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In some inferential problems involving Markov process data, the inhomogeneity of the process is of

central interest. One example is of a binary time series of data on the presence or absence of a

species at a particular site over time. Here the two states correspond to ‘presence’ or ‘absence,’

respectively, of the species, and the main topic of interest is temporal variation in the process. In

principle this variation can be modelled parametrically, but in the absence of information about the

physical mechanism causing species numbers to fluctuate, it is usually very difficult to suggest a

plausible model that explains the data, at least until a more adaptive analysis is conducted. These

issues argue in favour of nonparametric methods for estimating probabilities of transition, and for

estimating probabilities of the process being in a given state at a given time. Such techniques, which

in practice might be a prelude to parametric modelling, will be introduced and explored, under

assumptions motivated by characteristics of the data set mentioned above. These assumptions will be

shown to lead to consistent estimation of probabilities, and so to imply that nonparametric

methodology gives accurate information about properties of the process.
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1. Introduction

Some binary time series, where only the ‘presence’ or ‘absence’ of a feature is recorded,

can be represented as two-state Markov processes. However, in some problems of practical

interest the process is not temporally homogeneous, and important properties of the process,

such as the probability that the feature is present (or absent) at a given point in time, vary

with that point.

Consider, for example, the binary time series that represents the presence or absence of a

species at a given epoch, and at a given site. Data are usually obtained by carbon-dating

fossil records. Let state i ¼ 0 denote absence, and i ¼ 1 correspond to presence. The ‘state

probability’, pi(t), that the process is in state i at time t, is of direct scientific interest.

At a higher level, if the transition probability matrix ( pij(t2jt1)), governing transitions
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from state i at time t1 to state j at time t2, were known, then the Markov process could be

‘run,’ starting from either of the two states, to give Monte Carlo approximations to the

probability that the process was in a given state at a given time. This would be beneficial in

making inference from fossil records. However, in many instances the absence of

information about the process that led to temporal variations in species abundance makes it

difficult to develop parametric models, without first constructing an adaptive, nonparametric

estimate of transition probabilities. With these motivations, we shall suggest nonparametric

methods for inference about time-inhomogeneous Markov processes from discrete data.

The Markov process cannot be simulated directly from estimated transition probabilities,

since they do not satisfy the Chapman–Kolmogorov equations (see, for example, Cox and

Miller 1965, p. 179). To overcome this problem, having used discrete data to estimate

transition probabilities in the continuum, one might discretize the process, using a grid that

is not so fine that the new process is too strongly influenced by errors in estimating

transition probabilities, or so coarse that detailed information about the time-inhomogeneity

of the original process is lost unnecessarily.

In Section 2 we shall suggest methods for estimating state probabilities and transition

probabilities for inhomogeneous, finite-state Markov processes that vary continuously but

are observed only discretely. The context in which we are developing these techniques will

be illustrated, in Section 3, by a practical example.

The main features of that example are that the number of transitions over the entire

period, and the number of observations made between transitions, tend to be moderately

large; and the probability distribution for transitions varies smoothly with time. These

properties will be used to motivate, in Section 4.1, specific models that might generate data

such as those discussed in Section 3, leading, in Section 4.2, to particular regularity

conditions under which theory for estimators, given in Section 2, can be developed.

Theoretical results, stated in Section 4.2, show that our nonparametric methods give

uniformly accurate estimators of state probabilities and transition probabilities.

Our work has connections to nonparametric methods for time series and other dependent

processes, where there is an especially large literature. It includes contributions by Robinson

(1983; 1997), Roussas (1990), Hart (1991), Roussas et al. (1992), Truong and Stone (1992),

Tran (1993), Yakowitz (1993), Greenwood and Wefelmeyer (1994), Wu and Chu (1994),

Masry (1996; 2001), Robinson and Hidalgo (1997), Utikal (1997), Tran et al. (1996),

Karlsen and Tjøstheim (2001) and Masry and Mielniczuk (2001).

2. Nonparametric methods for inference

2.1. Model, and methods for first-order inference

We record data X (Ti), for 1 < i < n, being the result of observing a continuous-time,

discrete-valued stochastic process X (t), taking only values in the sequence 0, 1, . . . , q� 1,

at the discrete, perhaps unequally spaced times T1 , . . . , Tn in a given compact interval

I . The time points Ti are assumed to be stochastically independent of X . The process X (t)
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is piecewise constant, and may be supposed to be left- or right-continuous in order that its

sample paths might be uniquely defined.

In some instances, although not in the case of our data, the process X may be observed

in the continuum. Here n ¼ 1 and, in the definitions of estimators in Section 2, series

should be replaced by integrals. Once this has been done, all the estimators suggested in

this section remain valid. Theoretical properties in the case of continuous data will be

briefly discussed in Section 4.2.

We shall suppose X (t) is Markovian. That is, if i and j each take a value in

0, 1, . . . , q� 1, and if t1 , t2 and t1 . s1 . s2 . . . . , then

pij(t2jt1) � PfX (t2) ¼ jjX (t1) ¼ ig

¼ PfX (t2) ¼ jjX (t1) ¼ i ; X (sk) ¼ i(sk) for k > 1g,

where 0 < i(s1), i(s2), . . . < q� 1.

