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The topic of this paper is Yanev’s class of controlled branching processes with a random control

function. We investigate the L2-convergence of the suitably normed process to a non-degenerate limit.

Necessary and sufficient conditions for this convergence are established under certain constraints on

the means and variances of the control variables.
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1. Introduction

Consider, on the same probability space, two independent sets of non-negative integer-

valued random variables, fX nj : n ¼ 0, 1, . . .; j ¼ 1, 2, . . .g and f�n(k) : n ¼ 0, 1, . . .;
k ¼ 0, 1, . . . ,g where the X nj are independent and identically distributed, and the

f�n(k)gk>0 are independent stochastic processes with identical one-dimensional probability

distributions.

The common probability law of the X nj is pk :¼ P(X 01 ¼ k), k ¼ 0, 1, . . . , called the

offspring distribution. The �n(k) are called control variables. The controlled branching

process with random control function fZ ngn>0 is then defined as

Z0 ¼ N , Z nþ1 ¼
X�n( Z n)

j¼1

X nj, n ¼ 0, 1, . . . ,

where N is a positive integer and we adopt the convention that the empty sum is zero.

Intuitively, X nj is the number of offspring of the jth individual in the nth generation and

Z n represents the population size in the nth generation. Each individual, independently of

all others, gives rise to new individuals with the same probability distribution but, unlike

the standard Galton–Watson process, the population size in the (n þ 1)th generation is

determined by an additional random process. This branching model could describe the

evolution of populations in which, for various reasons (environmental, social, etc.), a

random mechanism establishes the number of progenitors who participate in each

generation. In addition to its theoretical interest, this process therefore has a major

practical dimension because of potential applications in such diverse fields as epidemiology,

genetics, nuclear physics, demography, and actuarial mathematics.

This stochastic model, introduced by Yanev (1975), is a homogeneous Markov chain. Its
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extinction probability, asymptotic behaviour and inferential theory have been investigated by

Bruss (1980), Nakagawa (1994), Dion and Essebbar (1995), and González et al. (2002;

2003). In the latter two papers, the present authors studied the process under the condition

of asymptotically linear growth of the expectation of the control variables, providing some

results on the extinction probability and limiting behaviour to a finite non-degenerate

random variable. In particular, conditions for geometric growth of the population were

established using almost sure or L1-convergence. The present paper continues this research

by focusing on L2-convergence, as is usual in the methodology of branching processes.

Section 2 presents the basic notation, working assumptions and some preliminary results.

Sections 3 and 4 determine necessary and sufficient conditions, respectively, for the L2-

convergence of the suitably normed process to a non-degenerate limit. These conditions are

obtained using a method analogous to that introduced by Klebaner (1984) for branching

processes dependent on population size.

2. Preliminary

We assume that P(�0(0) ¼ 0) ¼ 1 and that at least one of the following conditions holds:

(a) p0 . 0;

(b) P(�0(k) ¼ 0) . 0, for k ¼ 1, 2, . . . :

Consequently, zero is an absorbing state and, as proved by Yanev (1975), the positive integers

are transient states. Hence, from Markov chain theory,

P lim
n!1

Z n ¼ 0
� �

þ P lim
n!1

Z n ¼ 1
� �

¼ 1: (2:1)

Let m :¼ E[X01] be the mean and � 2 :¼ var[X01] the variance of the offspring

distribution, and, for k ¼ 0, 1, . . . , let �(k) :¼ E[�0(k)] be the mean and �(k) :¼ var[�0(k)]

the variance of the control variables. All these parameters are assumed finite. We assume

that limk!1 �(k)k�1 ¼: � , 1. We consider the sequence f�(k)gk>0, where �(0) :¼ 0 and

�(k) :¼ �� �(k)k�1, k ¼ 1, 2, . . . : Finally, for N ¼ 1, 2, . . . , let qN :¼ P(Z n ! 0jZ0 ¼ N )

be the extinction probability when initially there are N individuals in the population. Our

purpose is to study the L2-convergence of the sequence fW ngn>0, where W n :¼ Z n(�m)�n,

with �m . 1. To this end, it is necessary to use some previously known results. In brief,

