a generalized
quantile plot (8). Given a value of k, we discuss the regression problem through the points

I
<1og(%>, log UHj,n>,j_ 1.,k (13)

The main goal is twofold. Once we have such a representation, we can construct other
estimators of y whose bias is reduced compared to, for instance, 7Y ,. This is particularly the
case when the limit in (5) is attained at a slow rate. More importantly, we can estimate the
bias of a variety of estimators such as those considered in the preceding section. This in turn
allows us to construct diagnostics for threshold selection.

From (12) we derive for y # 0 that

. UH',n
Z; = (j+ l)log UHAJI
Jt+Ln

N P
= <y+b(n/k)<f{> ) Ve, 1=j<k-1, (14)

where ¢; are considered as zero-centred error terms.

This representation provides a direct generalization of the regression model for
Jlog(X—js1,n/Xn—jn) as studied in Feuerverger and Hall (1999) and Beirlant et al.
(1999; 2002). If we ignore the term b(n/k) in (14), we retrieve the Hill-type estimator y?lgn

By using a least-squares approach, the representation (14) can be further exploited to
propose an estimator for y in which p is replaced by an estimator ﬁ We follow the same
procedure as in Beirlant et al. (2002). For 4 € (0, 1), the estimator

Prin=—— log Mi2tin = Vliss
N log A Plkgn = P

offers a proper consistent estimator if & is chosen such that \/kb(n /k) — oo (however, with a
slow rate of convergence). For practical diagnostic purposes, it might be sufficient to replace
p by a canonical choice such as —1.

The least-squares estimators of y and b(n/k) are then given by

Visk = Zi — brsi(p)/(1 — ),

by LU =2p) IS (N7
bis.k(p) = T%Fl <<Z> - 5) o
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Here we have approximated %Z;l(%)“ﬁ by 1/(1 — p) and lkz_le((%)fﬁ — ﬁ)z by %.
We propose an adaptive estimation procedure for kop that is based on %he above
estimators. The values of ko for the different estimators are given in Appendix D. For
brevity, we only specify the results concerning ﬁ}n for y > 0. It is clear that a similar
procedure can be applied without any problem to the other estimators.

From Appendix C, one finds the optimal value of & that minimizes the AMSE of the
simple estimator 7} :

-1
. va-2p( (1
klj’opt ~n((1- PPl + Vz)) ? <s (;)) . (15)
Here s~ is the inverse function of the decreasing function s and satisfies b?(f) =
(14 o(1)) LOC s(u)du. Note that this expression requires a third-order condition on the tail of
the underlying distribution. In the special case where the slowly varying parts of a, and L,
are asymptotically constant, we obtain

<N 1/(1-2)
Lai—2py (L YDA = p)?
Wl ~ 1y 20 (1220
-2/(1-2p) 2 ~2n\ 1/(1-2p)
~ p( L ’ g~ 20/1-29) (I +yHd —p) (16)
ko —2p
for any secondary value ko € {1, ..., n}. Continuing along the same lines, we can replace

the quantities b(n/ky), p, and y in (16) by consistent estimators. For example, we can use the
least-squares estimators of v and b(n/kg) of the regression model (14). For each value of kg

we obtain an estimator of kli opt such as

(1 + 7R, BV - ﬁf) e

i‘l:,ko = [Bis,ko(ﬁ)]_]/(l_zﬁ)ko_zﬁ/(l_zﬁ)< —Zﬁ

Theorem 2. As ko,n — oo, ko/n — 0 and \/kob(nlko) — 00 qnd if, in the estimation

procedure, we substitute for p a consistent estimator p such that p — p = op(1/log ko), then
PH

mko _, ol

H
n,opt

In Fraga Alves et al. (2003), estimators ﬁ can be found that satisfy

Vkob (,fo) (b — ) = Op(1).

In this expression it is necessary that v/kob(n/ko) — oo and /kob*(n/ko) — c finite, which
induces a stronger higher-order condition than given in (9). Consequently, p—p =
op(1/log ko) follows if /kob(n/ko)/log kg — oo as ko — oc.

