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For j=1,...,J, let K; : R — R be measurable bounded functions and X, = jR a;(n — c;x)M(dx),
n =1, be a-stable moving averages where a € (0, 2), ¢; >0 for j=1,...,J, and M(dx) is an a-
stable random measure on R with the Lebesgue control measure and skewness intensity S € [—1, 1].
We provide conditions on the functions a; and K;, j=1,...,J, for the normalized partial sums
vector N;l/zzﬁll(l{j()(,,,,) — EKj(X;,), j=1,...,J, to be asymptotically normal as N; — oco.
This extends a result established by Tailen Hsing in the context of causal moving averages with
discrete-time stable innovations. We also consider the case of moving averages with innovations that
are in the stable domain of attraction.
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1. Introduction

Our goal is to extend Hsing’s (1999) result on the convergence of bounded functionals of
infinite-variance moving averages. This extension is used in Pipiras et al. (2003) to establish
asymptotic normality of some wavelet-based estimators in linear fractional stable motion.

We first recall Hsing’s result and then describe our extension. Hsing (1999) considered
moving average sequences

Xy=> ajen;, n=1, (1.1)
j=1

where {a;};=1 is a sequence of weights and {¢,},cz is a sequence of independent and
identically distributed (i.i.d.) symmetric a-stable standard random variables with a € (0, 2).
Recall that a random variable ¢ is a-stable with a € (0, 2) if its characteristic function has
the form

v | exp{—0?10]“(1 — ifsign(O)tan(am/2)) + iub} if a #1,
Eexp {ifc} = { exp{—00|(1 + iB2/m)sign(O)In |6]) + iub} if =1

where 0 € R, 0 > 0 is a scale parameter, 4 € R is a shift parameter and g € [—1, 1] is a
skewness parameter. It is called symmetric (SaS, in short) if § =0 and 4 = 0, and standard
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if o =1. Hsing (1999) obtained conditions on the weight sequence {a;};=; for the
normalized partial sums

S —
TR =N ;<K<Xn) — EK(X,)), (12)

where K is a bounded function, to converge in distribution to a Gaussian law, as N — oo.
His result (Hsing 1999, Theorem 1) is stated below. The following notation is used:

/
Xn,l,l - E ajél’l—ja l= 19
=

and

Svi=Y (K(Xu1)—EK(X,0).  [=1.

N
=1

n

Theorem 1.1. Let a € (0, 2) and {X,},=1 be a SaS moving average sequence defined by
(1.1). Suppose that K in (1.2) is a bounded function. Suppose also that

> aj|? < oo (1.3)
j=1
and
lim E(K (X)) - K(X11.1))*=0. (1.4)
Then
llirn limsup N ™' var(Sy — Sy.;) =0
—X N—oo
and
N2y LN, 62,
where

o° = A}im N~var(Sy) = llim A}im N1 var(Sy,;).

We extend this result in the following ways:

e We drop condition (1.4).

e We replace the discrete noise ¢, by a (more general) continuous-time one.

e We consider both symmetric and skewed noise.

e We consider two-sided moving averages, since in the stable case, these are not
equivalent to one-sided ones.
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e We develop a multivariate extension which will be used in Pipiras et al. (2003) to
prove the asymptotic normality of wavelet-based estimators.

e Assuming that K is smooth, we show that the result extends to discrete-time moving
averages with innovations that are in the domain of attraction of an a-stable distribution.

These extensions of Theorem 1.1 are formulated and proved in Sections 2 and 3 below.

2. Results

Consider a-stable moving average sequences {X;,},=1,j=1,...,J, given by

Xjn= J aj(n — c;x)M(dx), 2.1
R

where a € (0, 2), ¢; > 0, a; € L*R, dx) and, in addition, a;In|a;| € LY(R, dx) when a = 1,
and M is an a-stable random measure on R with the Lebesgue control measure m(dx) = dx
and the skewness intensity 5(x) = € [—1, 1] Heuristically, M(dx), x € R, can be viewed as
a sequence of independent a-stable random variables with the scale parameter dx and the
skewness parameter 3. The representation (2.1) means that the characteristic function of
{Xjn j=1,..., J},=1 can be expressed as

q
Eexp{iZGPij,np} = exp{_JR‘f(aa n, js x)

' (1 — iBsign( £(0, n, j, x))tan O‘T”)dx}

p=1
if a # 1, and
q
Eexp iZHPX,-p,nP
p=1
L2
= exp{_J ‘f(oa n, ja x) (1 + lﬂE SIgn(f(aa n, ja x))ln |f(09 n, ja x)|)dx}
R
if a=1, where 0 =(0y,...,0,) R, n=(ny,...,ny)) eN9, j=(j1,....,jg) e {1,...,
J}4 and

q
f(os najsx)zzepajp(np_cjpx), XER
p=1

For more information on stable measures and stable processes, see Samorodnitsky and Taqqu
(1994). In the wavelet setting considered in Pipiras et al. (2003), the indices c; (usually taken
equal to 27/) correspond to ‘scale’ and n to ‘shift’.

