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We describe the asymptotic behaviour of the empirical Tukey depth process. It is seen that the latter

may not converge weakly, even though its marginals always do. Closed subsets of the index set where

weak convergence does occur are identified and a necessary and a sufficient condition for the

asymptotic normality of the marginals is given. As an application, asymptotic normality of a Tukey

depth-based multivariate trimmed mean is obtained for smooth distributions.
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1. Introduction

Let F be a probability distribution on Rd , and let H denote the class of closed half-spaces

H in Rd . The Tukey depth (or half-space depth) of a point x 2 Rd (with respect to F) is

defined as

D(x) :¼ inffFH : H 2 H, x 2 Hg:
In the following, when necessary the notation D(x, F) will be used to indicate the

dependence on F.

Tukey (1975) introduced the notion of the depth of a point in a multivariate data set. The

Tukey depth is but one of several depth functions that have been proposed to measure the

degree of centrality of a multidimensional point with respect to a probability distribution.

Thus, Liu (1990) defines the simplicial depth SD(x) of a point x by taking

SD(x) :¼
ð
. . .

ð
I(x 2 S[y1, . . . , ydþ1])dF dþ1(y1, . . . , ydþ1),

where S[y1, . . . , ydþ1] is the closed d-dimensional simplex with vertices y1, . . . , ydþ1 (see

also Liu and Singh 1993; Liu et al. 1999). Two other well-known depth functions are the so-

called Mahalanobis and Oja depths. The Mahalanobis depth of a point x is defined to be

MD(x) :¼ [1 þ (x � �F)9��1
F (x � �F)]�1,

where �F and �F denote the mean and covariance matrix of F respectively, and the latter

functionals are assumed to exist; as for the Oja depth of x, it is defined as
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OD(x) :¼ 1 þ
ð
. . .

ð
Vol(S[x, y1, . . . , yd])dF d(y1, . . . , yd)

� ��1

,

where Vol(S[x, y1, . . . , yd]) denotes the volume of the simplex S[x, y1, . . . , yd]. A

systematic study of the concept of the depth function can be found in Zuo and Serfling

(2000), where other examples are also introduced.

For any depth function, points with high depth are viewed as being close to the ‘centre’

of the distribution, whereas those with low depth are seen as belonging to the tails of the

distribution. The Tukey depth has been used by Donoho and Gasko (1992) to define

multivariate location estimators, and by Yeh and Singh (1997) to construct bootstrap

confidence regions for multivariate parameters. For general depth functions, location and

scale statistics have been studied by Liu et al. (1999) and Serfling (2000). Depth functions

have also been applied to discriminant and cluster analysis by Ruts and Rousseeuw (1996),

and to quality control by Liu and Singh (1993).

Depth functions provide a convenient tool for ranking multivariate observations. Given a

sample X 1, . . . , X n from F, the empirical distribution function F̂Fn determines a centre-

inward ranking through the ordering

Dn(X [1]) < Dn(X [2]) < . . . < Dn(X [n]),

where Dn is the empirical Tukey depth, that is, the Tukey depth with respect to F̂Fn. Such a

ranking makes it possible to extend to a multivariate setting the concept of the L-statistic.

Indeed, for a suitable weight function W : [0, 1] ! [0, 1], a multidimensional L-statistic can

be defined as the weighted average

L(F̂Fn) :¼
X

i

X iW (Dn(X i))=
X

i

W (Dn(X i)): (1)

Such statistics include multidimensional versions of familiar location estimators such as

trimmed means and Winsorized means.

In a Monte Carlo experiment, Massé and Plante (2003) have compared ten bivariate

location estimators from the standpoint of accuracy and robustness. The comparison was

made under various sampling situations determined by three sample sizes (10, 50, 200) and

14 centrally symmetric distributions ranging from the uniform and normal to heavy-tailed

distributions such as the Cauchy and various mixtures distributions. Besides the arithmetic

mean and five bivariate medians, two depth-based trimmed means were investigated,

including one based on Tukey’s depth. The simulation showed that, for moderate and large

sample sizes, the accuracy of the Tukey depth-based trimmed means is overall as good as or

better than any other of the estimators retained for the study. In addition, assessing

robustness according to the performance on heavy-tailed distributions, it was seen that, for

moderate and high sample sizes, the Tukey depth-based trimmed means are as good as if

not better than any other estimator in the study, including the spatial median, the Tukey

median and the Oja median.

This paper is organized as follows. Section 2 covers the limit theorems describing the

asymptotic behaviour of the empirical Tukey depth process. Section 3 applies the foregoing

limit theorems by deriving the asymptotic normality of a multidimensional trimmed mean
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of the form (1) for sufficiently smooth distributions. Section 4 examines properties of the

Tukey depth that are needed to understand the asymptotics of its empirical depth process;

examples illustrating these properties are also presented. Proofs of the main theorems are

contained in Section 5, the main tool used being empirical processes theory.

In the following, we shall assume that all our random variables and vectors live on a

fixed complete probability space (�, F , P).

2. Limit theorems for the depth process

Clearly, D(x) is determined by the class of closed half-spaces H such that x 2 @H , the

topological boundary of H . Let U :¼ fu 2 Rd : juj ¼ 1g. Writing H[x, u] :¼
fy 2 Rd : u9 � y > u9 � xg for u 2 U, it is seen that

D(x) ¼ inf
u2U

FH[x, u]:

Simple examples show that the above infimum is not necessarily attained. For instance, let

F :¼ (F1 þ F2)=2, where F1 is uniform over one side of an equilateral triangle and F2 is the

unit mass on the vertex opposite. Then, the depth of the centroid is 1=4, which is strictly less

than FH for any closed half-plane H whose border goes through the centroid.

The probability distribution F is said to satisfy smoothness condition (S) if:

(S) F(@H) ¼ 0 for all H in H.

Condition (S) is useful to obtain stronger properties for the Tukey depth and its

applications. It is satisfied, for instance, if F is absolutely continuous with respect to the

Lebesgue measure. The two conditions are not, however, equivalent. Indeed, consider

F ¼ F1 3 F2, where F1 and F2 are both continuous distributions on R and F2 is singular.

Obviously F is not absolutely continuous, but Fubini’s theorem implies that F satisfies (S).

According to Proposition 4.5(i) below, if F satisfies (S), then the Tukey depth of a point

x can be expressed as the probability of some closed half-space whose boundary goes

through x. If D(x) ¼ FH[x, v], we shall say that H[x, v] is a minimal half-space at x and v

a minimal direction at the same point.

A minimal half-space at a point is not necessarily unique. In what follows, points in Rd

are classified into two types according to their multiplicity. Point x is said to be (F)-smooth

if x has depth 0 or if there exists a unique minimal half-space at x; otherwise x is said to

be (F)-rough. Let SF (RF ) denote the set of points of Rd that are smooth (rough).

Examples 4.1 and 4.2 below illustrate the distinction between smooth and rough points.