González et al. (2003) proved that if either (a) f�(k)gk>1 is non-increasing, or (b)

f�(k)gk>1 is non-decreasing and fE[W n]gn>0 is bounded, then fW ngn>0 converges almost

surely to a non-negative and finite random variable W . Moreover, if P(W . 0) . 0, then

P(w 2 [W . 0] :
X1
k¼0

j�(Z k(w))j , 1) ¼ 1:

In order to extend the class of controlled processes such that fW ngn>0 has an almost sure

limit, González et al. (2003) assume that
P1

k¼1j�(k)jk�1 , 1 and, when fj�(k)jgk>1 is non-

increasing, prove the existence of this almost sure limit. Furthermore, for all N > 1 such that

qN , 1,
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0 , lim
n!1

E[W njZ0 ¼ N ] , 1: (2:2)

In that paper, it is shown that, for processes such that f�(k)gk>1 is monotone,P1
k¼1j�(k)jk�1 , 1 is a necessary condition for the L1-convergence of fW ngn>0 to a

non-degenerate random variable. Notice that, in this context, the Lr-convergence of fW ngn>0

(r > 1) implies almost sure convergence, and both limits are, almost surely, the same.

We now give some preliminary results.

Proposition 1. For n ¼ 0, 1, . . . ,

E[W 2
nþ1] ¼ Z2

0 þ ��2
Xn

k¼0

E[W 2
k(�(Z k)Z�2

k þ �(Z k)2 � 2��(Z k))]

þ � 2
Xn

k¼0

E[�(Z k)](�m)�2(kþ1):

Proof. Let F n :¼ � (Z0, . . . , Z n), n ¼ 0, 1, . . . : It follows that

E[Z2
nþ1] ¼ E[E[Z2

nþ1jF n]] ¼ E[�(Z n)� 2 þ m2�(Z n) þ �(Z n)2 m2]

¼ E[�(Z n)� 2 þ m2�(Z n) þ Z2
n(�� �(Z n))2 m2]

¼ E Z2
n�

2 m2 þ Z2
n m2 �(Z n)

Z2
n

þ �(Z n)2 � 2��(Z n)

� �
þ � 2�(Z n)

� �
,

and therefore

E[W 2
nþ1] ¼ E[W 2

n] þ 1

�2
E W 2

n

�(Z n)

Z2
n

þ �(Z n)2 � 2��(Z n)

� �� �
þ � 2 E[�(Z n)]

(�m)2(nþ1)
: (2:3)

By iteration, the proof is concluded. h

Proposition 2. Assume that:

(i) fj�(k)jgk>1 is non-increasing;

(ii)
P1

k¼1j�(k)jk�1 , 1.

Then, for all N > 1 such that qN , 1,

X1
n¼0

E[�(Z n)](�m)�2(nþ1) , 1:

Proof. Since fk�1�(k)gk>1 is convergent, it is bounded. Hence, there exists M . 0 such that

k�1�(k) < M , k ¼ 1, 2, . . . , and we deduce that E[�(Z n)] < M E[Z n], n ¼ 0, 1 . . . : By

assumptions (i) and (ii), (2.2) holds, and consequently there exists M9 . 0 such that

E[W n] < M9, n ¼ 0, 1, . . . : Hence, using the fact that �m . 1, we obtain the inequality
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X1
n¼0

E[�(Z n)](�m)�2(nþ1) < MM9
X1
n¼0

(�m)�(nþ2) , 1:

h

3. Necessary conditions

We now find necessary conditions for the L2-convergence of fW ngn>0. For simplicity, let us

introduce the sequence f�(k)gk>1 where

�(k) :¼ �(k)k�2 þ �(k)2 � 2��(k):

Theorem 1. A necessary condition for the L2-convergence of fW ngn>0 is

inf
k>1

�(k) < 0:

Proof. Assume the existence of Æ . 0 such that �(n) > Æ, n ¼ 1, 2, . . . : By (2.3), it follows

that, for n ¼ 0, 1, . . . ,

E[W 2
nþ1] > E[W 2

n](1 þ Æ��2) þ � 2E[�(Z n)](�m)�2(nþ1)

> E[W 2
n](1 þ Æ��2) > Z2

0(1 þ Æ��2)nþ1,

and hence limn!1 E[W 2
n] ¼ 1, thus contradicting the convergence of fW ngn>0 in L2. h

The following result provides a necessary condition for the L2- convergence of fW ngn>0

to a non-degenerate limit.