Theorem 2 relies on the following asymptotic expansion, which follows from (12):
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~ 2y n Nko,n n
bLS,kO(P) = b<k0> + \/k_o =+ 0p<b<ko>> (17)

Here Ny, denotes a sequence of random variables that, for kg, n — oo and ko/n — 0, is
asymptotically normal with mean 0 and finite variance depending on p and y. For such a
procedure in the case y > 0, see Theorem 4 in Beirlant et al. (2002).

Of course, the above approach suffers from the practical drawback that, in order to obtain
a consistent estimator, one needs to identify the k(-region for which \/k—ob(n/ ko) — 0.
However, when /kob(n/ko) — ¢ for some ceR, (17) suggests that &k, ko /i opt
asymptotically behaves as a realization from a normal distribution centred at 1.
Consequently, graphs of log l%ff k, as a function of ko are rather stable except for the ko-
regions where \/kob(n/ ko) — O.

Figure 4 illustrates this for the insurance example. We plot loghn k, against ko for ko
between 3 and n, with p replaced by —1. Notice how the graph in Figure 4 is stable for &
between 150 and n. Using the median value logkn meq Of the estimates, we obtain
knmed kn med = 121, kzmed =263 and kaed =91. Also note that, in the case of the
generalized Zipf estimator, the k-value is larger than the sample size n, which means that in
practice we take n. This should not be surprising in view of the stability of this estimator in
Figure 3.

Finally, we refer to Draisma et al. (1999) and Groeneboom et al. (2003) for other
adaptive selection procedures when estimating a real-valued extreme-value index.

N
-—

10

I I I I I I
0 50 100 150 200 250

Figure 4. log I}E k, as a function of ko for ko between 3 and n for the insurance data set.



Extreme-value index and generalized quantile plots 963

Appendix A: Overview of all possible kinds of GRV, functions
with p <0

From Vanroelen (2003) we obtain the following representations of U. See also the appendix
in Draisma et al. (1999).

e 0 < —p <y. For U € GRV,(y, p; £:x7, ay(x); 0, A),

Ux) = Ax”{% + ; i a(x)(1 + o(l))}.

p

e y=—p. For U e GRV,(y, —v; €.x7, x "l(x); 0, A) with ¢, some slowly varying
function,

Ulx) = f+xy{% + x_yLz(X)},
with
L) — * £ (1)
X)) =B+ | (4+ 0(1))T dr + o(l(1)) for some constant B.
1

e 0 <y < —p. For U e GRV,(y, p; £:x7, ar(x); 0, A),

1 A
Ux) = €+x7{— + Dx77 + a(x)(1 + 0(1))}.
Y y+p
e y=0. For U € GRV,(0, p; {1, ax(x); 0, A),
A
Ux)=/{,logx+ D+ ;az(x)(l + o(1)).

e y < 0. For U € GRV,(y, p; £.x7, ay(x); 0, A),

U(x) = U(oo) my{_iy— a1+ o(l))},

y+p
where ¢, >0, 4 #£0, DeR.
Concerning log U, the following results are available under these representations:

o If 0 < —p <y, then log U € GRV,(0, p; y, aa(x); 0, pA/(y + p)).

o If y = —p, then log U € GRV,(0, —y; y, x 77 Ly(x); 0, —y).

If 0<y<-—p, then logU € GRV,(0, —y; v, x77; 0, —yD) if D#0, and logU €
GRV1(0, p; y, ax(x); 0, pA/(y + p)) if D=0.

If y =0, then log U € GRV,(0, 0; a(x)/U(x), a(x)/U(x); —1, 0).

If v < p, then log U € GRV,(y, p; [U(c0)] 4, x7, ay(x); 0, A).

If p <y <0, then log U € GRVy(y, y; [U(c0)] 1yx?, £1x7; 0, —1/(yU(c0))).

If y = p, then log U € GRVx(y, y; [U(00)] '4x7, ax(x); 0, A — £ /(yU(c0))).
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Appendix B: Details of proofs

Here we show how to derive the asymptotic representation (12). Denote by U;, <

. < U, , the order statistics of a pure random sample of size n from the uniform (0,1)
distribution.

