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We consider Bayesian inference in the linear regression problem with an unknown error distribution

that is symmetric about zero. We show that if the prior for the error distribution assigns positive

probabilities to a certain type of neighbourhood of the true distribution, then the posterior distribution

is consistent in the weak topology. In particular, this implies that the posterior distribution of the

regression parameters is consistent in the Euclidean metric. The result follows from our generalization

of a celebrated result of Schwartz to the independent, non-identical case and the existence of

exponentially consistent tests of the complement of the neighbourhoods shown here. We then

specialize to two important prior distributions, the Polya tree and Dirichlet mixtures, and show that

under appropriate conditions these priors satisfy the positivity requirement of the prior probabilities of

the neighbourhoods of the true density. We consider the case of both non-stochastic and stochastic

regressors. A similar problem of Bayesian inference in a generalized linear model for binary responses

with an unknown link is also considered.

Keywords: consistency; Dirichlet mixtures; exponentially consistent test; Kullback–Leibler number;

linear regression; Polya tree; posterior distribution

1. Introduction

This paper addresses the consistency of the posterior in regression problems when the

unknown distribution of the error variable is endowed with a nonparametric prior. Thus our

observations are Y1, Y2, . . . , where

Yi ¼ Æþ �xi þ Ei, i ¼ 1, 2, . . . ; (1:1)

here the errors Ei are independent and identically distributed (i.i.d.) f , with f a density

symmetric around 0, and x1, x2, . . . are the values of the covariate X . These may arise as

fixed non-random constants or as i.i.d. observations of a random variable X with a known or

unknown distribution.

The unknown parameters are f , Æ, � and formally the parameter space is
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¨ ¼ F 3 R3 R, where F is the set of all symmetric densities on R. We start with a prior
~—— for f and, independent of f , a prior � for (Æ, �). Let — stand for the prior ~——3 �.

Fix ( f 0, Æ0, �0) in ¨. The sequence of posteriors —(�jY1, Y2, . . . , Yn) is said to be

consistent for ( f , Æ, �) at ( f0, Æ0, �0) if —(UjY1, . . . , Yn) converges to 1 almost surely as

n ! 1 for any neighbourhood U of ( f 0, Æ0, �0), when the distribution governing

Y1, Y2, . . . has the ‘true’ parameter ( f 0, Æ0, �0). An exactly similar definition holds if we

want posterior consistency only for the parametric part (Æ, �) at ( f 0, Æ0, �0). It will turn

out that the sufficient condition for the latter is weaker than that for the posterior

consistency of ( f , Æ, �).

The idea of posterior consistency is due to Freedman (1963), though, in a sense, it goes

back to Bayes, Laplace and Von Mises. The relevance of posterior consistency to Bayesians

is explained well in Diaconis and Freedman (1986a). Diaconis and Freedman (1986a;

1986b) also provide an example of inconsistency, in a relatively simple setting, for location

models with symmetric error distributions. A similar example of inconsistency for the

location problem with error distribution having median 0 is given by Doss (1985a; 1985b).

The problem of interest then is to identify all or at least a large class of parameter values

where consistency obtains. In this paper, although we approach the problem in some

generality, it is geared to handling two classes of popular priors on densities – the Polya

tree priors and Dirichlet mixtures of a normal kernel.

Recent reviews focusing on general issues of consistency are Ghosal et al. (1999a),

Ghosh (1998) and Wasserman (1998). In Ghosal et al. (1999a; 1999b) and Ghosh (1998) it

is argued that a theorem of Schwartz (1965) is the right tool for studying consistency in

semi-parametric problems. The same is true of the present paper. However, since the

observations are independent but not identically distributed, major changes are needed. We

begin with a variant of Schwartz’s theorem for independent, non-identically distributed

variables. This is discussed in Section 2, while in Sections 3 and 4, we discuss how one can

verify the two conditions of this theorem. The lack of i.i.d. structure for the Yi necessitates

assumptions on the xi to ensure that the exponentially consistent tests required by

Schwartz’s theorem exist in the present context. Also certain conditions on f 0 are required

to verify a condition analogous to Schwartz’s on the support of the prior. In Section 4, we

relate the properties of the prior on F to that on the regression parameters and obtain a

theorem on consistency. We show in the next section that Polya tree priors of the sort

considered in Ghosal et al. (1999b) fulfil the requirements. We then turn to Dirichlet

mixtures of normal kernel priors. The posterior consistency of these in the context of

density estimation was studied in Ghosal et al. (1999c). In Section 6 we explore similar

problems in the regression setting. In Section 7 we discuss a similar problem of generalized

linear models with binary responses and an unknown link function. This may be viewed as

a nonparametric generalization of the logistic regression model. A Dirichlet process prior is

put on the link distribution function and the consistency of the posterior is briefly discussed.

Section 8 indicates the modifications necessary to handle the case of a stochastic regressor.

Although we prove consistency when the covariates are one-dimensional, the argu-

ments easily generalize to more than one dimension. For that we will only need to

modify Proposition 3.1 by looking at quadrants under the appropriate modification of

Assumption A.
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Nonparametric and semi-parametric Bayesian methods are now being used more and

more. In view of the example of Diaconis and Freedman (1986a; 1986b), it seems

appropriate to see if some validation can be provided through posterior consistency. It will

be also interesting to study the rate of convergence of the posterior distribution, as is done

in Ghosal et al. (2000). In particular, it is of substantial interest to see whether the posterior

distribution for the parametric part converges at the classical
ffiffiffi
n

p
rate. We have not

attempted to answer this question here, and will return to it elsewhere.

2. Consistency of posterior

Fix f 0, Æ0, �0. For a density f, let

fÆ,�,i ¼ fÆþ�xi
(y) ¼ f (y � (Æþ �xi)) (2:1)

and put f 0i ¼ f 0,Æ0,�0,i. For any two densities f and g, let

K( f , g) ¼
ð

f log
f

g
, V ( f , g) ¼

ð
f logþ

f

g

� �2

; (2:2)

where logþx ¼ max (log x, 0), and put

Ki( f , Æ, �) ¼ K( f 0i, fÆ,�,i), Vi( f , Æ, �) ¼ V ( f0i, fÆ,�,i): (2:3)

As mentioned in the Introduction, the main tool we use is a variant of Schwartz’s (1965)

theorem. The following theorem is an adaptation to the case when the Yi are independent

but not identically distributed. Here the xi are non-random. We start with the definition of

exponentially consistent tests.