Define pi(t) ¼ PfX (t) ¼ ig. Local linear estimators of pi(t), for 0 < i < q� 1, which

take account of the fact that
P

i pi(t) ¼ 1, are obtained by minimizing

S1(a0, b0, . . . , aq�2, bq�2) ¼
Xq�2

i¼0

Xn
k¼1

I ki � fai þ bi(t � Tk)g½ 	2 Kk(t)

þ
Xn
k¼1

I k,q�1 � 1 �
Xq�2

i¼0

fai þ bi(t � Tk)g
" # !2

Kk(t), (2:1)

where Kk(t) ¼ Kf(t � Tk)=hg, I ki ¼ IfX (Tk) ¼ ig, K denotes a kernel function and h is a

bandwidth. See Fan and Gijbels (1996, pp. 19ff.) for discussion of local linear regression. If

v̂v ¼ (âa0, b̂b0, . . . , âaq�2, b̂bq�2) gives the minimum of S1 then p̂pi(t) ¼ âai, for 0 < i < q� 2,

and p̂pq�1 ¼ 1 � (âa0 þ . . . þ âaq�2) are our estimators of pi(t). The 2(q� 1)-vector v̂v is the

solution of the 2(q� 1) equations

Xq�2

j¼0

(1 þ �ij)A0(t)a j þ (1 þ �ij)A1(t)hb j

� �
¼ Bi0(t) þ Cq�1,0(t),

Xq�2

j¼0

(1 þ �ij)A1(t)a j þ (1 þ �ij)A2(t)hb j

� �
¼ Bi1(t) þ Cq�1,1(t),

(2:2)

where 0 < i < q� 2, �ij denotes the Kronecker delta,

Aj(t) ¼
1

nh

Xn
k¼1

Kk(t)f(t � Tk)=hg j, Bij(t) ¼
1

nh

Xn
k¼1

Kk(t)f(t � Tk)=hg j I ki

and Cij(t) ¼ Aj(t) � Bij(t). The parameters b j may be eliminated from equations (2.2), giving

just q� 1 equations in the q� 1 unknowns a j:

Nonparametric inference for inhomogeneous Markov processes 921



Xq�2

j¼0

(1 þ �ij)a j ¼
A2(t)fBi0(t) þ Cq�1,0(t)g � A1(t)fBi1(t) þ Cq�1,1(t)g

A2(t)A0(t) � A1(t)2
: (2:3)

In the case q ¼ 2, equations (2.3) reduce to their counterparts in the problem of

estimating a regression with Bernoulli response variables, that is, where IfX (Tk)

¼ ig ¼ pi(Tk) þ error. In particular,

p̂pi(t) ¼
A2(t)Bi0(t) � A1(t)Bi1(t)

A2(t)A0(t) � A1(t)2
: (2:4)

A ridge parameter, or another approach to rendering the estimator robust against instances

where the denominator at (2.4) is small, may be incorporated.

In the special case q ¼ 2, if p̂pi is given by (2.4) then p̂p0 þ p̂p1 ¼ 1. More generally,

however, if we define p̂pi by (2.4) then it is not necessarily true that
P

i p̂pi ¼ 1. When

q ¼ 2, positivity and summation to unity are ensured by using instead the estimator

~ppi ¼ minfmax( p̂pi, 0), 1g.

Local log-linear, or local logit, methods can be employed instead of local linear ones. In

these cases, each term ai þ bi(t � Tk) in (2.1) is replaced by expfai þ bi(t � Tk)g or

[1 þ expfai þ bi(t � Tk)g]�1, respectively. This guarantees that p̂p0, . . . , p̂pq�2 are positive

and (in the local logit case) that
P

i<q�2 p̂pi < 1. On the other hand, advantages of the log-

linear approach, versus local logit, include the fact that it uses standard, widely available

software, has numerical properties that are well understood, is widely accepted as a

smoothing technique, and has theory that is a little more transparent.

2.2. Second-order inference

Assume we have estimators p̂pi(t) of the state probabilities pi(t). We shall construct

estimators p̂pij(t1, t2) of the dual-state probabilities,

pij(t1, t2) ¼ PfX (t1) ¼ i, X (t2) ¼ jg,

and take

p̂pij(t2jt1) ¼ p̂pij(t1, t2)= p̂pi(t1) (2:5)

to be our estimator of pij(t2jt1), incorporating a ridge parameter into the denominator if

desired.

Analogously to (2.1), we obtain p̂pij(t1, t2) by minimizing
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S2(a0, b01, b02, . . . , aq�2, b1,q�2, b2,q�2)

¼
Xq�2

j¼0

Xn
k¼1

Xn
‘¼1

I ki I‘ j � fa j þ b j1(t1 � Tk) þ b j2(t2 � T‘)g
� �2

Kk(t1)K‘(t2)

þ
Xn
k¼1

Xn
‘¼1

I ki I‘,q�1 � p̂pi(t1) �
Xq�2

j¼0

fa j þ b j1(t1 � Tk) þ b j2(t2 � T‘)g

2
4

3
5

0
@

1
A2

3 Kk(t1)K‘(t2): (2:6)

If the minimum of S2 occurs at âa0, b̂b01, b̂b02, . . . , âaq�2, b̂bq�2,1, b̂bq�2,2 then our estimator of

pij(t1, t2) is p̂pij(t1, t2) ¼ âa j for 0 < j < q� 2, and p̂pi,q�1 ¼ 1 � (âa0 þ . . . þ âaq�2) for

j ¼ q� 1. Our method acknowledges the fact that
P

j pij ¼ pi, and as a result our estimators

satisfy
P

j p̂pij(t1, t2) ¼ p̂pi(t1) for all t1, t2.

In the two-state case, equations (2.6) involve just three variables, (a, b1, b2) ¼ vT say,

and have solution A v̂v ¼ Æ, where v̂v ¼ (âa, b̂b1, b̂b2)T, A ¼ (ars) is a 3 3 3 matrix, Æ ¼ (Ær) is

a column vector of length 3,

ars ¼ 2
1

(nh)2

Xn
k¼1

Xn
‘¼1

ur(k, ‘)us(k, ‘)Kk(t1)K‘(t2),

Ær ¼
1

(nh)2

Xn
k¼1

Xn
‘¼1

I ki(2 I‘0 � 1) þ p̂pi(t1)f g ur(k, ‘)Kk(t1)K‘(t2),

u1(k, ‘) ¼ 1, u2(k, ‘) ¼ t1 � Tk and u3(k, ‘) ¼ t2 � T‘. To ensure positivity we take

p̂pi0(t1, t2) ¼ minfmax(âa, 0), p̂pi(t1)g and p̂pi1(t1, t2) ¼ p̂pi(t1) � p̂pi0(t1, t2). Then we define

p̂pij(t2jt1) by (2.5).