Throughout, we wuse the fact that, when k&, n— oo and k/n— 0, Uf =
G/nP(1 + 0,(1)) uniformly in j=1, ..., k, for any constant 3 > 0.

We first deal with the case y > 0. As the other cases are similar, we only give the proof
for the subcase y + p > 0. From Appendix A, we have

(1 B
UHjw=a 0,U7, "{y + ay(Ujirn (1 + op(l))}

y+p

" A
{yzl /+1 yﬁplp 2(Uj+1,,)(1+o,,(1))}

J . _
_ 0, Uj_H,ny{l.Z log Ujrin +A[P +y(1 — p)] 2(U1+1 n)}(l + 0,(1)).

J= Upn  (y+p)1—p)
Hence,
()¢ ;
log UHj » = 4 %fk/m + ylog(n/j) + logl.
(2)
2k Alp +y(1 — p)] < >
1 1
fhmy*w+mu—m (1+e5(L),
with
POGi/n) = yVi{log U}, , —log(n/p},  j=1,..., k
and

P(kZ)n(J/k) (){ Zl ( ”l")l}, j=1,..., k.

Following Mason and Turova (1994), P(k,)n(t) is approximated by fot (W(s)/s)ds — W(t), while
from Drees (1998) it follows that

W(i/k)
Ik

%WWm POk /n)) ~ — W),

For the case y > 0, we therefore arrive at (12) with

I\ _po (LN LT pn (1) _ pr(k
ZO,k,n(k> Pk*”(k>+k{P” (n> P (n .

We turn to the case y = 0. In an analogous way and using Appendix A, we obtain
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1a¥(U7L )1 J Ui\’
UH = 4 a(U log 2 el (10 L)
Js a a( j+1n) Z Uin 2U(U,+1n) - 2 Usn
é+{l

-1
n
— <10g ;) 1+ op(l))}.
(2) ) ( -1
jlk) n
logUH;, =logl,y + ——=—— <log —.) (14 op(1)).
J + \/— /k j
Finally, we deal with the case y < 0. Again, we only give the proof for the case where
ly| + p > 0, the others being similar. We have, with the help of Appendix A,

1 J U !
Z log =1
M ] o8 Ui,n

i=1

Therefore,

_ 1 A
UHj,n:d |:U(OO)€+Uj+1,n y{;'}/-’-p 2( J+l n)}:|

(Uj+1,n/Ui,n)y -1
Y

1 J
x ;Z{[U(oo)]% U,

i=1

(Uj+1,n/Ut}n)Hp —1
y+p

S b T RN Ay (A" (n
—7{7?“ -0 (3) e (5) oo

B 0, j 7l k 7] I sz,k,n(j/k) A1 —y) o] n
=750) G) pron() VE/E T-y- 2(2) (@)
where

1 N (1 NP
Zusatiri =i (2) (4) {;Zl(ugﬁl,n—ugg)_%(@ (4) }

which now leads to the asymptotic representation (12) for log UH; , if y <.

+ [U(o0)] 44

U]-&}-,l naZ(Uj+1 n)}

Appendix C: Asymptotic mean squared errors of the different
estimators

We derive the asymptotic mean squared errors of the different estimators.
For the estimator 7} .
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1+ y? 1 m :
S ) (i fy=
Z +<1—ﬁ (k>> it y=0,
1=y +y+29?) 1 m\’ -
p(2 fy<o0.
a2k \1-5 (k> N
For the estimator )7%’,,,
201 + 92 +v] 1o\ ~
b= fv=0
k a=p (k) ’ R

21—yl +2)/+V2 —2y3] 1 o\ 2 .
(1 =291 =)k - ((1 —p)% b(%)) ) if v <0.

The AMSE of the moment estimator )?I,fn can be found in Dekkers et al. (1989):

1+9y? 1 m
k +_(1——ﬁb<%)>’
if y >0,
()
if y =0,
=7PA =206~y + 1) ([ 1=2 Y}
=31 — )k +<1—2y—ﬁb(%))’ o
if y <p,
(=P =26~y +1) ( -2y b(ﬁ))2
(=31 = 4k p—p) k) |
if p ey <O,
(1= P(L=27)67> =y + 1) ( (1-2y)  4(1 =) =20,/ U(x) (g))z
(=31 = 4k (=T =37 A=) = /0o W)
if y =p.