Definition 2.1. Let W & F 3 R3 R. A sequence of test functions �n(Y1, . . . , Yn) is said to

be exponentially consistent for testing

H0 : ( f , Æ, �) ¼ ( f0, Æ0, �0) against H1 : ( f , Æ, �) 2 W (2:4)

if there exist constants C1, C2, C . 0 such that

(a) E— n
1 f0i

�n < C1e�nC

(b) inf
( f ,Æ,�)2W

E— n
1 fÆ,�,i

(�n) > 1 � C2e�nC

Theorem 2.1. Suppose ~—— is a prior on F and � is a prior for (Æ, �). Let W & F 3 R3 R. If

(i) there is an exponentially consistent sequence of tests for

H0 : ( f , Æ, �) ¼ ( f 0, Æ0, �0) against H1 : ( f , Æ, �) 2 W,

(ii) and for all � . 0,

— ( f , Æ, �) : Ki( f , Æ, �) , � for all i,
X1
i¼1

Vi( f , Æ, �)

i2
, 1

( )
. 0,
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then with (
Q1

i¼1 Pf0i
)-probability 1, the posterior probability

—(WjY1, . . . , Yn) ¼

ð
W

Yn

i¼1

( fÆ,�i(Yi)= f 0i(Yi))d—( f , Æ, �)

ð
F3R3R

Yn

i¼1

( fÆ,�i(Yi)= f 0i(Yi))d—( f , Æ, �)

! 0: (2:5)

Note that Vi( f , Æ, �) bounded above in i is sufficient to ensure the summability ofP1
i¼1Vi( f , Æ, �)=i2.

The proof of the theorem is similar to that of Schwartz (1965). If we write (2.5) as

—(WjY1, . . . , Yn) ¼ I1n(Y1, . . . , Yn)

I2n(Y1, . . . , Yn)
, (2:6)

the proof involves showing, as is done in Schwartz (1965), that condition (i) implies that

there exists a d . 0 such that end I1n(Y1, . . . , Yn) ! 0 a.s., and that condition (ii) implies

that for all d . 0, end I2n(Y1, . . . , Yn) ! 1 a.s. A sketch of the details is given in the

appendix.

It should be noted here that the theorem could have been stated in much more generality,

for any semi-parametric problem. Consistency of the posterior holds as long as there is an

exponentially consistent test for testing the point null against the complement of the

required neighbourhood and (ii) holds. In Section 7 we apply this idea to a binary response

regression model with an unknown link.

3. Exponentially consistent tests

Our goal is to establish consistency of the posterior distribution for ( f , Æ, �) or for (Æ, �)

at ( f0, Æ0, �0), and thus the set W of interest to us is of the type W ¼ U c, where U is a

neighbourhood of ( f0, Æ0, �0). In this section we write W of this type as a finite union of

Wis and show that condition (i) of Theorem 2.1 holds for each of these Wis. Note that

condition (i) does not involve the prior.

We begin with a couple of lemmas.

Lemma 3.1. For i ¼ 1, 2, . . . let g0i and gi be densities on R. If for each i there exists a

function �i, 0 < �i < 1, such that

E g0i
(�i) ¼ Æi < ªi ¼ E gi

(�i), (3:1)

and if

lim inf
n!1

1

n

Xn

i¼1

(ªi � Æi) . 0, (3:2)

then there exist a constant C, sets Bn & Rn, n ¼ 1, 2, . . . , and n0 – all depending only on

(ªi, Æi) – such that, for n . n0,

294 M. Amewou-Atisso, S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi



Yn

i¼1

Pg0i

" #
(Bn) , e�nC

Yn

i¼1

Pgi

" #
(Bn) . 1 � e�nC :

Proof. Set Bn ¼ f
Pn

i¼1�i .
Pn

i¼1(ªi þ Æi)=2g. Then by Hoeffding’s inequality (Dudley

1999, p. 14)

Yn

i¼1

Pg0i

" #
(Bn) <

Yn

i¼1

Pg0i

" # Xn

i¼1

(�i � E g0i
(�i)) .

Xn

i¼1

(ªi � Æi)

( )

< exp � 1

2n

Xn

i¼1

(ªi � Æi)

 !2
2
4

3
5: (3:3)

On the other hand, applying Hoeffding’s inequality to 0 < 1 ��i < 1,

Yn

i¼1

Pgi

" #
(Bc

n) <
Yn

i¼1

Pgi

" # Xn

i¼1

((1 ��i) � (1 � E gi
�)) <

Xn

i¼1

(ªi � Æi)=2

( )

< exp � 1

2n

Xn

i¼1

(ªi � Æi)

 !2
2
4

3
5:

Taking C ¼ 1
4

lim infn!1((1=n)
Pn

i¼1(ªi � Æi))
2, the result follows. h

For a density g and Ł 2 R, let gŁ stand for the density gŁ(y) ¼ g(y � Ł).

Lemma 3.2 Let g0 be a continuous symmetric density on R, with g0(0) . 0. Let 
 be such

that inf j yj,
 g0(y) ¼ C . 0.

(i) For any ˜ . 0, there exists a set B˜ such that

Pg0
(B˜) < 1

2
� C(˜ ^ 
)

and, for any symmetric density g,

PgŁ(B˜) > 1
2
, for all Ł > ˜:

(ii) For any ˜ , 0, there exists a set ~BB˜ such that

Pg0
( ~BB˜) < 1

2
� C(˜ ^ 
)

and, for any symmetric density g,

PgŁ( ~BB˜) > 1
2
, for all Ł < ˜:

Proof. (i) Take B˜ ¼ (˜, 1). Since Ł > ˜ and gŁ is symmetric around Ł, PgŁ (B˜) > 1
2
.
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On the other hand,

Pg0
(B˜) ¼ 1

2
�
ð˜

0

g0(y)dy <
1

2
�
ð˜^


0

g0(y)dy <
1

2
� C(˜ ^ 
): (3:5)

Similarly, ~BB˜ ¼ (�1, ˜) would satisfy (ii). h

Remark 3.1. By considering I B˜(y � Ł0), it is easy to see that Lemma 3.2 holds if we replace

g0 by g0,Ł0
and require Ł� Ł0 . ˜ or Ł� Ł0 , ˜:

We return to the regression model.