Definition 2.1. We will say that the moving average {X;,},=1 is causal if a;,(x)=0 for
x < xg, and non-causal if a;,(x) =0 for x > xy, where xp € R. When {X;,},=1 is either
causal or non-causal, we will say that it is one-sided. We will also call the moving average
{Xn}n=1 two-sided if it is not one-sided.
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Now, fix n;, j=1,...,J, and let N; be positive integers such that
N
Nj~—, (2.2)
nj
as N —oo. For j=1,...,J, set
Sj’Nf 1 &
NI D (KX ) = EK (X)), (2.3)
j joon=l
where K; is some measurable function. For j =1, ..., J and n = 1, define also the truncated
integrals
C;](n*lr‘rl)
Xf,ﬂ,ll,lz = J a,-(n — Cj)C)M(dX), -0 = ll = 12 = 0, (24)
) c;l(nflz) ' '

and X, ;, = 0 for /; > I,. This ordering of the indices is motivated by the fact that, after a
change of variables,

I3
Xt = J a j(z)M(d(c_;l(n - z))), 2.5)
h-1
so the indices /; — 1 and I, refer to the range of the weights a;(z). It is best henceforth to
view X 1,1, as represented by (2.5); for example, one has
Xj,n = Xjn—oo,m—1 + Xj,n,m,oo; for all m € 7. (26)

Define also the corresponding partial sums
Nj
Sivpints = O (Ki(Xjnnn) = EK(Xjnnn))  —o0 =<1y <1b =oo.
n=1

The following result is our first extension of Hsing’s Theorem 1.1. It is proved in Section 3
below.

Theorem 2.1. Let a € (0, 2) and {Xj,,,}nzl, j=1,...,J, be a-stable moving averages
defined by (2.1). Suppose that, for each j=1, ..., J, the kernel a; in (2.1) satisfies the
condition

o0 m 1/2
> (J 1|aj(x)|adx> < . (2.7)

Suppose also that, for each j =1, ..., J, the function K; in (2.3) is bounded if{Xj,n},,;l is
one-sided, and is bounded and twice differentiable with bounded derivatives if {X ;,}n=1 is
two-sided. Then, for j=1,...,J,

limsup N var(S; v, — Sjv,..n) = 0 (2.8)

(11,1)—=(-00,00) N 00

and
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J
(N_;l/zsj,Nf)j:lLN(o, o). 2.9)
The entries of the covariance matrix ¢ = (0 ji);i=1,..s can be obtained as
) Sin; Sk
o = lim E=LoL 200 (2.10)
7 N—oo N;/Z ]\[}{/2
—  lim lim BNk SkNohh (2.11)

(Il —(=00,00) N—0o N}/z N2

If J=1, ¢, =1, ﬂ =0 and a(x) = Ef:lakl[k,l,k)(x), xeR, a, €R in (2.1), then
X1y = Jga(n—x)M(dx) = Y77 jaxc,—x for some sequence {¢;} of iid. SaS random
variables. Condition (2.7) becomes > 7 |ax|*/? < oo, which is (1.3) in Hsing’s Theorem
1.1 above. Observe, however, that Theorem 1.1 also requires condition (1.4). This condition
is missing in Theorem 2.1 because, in fact, it a/lways holds (and it can therefore be removed
from Theorem 1.1). This is shown by the following results which are also used in the proof
of Theorem 2.1.

Lemma 2.1. For a € (0, 2), let X, n = 0, be a-stable random variables such that X, — X
almost surely. Then, for any bounded measurable function K,

lim E(K(Xo) — K(X,))?* =0. (2.12)

Proof. Let f, and ¢,, n = 0, be the density and characteristic functions of X, respectively.
For any € > 0, there is a bounded and continuous function K such that

E(K(Xo) — K(Xo))’ = JR(K(X) — K(x))* fo(x)dx < e.