These transition probability matrix estimators will not satisfy the Chapman–Kolmogorov

equations. That is, it will not be true that

p̂pij(t2jt1) ¼
Xq�2

k¼0

p̂pik(t3jt1) p̂pkj(t2jt3) for t1 , t3 , t2:

Therefore, the estimated transition probabilities cannot be used to generate a Markov chain in

the continuum, for example by direct simulation.

Nevertheless, if we restrict attention to a grid of time points, say k� for integers k, which

is not ‘too fine’; if, for adjacent points on that grid, we interpret p̂pij((k þ 1)�jk�) as a q3 q

matrix indexed by k; and if we simulate the Markov process as an inhomogeneous Markov

chain, on the grid, by multiplying the matrices together to compute probabilities of

transitions across multiple grid points, then simulation is straightforward.

The reason why the grid should not be too fine is that the relative accuracy in estimation

of pij(t1, t2), for i 6¼ j, deteriorates as t2 � t1 becomes small. (Remarks following Theorem

4.2 will discuss this point.) Thus, grid width has some of the properties of a smoothing

parameter. In the context of an infill asymptotic approach to theory, the grid can become
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finer as the quantity of data increases, but should not decrease to zero for a finite quantity

of data. Theoretical aspects of choice of � will be discussed at the end of Section 4.2.

2.3. Bootstrap assessment of variability

An important feature of the problem is that it does not readily admit a ‘structural model’,

such as those commonly imposed in more familiar nonparametric regression problems of

density estimation and regression. In particular, no unchanging, smooth function is being

estimated. This makes it awkward to describe, in theoretical terms, the variability of our

estimators.

To overcome this difficulty we suggest an empirical approach to assessing variability, as

follows. Divide the data set into blocks of consecutive observations, the blocks being

chosen so that the Markov chain has approximately homogeneous behaviour within each

block. Block lengths may be unequal. Assume the data follow a time-independent Markov

chain within each block. Estimate the transition probability matrix for each block, and

generate new data sets (i.e. new observations in the set f0, 1, . . . , q� 1g, at the same time

points as before) by running the blockwise stationary chain. Realizations may start in the

same state as the original data set, or at a randomly chosen state. For each realization

obtained in this way, compute the estimators and then calculate their bootstrap variance

estimates. The method can be viewed as a version of the block bootstrap, tailored to the

case of inhomogeneous Markov processes.

This approach can also be used to assess the robustness of our method to aberrations in

the data, by introducing systematic or stochastic errors to the bootstrap sequences of 0s and

1s generated as suggested above, and observing how this affects bootstrap estimates of

variability.

3. Numerical example

A fossil record of a particular species consists of a sequence of observance or non-

observance of ‘fossil horizons’, represented mathematically by a sequence of 1s and 0s,

respectively. The stratigraphic positions (e.g. depths in sediment) at which the observations

are made, are converted to time points (in the case of our data), or to time intervals, by

radiometric analysis.

A typical assumption in previous analyses of such data is that the observation times are

uniformly distributed over the time interval between the first and last occurrences of a find.

This assumption could arguably be sustained if the ‘sedimentation potential’, or potential

for the species to leave a fossil record, were constant over time. However, that supposition

is difficult to justify, and in fact little information is usually available about how

sedimentation potential might fluctuate with time. This, we suggest, is just one reason why

nonparametric methods are attractive for analysing data such as these.

The data presented here represent a fossil record of the M. lacrymosum Neogene
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bryozoan species of the genus Metrarabdotos, a sea-dwelling invertebrate, collected in the

Dominican Republic and discussed by Cheetham (1986, 1987) and Jackson and Cheetham

(1990). Cheetham’s interpretation of these and related data played a supportive role in

Stephen Jay Gould’s advancement of the theory of ‘punctuated equilibrium’. Cheetham,

Gould (1991) argued, ‘presented the most elegant and persuasive of all cases of punctuated

equilibrium in his studies of the cheilostome bryozoan Metrarabdotos’. Gould’s theory

argues that, rather than being a relatively slow, continuous process, evolution consists of

long, inactive periods punctuated by sudden ‘shocks’ or transitions.

This is an example where sedimentation potential is possibly far from uniform. Due to

the stratigraphy of the Dominican Republic, there is a virtual absence of fossil-bearing rock

aged between 8 and 14 million years. On the other hand, the fossil record is relatively

complete between 4 and 8 million years ago, and almost absent from 3.5 million years ago

to the present day.

The data are presented in Table 1. The 83 time points are in millions of years, slightly

perturbed where radiometric analysis alone failed to separate epochs. (Radiocarbon dating

indicated the rank order of the Ti in all cases.) Ones and zeros indicate presence and

absence, respectively, of the species.

Table 1. Fossil record of M. Lacrymosum. The quantity Ti was determined by radiometric analysis;

values of Ti were slightly perturbed where radiocarbon dating failed to separate epochs. Values 0 or 1

of X (Ti) represent absence or presence, respectively, of the species at time Ti

Ti �8.00 �7.99 �7.91 �7.9 �7.89 �7.86 �7.85 �7.84 �7.81 �7.79 �7.76

X (Ti) 0 0 1 0 0 1 1 0 1 0 0

Ti �7.75 �7.74 �7.71 �7.7 �7.69 �7.65 �7.62 �7.61 �7.59 �7.58 �7.55

X (Ti) 0 0 0 0 0 0 0 0 0 0 0

Ti �7.51 �7.49 �7.45 �7.41 �7.39 �7.35 �7.30 �7.25 �7.20 �7.16 �7.14

X (Ti) 1 0 1 1 0 0 1 0 1 1 1

Ti �7.05 �7.00 �6.91 �6.89 �6.80 �6.65 �6.56 �6.54 �6.52 �6.51 �6.49

X (Ti) 0 1 1 1 1 0 1 1 1 1 1

Ti �6.48 �6.46 �6.45 �6.44 �6.40 �6.35 �6.26 �6.24 �6.20 �5.96 �5.94

X (Ti) 1 1 1 1 1 1 1 0 0 1 0

Ti �5.90 �5.75 �5.71 �5.69 �5.66 �5.64 �5.60 �5.56 �5.55 �5.54 �5.45

X (Ti) 1 0 0 0 1 0 1 1 0 0 0

Ti �5.41 �5.39 �5.35 �5.30 �5.25 �5.15 �5.10 �5.00 �4.81 �4.79 �4.55

X (Ti) 1 0 1 1 1 0 0 1 1 0 1

Ti �3.85 �3.40 �3.35 �3.30 �2.50 �1.85

X (Ti) 1 1 0 0 1 0
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The unbroken line in Figure 1(a) is a graph of the fitted function p̂p1, computed using