Drees et al. (2004) stated the following expressions for the AMSE of for the maximum
likelihood estimator based on a generalized Pareto fit:

e _ (L) ply + DA n
AMSE(Vk,n) Tk ™ <(1 —p)1l—=p+7y) az(k

2 1
)) ify>-3.p<0.

Appendix D: The optimal values of & that minimize the
different expressions for the AMSEs

We assume that the slowly varying parts of a, and L, are asymptotically equivalent to a
constant. We give the optimal values of k& that minimize the different expressions for the
AMSE:s.

For the estimator 7} ,
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((1 +y)0 — ﬁ)z)
—2p

1/(1-27) )
[b(n)]~2/1=20), if y >0,

D] (1 + o(1)) if y =0,

Cl+y+2ﬁx1—
(—2p)(1 -

For the estimator p% ,,

2201 — o H0-20) ]
5;)( V)) [b(m)] 202D, if y <0,

For the estimator P!,

—2p

S[b(m] 7221 + o(1))

0 1/(1-2p)
(2(1 - p)(4_[12;r) v+ V]) [b(n)]2/(1-20), iy >0,
L o) if y=0,
-p)’ 2 i 1/(-20)

((1 + V2)(1 - ﬁ)z) 1/(172[))[1)(”)]72/(172;5)'

((1 — 7)1 =2y — )6y —y + 1)
(=2p)(1 = 2y)(1 = 3y)(1 — 4y)

( PP —pHeyr—y+1)
(=2p)(1 = 2y)(1 = 3y)(1 —

if y >0,
if y=0,
1/(1-2p) 4
) [b(n)] /=2,
if y <p,
1/(1-2p) . e
[b(n)] 2029,
43/)) " .

if p<vy <O,

(1 =3y —*6y* —y +
(=2p)(1 = 2y)(1 —4y)

For the estimator P,

((1 —p)(y —p+ 1)
p*(—2p)A?

Appendix E: Minimal

2\ 1/(1-29)
Al = y)> = 24,/ U(0) ’

if y=p.
1/(1-2p) |
) [ax(m] 020y >~ 2 p <0,

AMSE values

With the optimal values of k from Appendix D, we deduce the following minimal AMSE

values. For the estimator 7} .
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25y 2/(1-27) ) |
(g:%ﬁ%jg) (B2 (1 — 2p), ity >0,

b(n), if y =0,
( (=2p)°(1 — 2y

(1 =P = p)1 4y +2y2)

For the estimator )7%@[ "

2/(1-2p) i
) [ /12(1 —2),  if y <0.

—25)P 2/(1-2p) ) ~ .
<ﬁa—$%ﬂgﬂ+ﬂa [bOOP20(1 = 2p), if >0,

bz(n), if y =0,

(=2p)"(1 = 2y)
(2"(1 — PP[1+2y +y2 =237

2/(1-2p) .
) [b(m/1=20(1 = 2p),  if y <0.

For the estimator j?l}fmn,
~\ 5 2/(1-2p)
(=2py 25 ~
(i) oo,
if y >0,
(),
if y=0,
Y Y _ -25 _ 1-p o 0 _ D 2/(1-2p) ~
(=261 = ) 2#(1 = 29! (1 = 3y (1 — ) P91 — 25),
(1 =2y —p)(6y* =y + 1y

if y <p,

( (=2pY(1 = 3yy(1 —4yy

e /(1-2)
2/(1-2p ~
y(1 — y)+2(1 — 2y)p-1(6y2 — y + 1),;> [b(n)] (1 —2p),

- ifp<y <0,
(—2p)°(1 = 3y)P~1(1 — 4y) A1 =y — 20,/ U(c0) 2/(1-2) o )
((1 — )1 = 2p)p1(6y2 —y + 1P A1 — y) — £/ U(c0) > [b(m) P21 — 2p),

if y=p.

For the estimator )?1}& "

((1 + ) (Ap)(=2p)

2/(1-2p) .
ooy
(1—m0—p+y)> [a2(n)] (1-2p).
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