Theorem 2. Assume that:

(i) f�(k)gk>1 is monotonic;

(ii) there exists a positive function ~��(x) on [0, 1) such that ~��(k) ¼ �(k), k ¼ 0, 1, . . . ,

and ~��(x)x�2 is non-increasing;

(iii) f�(k)gk>1 is such that its elements have the same sign.

Then, if fW ngn>0 converges in L2 to a non-degenerate limit,

X1
k¼1

�(k)k�3 , 1:

Proof. Assume that fW ngn>0 converges in L2 to W with P(W . 0) . 0. Taking the results

of Section 2 into account, it follows that

P ø 2 [W . 0] :
X1
k¼0

j�(Z k(ø))j , 1
 !

¼ 1 and
X1
k¼1

j�(k)jk�1 , 1: (3:1)
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Moreover, since fE[W 2
n]gn>0 is bounded, by Propositions 1 and 2,

X1
k¼0

E[W 2
k�(Z k)] converges:

Therefore, from (iii), it follows that
P1

k¼0E[W 2
k j�(Z k)j] , 1:

From (3.1), using (i) and (ii), and applying similar reasoning to that used by Klebaner

(1984), it can be shown that on [W . 0],

X1
k¼0

~��((�m)k ~WW )(�m)�2k ~WW �2 , 1, almost surely, (3:2)

where ~WW :¼ supn>0 W n , 1. Finally, since ~��(x)x�2 is a positive non-increasing function

and P(W . 0) . 0, using the integral test, (3.2) is equivalent to
P1

k¼1~��(n)k�3 ¼P1
k¼1�(k)k�3 , 1. h

Corollary 1. Assume that:

(i) f�(k)gk>1 is monotonic;

(ii) f�(k)k�2gk>1 is non-increasing,

(iii) f�(k)gk>1 is such that its elements have the same sign.

Then a necessary condition for the L2-convergence of fW ngn>0 to a non-degenerate limit is

X1
k¼1

�(k)k�3 , 1:

Proof. From Theorem 2, it suffices to verify the existence of a positive function ~��(x) on

[0, 1) such that ~��(n) ¼ �(n), n ¼ 0, 1, . . . , and ~��(x)x�2 is non-increasing. Straightforward

calculation shows that the function on [0, 1),

~��(x) :¼ x2(�(1)1[0<x,1] þ �(bxc)bxc�21[x>1])

with bxc denoting the integer part of x, satisfies these requirements. h

4. Sufficient conditions

In this section we investigate sufficient conditions for L2-convergence of fW ngn>0 to a non-

degenerate limit. Throughout, we shall consider the sequence fj�(k)jgk>1 to be non-

increasing and P(Z n ! 1) . 0.

Theorem 3. If there exist positive functions ~��(x) and ~��(x) defined on [0, 1), with ~��(x) non-

increasing, such that

(i) ~��(k) > j�(k)j, ~��(k) > �(k), k ¼ 1, 2, . . . ,

(ii) g(x) :¼ ~��(x)x�2 þ ~��(x)2 þ 2�~��(x), x 2 (0, 1), is non-increasing, and h(x) :¼ xg(x1=2)

and x~��2(x1=2) are concave on (0, 1),
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(iii)
P1

k¼1
~��(k)k�1 , 1,

P1
k¼1~��(k)k�3 , 1,

then fW ngn>0 converges in L2 to a finite non-degenerate variable.

Proof. The proof is divided into two parts. First let us prove that fE[W 2
n]gn>0 is a bounded

sequence, and then that fW ngn>0 converges in L2.