h ¼ 0:8. The character of the curve changes little as h varies, and in fact the estimator is

surprisingly robust against choice of h. For a wide range of bandwidths, p̂p1(t) rises

1.0

0.8

0.6

0.4

0.2

0.0

�8 �7 �6 �5 �4 �3 �2

95%
90%
80%

95%
90%
80%

(a)

(b)

1.0

0.8

0.6

0.4

0.2

0.0

�8 �7 �6 �5 �4 �3 �2

Figure 1. Graph of p̂p1(t), with bands. Time t, representing millions of years in the past, is shown on

the horizontal axis, and p̂p1(t) is on the vertical axis. In each panel, the graph of p̂p1(t) is shown as an

unbroken line. The dotted, dot-dashed and dashed lines in (a) give 80%, 90% and 95% pointwise

confidence bands, respectively. The curves in (b) have the same interpretation, except that the bands

were constructed after incorporating perturbation errors of 10%, independently and at random, for

each state simulated at the 83 time points.
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reasonably quickly from the inception of the data, approximately 8 million years ago, to a

peak at approximately 5 million years ago, and then declines to a value of about 0:5, where

it levels out.

Figure 2 shows graphs of estimates p̂pij of the conditional probabilities pij, defined by

pij(t2jt1) ¼ PfX (t2) ¼ jjX (t1) ¼ ig,

for (i, j) ¼ (0, 0), (0, 1), (1, 0) and (1, 1), in the case where t2 . t1 ¼ �7:90. In the

calculation of p̂pij(t1, t2) the bandwidth for computing p̂pi was kept at h ¼ h1 ¼ 0:8, but the

bandwidth for constructing the dual-state probability estimator p̂pij(t1, t2) was taken to be

h ¼ h2 ¼ 1:6. Changing the bandwidths generally does not alter the character of the curve,

1.0

0.8

0.6

0.4

0.2

0.0

�8 �7 �6 �5 �4 �3 �2

1.0

0.8

0.6

0.4

0.2

0.0

�8 �7 �6 �5 �4 �3 �2
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0.2

0.0

�8 �7 �6 �5 �4 �3 �2

1.0

0.8

0.6

0.4

0.2

0.0

�8 �7 �6 �5 �4 �3 �2

Figure 2. Graphs of p̂pij(t). Panels across the first row represent p̂p00(t) and p̂p01(t), respectively, while

panels across the second row represent p̂p10(t) and p̂p11(t), respectively. (Here, p̂pij(t) ¼ p̂pij(tj � 7:90).)

The sum, across each row, of the graphed functions equals 1. Dashed lines show 70% pointwise

confidence bands. For each panel, time t is on the horizontal axis and p̂pij(t) is on the vertical axis.
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except that decreasing the bandwidths makes the extrema more pronounced. Throughout we

used the standard normal kernel, although almost identical results are obtained for other

choices. Potential kernels, and their relative advantages, are discussed by Simonoff (1996,

p. 44).

The non-differentiability of the estimates Pij(t2jt1) in Figure 2 is not scientifically

reasonable. In presenting our results to a different audience we would use a numerical taper,

so that the curve estimator was brought smoothly to its extremum. This is of course

straightforward to do. However, in order to show the actual form that the ‘raw’ estimates

take we have not used a taper in the figure.

To implement the method suggested in Section 2.3 we divided the sequence of time

points into six blocks, the first five consisting of 14 points and the last of 13 points. A

visual inspection suggests that the chain is approximately time-homogeneous within each

block. Under the latter assumption we estimated one-step transition probability matrices

within a block by taking numerical averages in the obvious way. The chain was then run

repeatedly, starting from the observed initial state, and values of the bootstrap estimates of

the pi were computed using the method suggested in Section 2. Percentile bootstrap

confidence bands were constructed in this way, at 80%, 90% and 95% levels, and are shown

by broken lines in Figure 1(a).

The relatively small sample size available to us in this example means that stochastic

variability is substantially greater in the bivariate problem of estimating conditional

probabilities than it is in the univariate one of estimating p1 and p2. For this reason we did

not attempt to simulate the Markov process from these data, and we show only 70%

confidence bands in the plot in Figure 2. The general shape of the transition probability

functions is reflected in these bands, although the actual values of the bands reveal a

considerable degree of variability.

To assess the robustness of our method to errors in data collection, we subjected the

simulated data to random errors as follows. After 500 bootstrap samples were obtained from

the blockwise Markov process, the value of each state (0 or 1) was perturbed with

probability 0.10, independently of all other states. The estimate p̂p1(t) was then computed

from each of the 500 perturbed data sets, and 80%, 90% and 95% percentile-bootstrap

confidence regions were computed from the perturbed simulated data. The results are shown

in Figure 1(b). The field experts who provided the data to us have great confidence in the

data, and argue that a 10% level of error is unduly high.