Assumption A. There exists �0 . 0 such that the covariate values xi satisfy

lim inf
n!1

1

n

Xn

i¼1

Ifxi , ��0g . 0, lim inf
n!1

1

n

Xn

i¼1

Ifxi . �0g . 0:

Remark 3.2. Assumption A forces the covariate x to take both positive and negative values,

that is, values on both sides of 0. However, the point 0 is not special. If the condition is

satisfied around any point, then by a simple location shift we can bring that to the present

case.

Proposition 3.1. If Assumption A holds, f 0 is continuous at 0 and f 0(0) . 0, then there is an

exponentially consistent sequence of tests for

H0 : ( f , Æ, �) ¼ ( f0, Æ0, �0) against H1 : ( f , Æ, �) 2 W

in each of the following cases:

(i) W ¼ f( f , Æ, �) : Æ . Æ0, �� �0 . ˜g,

(ii) W ¼ f( f , Æ, �) : Æ , Æ0, �� �0 . ˜g,

(iii) W ¼ f( f , Æ, �) : Æ . Æ0, �� �0 , �˜g,

(iv) W ¼ f( f , Æ, �) : Æ , Æ0, �� �0 , �˜g.

Proof. (i) Let K n ¼ fi : 1 < i < n, xi . �0g and #K n stand for the cardinality of K n. We

will construct a test using only those Yi for which the corresponding i is in K n.

If i 2 K n, then (Æþ �xi) � (Æ0 þ �0xi) . ˜xi, and by Lemma 3.2, for each i 2 K n, there

exists a set Ai such that

Æi :¼ Pf0i
(Ai) ,

1
2
� C(
 ^ ˜xi)

and

ªi :¼ inf
( f ,Æ,�)2W

PfÆ,�,i
(Ai) >

1
2
,

where ‘:¼’ denotes equality by definition.
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If i < n and i =2 K n, set Ai ¼ R, so that Æi ¼ ªi ¼ 1. Thus

lim inf
n!1

n�1
Xn

i¼1

(ªi � Æi)

 !
> lim inf

n!1
n�1

X
i2K n

C(
 ^ ˜xi)

 !

> C(
 ^ ˜�0)lim inf
n!1

#K n=n . 0: (3:6)

With �i ¼ I Ai
, the result follows from Lemma 3.1.

(ii) In this case we construct tests using Yi such that i 2 M n :¼ f1 < i < n : xi , ��0g.

If i 2 M n, then

(Æþ �xi) � (Æ0 þ �0xi) , ˜xi , �˜�0:

Now using (ii) of Lemma 3.2, we obtain sets ~BBi and then obtain exponentially consistent tests

using Lemma 3.1 as in part (i).

The other two cases follow similarly. h

The union of the Ws in Proposition 3.1 is the set f( f , Æ, �) : j�� �0j . ˜g. The next

proposition takes care of f( f , Æ, �) : jÆ� Æ0j . ˜g. The proof is along the same lines and

is omitted.

Proposition 3.2. Under the assumptions of Proposition 3.1, there exists an exponentially

consistent sequence of tests for testing

H0 : ( f , Æ, �) ¼ ( f0, Æ0, �0) against H1 : ( f , Æ, �) 2 W

when W is

(i) f( f , Æ, �) : Æ� Æ0 . ˜, � . �0g,

(ii) f( f , Æ, �) : Æ� Æ0 . ˜, � , �0g,

(iii) f( f , Æ, �) : Æ� Æ0 , �˜, � . �0g,

(iv) f( f , Æ, �) : Æ� Æ0 , �˜, � , �0g.

Remark 3.3. If random f s are not symmetrized around zero, Æ is not identifiable. So the

posterior distribution for Æ will not be consistent. Consistency for � will hold under

appropriate conditions. To prove the existence of uniformly consistent tests for �, we pair Yis

and consider the difference Yi � Y j, which has a density that is symmetric around �(xi � xj).

We can now handle the problem in essentially the same way as in Proposition 3.1 to construct

strictly unbiased tests. A result analogous to Proposition 3.2 then follows immediately. The

verification of the other conditions in Sections 4, 5 and 6 is along exactly similar lines.

The next proposition considers neighbourhoods of f 0 to obtain posterior consistency for

the true density rather than only the parametric part. We need an additional assumption.

Assumption B. For some L, jxij , L for all i.
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In practice, the range of interest of the regressor is often a bounded interval, since the

linearity of the regression function can only be expected on a range of values. Therefore,

the assumption may not be very restrictive from a practical point of view.

Proposition 3.3. Suppose that Assumption B holds. Let U be a weak neighbourhood of f0 and

let W ¼ U c 3 f(Æ, �) : jÆ� Æ0j , ˜, j�� �0j , ˜g. Then there exists an exponentially

consistent sequence of tests for testing

H0 : ( f , Æ, �) ¼ ( f0, Æ0, �0) against H1 : ( f , Æ, �) 2 W:

Proof. Without loss of generality take

U ¼ f :

ð
�(y) f (y) �

ð
�(y) f0(y) , �

� �
, (3:7)

where 0 < � < 1 and � is uniformly continuous.

Since � is uniformly continuous, given � . 0, there exists � . 0 such that jy1 � y2j , �
implies j�(y1) ��(y2)j , �=2.