By (2.3) and (i), we deduce that

E[W 2
nþ1] < E[W 2

n] þ 1

�2
E W 2

n

~��(Z n)

Z2
n

þ 2�~��(Z n) þ ~��2(Z n)

� �� �
þ � 2 E[�(Z n)]

(�m)2(nþ1)

¼ E[W 2
n] þ E[W 2

n g(Z n)]��2 þ � 2E[�(Z n)](�m)�2(nþ1)

¼ E[W 2
n] þ E[h(Z2

n)](�m)�2n��2 þ � 2E[�(Z n)](�m)�2(nþ1):

Now, since h(x) is concave and g(x) non-increasing, we obtain, by Jensen’s inequality,

E[h(Z2
n)](�m)�2n < E[W 2

n]g(E[Z n]):

From (2.2), there exists � . 0 such that E[Z n] > �(�m)n, n ¼ 0, 1, . . . , and we have

g(E[Z n]) < g(�(�m)n). Consequently,

E[W 2
nþ1] < E[W 2

n] 1 þ g(�(�m)n)��2
� �

þ � 2E[�(Z n)](�m)�2(nþ1)

and, for n ¼ 1, 2, . . . , it follows that,

E[W 2
nþ1] < Z2

0

Yn

k¼0

1 þ g(�(�m)k)��2
� �

þ � 2
Xn

k¼0

E[�(Z k)](�m)�2(kþ1)
Yn

s¼kþ1

1 þ g(�(�m)s��2)
� �

:

Considering Proposition 1, to conclude that fE[W 2
n]gn>0 is a bounded sequence it only

remains to verify that

Y1
k¼0

(1 þ m2(�m)�2 g(�(�m)k)) , 1, (4:1)

or equivalently
P1

k¼0 g(�(�m)k) , 1. Since g(x) is non-increasing, (4.1) holds if

X1
k¼1

g(k)k�1 ¼
X1
k¼1

~��(k)k�3 þ ~��2(k)k�1 þ 2�~��(k)k�1
� �

, 1,

which is true by (iii) and the fact that ~��(x) is non-increasing.

We now prove that fW ngn>0 converges in L2. Let us consider the variables

Yn :¼ W n þ Tn, n ¼ 0, 1, . . . , where T0 :¼ 0 and Tn :¼ ��1
Pn�1

k¼0W k�(Z k), n ¼ 0, 1, . . . :
It can be proved that fYngn>0 is a martingale with respect to fF ngn>0, with

F n ¼ � (Z0, . . . , Z n).
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Since x~��2(x1=2) is concave, ~��(x) is non-increasing, and fE[W 2
n]gn>0 is bounded, and using

(2.2), we have, for some constant K,					
X1
k¼0

W k�(Z k)

					
2

< K
X1
k¼0

~��(�(�m)k),

where kXk2 :¼ E[jX j2]1=2. Since

X1
k¼0

~��(�(�m)k) , 1 is equivalent to
X1
k¼1

~��(k)k�1 , 1,

we deduce that fTngn>0 converges in L2.

Since fW ngn>0 is bounded in L2, it follows that supn>0kYnk2 , 1. Hence, from the L2-

bounded martingale convergence theorem, we deduce that fYngn>0 converges in L2 to a

finite variable, and therefore fW ngn>0 is also L2-convergent to a finite variable. Finally,

taking into account that L2-convergence implies L1-convergence, and that both limits are the

same almost surely, by (2.2) we obtain the non-degeneracy of such a limit. h

Corollary 2. Assume that:

(i) f�(k)k�2gk>1 is non-increasing;

(ii)
P1

k¼1j�(k)jk�1 , 1;

(iii)
P1

k¼1�(k)k�3 , 1.

Then fW ngn>0 converges in L2 to a finite non-degenerate random variable.

Proof. From Theorem 3, it is sufficient to show that there exist positive functions ~��(x) and

~��(x) on [0, 1) such that:

(a) ~��(k) > j�(k)j, ~��(k) > �(k), k ¼ 1, 2, . . .;
(b) ~��(x) and ~��(x)x�2 are non-increasing, and x~��(x1=2), x~��2(x1=2) and ~��(x1=2) are concave

on (0, 1);

(c)
P1

k¼1
~��(k)k�1 , 1,

P1
k¼1~��(k)k�3 , 1.