Gould’s theory argues that a new species tends to arise relatively quickly, as a sharp

punctuation of a pre-existing equilibrium, and then declines relatively slowly. The relatively

fast increase of p̂p1(t), and its subsequent, gentler decrease, are consistent with, although of

course do not prove, Gould’s hypothesis. The confidence bands in Figure 1(a) reflect both

the relatively steep increase and the subsequent slow decline. The ‘robustness bands’ in

Figure 1(b) also tend to preserve this pattern, although the fact that they reflect a higher

degree of noise means that they do it less well. In particular, the bands become wider at

either end, and this effect moderates the perceived, relatively steep rate of increase of the

curve estimate in the early years of the species’ existence. The shape of the curve estimate

might be said to be under greater threat from data-recording errors than from sheer noise in

the data.
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4. Theoretical properties

4.1. Archetypal processes

Rather than impose regularity conditions in an abstract way, we shall describe specific

processes which produce the type of data discussed in Section 3, and use these processes to

motivate our formal assumptions. The latter will be given in Section 4.2, and shown in the

Appendix to be satisfied by the specific processes given here.

Bearing in mind characteristics of the data set studied in Section 3, we wish to address

cases where the following assumption holds:

Assumption 4.1. (i) The number of transitions over the entire observation period, and the

number of observations made between transitions, can be moderately large. (ii) The

probability distribution for transitions varies smoothly with time.

Two slightly different specific processes defined on the interval I ¼ [0, 1], and which

produce realizations that satisfy Assumption 4.1, will be considered next. Both are based on

a q3 q transition probability matrix —(t) ¼ (rij(t)), defined for t 2 I, where rij, for

0 < i, j < q� 1, are continuous functions with each rij > 0 and
P

j rij ¼ 1.

For the first Markov process, transitions having transition probability matrix —(k�) are

made at respective time points k�, for 1 < k < ��1, where � ¼ �(n) # 0 as n ! 1. For

the second process, probabilities for the kth transition continue to be determined by —(k�),

but the time at which the kth transition occurs is now �
P

1<i<k Zi, where Z1, Z2, . . . are

independent, exponentially distributed random variables with a mean which may depend on

the current state of the process, but nevertheless always lies in the same fixed interval

[a, b], where 0 , a , b , 1. By restricting attention to k < maxf j :
P

i< j Zi < ��1g we

ensure that the process is studied only within I .

For either process, the state of the chain at any given time t 2 I is that to which it

moved at the most recent transition. The initial state is chosen arbitrarily. The fact that each

rij is a continuous function guarantees that Assumption 4.1(ii) holds.

Note that, in the case of the first process, the functions pi and pij are not continuous.

Nevertheless, they are asymptotically smooth. For example, it can be shown that for each i,

pi satisfies, for each E1 2 (0, 1),

lim
E2#0

lim sup
n!1

sup
t1, t22[E1,1] : j t1� t2j<E2

jpi(t1) � pi(t2)j ¼ 0:

Even for the first process, but particularly for the second, it is clear that a completely

parametric methodology will fail to address the rich class of possibilities that can arise.

This consideration motivated the methodology developed in Section 2.

Either of the two processes is observed within I at time points T1 , . . . , Tn, which,

here and in Section 4.2, will be taken to be the ordered values of n independent random

variables having a common density, f , supported on I . This is a standard assumption in

nonparametric regression; see, for example, Wand and Jones (1995, Section 5.3.2), Fan and

Gijbels (1996, p. 57) and Simonoff (1996, Chapter 5).
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Strictly speaking, we should use triangular array notation, specifying that for each n,

Tk ¼ Tnk , for 1 < k < n, are the ordered values of n independent random variables with

common density f . No assumption about the relationship among rows of the array is

required, however.

By allowing n and � ¼ �(n) to vary together, in such a way that

n� ! 1, � ¼ O(n�E) for some E . 0, (4:1)

we ensure that Assumption 4.1(i) holds.

4.2. Main theoretical results

Let � ¼ �(�) denote any sequence of constants such that, as � ! 0,

�=(�jlog �j) ! 1 and � ! 0: (4:2)

We shall study the Markov process only on the interval I� ¼ [�, 1], not on all of I . This

allows us to ‘burn’ the process in for a short time period, so that our results will be valid

regardless of the starting state.

For each n, we work with a potentially different Markov process on I . In particular, we

allow the state probabilities pi(t), and the dual-state probabilities pij(t1, t2), to depend on n,

reflecting the implication of Assumption 4.1(i) that the problem becomes more complex as

sample size increases. We ask that whenever � satisfies (4.2), pi(t) and pij(t1, t2) satisfy:

max
0<i<q�1

jpi(t1) � pi(t2)j < C1 �
�1 max(jt1 � t2j, �jlog �j)f g2

, (4:3)

max
0<i, j<q�1

jpij(t1, t2) � pi(t1)pj(t2)j < C2 exp(�C3jt1 � t2j=�), (4:4)

for all t1, t2 2 I� and all n, where the constants C1, C2, C3 do not depend on t1, t2 or n. In

order that we might derive conditional probabilities from joint probabilities without the

denominator vanishing, we assume that whenever � satisfies (4.2),

lim inf
�!0

inf
t2I�

min
0<i<q�1

pi(t) . 0: (4:5)

In the Appendix we shall show that these conditions hold for the processes introduced in

Section 4.1.

Note that conditions (4.3)–(4.5) do not require strict continuity of the functions pi and

pij. Indeed, as we observed in Section 4.1, continuity is not required of these probabilities

in the cases of the archetypal processes which motivate our theory.

Of the kernel K, bandwidth h and density f we make the following assumption:

Assumption 4.2. K is a compactly supported, Hölder-continuous probability density; for some

E . 0 , h2��1 þ h�1�1�E ! 0 as n ! 1; and f is continuous and non-vanishing on I .

In particular, the conditions on h are satisfied if h ¼ const: �a, where 1
2
, a , 1.

Even though we effectively are working with a triangular array of Markov processes (one
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process for each n), and shall show that strong laws of large numbers hold for our

estimators, we require no assumptions about the relationships among the processes for

different values of n.

Theorem 4.1. If (4:1)–(4:5) and Assumption 4.2 hold then the local linear estimator, p̂pi(t) , of

the state probability, pi(t) , is strongly consistent, in the sense that

sup
t2I�

max
0<i<q�1

j p̂pi(t) � pi(t)j ! 0 (4:6)

with probability 1.