The empirical Tukey depth process is defined to be

Ln(x) :¼ n1=2[Dn(x) � D(x)], x 2 Rd :

Let ‘1(T ) denote the space of bounded real functions on T equipped with the uniform norm:

kak1 :¼ sup
t2T

ja(t)j:
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It is easily seen that fLn(x), x 2 Rdg is a stochastic process with bounded sample paths,

allowing us henceforth to view Ln as a map into ‘1(Rd).

Weak convergence of a sequence of maps such as fLng will be understood in the

Hoffmann–Jørgensen sense (see van der Vaart and Wellner 1996, Definition 1.3.3). Given

that X , X n, n ¼ 1, 2, . . . , are maps from (�, F , P) into a metric space S and that X is

Borel measurable, fX ng is said to converge weakly to X if E� f (X n) ! E f (X ) for every

bounded continuous real-valued function f defined on S, where E� denotes outer

expectation in the event that X n may not be Borel measurable. In what follows, weak

convergence is denoted by X n ? X.

The empirical process associated with F is defined to be �n :¼ n1=2[F̂Fn � F], viewed

here as a map into the space ‘1(H). It is known (see Pollard 1984, Theorem VII.21) that

�n ? �F , where �F is an F-Brownian bridge, that is, a centred Gaussian tight Borel

measurable map into ‘1(H) with the covariance function P[�F(H)�F(H9)] ¼
F(H \ H9) � F(H)F(H9); furthermore, a version of �F can be chosen such that each

sample path is uniformly continuous with respect to the L2(F) seminorm on H.

In addition to being smooth, probability distributions for which limit theorems for the

empirical depth process are obtained have to satisfy a condition involving the multiplicity of

minimal directions at each point. For every x 2 Rd, let V (x) denote the collection of all

minimal directions at x. The condition of local regularity (LR) is said to hold for F if:

(LR) F satisfies (S) and, for every x of positive depth, either V (x) has a finite number

of elements or V (x) ¼ U.

The following limit theorem is the first part of our description of the asymptotic

behaviour of the empirical Tukey depth process Ln. In the statement, we use the notation

J (�F)(x) :¼ inf
v2V (x)

�F H[x, v], x 2 Rd :

Theorem 2.1. Let F satisfy condition (LR). Then, for any closed subset A of Rd having no

accumulation point in RF , Ln ? J (�F) in ‘1(A). The limit process J (�F) is a tight Borel

measurable map into ‘1(A).

The following two corollaries are immediate.

Corollary 2.2. Let F satisfy (LR). Then, for fixed x, fLn(x)g is asymptotically distributed as:

(i) N (0, Æ(1 � Æ)) if x is F-smooth and D(x) ¼ Æ . 0;

(ii) J (�F)(x) � infv2V (x)�F H[x, v] if x is F-rough or D(x) ¼ 0.

Corollary 2.3. Let F satisfy (LR) and suppose A is a closed subset of SF . For each x 2 SF ,

let H[x] be a minimal closed half-space at x – where H[x] is uniquely defined if D(x) . 0.

Then, in ‘1(A), fLng converges weakly to the centred Gaussian process J (�F) with

covariance kernel

P[J (�F)(x)J (�F)(x9)] ¼ F(H[x] \ H[x9]) � FH[x]FH[x9], x, x9 2 A:
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Under the hypotheses of Corollary 2.3, consider the pseudometric r(x, x9) :¼
F(H[x]˜H[x9]) defined on A. Then there exists a version of J (�F) whose sample paths

all belong to Cr(A), the set of all bounded uniformly continuous real functions on A with

respect to r. Viewed as a subspace of the metric space ‘1(A), Cr(A) is separable and

complete (van der Vaart and Wellner 1996, Chapter 1.5).

Thus, under regularity conditions, weak convergence of the empirical Tukey depth

process holds if the index set is restricted to be a closed set containing smooth points and/

or isolated rough points. The limit process is not necessarily Gaussian (see Remark 2.1),

even though some of its marginals may be so; furthermore, the next theorem shows that

weak convergence may not hold on the whole index set. For a full picture of the asymptotic

behaviour of the sequence fLng, we need to take a closer look at the effect of roughness on

tightness. We do so by describing what may happen when there exists one rough point that

can be approached by arbitrarily close smooth points. For the sake of simplicity, the result

is stated and proved in the case where d ¼ 2.

Theorem 2.4. Let F be a probability distribution on R2 which satisfies condition (LR).

Suppose there exists x0 2 RF such that xn ! x0 for some sequence fxng in SF and such that

J (�F)(x0) is non-Gaussian or non-zero almost surely. Then, as a sequence of processes

indexed by Rd, fLng is not asymptotically tight, hence Ln ? J (�F) does not hold.

Remark 2.1. The conditions on F appearing in Theorem 2.4 are satisfied whenever x0 is the

point of symmetry of an absolutely continuous elliptically symmetric distribution. Indeed, as

seen in Example 4.4, J (�F)(x0) is then a non-positive random variable, and hence is non-

Gaussian. Thus in this case the empirical Tukey depth process does not converge weakly on

the whole of Rd , but may converge in the same sense on some smaller index sets. It is

conjectured that J (�F)(x0) is non-Gaussian whenever x0 is rough or, in other words,

inff�F H[x0, v] : v 2 V (x0)g is non-Gaussian when V (x0) is not a singleton.

Remark 2.2. There is a sharp contrast between the asymptotic behaviour of the empirical

Tukey depth process and that of the empirical simplicial depth process. For any F, it is

known that the latter is asymptotically Gaussian (Arcones and Giné 1993, Corollary 6.8; see

also Dümbgen 1992, Theorem 2).

3. Asymptotic normality of a multivariate trimmed mean

It is known that the Tukey depth attains a strictly positive supremum Æ� �
Æ�(F) :¼ supx D(x) and that trimmed regions QÆ :¼ fx : D(x) > Æg are non-empty compact

convex subsets of Rd for every Æ 2 (0, Æ�] (see Section 4).

Let W : [0, 1] ! R be a Borel measurable weight function such that, for some Æ0 such

that 0 , Æ0 , Æ�, W (a) ¼ 0 if a < Æ0. Then provided 0 , j
Ð

W (D(x))F(dx)j <Ð
jW (D(x))jF(dx) , 1, an Rd-valued functional is well defined through
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L(F) :¼
ð

xW (D(x))F(dx)=

ð
W (D(x))F(dx):

Given an independent and identically distributed sample X 1, . . . , X n from F, and F̂Fn the

corresponding empirical distribution, L(F̂Fn) is a measurable statistic which can be seen as a

multivariate trimmed mean. Here we investigate the properties of L(F̂Fn) as an estimator of

L(F).

Proposition 3.1. Assume that W is continuous. Then L(F̂Fn) is strongly consistent, that is,

L(F̂Fn) ! L(F) almost surely.