Let ˜ be such that

j(Æ� Æ0) þ (�� �0)xij , �

for Æ, � 2 W. Set ~��i(y) ¼ �(y � (Æ0 þ �0xi)). Then

E f0i
~��i ¼ E f0

�, E fÆ,�,i
~��i ¼ E f(Æ�Æ0),(���0),i�: (3:8)

Noting thatð
�(y � ((Æ� Æ0) þ (�� �0)xi)) f (Æ�Æ0)þ(���0)xi

(y)dy ¼
ð
�(y) f (y)dy,

we have, by the uniform continuity of �,ð
~��i(y) fÆ,�,i(y)dy >

ð
�(y) f (y)dy �

ð
j�(y) ��(y � ((Æ� Æ0) þ (�� �0)xi))j

3 f (Æ�Æ0
)þ(���0)xi

(y)dy

>

ð
�(y) f (y)dy � �

2

> E f0
�þ �

2

for any f 2 U c. An application of Lemma 3.1 completes the proof. h

4. Prior positivity of neighbourhoods

In this section we develop sufficient conditions to verify condition (ii) of Theorem 2.1. A

similar problem in the location-parameter context was studied in Ghosal et al. (1999b).
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There, the authors managed with Kullback–Leibler continuity of f 0 at Ł0 – the true value

of the location parameter – and the requirement that —fK( f 
0,Ł, f ) , �g . 0 for all Ł in a

neighbourhood of Ł0 and for f 
0,Ł close to but different from f 0. However, this approach

does not carry over to the regression context since, even though the true parameter remains

(Æ0, �0), for each i we encounter parameters Łi ¼ Æ0 þ �0xi. Here we take a different

approach. Since we have no assumptions on the structure of the random condition f , the

assumption on f 0 is somewhat strong. This condition is weakened in Section 6, where we

consider the Dirichlet mixture of normals. In that case, the random f is better behaved.

Lemma 4.1. Suppose f0 2 F satisfies the condition that there exist 
 . 0, C
 and a

symmetric density g
 such that, for j
9j , 
,

f 0(y � 
9) , C
 g
(y), for all y: (4:1)

Then,

(a) for any f 2 F and jŁj , 
,

K( f 0, fŁ) < (C
 þ 1)log C
 þ C
 K(g
, f ) þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(g
, f )

p& '
;

(b) if, in addition, V (g
, f ) , 1, then

sup
jŁj,


V ( f 0, fŁ) , 1:

Proof. Part (a) is an immediate consequence of Lemma 5.1 of Ghosal et al. (1999a) and the

fact that K( f 0,Ł, f ) ¼ K( f 0, fŁ), which follows from the symmetry of f 0 and f .

For (b), note thatð
f 0 logþ

f0

fŁ

	 
2

¼
ð

f 0,Ł logþ
f0,Ł

f

	 
2

< C


ð
g
 logþ

C
 g


f

	 
2

, (4:2)

which is finite under the assumed condition. h

We write the assumption of last lemma as follows:

Assumption C. For 
 . 0, sufficiently small, there exist g
 2 F and constant C
 . 0 such

that for j
9j , 
,

f 0(y � 
9) , C
 g
(y) for all y

and

C
 ! 1 as 
 ! 0:

Proposition 4.1. Suppose that Assumptions B and C hold. Let ~—— be a prior for f , and � be a

prior for (Æ, �). If (Æ0, �0) is in the support of � and if, for all 
 sufficiently small and for all

� . 0,
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~——fK(g
, f ) , �, V (g
, f ) , 1g . 0, (4:3)

then, for all � . 0 and some M . 0,

( ~——3 �)f( f , Æ, �) : Ki( f , Æ, �) , �, Vi( f , Æ, �) , M for all ig . 0: (4:4)

Proof. Choose 
, �0 such that (4.3) holds with � ¼ �0 and

(C
 þ 1)log C
 þ C
[�0 þ
ffiffiffiffiffi
�0

p
] , �:

Let

V ¼ (Æ, �) : jÆ� Æ0j ,



2
, j�� �0j ,




2L

n o
:

Note that

Ki( f 0, Æ, �) ¼ K( f 0, f (Æ�Æ0)þ(���0)xi
)

and

Vi( f 0, Æ, �) ¼ V ( f 0, f (Æ�Æ0)þ(���0)xi
),

and (Æ, �) 2 V implies that j(Æ� Æ0) þ (�� �0)xij , 
 for all xi. An application of Lemma

4.1 immediately gives the result. h

Theorem 4.1. Suppose that:

(i) the covariates x1, x2, . . . satisfy Assumptions A and B;

(ii) f 0 is continuous, f0(0) . 0 and f 0 satisfies Assumption C;

(iii) for all sufficiently small 
 and for all � . 0,

~——fK(g
, f ) , �, V (g
, f ) , 1g . 0,

where g
 is as in Assumption C.

Then for any weak neighbourhood U of f 0,

—f( f , Æ, �) : f 2 U, jÆ� Æ0j , �, j�� �0j , �jY1, Y2, . . . , Yng ! 1 (4:5)

a.s.
Q1

i¼1 Pf0i
. In other words, the posterior distribution is weakly consistent at ( f 0, Æ0, �0).

Proof. Note that

f( f , Æ, �) : f 2 U, jÆ� Æ0j , �, j�� �0j , �gc (4:6)

is the union of sets considered in Propositions 3.1, 3.2 and 3.3. The required exponentially

consistent test therefore exists. Proposition 4.1 shows that condition (ii) of Theorem 2.1 holds

and hence (4.5) follows. h

Remark 4.1. Assumption (ii) of Theorem 4.1 is satisfied if f 0 is Cauchy or normal. If f 0 is

Cauchy, then g
 ¼ f 0 satisfies Assumption C. If f 0 is normal, then Assumption C holds with
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g
 ¼ f s
0,

 ¼ 1

2
f f 0(y � 

) þ f 0(�y � 

)g, (4:7)

where 

 ! 0 as 
 ! 0 but 

=
 ! 1.

Remark 4.2. Assumption B is used in two places: Propositions 3.3 and 4.1. For specific f 0s

one may be able to obtain the conclusion of Proposition 4.1 without Assumption B. In such

cases one would be able to obtain consistency at (Æ0, �0) without having to establish

consistency at ( f 0, Æ0, �0).

Remark 4.3. In order to strengthen Theorem 4.1 to variation neighbourhoods U of f 0, one

also needs to find, for all � . 0, a sequence of subsets F n & F with ~——(F c
n) exponentially

small such that, for some � , �=2 and � , �2=8, the L1-metric entropy J (�, F n) , n�. See

Theorem 2 of Ghosal et al. (1999c) for details.