Indeed, K(x) can be approximated uniformly by a continuous function on a compact interval,
and this interval can be chosen large enough so that the measure of its complement is
arbitrarily small. By using the Fourier inversion formula, we have

1 .
Fulx) = —J e g (ndt, xe€R, n=01,.... (2.13)
27 R
Since X, — Xy a.s., we have X, — X in distribution. Hence, ¢,(1) — ¢o(?), t € R, and
Yn — V0, Pn — Po and 0, — 0¢, where v,, B, and 0,, n = 0, are shift, skewness and scale
parameters of X,. Since sup,=o|¢,(7)| < exp {—C|#|*}, where C depends on yy, fy and oy

only, it follows from (2.13) that f,(x) — fo(x) for x € R. Then, by Scheffé’s theorem (see,
for example, Billingsley 1995),

Jleo(X)  Fa0ldx — 0, (2.14)

By using (2.14) and since K and K are bounded functions, we have that, for large enough n,
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E(K(X,) — K(X,))* = JR(K(X) — K(x))* f(x)dx

< CJ o) — 10| dx + j (K(x) — R folx)dx < c.
R R

Then, by using the inequality (a+ b+ c)* <3a®+3b*+3¢* and the decomposition
K(Xo) — K(X,) = K(Xo) — K(Xo) + (R(Xo) — R(X,)) + K(X,) — K(X,), we obtain that,
for large enough n,

E(K(Xo) — K(X,))* < 6¢+ 3E(K(Xo) — K(X,)).

Since X, — X a.s. and the function K is bounded and continuous, the dominated con-
vergence theorem implies that E(K(X,) — K(X,))> — 0. The conclusion follows because
€ > 0 is arbitrarily small. ]

Corollary 2.1. Condition (1.4) in Theorem 1.1 always holds.

Proof. This follows from Lemma 2.1 since, by Kolmogorov’s three-series theorem,
X1 — Xy as. as [ — oo. O

In the following result, we extend Theorem 1.1 to two-sided moving averages with
innovations that are in the domain of attraction of an a-stable distribution, a € (0, 2), if K
is bounded and is twice differentiable with bounded derivatives. We will assume that the
innovations ¢; satisfy the assumption

Li(z) :=z"P(¢; < —z) ~ c_L(2), (2.15)
Ly(z) :==z"P(¢; = z) ~ ¢y L(2), (2.16)

as z — 0o, where ¢, ¢y =0, c_ +c; > 0 and L is a slowly varying function at infinity (for
definition, see, for example, Bingham et al. 1987). The function L, for example, can behave
like a constant or a logarithm for large z. When 1 < a < 2, we will suppose that E¢; = 0. We
will also use the notation

b
KXo, = Zajénfja I < b,
J=h
N
Snit = Y (KXo 0) = EK(X0,1)), L < b.
n=1

Theorem 2.2. Let

00
X,, = E a;jCp—j, n

j==0

V
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be a moving average with a sequence of i.i.d. innovations {¢;} satisfying assumptions above
with a € (0, 2), and let Sy, N =1, be the partial sums defined by (1.2). Suppose that

1/2
Z |aj|a/2< (| |)> < oo, when a # 1, (2.17)
aj

Jj=—00
1
y+H< )
|a,]

where H and y are defined in (2.20) and (2.21) below, and that K in (1.2) is a bounded
function with its first two derivatives bounded. Then

and

>l ((j, A))m 3 lal”

Jj=—00 Jj=—00

12
< 00, when oo =1, (2.18)

limsup N~ ' var(Sy — Sy.;,.,) =0 (2.19)
(l1,h)—(=00,0) N 00
and
NV2sy L N0, o),
where

0% = ]\}im N~ 'var(Sy) = lim lim N~'var(Sy.;,.1,).

(11,1r)—(—00,00) N—o0

The function H and the constant y in (2.18) of Theorem 2.2 are defined as

L), b
H(z) = L g de L g (2.20)
and
9,2
y :J (1 — +s1gn(x)J T “ Tr oy u> G(dx), 2.21)

where G denotes the distribution function of ¢;. They appear in the representation of a
characteristic function of a random variable in the domain of attraction of a 1-stable random
variable (see Aaronson and Denker 1998). Observe also that / = 0 and y = 0 when ¢; (or its
distribution function G) is symmetric.

Remark 2.1. Conditions (2.17) and (2.18) are equivalent to

> - /
S laf*2 (L0 /) < o,

j==o0

where
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o) L(2) if o £ 1,
Ha = { L(z) + |H(z) + y| ifa=1. (2.22)

The function L is slowly varying at infinity because the functions H (see Lemma 3 in
Aaronson and Denker 1998) and L are slowly varying at infinity.