Proof. First we show that the difference between numerators converges to 0. Observe that����
ð

xW (Dn(x))F̂Fn(dx) �
ð

xW (D(x))F(dx)

����
<

����
ð

x W (Dn(x)) � W (D(x))½ �F̂Fn(dx)

����þ
����
ð

xW (D(x))(F̂Fn � F)(dx)

����,
and let I1n, I2n denote the integrals on the right-hand side. For any E . 0, take � such that

�

ð
QÆ0=2

jxjF(dx) , E:

Strong uniform consistency of fDng (Proposition 4.4) and uniform continuity of W then

imply that there exists 0 , � , Æ0=2 such that, almost surely for n large enough,

kDn � Dk1 , �, so that kW (Dn(�)) � W (D(�))k1 , �. Furthermore, for n large enough,

jI1nj < �

ð
QÆ0=2

jxjF̂Fn(dx);

indeed, if x =2 QÆ0=2 and n is large enough, then W (Dn(x)) ¼ W (D(x)) ¼ 0. Applying the

strong law of large numbers, it follows that almost surely

lim sup
n

jI1nj , E,

hence I1n ! 0 almost surely. Convergence of I2n to 0 as well as convergence of the sequence

of denominators follow in the same way, which completes the proof. h

A central limit theorem for the multivariate trimmed mean is now obtained. If x is F-

smooth, let H[x] again denote any minimal half-space at x.

Theorem 3.2. Let F satisfy condition (LR) and W : [0, 1] ! R be continuously

differentiable. Assume that there exists Æ1 2 (Æ0, 1] such that AF :¼
fx : DF(x) < Æ1g � SF and W is constant on [Æ1, 1]. Then

n1=2[L(F̂Fn) � L(F)] ? N (0, �(F)),

where �(F) is the covariance matrix of
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(X � L(F))W (D(X )) þ B(X )½ �=
ð

W (D(x))F(dx),

L(X ) ¼ F and

B(y) ¼
ð

(x � L(F))W 9(D(x))1 H[x](y)F(dx):

Example 3.1. Recall that a probability distribution F is said to be centrosymmetric about �
(Donoho and Gasko 1992, p. 1806) if F(�þ B) ¼ F(�� B) for any Borel set B in Rd . For

such a distribution, affine equivariance of D (Proposition 4.1) implies that L(F) ¼ �. Clearly,

the centre of symmetry � is F-rough with depth at least 1=2. Within the class of

centrosymmetric distributions, some, like the elliptically symmetric ones, have no other rough

point. In view of Theorem 3.2, such distributions give rise to asymptotically normal trimmed

means provided W is taken constant on [Æ1, 1], where Æ0 , Æ1 , 1=2. The multivariate

trimmed mean L(F̂Fn) can be regarded as an estimator of the centre of symmetry or,

equivalently, the point of maximal depth. Any point of maximal depth is sometimes called a

half-space median of F (see Chen 1995). Observe that if F is centrosymmetric about �, it

follows that L(F̂Fn) is itself centrosymmetric about �, therefore median unbiased in the sense

of the half-space median.

Remark 3.1. The above estimator of the centre of symmetry is expected to be useful in

situations where the mean does not exist. A similar trimmed mean has been proposed by

Dümbgen (1992) for the simplicial depth. Both estimators are asymptotically normal affine

equivariant multivariate trimmed means, but by virtue of the greater regularity of the

empirical simplicial depth, Dümbgen’s estimator remains applicable to weight functions that

are not necessarily constant for large values of the depth. We are aware of another

asymptotically normal estimator of the centre of symmetry based on the notion of depth, that

of Arcones et al. (1994), which uses the simplicial median. Arcones (1995), Kim (1995) and

van der Vaart and Wellner (1996, p. 395) have also obtained asymptotically normal

multivariate trimmed means, but those do not explicitly use a notion of depth in their

definition. There is no doubt that it would be interesting to compare the efficiencies of these

estimators of location. As noted in Section 1, through a Monte Carlo study Massé and Plante

(2003) have shown that in the bivariate case Tukey depth-based trimmed means compare

most favourably with several alternative location estimators.

4. Basic properties of Tukey’s depth and examples

The next four propositions are well known. The first one states that in a sense the Tukey

depth function is coordinate-free.

Proposition 4.1 (Affine invariance property; Rousseeuw and Ruts 1999, P. 215). Suppose
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T : Rd ! Rd is an affine transformation of full rank, that is, T ¼ L þ c, where L is linear of

full rank and c is a constant in Rd . Then

D(x, F) ¼ D(Tx, F s T �1), x 2 Rd :

A real-valued function f defined on Rd is said to be quasi-concave (Dharmadikhari and

Joag-Dev 1988, pp. 84–85) if fx : f (x) > cg is convex for each real c.

Proposition 4.2 (Quasi-concavity property; Rousseeuw and Ruts 1999, Proposition 1). As

a function of x, D is quasi-concave.

Proposition 4.3 (Maximality property; Rousseeuw and Ruts 1999, Proposition 7). D

attains its supremum.

Proposition 4.4 (Strong uniform consistency property). Almost surely,

lim
n!1

kDn � Dk1 ¼ 0:

Proof. See Donoho and Gasko (1992, pp. 1816–1817). h

In the following, for any two sets A and B, let A˜B denote the symmetric difference of

A and B, that is (AnB) [ (BnA).

Proposition 4.5. Let F satisfy condition (S).

(i) The function (x, u) 7! FH[x, u] is continuous on Rd 3 U .

(ii) The function x 7! D(x) is continuous.

Proof. (i) Indeed, let fxng, fung be sequences in Rd and U respectively, such that xn ! x

and un ! u. Then

jFH[xn, un] � FH[x, u]j < F(H[xn, un]˜H[x, u]);

hence continuity follows by condition (S) and dominated convergence.

(ii) This is a straightforward extension of the proof of Lemma 6.1 in Donoho and Gasko

(1992) for absolutely continuous distributions. h

Remark 4.1. Clearly D is not continuous at x0 if x0 is an atom. If F is non-atomic but such

that F(@H) . 0 for some H 2 H, then: (i) for some x 2 @H , u 7! FH[x, u] is not

continuous; (ii) for u ? @H, x 7! FH[x, u] is not continuous on @H .

According to Proposition 4.3, we may set

Æ� � Æ�(F) :¼ max
Rd

D(x):
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For any Æ 2 (0, Æ�], let

QÆ :¼ fx : D(x) > Æg:

As Æ increases from 0 to Æ�, Propositions 4.2 and 4.5 above and Proposition 5 in Rousseeuw

and Ruts (1999) imply that the QÆs form a decreasing family of non-empty compact convex

subsets of Rd .

The next proposition points to a close relationship between the minimal half-spaces and

the compact convex QÆs. Recall that a hyperplane h is said to support a set C at a point

x 2 @C if x 2 h and C is contained in one of the two closed half-spaces having h as their

boundary (Valentine 1964, Definition 2.8). Let S(F) denote the support of F, that is, the set

of points whose neighbourhoods all have positive F-probability.

Proposition 4.6. Let F satisfy (S), and assume S(F) is connected. If H[x, v] is a minimal

half-space at x such that 0 , D(x) ¼ FH[x, v] ¼ Æ , 1, then x 2 @QÆ and @H[x, v] is a

hyperplane of support of QÆ at x.