5. Polya tree priors

In this section we show that Polya tree priors, with a suitable choice of parameters, satisfy

condition (iii) of Theorem 4.1 and hence the posterior distribution is weakly consistent. To

obtain a prior on symmetric densities, we consider Polya tree priors on densities f on the

positive half-line and then consider the symmetrization f s(y) ¼ 1
2

f (jyj): Since

K( f , g) ¼ K( f s, gs) and V ( f , g) ¼ V ( f s, gs), this symmetrization presents no problems.

We briefly recall Polya tree priors; for more details the reader should refer to Lavine

(1992; 1994) and Mauldin et al. (1992).

Let E ¼ f0, 1g, Em ¼ f0, 1gm and E
 ¼
S1

m¼1 Em. For each m, fBE : E 2 Emg is a

partition of Rþ, and for each E, fBE0, BE1g is a partition of BE. Furthermore, fBE : E 2 E
g
generates the Borel � -algebra.

A random probability measure P on Rþ is said to be distributed as a Polya tree with

parameters (—, A), where — is a sequence of partitions as described in the previous

paragraph, and A ¼ fÆE : E 2 E
g is a collection of non-negative numbers, if there exists a

collection fYE : E 2 E
g of mutually independent random variables such that:

(i) each YE has a beta distribution with parameters ÆE0 and ÆE1;

(ii) the random measure P is given by

P(BE1���Em
) ¼

Ym

j¼1,E j¼0

YE1���E j�1

2
4

3
5 Ym

j¼1,E j¼1

(1 � YE1���E j�1
)

2
4

3
5:

We restrict ourselves to partitions — ¼ f—m : m ¼ 0, 1, . . .g that are determined by a

strictly positive, continuous density Æ on Rþ in the following sense: the sets in —m are

intervals of the form

y :
k � 1

2m
,

ð y

�1
Æ(t)dt <

k

2m

� �
:
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Theorem 5.1. Let ~—— be a Polya tree prior on densities on Rþ with ÆE ¼ rm for all E 2 Em. IfP1
m¼1 r�1=2

m , 1, then for any density g such that K(g, Æ) , 1 and E g(log g)2 , 1, we

have, for all � . 0,

lim
M!1

~——f f : K(g, f ) , �, V (g, f ) , Mg . 0: (5:1)

Proof. We will show that

lim
M!1

~——f f : V (g, f ) , Mg ! 1: (5:2)

This, together with Theorem 3.1 of Ghosal et al. (1999b), where it is shown that
~——f f : K( f , g) , �g . 0 when

P1
m¼1 r�1=2

m , 1, would then prove the theorem.

Since

V (g, f ) < E g(log f )2 þ E g(log g)2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E g(log f )2E g(log g)2

q
, (5:3)

it is enough to show that, as M ! 1,

~——fE g(log f )2 . Mg ! 0: (5:4)

If y has the binary expansion E ¼ E1E2 � � �, then, for almost all y,

f (y) ¼ lim
m!1

Ym

j¼1,E j¼0

2YE1���E j�1

2
4

3
5 Ym

j¼1,E j¼1

2(1 � YE1���E j�1
)

2
4

3
5, (5:5)

so that

E g(log f )2 ¼ E g

X1
j¼1,E j¼0

log(2YE1���E j�1
) þ

X1
j¼1,E j¼1

log(2(1 � YE1���E j�1
))

2
4

3
5

2

, (5:6)

where E g now stands for the expectation over E when y has density g.

Now letting E stand for the expectation with respect to ~——, we have, by Chebyshev’s

inequality,

~——[E g(log f )2 . M] < M�1EE g

X1
j¼1,Ej¼0

log (2YE1���E j�1
) þ

X1
j¼1,E j¼1

log (2(1 � YE1���E j�1
))

2
4

3
5

2

:

(5:7)

Interchanging the order of expectations and exploiting independence, the right-hand side of

(5.7) can further be bounded by
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2M�1E g

X1
j¼1,E j¼0

E(log(2YE1���E j�1
))2 þ

X1
j¼1,E j¼0

E(log(2YE1���E j�1
))

0
@

1
A

22
4

þ
X1

j¼1,E j¼1

E(log(2(1 � YE1���Ej�1
)))2 þ

X1
j¼1,E j¼1

E(log(2(1 � YE1���E j�1
)))

0
@

1
A

23
5:

Since YE1���E j�1
and 1 � YE1���E j�1

have the same distribution, the last expression is equal to

2M�1E g

X1
j¼1

E(log(2YE1���E j�1
))2 þ

X1
j¼1

E(log(2YE1���Ej�1
))

 !2
2
4

3
5:

Note that the terms inside E g do not involve the particular sequence E. Letting

j(k) ¼ Ejlog(2Uk)j and ł(k) ¼ E( log(2Uk))2, where U k � Beta(k, k), the last expression

can be written as

2M�1
X1
m¼1

ł(rm) þ
X1
m¼1

j(rm)

 !2
2
4

3
5:

It is shown in the Appendix that j(k) and ł(k) are respectively O(k�1) and O(k�1=2). SinceP1
m¼1 r�1=2

m , 1, both infinite series are summable and hence the last expression goes to 0

as M ! 1. h

Although Polya trees give rise to naturally interpretable priors on densities and lead to

consistent posterior, sample paths of Polya trees are very rough, having discontinuities

everywhere. Such a drawback can easily be overcome by considering a mixture of Polya

trees. Posterior consistency continues to hold in this case since, by Fubini’s theorem, prior

positivity holds under mild uniformity conditions.

6. Dirichlet mixture of normals

In this section, we look at random densities that arise as mixtures of normal densities. Let

�h denote the normal density with mean 0 and standard deviation h. For any probability P

on R, f h,P will stand for the density

f h,P(y) ¼
ð
�h(y � t)dP(t): (6:1)

Our model consists of a prior � for h and a prior ~—— for P. Consistency issues related to these

priors, in the context of density estimation, are explained in Ghosal et al. (1999c). Here we

look at similar issues when the error density f in the regression model is endowed with these

priors.
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To ensure that the prior sits on symmetric densities, we let P be a random probability on

Rþ and set

f h,P(y) ¼ 1

2

ð
�h(y � t)dP(t) þ 1

2

ð
�h(y þ t)dP(t): (6:2)

We will denote by ~—— both the prior for P and the prior for f h,P.