Remark 2.2. When 1 < a < 2, suppose u = E¢; # 0 and ) |a;| < oo so that the process X,
is well defined. Theorem 2.2 continues to hold since one can replace K(x) by

Ki(x) = K(x — u)_;a;).

3. Proofs

The following three elementary lemmas play an important role. The first lemma is implicit
in Hsing (1999) and the second and third lemmas amplify Lemma 3 in Hsing (1999). We
will use the notation £ = d/f/dx/ for the jth derivative of a function f.

Lemma 3.1. Let X, Y be two random variables such that EX?* < oo and EY? < co. Also let
{F n}nez be a monotone sequence of o-algebras, that is, for ny < ny, either F, C F,, or
Fn, DO F . Then, for all n, m € Z such that n # m, we have

E{(B(X|F ») — EX|F - ))EY [ F) — E(Y[F 1))} = 0. 3.1

Proof. Consider the case when F, C F,, for n; < n, and take, for example, n < m.
Denote the left-hand side of (3.1) by /. Since the random variable E(X|F ,) — E(X|F ,-1) is
F y-measurable and n < m, it is also measurable with respect to F,,_; and F,,. Then, by the
definition of conditional expectation,

I = E{(B(X|F ») — E(X|F »1))E(Y [ Fm)} — E{(E(X|F 1) — B(X|F w))E(Y | F 1)}
= B{(E(X|F ») — BX|F p-1)Y} — E{(E(X|F ) — E(X|F 1)V} = 0. 0

Lemma 3.2. Let g(x) = EG(x + X), where x € R and X is an a-stable standard random
variable with a € (0, 2), scale parameter o > 0, skewness parameter B € [—1, 1] and shift
parameter u = 0. If G is a bounded function, then g is infinitely differentiable and, for all
xeRand j=0,1,...,

D) <4 &9 7 ’
0= ool oty s o

where the constant C; does not depend on o and p.

Proof. Relation (3.2) holds for j =0 since G is bounded. Now suppose j = 1. We have
X =0Z, where Z is an a-stable random variable with scale parameter 1, skewness
parameter 8 and shift parameter u = 0 when a # 1, and 4 = $(2/m)lno when a = 1. Let
f(z) and ¢(z) be the density and characteristic functions of Z, respectively. By using the
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Fourier inversion formula and the integration by parts formula twice, we can express /) as
in Hsing (1999):

Fo =L )Je*%j(t)dr, (3.32)
FD(z) = _& )J e =g\ (ndt, (3.3b)
Z R

where ¢ (1) = t/¢(1), t € R.

When a =1, relation (3.3a) 1mp11es that [f)(z)| < Cj for all z, where C'j does not
depend on ¢ and 8. By computlng ¢ 2 and using relation (3.3b), we can conclude that
IfP@)| < C,(1 +|Ino| + [Ino?)z2 Hence when a =1,

Ci(1+|lno|+|nof)

) =<
| Y(2)] 152 , zeR. 3.4
Similarly, in the case o # 1, one obtains
()
e Sl zeR (3.5)

where the constant C; does not depend on f.
Since, by (3.4) and (3.5), V) € L'(R), we conclude as in Lemma 3 of Hsing (1999) that

g (x) = d‘i J G(x + 02)f(2)dz
d/
= 47| 60—y
~ | )Y (o - o)
= .60 v v

=(~1Yo _-/J G(x + 02)f V(2)dz, (3.6)
R
where in the last step we used the fact that
d/ B e
e =) = (o f e - )

and a change of variables. Inequality (3.2) follows from (3.6) by using (3.4) when a = 1 and
(3.5) when a # 1, since G is bounded. O

Lemma 3.3. Let h(x) =EH(x+ X), where x € R and X is a random variable. If H is
bounded and differentiable up to order r with its derivatives bounded, then for all x € R, all
random variables X and j=0,1,2, ..., r,



842 V. Pipiras and M.S. Taqqu

|hP)| < Cj, (3.7)

where C; = supyer |HY(x)|.