Theorem 4.2. If c� is any sequence of positive constants such that �=c� ! 0 as n ! 1 , and

if (4:1)–(4:5) and Assumption 4.2 hold, then the local linear estimators p̂pij(t1, t2) are

strongly consistent, in the sense that, with probability 1,

sup
t1, t22I� : j t1� t2j.c�

max
0<i, j<q�1

j p̂pij(t1, t2) � pij(t1, t2)j ! 0: (4:7)

Therefore, the estimated transition probabilities p̂pij(t2jt1) , defined at (2:5) , are strongly

consistent: with probability 1,

sup
t1, t22I� : j t1� t2j.c�

max
0<i, j<q�1

j p̂pij(t2jt1) � pij(t2jt1)j ! 0: (4:8)

In making Assumption 4.2, which involves h, in Theorem 4.2, we are not asking that the

same bandwidth be used to compute both p̂pij and p̂pi. (Recall that p̂pi is used during

construction of p̂pij; see (2.6).) It is necessary only that the bandwidth h ¼ h1 used to

compute p̂pi, and the bandwidth h ¼ h2 employed in the definition of each Kk(t) in (2.6),

both satisfy Assumption 4.2.

For consistent inference it is essential that the bandwidth h be an order of magnitude

larger than �. This is because the amount of information about either pi or pij, within an

interval of length only a constant multiple of �, remains bounded as � ! 0. In particular, if

either of the processes discussed in Section 4.1 was observed throughout an interval of

length C� straddling t, and was not observed anywhere else, then the transition probability

matrix —(t) could not be estimated consistently.

Since consistent estimation of pij(t2jt1) is, in general, possible only when t2 � t1 is of

larger order than �, then if the Markov process is simulated by implementing transitions of

a Markov chain on a grid with edge width � (see Section 2.2), � should satisfy �=� ! 0.

5. Technical arguments

Proof of Theorem 4.1. Note that, since the Tk are ordered values of independent random

variables, and Aj is an order-invariant sum of functions of individual Tk , then Aj(t) equals a

sum of independent random variables. Using this property, and either standard arguments

involving the Hungarian embedding (Komlós et al. 1976), or the technique we shall employ

below to establish (5.6), it may be proved that
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sup
t2I

jAj(t) � EfAj(t)gj ! 0 (5:1)

with probability 1, as n ! 1, for j ¼ 0, 1, 2. (This result is valid in the triangular array

setting discussed in Section 4.) The part of Assumption 4.2 pertaining to f implies that each

EfAj(t)g is uniformly bounded, and that EfA2(t)gEfA0(t)g � fEA1(t)g2 is uniformly

bounded above zero. Hence, by (5.1),

lim sup
n!1

sup
t2I

max
j¼0,1,2

jAj(t)j , 1, lim inf
n!1

inf
t2I

A2(t)A0(t) � A1(t)2
� �

. 0, (5:2)

both results holding with probability 1.

Equations (2.3) may equivalently be written as

Xq�2

j¼0

(1 þ �ij)a j ¼ pi(t) þ rq�1(t) þ ˜i(t) þ ˜(t)

A2(t)A0(t) � A1(t)2
, (5:3)

where ri(t) ¼ PfX (t) 6¼ ig,

˜i(t) ¼ A2(t)Bi0(t) � A1(t)Bi1(t) � pi(t) A2(t)A0(t) � A1(t)2
� �

,

˜(t) ¼ A2(t)Cq�1,0(t) � A1(t)Cq�1,1(t) � rq�1(t) A2(t)A0(t) � A1(t)2
� �

:

The equations

Xq�2

j¼0

(1 þ �ij)a j ¼ pi(t) þ rq�1(t),

for 0 < i < q� 2, have unique solution ai ¼ pi(t), for the same range of i. Note too that

1 � Cq�1, j ¼
P

i<q�2 Bij, and that 1 � rq�1 ¼
P

i<q�2 pi. Therefore, provided we prove that

sup
t2I�

max
0<i<q�2

j˜i(t)j ! 0 (5:4)

with probability 1, the theorem will follow from the second part of (5.2) and from (5.3). It

remains to derive (5.4).

Put Ljk(t) ¼ Kk(t)f(t � X k)=hg j, let T denote the sigma-field generated by T1, . . . , Tn,

and observe that ˜i ¼ A2 ˜i0 � A1 ˜i1, where

˜ij(t) ¼
1

nh

Xn
k¼1

Ljk(t) I ki � pi(t)f g:

Hence, in view of the first part of (5.2), (5.4) will follow if we prove that

sup
t2I�

max
0<i<q�2, j¼0,1

jEf˜ij(t)jT gj ! 0, (5:5)

sup
t2I�

max
0<i<q�2, j¼0,1

j˜ij(t) � Ef˜ij(t)jT gj ! 0 (5:6)

with probability 1.

Using (4.3), and the fact that the kernel K is compactly supported; and defining
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‘n ¼ (log n)2, we deduce that jEf˜ij(t)jT gj is dominated, uniformly in t, by a constant

multiple of

1

nh

Xn
k¼1

max jTk � tj2=�, � ‘n
� �

Kk(t) ¼ O h2 ��1 þ � ‘n
� �

, (5:7)

with probability 1, uniformly in t 2 I�, where we have used the first part of (5.2) to derive

the bound. Result (5.5) follows from (5.7), the bound on � at (4.1), and the condition on h in

Assumption 4.2.