The following lemma shows that the random f generated by the prior under

consideration is more regular than those generated by Polya tree priors, and hence the

conditions on f 0 are more transparent than those in Section 5 or those in Ghosal et al.

(1999b).

Lemma 6.1. Let f 0 be a density such thatð
y4 f 0(y)dy , 1 and

ð
f 0(y)jlog f0(y)j2 dy , 1: (6:3)

If f (y) ¼
Ð
�h(y � t)dP(t) and

Ð
t2 dP(t) , 1, then

(i) limŁ!0 K( f 0, fŁ) ¼ K( f0, f );

(ii) limŁ!0 V ( f0, fŁ) ¼ V ( f 0, f ).

Proof. Clearly f (y) is positive and continuous, and

jlog fŁ(y)j < jlog
ffiffiffiffiffiffi
2�

p
hj þ

����log

ð
e�( y�Ł� t)2=(2h2) dP(t)

����: (6:4)

Since log
Ð

e�( y�Ł� t)2=(2h2)dP(t) , 0, by Jensen’s inequality applied to �log x, the last

expression is bounded by

jlog
ffiffiffiffiffiffi
2�

p
hj þ

ð
(y � Ł� t)2

h2
dP(t):

The dominated convergence theorem now applies. h

We now return to the regression model.

Theorem 6.1. Suppose ~—— is a normal mixture prior for f . If

(i) Assumptions A and B hold,

(ii) ~——f f : K( f 0, f ) , �, V ( f 0, f ) , 1g . 0 for all � . 0,

(iii) E f0
(y2) , 1, E f0

(log f 0)2 , 1,

(iv)
Ð Ð

t2 dP(t)d ~——(P) , 1,

then the posterior distribution —(�jY1, . . . , Yn) is weakly consistent for ( f , Æ, �) at

( f 0, Æ0, �0) provided (Æ0, �0) is in the support of the prior for (Æ, �).

Proof. By (iv), fP :
Ð

t2 dP(t) , 1g has ~——-probability 1. So we may assume that
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~——fUg . 0, (6:5)

where U ¼ f f : f ¼ f P, (ii) holds,
Ð

t2 dP(t) , 1g.

For every f 2 U, using Lemma 6.1, choose � f such that, for Ł , � f ,

K( f 0, f ) , �, V ( f 0, f ) , �: (6:6)

Now choose � f such that jÆ� Æ0 þ (�� �0)xij , � f whenever jÆ� Æ0j , � f ,

j�� �0j , � f =L.

Clearly if f 2 U and jÆ� Æ0j , � f and j�� �0j , � f =L, we have

Ki( f , Æ, �) , 2�, Vi( f , Æ, �) , V ( f 0, f ) þ �: (6:7)

Since

~——f( f , Æ, �) : f 2 U, jÆ� Æ0j , � f , j�� �0j , � f =Lg . 0, (6:8)

we have

— ( f , Æ, �) : Ki( f 0, Æ, �) , � for all i,
X1
i¼1

Vi( f , Æ, �)

i2
, 1

( )
. 0: (6:9)

An application of Theorem 2.1 completes the proof. h

It is shown in Ghosal et al. (1999c) that if f0 has compact support or if f 0 ¼ f P with P

having compact support, then ~——f f : K( f0, f ) , �g . 0 for all � . 0. The argument given

there also shows that in these cases condition (ii) of Theorem 6.1 holds when ~—— is Dirichlet

with base measure ª. Ghosal et al. (1999c) also describe f 0s whose tail behaviour is related

to that of ª such that ~——f f : K( f 0, f ) , �g . 0. In the case when the prior is Dirichlet, the

double integral in (iv) is finite if and only if
Ð

t2 dª(t) , 1. While normal f 0 is covered by

these results the case of Cauchy f 0 cannot be resolved by the methods in that paper.

However, Dirichlet location and scale mixtures of normal should be able to handle Cauchy

f 0 which is a normal scale mixture. This scale mixing measure does not have a compact

support so the results of Ghosal et al. (1999c) still do not apply.

7. Binary response regression with unknown link

A distinguishing feature of the regression problem considered in this paper is the change in

the parameter value with i. A similar situation arises in other models such as the regression

of the Bernoulli parameter with an unknown link function. This may be viewed as a

nonparametric version of logistic regression problems and the methods developed here can

be used to handle these problems too. We give an indication of how this can be done

without going into much detail.

Consider k levels of a drug on a suitable scale, say x1, . . . , xk, with probability of a

response (which may be death or some other specified event) pi, i ¼ 1, . . . , k. To study the

effects at different levels, n subjects are treated with the drug. The ith level of the drug is

given to ni subjects and the number of responses ri noted. We thus obtain k independent
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binomial variables with parameters ni and pi, where n ¼ n1 þ . . . þ nk . The object usually

is to find x such that p ¼ 0:5. Often, pi is modelled as

pi ¼ F(Æþ �xi) ¼ H(xi), (7:1)

say, where F is a response distribution and Æ and � are parameters. Here pi may be estimated

by ri=ni, but if the ni are small, the estimates will have large variances. The model provides a

way of combining all the data. In logistic regression, F is taken as logistic function. Other

link functions such as the normal distribution function are also used. The choice of the

functional form of the link function is somewhat arbitrary, and this may substantially

influence inference, particularly at the two ends where the data is sparse. In recent years,

there has been a lot of interest in link functions with unknown functional form. In

nonparametric problems of this kind, one puts a prior on F or H. Such an approach was

taken by Albert and Chib (1993), Chen and Dey (1998), Basu and Mukhopadhyay (1998,

2000) among others. If one puts a prior on F, one has to put conditions on F such as

specifying the values of two quantiles to make (F, Æ, �) identifiable. In this case, one can

develop sufficient conditions for posterior consistency at (F0, Æ0, �0) using our variant of

Schwartz’s theorem. However, in practice, one usually puts a Dirichlet process or some other

prior on F and, independently of this, a prior on (Æ, �). Due to the discreteness of Dirichlet

selections, many authors actually prefer the use of other priors such as Dirichlet scale

mixtures of normals; see Basu and Mukhopadhyay (1998, 2000) and the references therein.