Proof. Let X be any random variable and Fy denote its distribution function. If H is a
bounded and twice differentiable function with its first » derivatives bounded, then one can
show by using relation (16) in Lemma 3 of Hsing (1999) that, for j =0, 1, ..., r

B (x) = J HY(x + z)dF x(2).
R
Inequality (3.7) follows, since the functions H/ are bounded. O

Proof of Theorem 2.1. We will consider the case J = 2 only. To show (2.9) with (2.10) and
(2.11) it is then enough to verify that, for all fixed b;, b, € R, the random variables
biN, 2g v + 0N 172 S, n, converge in distribution to a Gaussian law as N — oo, whose
variance can be expressed as

2 2
S S S S
lim E(b1 LM bz—z’N2> =  lim  lim E<b1 LNGIE | ) Z’NZ”“’Z) :

N-—oo 1/2 Né/2 (11.12)—(—00,00) N—00 N }/ ? N 5/2

We will do this as in the proof of Theorem 1 in Hsing (1999), by arguing first that, for all
—co=[1 =1 =< oo,

SUNL LI So Nyt d 5
by N‘l/; >4 by NE/; 2 — N(0, 07 1) (3.8)
with
S S 2
2 ; LNLILD 2,N,, 1,1
o = lim E b1 +b2 . (39)
I, N—oo ( N}/z N;/z >

and then verifying that, for j = 1, 2, the limit relation (2.8) holds.

To prove (3.8) with (3.9), suppose that n; < n, in (2.2) and assume for simplicity that
N;=N/n; and EK;(X,1,,,) =0 for j=1,2. Since N, < Ny, the sequence in (3.8) can
be written as

blnl/z B N
1/2 Z( 1/2 Kl(Xl,n,ll,lz) + b2K2(X2,n,11,/2) + Nl " % 1 blKl(Xl’n’IIJZ). (310)
n=N+

Now consider the random variables X, ., 7, and X, v 5,5, in (2.4), where ji, j, =1, ..., J.
These are independent when n — n’ > ny for some fixed large enough ny because the
corresponding  kernel functions a;,(n — ¢;x) for c; 1(n —h)sx<g; 1(n — 0+ 1) and
ap(n' —cpx) for ¢!(n' —h)<x<c!(n' =L + 1) have disjoint supports (see Samor-
odnitsky and Taqqu 1994, Theorem 3. 5 3). It follows, using the so-called ‘m-dependent
central limit theorem’, that each of the two terms in (3.10) converges in distribution to a
Gaussian law with the corresponding limiting variances. By summing the second term from
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N} to Ny where the difference Nj — N, is large enough but of fixed length, we observe that
these two terms are also asymptotically independent. This then implies the convergence (3.8)
with (3.9).

We show (2.8) with, for example, j = 1. The proof below involves the random sequence
Xinmm, 1 =1, —00 < m < my < oo. Since

n—m;+1
X v nmim:} pmy ma 2 {Cll/aj aj(n— x)M(dx)} , (3.11)

n—ny
n,my, ny

after a change of variables, we can suppose without loss of generality that ¢; = 1 in (2.4). We
will also assume for simplicity that n; = 1, Ny = N and use the notation a; = a, K; = K,
Sy =588 X1, =X,

n—m;+1
Ximim = Xnmm = J a(n — x)M(dx)
n—nip
and
N
SingL = SN, = Z(K(Xn,ll,lz) — EK(X0,1,1))s —0o < [} < I < o0.
n=1

Recall that our goal is to establish

lim  limsupN ' var(Sy — Sy..5,) = 0. (3.12)

(1,1)—=(=00,00) N—o0
We will prove (3.12) for causal moving averages, non-causal moving averages and two-sided

moving averages separately.

Causal moving averages. We assume for simplicity that xo = 0 in Definition 2.1 of a
causal moving average X, that is, a(x) = 0 for x < 0. We may also suppose without loss of
generality that J"Ol la(x)|*dx # 0. We need to establish (3.12), which now becomes

lim lim sup N ™! var(Sy 100 — Sn.1.1) = 0. (3.13)

=00 N_oo

The proof uses ideas due to Hsing (1999). Let F;_i, k € Z, be o-algebras generated by
the ‘causal’ random variables f—koo S(x)M(dx), f € L*(R, dx). Then, for instance, X,
= :_ ,a(n —x)M(dx), [ =1, is measurable with respect F ,_;. Using the relations

E(K(Xn,l,oc)|fn—l) = K(Xn,l,oo)a
E(K(Xn,l,oo)|'7:foc) = EK(Xn,l,oo)
and, for any /=1,