Let us consider the functions

~��(x) :¼ j�(1)j1[0<x,1] þ x�1 j�(1)j þ
ðx

1

j�(btc)jdt

� �
1[x>1]

and

~��(x) :¼ x2�(1)1[0<x,1] þ x �(1) þ
ðx

1

(btc)�2�(btc)dt

� �
1[x>1]

on [0, 1). It is clear that ~��(k) > j�(k)j, ~��(k) > �(k), k ¼ 1, 2, . . . : Moreover, ~��(x) and

~��(x)x�2 are non-increasing. It is simple to verify that on (1, 1),
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x~��(x1=2) ¼ x1=2 j�(1)j þ
ðx1=2

1

j�(btc)jdt

 !
,

~��(x1=2) ¼ x1=2 �(1) þ
ðx1=2

1

(btc)�2�(btc)dt

 !
:

Consequently, taking into account Lemma A.1 given in the Appendix, we deduce the

concavity of x~��(x1=2), x~��2(x1=2), and ~��(x1=2) on (1, 1). Since, for x 2 (0, 1), ~��(x1=2) ¼ j�(1)j
and ~��(x1=2) ¼ x�(1), (b) holds.

Finally, to prove (c), it is sufficient to verify that

ð1
1

~��(x)x�1 dx , 1 and

ð1
1

~��(x)x�3 dx , 1:

Since

ð1
1

~��(x)x�1 dx ¼ j�(1)j þ
ð1

1

x�2

ðx

1

j�(btc)j dt dx,

and using the fact that
P1

k¼1j�(k)jk�1 , 1, we obtain

ð1
1

x�2

ðx

1

j�(btc)jdt dx ¼
ð1

1

t�1j�(btc)jdt , 1:

Analogously,

ð1
1

~��(x)x�3 dx ¼ �(1) þ
ð1

1

t�1(btc)�2�(btc)dt,

and the last integral is finite since
P1

k¼1�(k)k�3 , 1: h

Remark 1. A condition which guarantees a positive probability for the non-extinction of

fZ ngn>0 is �(k) ¼ O(k) as k ! 1 (see Theorem 2 of González et al. 2002). Under this

hypothesis, condition (iii) in Corollary 2 is a trivial consequence and can be dropped.

Remark 2. A result concerning the LÆ-convergence, 1 , Æ < 2, of a controlled branching

process with random control was provided by Nakagawa (1994). For Æ ¼ 2, this result is

improved by Corollary 2. Briefly, whereas Nakagawa’s result requires the convergence ofP1
k¼1�(k)k�2, we consider the convergence of

P1
k¼1�(k)k�3. Also notice that Corollary 2

remains true if �(n) ¼ O(an) and �(n) ¼ O(bn), with fangn>0 and fbngn>0 being sequences

of real numbers satisfying the conditions of growth and summability assumed for f�(n)gn>0

and f�(n)gn>0, respectively. An example is �(n) ¼ O(log�Æ n) and �(n) ¼ O(n2 log�� n),

Æ, � . 1.
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Appendix: Lemma

Lemma A.1. Let fangn>1 be a non-increasing sequence of positive real numbers. Then the

functions on (1, 1) given by

g(x) :¼ x1=2 a1 þ
ðx1=2

1

ab tcdt

 !
and h(x) :¼ a1 þ

ðx1=2

1

ab tc dt

 !2

are concave on (1, 1):

Proof. Let us prove that g(x) is concave. Note that

g(x) ¼ xa11[1,x,4] þ
X1
n¼2

x1=2 a1 þ
Xn�1

k¼1

ak þ an(x1=2 � n)

 !
1[n2<x,(nþ1)2]:

It is clear that g(x) is concave on (1, 4). For x 2 (n2, (n þ 1)2), n ¼ 2, 3, . . . , taking into

account that an < ak , k ¼ 1, . . . , n � 1, we deduce that

g 0(x) ¼ (4x3=2)�1 nan � a1 þ
Xn�1

k¼1

ak

 ! !
< 0:

In order to conclude that g(x) is concave let us show that g9(n2�) > g9(n2þ) for

n ¼ 2, 3, . . . , where g9(n2�) and g9(n2þ) denote the left-hand and right-hand derivatives of

g(x) at x ¼ n2, respectively. In effect,

g9(n2�) ¼ (2n)�1 a1 þ
Xn�1

k¼1

ak

 !
þ 2�1an�1

> (2n)�1 a1 þ
Xn�1

k¼1

ak

 !
þ 2�1an ¼ g9(n2þ):

The proof that h(x) is concave is similar. h
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