Because of the lack of identifiability, the posterior for (Æ, �) is not consistent. This will show

up in simulations as flat, rather than peaked, posteriors. On the other hand, a Dirichlet process

prior and a prior on (Æ, �) provide a prior on H and one can ask for posterior consistency of

H�1(1
2
) at, say, H�1

0 (1
2
). This problem can be solved by Theorem 2.1 as follows.

Without loss of generality, one may take ni ¼ 1 for all i, and hence k ¼ n. To verify

condition (ii) of Theorem 2.1, consider

Zi ¼ log
(H0(xi))

ri (1 � H0(xi))
1�ri

(H(xi))ri (1 � H(xi))1�ri
, (7:2)

where ri is 1 or 0 with probability H(xi) and 1 � H(xi) respectively, and the true H is

denoted by H0. Then

E H0
(Zi) ¼ H0(xi)log

H0(xi)

H(xi)
þ (1 � H0(xi))log

1 � H0(xi)

1 � H(xi)
(7:3)

and

E H0
(Z2

i ) < 2H0(xi) log
H0(xi)

H(xi)

� �2

þ 2(1 � H0(xi))log
1 � H0(xi)

1 � H(xi)

� �2

: (7:4)

Assume that the xi lie in a bounded interval containing H�1
0 (1

2
), and the support of H0

contains a bigger interval. Since the range of the xi is bounded, the sequence of formal

empirical distributions n�1
Pn

i¼1�xi
of x1, . . . , xn is relatively compact. Assume that all

subsequential limits converge to distributions which give positive measure to all non-

degenerate intervals, provided the intervals are contained in a certain interval containing

H�1
0 (1

2
). Therefore, a positive fraction of the xi lie in an interval of positive length if the
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interval is close to the the point H�1
0 (1

2
). Also assume that H0 is continuous and the support

of the prior for H contains H0. For instance, if the prior is Dirichlet with a base measure

whose support contains the support of H0, then the above condition is satisfied. Mixture

priors often have large supports too. For instance, the Dirichlet scale mixture of normal prior

used by Basu and Mukhopadhyay (1998; 2000) will have this property if the true link

function is also a scale mixture of normal cumulative distribution functions.

If H� is a sequence converging weakly to H0, then, by Polya’s theorem, the convergence

is uniform. Note that the functions p log( p=q) þ (1 � p)log((1 � p)=(1 � q)) and

p(log( p=q))2 þ (1 � p)(log((1 � p)=(1 � q)))2 in q converge to 0 as q ! p, uniformly in

p lying in a compact subinterval of (0, 1). Thus given � . 0, we can choose a weak

neighbourhood U of H0 such that if H 2 U, then E H0
(Zi) , � and the E H0

(Z2
i ) are

bounded. By the assumption on the support of the prior, condition (ii) of Theorem 2.1

holds.

For the existence of exponentially consistent tests in condition (i) of Theorem 2.1,

consider, without loss of generality, testing H�1(1
2
) ¼ H�1

0 (1
2
) against H�1(1

2
) . H�1

0 (1
2
) þ �

for small � . 0. Let

K n ¼ fi : H�1
0 (1=2) þ �=2 < xi < H�1

0 (1=2) þ �g:

Since

E H (ri) ¼ H(xi) < H(H�1
0 (1=2) þ �) < 1

2
(7:5)

and

E H0
(ri) ¼ H0(xi) > H0(H�1

0 (1=2) þ �=2) . 1
2
, (7:6)

the test

1

#K n

X
i2K n

ri ,
1

2
þ 
 (7:7)

for 
 ¼ (H0(H�1
0 (1

2
) þ �=2) � 1

2
)=2 is exponentially consistent by Hoeffding’s inequality and

the fact that #K n=n converge to positive limits along subsequences. Therefore Theorem 2.1

applies and the posterior distribution of H�1(1
2
) is consistent at H�1

0 (1
2
).

8. Stochastic regressor

In this section, we consider the case where the independent variable X is stochastic. We

assume that the X observations X1, X 2, . . . are i.i.d. with a probability density function

g(x) and are independent of the errors E1, E2, . . . . We argue below that all the results on

consistency hold under appropriate conditions.

Let G(x) ¼
Ð x

�1 g(u)du, denote the cumulative distribution function of X . We shall

assume that the following condition holds:
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Assumption D. The independent variable X is compactly supported and 0 , G(0�) <

G(0) , 1.

Under these assumptions, results will follow from a conditionality argument and the

corresponding results for the non-stochastic case, conditioned on a sequence x1, x2, . . . such

that Assumptions A and B hold. Note that if g satisfies Assumption D, then P1
g -almost all

sequences x1, x2, . . . satisfy Assumptions A and B.

Observe that for a stochastic x1, x2, . . . with a known density g, the expressions for the

posterior probabilities are still given by (2.6), as the factor —n
i¼1 g(xi) is cancelled in the

numerator and the denominator. As g has no role, we need no knowledge of it provided

that it is a priori independent of the other parameters. We need not specify a prior

distribution for g, but assume that the sampled gs are compactly supported and satisfy

Assumption D. If f 0 and the prior ~—— satisfy conditions (ii) and (iii) of Theorem 4.1, it then

follows that, for any neighbourhood U of f0,

~——f( f , Æ, �) : f 2 U, jÆ� Æ0j , �, j�� �0j , �j(X 1, Y1), . . . , (Xn, Yn)g ! 1

a.s. P1
f0, g0,Æ0,�0

, where Pf0, g0,Æ0,�0
is the distribution of (X , Y ), X has density g0,

Y ¼ Æ0 þ �0 X þ E, X is independent of E and E has density f 0.

Thus if X is stochastic and Assumption D replaces Assumptions A and B in Theorems

5.1 and 6.1, posterior consistency holds.