Proof. To prove that x 2 @QÆ, take any neighbourhood W of x. Let y 2 W \ H[x, v] such

that v9 � y . v9 � x. Then by the connectedness of S(F), FH[x, v] � FH[y, v] . 0. Indeed, if

not so, part of the support is contained in H[y, v] (a set of probability Æ) and part of it in

H[x, v]c (of probability 1 � Æ). This clearly implies that S(F) � A [ B, where A is the

interior of H[(x þ y)=2, v] and B ¼ H[(x þ y)=2, v]c, which contradicts connectedness.

Thus D(y) , Æ, and so x 2 @QÆ. To show that @H[x, v] is a hyperplane of support of QÆ at

x, take any z 2 QÆ. If D(z) . Æ, then clearly v9 � z , v9 � x. If D(z) ¼ Æ and v9 � z . v9 � x,

then the connectedness of S(F) implies that D(z) < FH[z, v] , FH[x, v] ¼ Æ, a

contradiction. This shows that QÆ � fy : v9 � y < v9 � xg, hence @H[x, v] is a hyperplane

of support of QÆ at x. h

Remark 4.2. If S(F) is not connected, it is not necessarily true that D(x) ¼ Æ implies

x 2 @QÆ. Indeed, let F be the mixture distribution on R2 given by 0:25U1 þ 0:75U2, where

U1, U2 are uniform on the disks of radius 1/2 centred at (�1, 0) and (1, 0), respectively. Then

S(F) is not connected and fx : D(x) ¼ 0:25g strictly includes @Q0:25.

Recall that a convex subset of Rd is said to be smooth at a point on its boundary if there

is a unique hyperplane of support at that point (Valentine 1964, p. 134); otherwise the

convex set is said to be rough at the point. For a compact convex set with a non-empty

interior, it is known that the set of smooth boundary points is dense within the boundary

(Eggleston 1969, p. 32). In the plane, a more precise result says that the set of rough

boundary points is countable (Valentine 1964, Theorem 10.7). Under the hypotheses of

Proposition 4.6, if x is of positive depth Æ, then the boundary of each of its minimal half-

spaces is a hyperplane of support of QÆ at x. Thus, uniqueness of a minimal half-space at a

point x 2 @QÆ depends on the smoothness of @QÆ at x.

Examples 4.1 and 4.2 below show that some points of positive depth may possess several

minimal half-spaces. Furthermore, Example 4.2 exhibits a bidimensional distribution such

that QÆ (0 , Æ , Æ�) has three boundary points through which infinitely many hyperplanes
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(i.e. straight lines) of support pass while each such point has exactly two minimal half-

planes.

Example 4.1. Let F be the elliptically symmetric distribution on Rd with density

f �,�(x) / (det�)�1=2 g([(x � �)9��1(x � �)]1=2),

where � 2 Rd , � is a positive definite matrix and g is a non-negative function on [0, 1)

whose support is an interval. Then QÆ is an ellipsoid given by

QÆ ¼ fx : (x � �)9��1(x � �) < k(Æ)g

for some strictly decreasing continuous function k : (0, 1=2] ! [0, 1) such that k(1=2) ¼ 0.

Here, for any 0 , Æ , 1=2, each point x of depth Æ has a unique minimal half-space whose

border is a tangent to the boundary @QÆ. Indeed, Proposition 4.6 applies and there exists a

unique hyperplane of support of QÆ at x. Moreover, the point of symmetry � is the unique

point of maximal depth 1=2, and each half-space H[�, u], u 2 U , is minimal at �. In the

terminology of Section 2, all points of depth less than 1=2 are smooth, whereas the point of

symmetry is rough.

Example 4.2. Let F be the uniform distribution on the solid equilateral triangle in R2. Then a

simple geometric argument (Caplin and Nalebuff 1988, p. 794) shows that the unique point of

maximal depth Æ� ¼ 4=9 is the centroid. For 0 , Æ , 4=9, each point of the contour @QÆ

belongs to a tangent line bounding a half-plane of probability Æ. Clearly, @QÆ is determined

by the envelope of the family of all such bounding lines. Figure 1, drawn with Mathematica,

illustrates some of the contours thus obtained. Each point of a contour has either exactly one

hyperplane (i.e. straight line) of support, except for three points located on the axes of

symmetry which have infinitely many such straight lines. Furthermore, each of the points on

the axes of symmetry has exactly two minimal half-planes and all the other points on the

contours have only one. Finally, among points of positive depth it can be seen that the

centroid is alone in having exactly three minimal half-planes. In the terminology of Section 2,

Figure 1. Contours of depths 0.01, 0.1, 0.2, 0.3, 0.4 for the uniform distribution
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all points are smooth except for the centroid and three points on each contour of depth

, 4=9.

If F satisfies (S) and S(F) is connected, Proposition 4.6 shows that, for a point belonging

to a contour, smoothness or roughness is determined by the shape of the contour at the

point, specifically through the existence of exactly one or several hyperplanes of support at

the point. To a great extent, the shape of the contours is governed by the degree of

symmetry in the distribution. Exhibiting the highest level of symmetry, the elliptical

distributions of Example 4.1 determine points of positive depth that are always smooth,

except for the centre. Another instance of high symmetry is provided by the uniform

equilateral triangle of Example 4.2. More generally, for each positive integer n > 3 one

could easily show that all points of the solid uniform regular polygon with n sides are

smooth except for the centroid and n rough points on each contour. Furthermore, maximal

depth is attained at the centroid and the latter depth is 1/2 if and only if n is even (Donoho

and Gasko 1992, Lemma 6.2). Rousseeuw and Ruts (1999) have studied the contours of

solid uniform regular polygons, obtaining in particular that, for odd m,

Æ? ¼ 1

2
� (tan (�=2m)2

2m
:

It has been seen that the centre of symmetry of an elliptically symmetric distribution is

always rough. More generally, if F is the distribution of a random variable X such that, for

some point �, (X � �)=kX � �k and �(X � �)=kX � �k are identically distributed, then �
is a rough point. Indeed, FH[�, u] is then constant as u varies in U . Such a distribution is

said to be angularly symmetric about � (Liu 1990, p. 409).

It is believed that all distributions have at least one rough point. The following

proposition gives a sufficient condition under which a point of maximal depth is rough. If

X has the distribution F and u 2 U, let Fu denote the one-dimensional distribution of the

projection u9 � X . According to Proposition 4.1, there is no loss of generality in assuming

that 0 is a point of maximal depth.

Proposition 4.7. For every u 2 U, assume Fu has a density f u such that, for some R . 0,

inf
u2U

inf
j tj<R

f u(t) ¼ � . 0:

Then 0 2 RF .

Proof. As in Donoho and Gasko (1992, pp. 1818–1820), the conditions imply that there is a

set of minimal directions fui, i 2 Jg at 0, where J has cardinality between 2 and d þ 1.h

Remark 4.3. The condition in Proposition 4.7 is satisfied for instance if F has a density

which is positive in the neighbourhood of 0.