Next we establish (5.6). Note that, for 1 < k1 , . . . , ks < n,

E(I k1 i . . . I ks ijT ) ¼ pi(Tk1
) pii(Tk2

jTk1
) . . . pii(Tks jTks�1

): (5:8)

This property, (4.4) and (4.5) may be used to show that if 1 < k1 < . . . < ks < n, and if, for

some a 2 [1, s� 1], Tkaþ1
� Tka . B� log n, where B . 0 is a constant, then

jE[fI k1 i � pi(Tk1
)g . . . fI ks i � pi(Tks )gjT ]j < C1(s)expf�C2(s)B log ng,

where the constants C1 and C2 depend on s but not on n or B. (Here and below, C j denotes a

positive constant.) Therefore,

E[j˜ij(t) � Ef˜ij(t)jT gj2rjT ]

<
C3(r)

(nh)2r

Xn
k1¼1

. . .
Xn
k2 r¼1

w(k1, . . . , k2r)Kk1
(t) . . . Kk2 r

(t), (5:9)

where w(k1, . . . , k2r) ¼ expf�C2(2r)B log ng þ w1(k1, . . . , k2r) and w1(k1, . . . , k2r) de-

notes the indicator of the event ‘for each ka there exists kb, with b 6¼ a, such that

jTka � Tkb j < B� log n’.

It can be shown that, uniformly in t 2 I� and for each choice of i and j,

E
1

(nh)2r

Xn
k1¼1

. . .
Xn
k2 r¼1

w1(k1, . . . , k2r)Kk1
(t) . . . Kk2 r

(t)

( )
¼ C4(B, r)(h�1� log n)r: (5:10)

Combining (5.9) and (5.10) it can be proved that

E[j˜ij(t) � Ef˜ij(t)jT gj2r] ¼ Of(h�1� log n)rg, (5:11)

uniformly in the same sense, provided B is chosen so large that C2(2r)B . r.

Using (5.11), and Markov’s inequality, we may prove that for each C, E . 0,

sup
t2I�

P[j˜ij(t) � Ef˜ij(t)jT gj . (h�1�nE)1=2] ¼ O(n�C):

Therefore, provided J n � I� contains no more than O(nD) elements for some D . 0, we

have for each C, E . 0,

P sup
t2J n

j˜ij(t) � Ef˜ij(t)jT gj . (h�1�nE)1=2
� �

¼ O(n�C): (5:12)

This property; an approximation to ˜ij(t), for arbitrary t, by values of ˜ij(t) for t on an

Nonparametric inference for inhomogeneous Markov processes 933



equally spaced grid with separation n�D, for any fixed D . 0; Assumption 4.2 on h; and use

of the Hölder continuity of K noted in Assumption 4.2; imply that (5.12) continues to hold if

J n there is replaced by I�. Using the Borel–Cantelli lemma we see that this entails (5.6),

which completes the proof. h

Proof of Theorem 4.2. It is necessary only to prove (4.7). Since, in (4.7), t1 and t2 are

constrained to satisfy jt1 � t2j . c�, and since (4.4) implies that j pij(t1, t2)

� pi(t1)pj(t2)j ! 0 uniformly in such t1 and t2, it suffices to establish the version of

(4.7) in which pij(t1, t2) is replaced by pi(t1) pj(t2). This we shall do below.

Arguing as in the proof of Theorem 4.1, we see that it suffices to derive two-state

analogues of (5.5) and (5.6), which here can be reduced to:

max
u

sup
t1, t22I�

max
0<i, j<q�2

jEf˜ij(t1, t2, u)jT gj ! 0, (5:13)

max
u

sup
t1, t22I�

max
0<i, j<q�2

j˜ij(t1, t2, u) � Ef˜ij(t1, t2, u)jT gj ! 0, (5:14)

where

˜ij(t1, t2, u) ¼ 1

(nh)2

Xn
k¼1

Xn
‘¼1

fI ki I‘ j � pi(t1) pj(t2)g u(k, ‘)Kk(t1)K‘(t2),

and there are three functions u, defined by u(k, ‘) taking the values 1, (Tk � t1)=h or

(T‘ � t2)=h, respectively. Note too that

Ef˜ij(t1, t2, u)jT g ¼
X3

a¼1

Wija(t1, t2, u), (5:15)

where

Wij1(t1, t2, u) ¼ 1

(nh)2

Xn
k¼1

Xn
‘¼1

fpij(Tk , T‘) � pi(Tk) pj(T‘)g u(k, ‘)Kk(t1)K‘(t2),

Wij2(t1, t2, u) ¼ 1

(nh)2

Xn
k¼1

Xn
‘¼1

pi(Tk)f pj(T‘) � pj(t2)g u(k, ‘)Kk(t1)K‘(t2),

Wij3(t1, t2, u) ¼ 1

(nh)2

Xn
k¼1

Xn
‘¼1

fpi(Tk) � pi(t1)g pj(t2)u(k, ‘)Kk(t1)K‘(t2):

By (4.3),

jWij2(t1, t2, u)j < C8 A0(t)
1

nh

Xn
‘¼1

max jT‘ � t2j2=�, � ‘n

� �
K‘(t2):

A bound for the series on the right-hand side is given in (5.7). Using that result and the first

part of (5.2) we deduce that, in the case a ¼ 2,
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maxu sup
t1, t22I

max
0<i, j<q�2

jWija(t1, t2, u)j ¼ O h2 ��1 þ � ‘n
� �

, (5:16)

with probability 1. A similar argument shows that (5.16) holds for a ¼ 3.

Using (4.4), and the fact that K is compactly supported, we see that, for some C7 . 0

and each B . 0, jWij1(t1, t2, u)j is dominated by a constant multiple of

1

(nh)2

Xn
k¼1

Xn
‘¼1

exp(�C7jTk � T‘j=�)Kk(t1)K‘(t2) < n�B A0(t)2 þ W (t1, t2), (5:17)

where

W (t1, t2) ¼ 1

(nh)2

Xn
k¼1

Xn
‘¼1

I jTk � T‘j < B C�1
7 � log n

� �
Kk(t1)K‘(t2): (5:18)

Although T1, . . . , Tn are the ordered values of a sequence of independent and identically

distributed random variables, W (t1, t2) is invariant under permutations of this sequence, and

so in deriving a bound for W (t1, t2) we may treat the T j as though they were the original

independent and identically distributed quantities. Under this assumption it is straightforward,

although algebraically complex, to derive bounds for E(W r) for any integer r > 1, obtaining

sup
t1, t22I

E W (t1, t2)rf g < C8(r) h�1 � log n
� �r

: (5:19)