Appendix

Lemma A.1. Let f and g be probability densities. Let k f � gk1 ¼
Ð
j f � gj stand for the

L1-distance and let Kþ( f , g) ¼
Ð

f logþ( f =g) and K�( f , g) ¼
Ð

f log�( f =g), where

log�x ¼ max (�log x, 0). Then

K�( f , g) < 1
2
k f � gk <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K( f , g)=2

p
(A:1)

and

Kþ( f , g) < 1
2
k f � gk þ K( f , g) < K( f , g) þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K( f , g)=2

p
: (A:2)

Proof. Using log x < x � 1, as in Hannan (1960), we obtain K�( f , g) ¼Ð
g. f f log(g= f ) <

Ð
g. f (g � f ) ¼ k f � gk1=2. The second part of (A.1) follows from

Kemperman’s inequality (Kemperman 1969, Theorem 6.1). Relation (A.2) follows because

Kþ ¼ K þ K�. h

Remark A.1. Using the inequality log x < 2(
ffiffiffi
x

p � 1), the following alternative bound can be

derived:

K�( f , g) < k f � g1k � H2( f , g), (A:3)

where H2( f , g) ¼
Ð

( f 1=2 � g1=2)2 is the squared Hellinger distance.
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Proof of Theorem 2.1. The proof proceeds along the same lines as in Theorem 6.1 of

Schwartz (1965). Here is a sketch of the argument.

Write the posterior probability in (2.5) as

I1n

I2n

< �n þ (1 ��n)I1n

I2n

, (A:4)

where I1n and I2n are as in (2.6).

Clearly, in view of the Borel–Cantelli lemma, condition (a) in Definition 2.1 implies that

�n ! 0 a.s.
Q1

i¼1 Pf0i
.

Note that

E— n
1 f0i

((1 ��n)I1n) ¼
ð

(1 ��n)

ð
Wc

Yn

i¼1

fÆ,�,i(yi)

f 0i(yi)
d—( f , Æ, �)

Yn

i¼1

f 0i(yi)dyi

¼
ð
Wc

ð
(1 ��n)

Yn

i¼1

fÆ,�,i(yi)dyi d—( f , Æ, �)

< sup
Wc

E—n
1 fÆ,�,i

(1 ��n)

< C2e�nC :

Therefore,

enC=2(1 ��n)I1n ! 0 (A:5)

a.s.
Q1

i¼1 Pf0i
.

Let V be the set displayed in condition (ii) of the theorem. Note that with Wi ¼
logþ( f 0i= fÆ,�,i)(Yi), we have var(Wi) < Vi( f , Æ, �), and hence

P1
i¼1 var(Wi)=i2 , 1 for

all f 2 V. Applying Kolmogorov’s strong law of large numbers for independent non-

identical variables to the sequence Wi � E(Wi), it follows from Lemma A.1 that, for each

f 2 V,

lim inf
n!1

1

n

Xn

i¼1

log
fÆ,�,i(Yi)

f 0i(Yi)

 !
> �lim sup

n!1

1

n

Xn

i¼1

logþ
f 0i(Yi)

fÆ,�,i(Yi)

 !

¼ �lim sup
n!1

1

n

Xn

i¼1

Kþ
i ( f , Æ, �)

> �lim sup
n!1

1

n

Xn

i¼1

Ki( f , Æ, �) þ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki( f , Æ, �)=2

p !

> �lim sup
n!1

1

n

Xn

i¼1

Ki( f , Æ, �) þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Ki( f , Æ, �)=2

s !
:(A:6)

a.s.
Q1

i¼1 Pf0i
. Since, for f 2 V, n�1

Pn
i¼1 Ki( f , Æ, �) , �, we have, for each f 2 V,
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lim inf
n!1

1

n

Xn

i¼1

log
fÆ,�,i(Yi)

f 0i(Yi)
> �(�þ

ffiffiffiffiffiffiffiffi
�=2

p
): (A:7)

Choosing � so that �þ
ffiffiffiffiffiffiffiffi
�=2

p
< C=8 and noting that

I2n >

ð
V

Yn

i¼1

fÆ,�,i(Yi)

f 0i(Yi)
d—( f , Æ, �),

it follows from Fatou’s lemma that

enC=4 I2n ! 1 (A:8)

a.s.
Q1

i¼1 Pf0i
. Combining this with (A.4) and (A.5), we obtain (2.5). Indeed, the convergence

is exponentially fast. This proves the theorem. h

Remark A.2. Condition (ii) of the theorem can be weakened. It can be seen from the proof

that if the prior assigns positive probability to the set

1

n

Xn

i¼1

Ki( f , Æ, �) , � for all n,
X1
i¼1

Vi( f , Æ, �) þ K2
i ( f , Æ, �)

i2
, 1

( )
,

then the posterior is also consistent.

We state Lemma 5.1 from Ghosal et al. (1999b) for easy reference.

Lemma A.2. If f0 < Cf 1, where f 0 and f1 are densities, then, for any f ,

K( f 0, f ) < (C þ 1)log C þ C[K( f 1, f ) þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K( f 1, f )

p
]: (A:9)

Lemma A.3. If U k � Beta(k, k), then

E(log(2Uk))2 ¼ O(k�1): (A:10)

Proof. Let

I k ¼ E(log(2Uk))2 ¼ 1

B(k, k)

ð1

0

(log(2u))2u k�1(1 � u)k�1 du, (A:11)

where B(k, k) ¼
Ð 1

0
u k�1(1 � u)k�1 du is the beta function.

By a change of variable,

I k ¼ 1

B(k, k)

ð1

0

(log 2(1 � u))2u k�1(1 � u)k�1 du: (A:12)
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Note that log(2u) and log(2(1 � u)) are always of opposite sign for 0 , u , 1. Therefore,

2I k ¼ 1

B(k, k)

ð1

0

f(log(2u))2 þ (log(2(1 � u)))2gu k�1(1 � u)k�1 du

¼ 1

B(k, k)

ð1

0

flog(2u) � log(2(1 � u))g2u k�1(1 � u)k�1 du

þ 1

B(k, k)

ð1

0

2(log(2u))(log(2(1 � u)))u k�1(1 � u)k�1 du

<
1

B(k, k)

ð1

0

log
u

1 � u

�  2

u k�1(1 � u)k�1 du: (A:13)

Using the Laplace approximation, it has been shown in the proof of Lemma A.1 of Ghosal et

al. (1999b) that the right-hand side of (A.13) is O(k�1). This completes the proof. h
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