Example 4.3. As the following example shows, a point of maximal depth is not necessarily

rough, even if the maximal depth is greater than 1/2. Let F be the mixture distribution
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0:75�0 þ 0:25U0, where U0 is uniform on a unit half-disk with diameter centred at 0. Then

D(0) ¼ Æ� ¼ 0:75 and 0 has a unique minimal half-plane. Of course, F does not satisfy (S).

Example 4.4. To illustrate some of the results of Section 2, we return to Examples 4.1 and

4.2 and note that in each of them F satisfies (LR). In Example 4.1, Corollary 2.2 implies

that, for each x 6¼ � with D(x) . 0, fLn(x)g has a Gaussian limit distribution. This is no

longer the case at the centre of symmetry �. Indeed, since each closed half-space H[�, u],

u 2 U , is minimal at �, Corollary 2.2 implies that Ln(�) ¼ n1=2[Dn(�) � 0:5] converges in

distribution to J (�F)(�) � inf u2U �F H[�, u], where, for all u, v 2 U , �F H[�, u] is

N (0, 1=4), P(�F H[�, u]�F H[�, v]) ¼ F(H[�, u] \ H[�, v]) � FH[�, u]FH[�, v]. Since

�F H[�, u] and �F H[�, �u] have a correlation of �1 for every u, it follows that the limit

distribution at � is non-positive, and therefore non-Gaussian.

In Example 4.2, all smooth points of positive depth determine a Gaussian limit. Each

rough point x of depth Æ , 4=9 located on the axes of symmetry has exactly two minimal

half-planes. Denoting these half-planes by H[x, v1(x)] and H[x, v2(x)], the limit distribution

is, according to Corollary 2.2, that of minf�F H[x, v1(x)], �F H[x, v2(x)]g. As for the

centroid C, it has three minimal half-planes, say H[C, v1(C)], H[C, v2(C)] and

H[C, v3(C)]. Acccording to Corollary 2, it follows that Ln(C) converges in distribution

to minf�F H[C, v1(C)], �F H[C, v2(C)], �F H[C, v3(C)]g.

5. Proofs

5.1. Weak convergence in a not necessarily separable metric space

As indicated earlier, the empirical depth process Ln is viewed as a map into the metric

space of bounded functions ‘1(Rd). In what follows, the study of the asymptotic behaviour

of Ln intimately involves that of the usual empirical process, also seen as a map into the

non-separable space ‘1(Rd). It is well known that in general the latter map is not Borel

measurable (van der Vaart and Wellner 1996, p. 3), which led us in Section 2 to understand

weak convergence in the Hoffman–Jørgensen sense. The corresponding notion of tightness

is now presented.

Let fX ng be a sequence of not necessarily Borel measurable maps from (�, F , P) into a

metric space (S, d0). Then fX ng is asymptotically tight (van der Vaart and Wellner 1996,

Definition 1.3.7) if for every E . 0 there exists a compact subset K of S such that

inf
�.0

lim inf
n

P�(X n 2 K�) > 1 � E,

where P� denotes inner probability and K� ¼ fy 2 S : d0(y, K) , �g. In general,

asymptotic tightness and the usual notion of (uniform) tightness do not coincide; however,

both notions are the same when (S, d0) is separable (van der Vaart and Wellner 1996, p. 27).

All processes used in this paper can be regarded as maps into some space of bounded

functions. Weak convergence of such maps can be studied with the help of the following

two criteria, also taken from van der Vaart and Wellner (1996).
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Proposition 5.1 (van der Vaart and Wellner 1996, Theorem 1.5.4). Let X n, n ¼ 1,

2, . . . , X , be maps from (�, F , P) into ‘1(T ), where ‘1(T ) is the space of bounded

functions on T equipped with the uniform norm and X is supposed to be Borel measurable

and tight. Then X n ? X if and only if fX ng is asymptotically tight and the marginals of X n

converge weakly to the marginals of X .

Proposition 5.2 (van der Vaart and Wellner 1996, Theorem 1.5.6). A sequence

fX n : (�, F , P) ! ‘1(T )g is asymptotically tight if and only if fX n(t)g is tight for every

t 2 T and, for all E, � . 0, there exists a finite partition T ¼
Sk

i¼1 Ti such that

lim sup
n

P� sup
i

sup
s, t2Ti

jX n(s) � X n(t)j . E
� �

, �:

5.2. Proofs for Sections 2 and 3

If F satisfies (S), then it can be seen that V (x) is a closed subset of U . If v 2 V (x), we say

that a closed subset U (v) of U is an isolating set for v if U (v) \ V (x) ¼ fvg. Existence of

appropriate coverings of U by isolating sets for the minimal directions at points of positive

depth is needed in most of the limit theorems that follow. Clearly, if condition (LR) holds,

then such a covering exists: for each x such that D(x) . 0,

U ¼
[

v2V (x)Ux(v)

for some isolating sets Ux(v). In what follows, non-uniqueness of such coverings has no

impact on the limit theorems.

The next lemma relates uniform convergence of the Tukey empirical depth with the

strong uniform law of large numbers (Pollard 1984, Theorem II.14).

Lemma 5.3. Suppose that F satisfies condition (LR). For each x of positive depth, let

fUx(v), v 2 V (x)g denote a covering of U by isolating sets. Then

sup
fx :D(x).0g

sup
v2V (x)

����� inf
u2Ux(v)

F̂Fn H[x, u] � D(x)

����� < sup
H2H

j(F̂Fn � F)H j:

Proof. This clearly follows from the fact that, for every v 2 V (x),���� inf
u2Ux(v)

F̂Fn H[x, u] � D(x)

���� ¼
���� inf

u2Ux(v)
F̂Fn H[x, u] � inf

u2Ux(v)
FH[x, u]

����
< sup

u2Ux(v)

����(F̂Fn � F)H[x, u]

����
< sup

H2H
j(F̂Fn � F)H j:
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h

The following lemma is critical for the understanding of the asymptotic distribution of

the empirical Tukey depth. In its proof, convergence of a sequence fH[xn, un]g to

H[x0, u0] in H means that xn ! x0 and un ! u0. For any A � Rd, write

Hmin(A) :¼ fH[x, v] : x 2 A, v 2 V (x)g:

If H[x, v] 2 Hmin(A), let

ºn H[x, v] :¼ n1=2 inf
u2Ux(v)

F̂Fn H[x, u] � FH[x, v]

� �
, D(x) . 0,

0, D(x) ¼ 0,

8<
:

thus defining a map ºn into ‘1(Hmin(A)).

Lemma 5.4. Let F satisfy condition (LR). Let A be a closed subset of Rd having no

accumulation point in RF . Then fºng converges weakly to �F restricted to Hmin(A).