Combining (5.17)–(5.19) we deduce that, for each integer r > 1,

max
u

sup
t1, t22I

max
0<i, j<q�2

E jWij1(t1, t2, u)jr
� �

< C10(r) h�1 � log n
� �r

:

This result, and the argument leading to (5.6), may be used to prove that

max
u

sup
t1, t22I�

max
0<i, j<q�2

jWij1(t1, t2, u)j ! 0 (5:21)

with probability 1. Properties (5.15), (5.16) for a ¼ 2, 3, and (5.21) imply (5.13). The

argument used to derive (5.14) is similar to that employed to obtain (5.6). h

Appendix: Motivation for assumptions in Section 4.2

Here we motivate the assumptions in Section 4.2 by showing that they are satisfied by the

Markov processes introduced in Section 4.1. Indeed, it is sufficient to address the first

process, since the second can be treated similarly.

Assume that the sequence of transition probability matrices —(t), t 2 I , introduced in

Section 4.1, enjoys the following property:

Assumption A.1. (i) For each t 2 I , there is just one eigenvalue of —(t) with absolute value

equal to 1. (ii) For each t 2 I , all states of the stationary chain with transition probability

matrix —(t) communicate. (iii) The components of —(t) have a bounded derivative, uniformly

in t 2 I .
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We shall prove that, if the data are generated by the first of the two Markov processes

introduced in Section 4.1, and if conditions (4.1) and (4.2) hold, then Assumption A.1 implies

(4.3)–(4.5).

Let k, ‘ be integers satisfying ���1 < k , ‘ < ��1, where � is as in (4.2); and define

—r ¼ —f(k þ r)�g, for integers r. Write (Q)ij for the (i, j)th component of a matrix Q. In

view of Assumption A.1(iii), j(—r)ij � (—0)ijj < const:jrj �, where, here and below, ‘const.’

denotes a generic positive constant which does not depend on i, j, k, ‘, n, r or �. Hence,

for r > 1, 



 —1 —2 . . . —rð Þij� —r
0

� �
ij





 < const: r2�, (A:1)





 —1�r —2�r . . . —0ð Þij� —r
0

� �
ij





 < const: r2�: (A:2)

Let º(t) denote the second largest absolute value of the eigenvalues of —(t), and put

º0 ¼ sup t2I º(t). Assumptions A.1(ii)–(iii) imply that º0 , 1. Writing �� for the stationary

distribution of —0, that is, for the solution of �T

�—0 ¼ �T

� , we have

k�T —r
0 � �T

�k < const: ºr
0, (A:3)

uniformly in r > 0, in probability distributions � and in choices k 2 [���1, ��1 � r � 1] in

the definition —0 ¼ —(k�). Write �m for the vector of state probabilities at time (k þ m)�. If

k > jlog �j=jlog º0j > k � 1 then, by (4.2), (A.2) and (A.3),

k�0 � ��k ¼ k�T
�k —1�k —2�k . . . —0 � �T

�k

< k�T
�k —

k
0 � �T

�k þ const: k2 � < const: �(log �)2: (A:4)

Therefore, using (A.1), we see that for r > 1,

k�0 � �rk ¼ k�T
0 � �T

0 —1 —2 . . . —rk < const: ��1fmax(jt1 � t2j, �jlog �j)g2, (A:5)

where t1 ¼ k� and t2 ¼ (k þ r)�. Using the definition of the Markov process, it is

straightforward to extend the bounds at (A.5) to t1, t2 defined in the continuum. This implies

(4.3).

To derive (4.5), note that in view of Assumption A.1(ii), for each 0 < i, j < q� 1 and

each t, there is a positive probability of transiting from state i to state j in a finite number

of steps, in the homogeneous chain with transition probability matrix —(t). Since —(t) is a

componentwise continuous function of t then there exists a finite integer, �(t) > 1, and

0 , 	 (t) , 1, such that (a) �max � sup t2I �(t) , 1, (b) 	min � inf t2I 	 (t) . 0, and (c) for

each (i, j), the probability of transiting from state i to state j in just �(t) steps is not less

than 	 (t). From these results and (A.1) we deduce that, for each (i, j), the probability of

transiting from state i to state j in at most �max steps, starting from time point k�, in the

inhomogeneous chain introduced in Section 4.1, is not less 	min þ O(�), uniformly in

k 2 [0, ��1 � �� 1]. Therefore, inf t2T mini pi(t) > 	 2
min þ O(�), from which (4.5) follows.
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Next, to derive (4.4), assume without loss of generality that t1 , t2, and observe that

since (4.5) holds it is sufficient to prove that for each pair (i, j),

j pij(t2jt1) � pj(t2)j < C2 exp(�C3jt1 � t2j=�):

Again it is adequate to derive the result on the grid, that is, for t1 ¼ k� and t2 ¼ (k þ r)�;

and for that it is enough to prove that, uniformly in probability measures �(1) and �(2), and in

k and r,

k(�(1) � �(2))
T —1 —2 . . . —rk < C4 exp(�C5 r): (A:6)

If 
 . 0 is sufficiently small, although fixed, and if s does not exceed the largest integer

less than 
jlog �j, then, in view of (4.1), s2� < const: ºs0. Hence, by (A.1) and (A.3),

k(�(1) � �(2))
T —1 —2 . . . —sk < k(�(1) � �(2))

T —s
0k þ const: s2� < const: ºs0: (A:7)

To bound k(�(1) � �(2))
T —1 —2 . . . —rk for general r > s, break r into r=s blocks of length

s, and iterate the bound obtained at (A.7), renormalizing the new version of �(1) � �(2) at

each step by dividing by a constant multiple of ºs0. In this way we may show that if

���1 < k < k þ r < ��1 then

k(�(1) � �(2))
T —1 —2 . . . —rk < const: ºr

1,

where º1 2 [º0, 1) does not depend on r. This implies (A.6).
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