Proof. Clearly, without loss of generality one can assume that all elements of A are of

positive depth. For every x, let fUx(v), v 2 V (x)g be a covering of U by isolating sets. For

every x 2 A and v 2 V (x), choose un(x, v) 2 Ux(v) depending on ø 2 � such that

F̂Fn H[x, un(x, v)] ¼ inf
u2Ux(v)

F̂Fn H[x, u]:

Then

ºn H[x, v] ¼ n1=2 F̂Fn H[x, un(x, v)] � F̂Fn H[x, v]
� �

þ �n H[x, v]

¼ �n H[x, un(x, v)] þ n1=2 FH[x, un(x, v)] � FH[x, v]ð Þ,

and so

�n H[x, un(x, v)] < ºn H[x, v] < �n H[x, v]:

Since the restriction of �n to Hmin(A) converges weakly to the limit appearing in the

statement, it is enough to show that �n(H[x, v] � H[x, un(x, v)]) ¼ oP� (1) uniformly in

Hmin(A) as n ! 1, that is, for every E . 0,

lim sup
n!1

P�(sup fj�n(H[x, v] � H[x, un(x, v)])j : x 2 A, v 2 V (x)g . E) ¼ 0:

Note that outer probability is used here to guard against non-measurability problems.

For m ¼ 1, 2, . . . , put

F m :¼ fH1 � H2 : H1, H2 2 H, F(H1˜H2) , 1=mg:

It follows that, for all m,
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P�(supfj�n(H[x, v] � H[x, un(x, v)])j : x 2 A, v 2 V (x)g . E)

< P sup
f 2F m

j�n f j . E

 !
þ P�(supfF(H[x, v]˜H[x, un(x, v)]) : x 2 A, v 2 V (x)g > 1=m),

where measurability of the supremum on F m is guaranteed by the existence of a countable

dense subset of F m. Since H is a Vapnik–Chervonenkis class, hence a Donsker class, the

asymptotic uniform equicontinuity of the empirical process entails that the first term on the

right-hand side of the last inequality is less than E=2 if m and n are large enough (van der

Vaart and Wellner 1996, Prob. 14, p. 152). The proof will conclude by showing that

supfF(H[x, v]˜H[x, un(x, v)(ø)]) : x 2 A, v 2 V (x)g

converges almost uniformly to 0 in ø (van der Vaart and Wellner 1996, Definition 1.9.1), that

is, for each � . 0 there is some B 2 F with P(B) . 1 � � such that

sup
ø2B

supfF(H[x, v]˜H[x, un(x, v)(ø)]) : x 2 A, v 2 V (x)g ! 0

as n ! 1. It is known that this implies convergence in outer probability (van der Vaart and

Wellner 1996, Lemma 1.9.2), therefore the second term in the last inequality will be less than

E=2 if n is large enough.

Suppose that the asserted almost uniform convergence does not hold. Then there exist

�0 . 0, E0 . 0 and a sequence of positive integers fnkg such that, for any B 2 F with

P(B) . 1 � �0,

sup
ø2B

supfF(H[x, v]˜H[x, un k
(x, v)(ø)]) : x 2 A, v 2 V (x)g . E0 (2)

for k ¼ 1, 2, . . .. Now, according to the strong uniform law of large numbers, there exists a

null set N 2 F such that supfj(F � F̂Fn(ø))H j : H 2 Hg , E0=4 if ø 2 �nN and n is large

enough. Egoroff’s theorem (Dudley 1989, Theorem 7.5.1) says that this holds true uniformly

on some measurable set with probability greater than 1 � �0. Choose such a B in (2). For

ø 2 B and n large enough, it follows from Lemma 5.3 that

supfF(H[x, v]˜H[x, un(x, v)(ø)]) : x 2 AnQE0=4, v 2 V (x)g

< supfFH[x, v] : x 2 AnQE0=4, v 2 V (x)g

þ supfFH[x, un(x, v)(ø)] : x 2 AnQE0=4, v 2 V (x)g

< E0=2 þ supfF̂Fn(ø)H[x, un(x, v)(ø)] : x 2 AnQE0=4, v 2 V (x)g

< E0=2 þ supfD(x) : x 2 AnQE0=4g þ E0=4

< E0:

The foregoing implies that we may replace (2) by
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sup
ø2B

supfF(H[x, v]˜H[x, un k
(x, v)(ø)]) : x 2 A \ QE0=4, v 2 V (x)g . E0

for k ¼ 1, 2, . . .. Hence we can find øk in B, xk in A \ QE0=4, vk 2 V (xk) such that

F(H[xk , vk]˜H[xk , un k
(xk , vk)(øk)]) . E0 (3)

for k ¼ 1, 2, . . ..
By compactness, there exist subsequences fxk j

g in A \ QE0=4, fvk j
g and

funk j
(xk j

, vk j
)(øk j

)g in U , converging to some x0 2 A \ QE0=4, v0 2 U and ~vv0 2 U,

respectively. Proposition 4.5 then implies that

D(x0) ¼ lim
j!1

D(xk j
) ¼ lim

j!1
FH[xk j

, vk j
] ¼ FH[x0, v0],

so that v0 2 V (x0). Let us show that ~vv0 is also minimal at x0. Since����D(xk j
) � inf

u2Uxk j
(v k j

)
F̂Fn k j

(øk j
)H[xk j

, u]

���� ¼ jD(xk j
) � F̂Fn k j

(øk j
)H[xk j

, unk j
(xk j

, vk j
)(øk j

)]j

and

j(F � F̂Fn k j
(øk j

))H[xk j
, un k j

(xk j
, vk j

)(øk j
)]j < sup

ø2B

sup
H2H

j(F � F̂Fnk j
(ø))H j,

Proposition 4.5 and Lemma 5.3 imply that

FH[x0, ~vv0] ¼ lim
j!1

FH[xk j
, unk j

(xk j
, vk j

)(øk j
)]

¼ lim
j!1

F̂Fnk j
(øk j

)H[xk j
, un k j

(xk j
, vk j

)(øk j
)]

¼ D(x0),

hence ~vv0 2 V (x0).

If ~vv0 ¼ v0, dominated convergence implies that (3) is violated for k ¼ k j large enough,

therefore we may assume that ~vv0 6¼ v0, so that x0 2 RF . Since A has no accumulation point

in RF , x0 has to be an isolated point and so xk j
¼ x0 for j large enough. Now, according to

our assumptions, V (x0) either has isolated points only or is identical to U . In the first case,

it is seen that vk j
¼ v0 2 V (x0) if j is large enough. Since

unk j
(xk j

, vk j
)(øk j

) 2 Uxk j
(vk j

) ¼ Ux0
(v0)

for j large enough, it follows that un k j
(xk j

, vk j
)(øk j

) ! ~vv0 ¼ v0, a contradiction. Finally, if

V (x0) ¼ U , Ux0
(v) ¼ fvg for all v 2 V (x0), therefore un k j

(xk j
, vk j

)(øk j
) ¼ vk j

if j is large

enough, leading again to ~vv0 ¼ v0. h

Write Hmin � Hmin(Rd). If � 2 ‘1(Hmin), let

J (�)(x) :¼ inf
v2V (x)

�H[x, v], x 2 Rd ,

thus defining J : ‘1(Hmin) ! ‘1(Rd). The proof of T\heorem 2.1 below will use the fact that
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Ln ¼ J (ºn). For any A � Rd, the above obviously induces a map J A from ‘1(Hmin(A)) into

‘1(A), where the two spaces of bounded functions are equipped with the uniform norm.

Lemma 5.5. For any A � Rd, J A is a uniformly continuous map.

Proof. Given �1, �2 2 ‘1(Hmin(A)),

kJ (�1) � J (�2)kA ¼ sup
x2A

���� inf
v2V (x)

�1 H[x, v] � inf
v2V (x)

�2 H[x, v]

����
< sup

x2A

sup
v2V (x)

j�1 H[x, v] � �2 H[x, v]j

¼ k�1 � �2kHmin(A),

hence the lemma follows. h

Proof of Theorem 2.1. Since �F is tight Borel measurable, Lemma 5.5 implies that, as a map

into ‘1(A), J (�F) is tight Borel measurable. Furthermore, because fx : Dn(x) ¼ 0g is almost

surely open, one can see that the paths of Ln are almost surely 0 on fx : D(x) ¼ 0g. This

implies that almost surely Ln ¼ J (ºn), therefore the first statement follows from Lemma 5.4

and the continuous mapping theorem (van der Vaart and Wellner 1996, Theorem 1.3.6). h

Let afffxi, 1 < i < ng (spanfxi, 1 < i < ng) denote the affine (linear) space generated

by x1, . . . , xn in Rd . Recall that the affine space generated by x1, . . . , xn is defined by

afffxi, 1 < i < ng :¼
Xn

i¼1

ºixi : for all º1, . . . , ºn 2 R such that
Xn

i¼1

ºi ¼ 1

( )
:

Furthermore, x1, . . . , xn are said to be affinely independent if none of these points belongs to

the affine space generated by the remaining points.

Lemma 5.6. Let g : R2 3 R2 3 R2 7! R be the map defined by

g(x1, x2, x3) ¼ 1aff(x2,x3)(x1):

Then g is a Borel function.

Proof. Put x :¼ (x1, x2, x3) and C :¼ fx : x2 6¼ x3g. Let gC and gCc denote the restrictions of

g to C and Cc, respectively. Since C is an open set, it suffices to check that both gC and gCc

are Borel functions (Dudley 1989, Lemma 4.2.4).

To prove that gC is a Borel function, it is enough to show that it is upper semicontinuous

or, equivalently, that fx 2 C : gC(x) ¼ 0g is open. Assume the contrary. Then for some

x0 2 C there exists a sequence fx n :¼ f(xn
1 , xn

2 , xn
3 )g in C such that x n ! x0 and gC(x0)

¼ 0 , gC(x n) ¼ 1 for every n. Let fºng be a sequence in R such that xn
1 ¼ ºnxn

2 þ
(1 � ºn)xn

3 for every n. We claim that fºng is bounded. If not, one can assume without loss

of generality that jºnj ! 1. Then since
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lim
n!1

xn
2 þ (ºn)�1(1 � ºn)xn

3 ¼ x0
2 � x0

3 6¼ 0,

one has

jx0
1j ¼ lim

n!1
jºnkxn

2 þ (ºn)�1(1 � ºn)xn
3 j ¼ 1,

a contradiction. Thus fºng is bounded and there exists some subsequence which converges to

a real number º0. This implies that x0
1 ¼ º0x0

2 þ (1 � º0)x0
3, which contradicts the hypothesis

that x0
1 =2 afffx0

2, x0
3g.

Finally, Borel measurability of gCc follows from the fact that

fx 2 Cc : gCc (x) ¼ 1g ¼ fx 2 Cc : x ¼ (x1, x1, x1)g

is a closed subset of Cc. h

Lemma 5.7. Assume F is a probability distribution on R2 which satisfies condition (S). Let

I � f1, 2, . . . , mg where m is fixed. Then for any I such that 1 < jI j < 3, the X i such that

i 2 I are affinely independent almost surely. In particular:

(i) if jI j ¼ 2, then afffX i, i 2 Ig is a straight line almost surely;

(ii) if jI j ¼ 3, then afffX i, i 2 Ig ¼ R2 almost surely.

Proof. To avoid trivialities, assume jI j . 1. For any l 2 I, write I l :¼ Inflg. According to

Lemma 5.6, g(X 1, X2, X3) is measurable, hence condition (S) and Fubini’s theorem yield

P(X l 2 afffX i, 2 I lg) ¼
ð

P(X l 2 afffxi, 2 I lg)dF(j I j�1(xi, 2 I l)

¼ 0,

since any affine space afffxi, 2 I lg is contained in a straight line. h

Lemma 5.8. Assume F is a probability distribution on R2 which satisfies condition (S). Let y

be any fixed point in R2. Then, for every m, Dm is almost surely continuous at y.

Proof. Put maxx2R2 Dm(x) ¼ k�m=m. For k ¼ 0, 1, . . . , k�m, define the empirical trimmed

region

Qm
k :¼ fx : Dm(x) > k=mg

and let ~QQm
k denote the interior of Qm

k . By upper semicontinuity of Dm (Donoho and Gasko

1992, Lemma 6.1), (Qm
k )c is open, hence Dm is continuous in the open set

[k�m�1

k¼0

~QQm
k nQm

kþ1

0
@

1
A [ ~QQm

k�m
:

If y is a discontinuity point of Dm, then y belongs to some boundary @Qm
k , where

414 J.-C. Massé



Dm(y) ¼ k > 1 because ~QQm
0 ¼ R2. It will now be shown that this event occurs with

probability 0.

Given that y belongs to @Qm
k , k > 1, let (yn) in (Qm

k )c be such that yn ! y. For every n,

let H[yn, un] be a minimal closed half-plane at yn. By compactness, it can be assumed

without loss of generality that H[yn, un] ! H[y, u0] for some u0. For every n and x 2 Qm
k ,

u9n � yn . u9n � x, hence @H[y, u0] is a straight line of support of Qm
k at y; we next show

that this line contains at least one data point.

Because y has depth k, F̂Fm H[y, u0] ¼ (k þ p)=m for some p > 0. Put

I :¼ fi 2 f1, 2, . . . , mg : u90 � X i ¼ u90 � yg,

J :¼ fi 2 f1, 2, . . . , mg : u90 � X i . u90 � yg

and

K :¼ fi 2 f1, 2, . . . , mg : u90 � X i , u90 � yg:

We need to prove that I is non-empty. This is obvious if J is empty, hence assume jJ j > 1.

Then by continuity, u9n � X i . u9n � yn for every i 2 J if n is large enough. Since H[yn, un] is

minimal at yn 2 (Qm
k )c, it follows that jJ j ¼ k þ p � jI j < F̂Fm H[yn, un] , k, hence jI j . p.

If y 2 @Qm
k , the above shows that, for some non-empty I, fyg [ afffX i, i 2 Ig is

contained in a straight line of support of Qm
k at y. Two events may then occur: either

y 2 afffX i, i 2 Ig, or y =2 afffX i, i 2 Ig. Since afffX i, i 2 Ig is contained in a line,

Lemma 5.7 implies that the first (second) event has probability 0 if jI j . 2 (jI j . 1). For

smaller values of jI j, it is next shown that both events again have probability 0. Since there

is are finite number of equally likely choices for the random set I , without loss of

generality we assume in the following that I is fixed.

Let y 2 afffX i, i 2 Ig with 1 < jI j < 2. For any i 2 I, P(X i ¼ y) ¼ 0, hence we may

assume jI j ¼ 2. Note that

y 2 afffX i, i 2 Ig()X l 2 afffy, X i, i 2 I lg for some l 2 I :

The argument used in the proof of Lemma 5.6 implies that the indicator function of the event

X l 2 afffy, X i, i 2 I lg is measurable. Thus, another application of (S) and Fubini’s theorem

yields

P(y 2 afffX i, i 2 Ig) ¼ P(X l 2 afffy, X i, i 2 I lg for some l 2 I)

¼
X
l2 I

P(X l 2 afffy, X i, i 2 I lg)

¼ 0:

Now let I ¼ flg and assume y =2 afffX lg (i.e. y 6¼ X l), where y and X l both belong to a

straight line of support of Qm
k at y. Suppose this event occurs with positive probability. As

above, one has

P(y 2 spanfX lg) ¼ P(y 2 afff0, X lg) ¼ 0,

so that y and X l are linearly independent almost surely. Thus, with positive probability there
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exists w 2 R2 such that w9 � y . 0 and w9 � X l , 0. Again, let @H[y, u0] denote the straight

line of support at y defining I , J and K. For every n large enough, put

vn :¼ u0 þ w=n

ju0 þ w=nj 2 U ,

so that vn ! u0 as n ! 1. Then, by continuity, for n large enough, v9n � X i . v9n � y for

every i 2 J, and v9n � X i , vn9 � y for every i 2 K; furthermore, by the choice of w, for all n,

vn9 � X l , v9n � y. As seen above, jJ j , k, therefore, for n large enough, Dm(y)

< F̂Fm H[y, vn] ¼ jJ j=m , k=m. This contradiction establishes that the second event holds

with probability 0, which concludes the proof. h

Proof of Theorem 2.4. By Proposition 5.1, it suffices to check that fLng is not asymptotically

tight when its index set is restricted to some neighbourhood W of x0. For every x 2 Rd,

fLn(x)g is a convergent sequence of real-valued Borel measurable maps, hence is tight.

According to Proposition 5.2, the assertion follows if we can find E0 . 0 and �0 . 0 such

that, for any partition W ¼
Sk

i¼1 Ti,

lim sup
n

P� sup
i

sup
x, y2Ti

jLn(x) � Ln(y)j . E0

 !
> �0:

Let fxng be any sequence in SF such that xn ! x0. Then J (�F)(xn) is Gaussian for every

n, hence J (�F)(xn) 6! J (�F)(x0) in probability, since otherwise J (�F)(x0) would have to be

Gaussian or 0 almost surely. Thus there exist E0, �0 . 0 and sequences of increasing

integers fnkg and fpkg such that

P(jJ (�F)(xn k
) � J (�F)(x pk

)j . E0) > �0, k ¼ 1, 2, . . .:

Without loss of generality, it can be assumed that for all k, xnk
, x pk

2 Ti for some fixed i. For

any fixed m and y ¼ x0, Lemma 5.2 shows that Lm(xn j
) ! Lm(x0) almost surely as j ! 1.

For every k, weak convergence of marginals thus implies

�0 < lim
m!1

P(jLm(xn k
) � Lm(x pk

)j . E0)

< lim inf
m!1

P� sup
i

sup
x, y2Ti

jLm(x) � Lm(y)j . E0

 !
,

which concludes the proof. h

Proof of Theorem 3.2. The proof follows closely that of Dümbgen (1992, Theorem 3). For

some Łn(x) between D(x) and Dn(x), Taylor’s theorem gives

n1=2

ð
(x � L(F))W (Dn(x))F̂Fn(dx)

¼
ð

(x � L(F))W 9(Łn(x))Ln(x)F̂Fn(dx) þ
ð

(x � L(F))W (D(x))�n(dx),
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where �n is the normalized empirical measure and

kŁn � Dk1 < Rn :¼ kDn � Dk1: (4)

We shall prove thatð
(x � L(F))W 9(Łn(x))Ln(x)F̂Fn(dx) ¼

ð
B(y)�n(dy) þ o�P(1):

First, for 0 , � < 1, let

ø(�) :¼ sup fjW 9(t1) � W 9(t2)j : t1, t2 2 [0, 1], jt1 � t2j < �g

denote the modulus of continuity of W 9. Almost surely, for any x such that D(x) < Æ0=2 and

n large enough, it follows from (4) and Proposition 4.4 that Łn(x) < Æ0, so that����
ð

(x � L(F)) W 9(Łn(x)) � W 9(D(x))½ �Ln(x)F̂Fn(dx)

����
< ø(Rn)kLnk1

ð
QÆ0=2

jx � L(F)jF̂Fn(dx)

¼ o�P(1):

Indeed, this follows from the uniform continuity of W 9, the strong law of large numbers and

the boundedness in probability of kLnk1:

inf
H2H

�n H < Ln(x) < sup
H2H

�n H , x 2 Rd :

Next, since F satisfies (LR), Corollary 2.3 implies that fLng is asymptotically tight on

AF :¼ fx : D(x) < Æ1g; therefore, for any E . 0, there exists a compact subset K of

Cr(AF) such that

lim inf
n

P�(Ln 2 KE=2) > 1 � E:

By total boundedness, K can be covered by a finite union of balls of radius E=2 centred at

f 1, . . . , f p 2 K. This means that with inner probability at least 1 � E and n large enough,

minikLn � f ikAF
, E. Since W is constant on [Æ1, 1], it follows that����

ð
(x � L(F))W 9(D(x))Ln(x)(F̂Fn � F)(dx)

����
< 2E max

x2AF

j(x � L(F))W 9(D(x))j þ max
i

����
ð
AF

(x � L(F))W 9(D(x)) f i(x)(F̂Fn � F)(dx)

����,
hence we conclude that the left-hand term of the last inequality is o�P(1).

Now, since kLn � �n H[�]kAF
¼ o�P(1), the above and Fubini’s theorem imply that
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ð
(x � L(F))W 9(Łn(x))Ln(x)F̂Fn(dx)

¼
ð

(x � L(F))W 9(D(x))Ln(x)F(dx) þ o�P(1)

¼
ð

(x � L(F))W 9(D(x))�n H[x]F(dx) þ o�P(1)

¼
ð

B(y)�n(dy) þ o�P(1):

Combining the foregoing results, we obtain

n1=2

ð
(x � L(F))W (Dn(x))F̂Fn(dx)

¼
ð

[B(x) þ (x � L(F))W (D(x))]�n(dx) þ o�P(1):

Finally, it can be shown in the same way thatð
W (Dn(x))F̂Fn(dx) !

ð
W (D(x))F(dx)

almost surely, hence the assertion follows by the multivariate central limit theorem. h
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