E(K(Xn,],l)|]:n—l) = K(Xn,l,l)s
E(K(X 51, DIF n—i+1)) = EK(X 1,0),

WE can €xXpress
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N

Svie = P (K(Xp100) = EK(X 11.00))

n=1
and

N

Snai = (KX 1) —EK(X,1.0)
n=1

as telescoping sums,

N oo
SN,I,oc - Z Z(E(K(Xn,l,ooﬂf nfm) - E(K(Xn,l,oo)|fn7(m+l))),
n=1 m=1
N !
Svar =Y (E(KX 1) F nem) = E(K(X 01 DIF n-mi))-
n=1 m=1

We obtain

N o
SNl —SN11 = g E Upm,is

n=1 m=1
where
Unomi = (EK(X n1.00)|F n-m) = B(K(X 10| F n-(mi1)))
— (E(KX n 1 DIF nm) = ECK(X 1 DIF nm1)) Li=m=1y- (3.14)
By Lemma 3.1, the random variables U, ,,; satisfy
cov(Upmits Up 1) =0 unless n —m=n' — m'.
By writing
N 2 N1 2 N 2
E(SN 100 = Sn,1,0)° < 3E< Un,1,1> +3E <Z > Un,m,1> +3E< > Un,m,1> ;
n=1 n=1 m=2 n=1 m=1+1
and then using the decorrelation of {U,,,,;} and the Cauchy—Schwarz inequality, we obtain
E(Sw,i00 — Sn1,0)* <3010+ 30n2.1 + 3083,

where
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N
2
On,1,1 = E EUn,l,I’
n=1

N 1 l

Ovar=>_> > (EU,, ) EUL,, )V

n=1 m=2 m'=2

N [s%) 00
Ovsi=>_ > > (U, )EU,, )"

n=1 m=I[+1 m'=I+1
with n’ = n — m + m’. One then needs to show that

lim lim supN~'Qy.; = 0, fori=1,2,3. (3.15)

[=00 Nooo
We first prove (3.15) for i = 1. We have
E(E(X|G) — E(Y[F))* < 2E(E(X|G))* + 2E(E(Y|F))* < 2E(E(X*|)) + 2E(E(Y*|F))

=2(EX?+EY?).

Applying this inequality to (3.14) gives
N
N0y < AN TE(K(Xi00) = K(X 1)) = 4E(K(X 1 1.00) — K(X11.0)).
n=1

Since, by Kolmogorov’s three-series theorem, X ;; — X1 a.s. as [ — oo, it follows from
Lemma 2.1 that E(K(X 1) — K(X11.1))* — 0 and hence that (3.15) holds with i = 1.

We now prove (3.15) for i =2, 3. Since the function a satisfies (2.7), it is enough to
show that

m

EUfl’m,l < C(J la(x)|* dx) <J la(x)|* dx), for2<m=<|, (3.16)
!

m—1

nom,l

EU? <C<J |a(x)|“dx>, for m =1+ 1. (3.17)
1

m—

We will first establish (3.16). As in (2.6), we have X, 1 = Xuim—1 + Xpmoo and X, 1,
= X, 1.m—1+ Xnmi. Observe that in the decomposition of X, ., for example, the terms
Xuim—1 and X, ,~ are respectively independent and measurable with respect to the o-
algebra F ,_,. Hence setting

km(x) == EK(X + Xn,l,mfl), (318)

we obtain E(K(X .1.00)|F n—m) = k(X n.mo) and E(K(X 1. D|F n—m) = k(X m1). In view
of (3.14), we can then write
Un,m,l - km(Xn,m,oo) - km+l(Xn,m+l,oo) - (km(Xn,m,l) - karl(Xn,erl,l))' (319)

Now denote the distribution functions corresponding to X, . m, and X, mm by Foum, and
F,,, respectively. Since
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Xn,m,oc = Xn,m,m + Xn,m+1,l + Xn,l+1,ooa
Xn,m+1,:>o = Xn,m+1,l + Xn,l+1,oo;

Xn,m,l = Xn,m,m + Xn,m+l,la

we obtain from (3.19) that

B2 = [ [ [ ket 0w = a0 )

— (km(u + V) — k1 (V)Y dF () F 1 1(V)AF 111 00 (W)

By using the relation k,1(z) = EK(z+ Xn1m) = EK(CZ+ Xnimo1 + Xpmm) = f knm(z +
x)dF,,(x), we obtain further that

2
EUim,/ = J J J {J D(u: v, w, X)dFm(X)} dFm(u)an1+1,l(U)dFl+l,oo(W)
RJRJR R

gj J J J D1, 0, W, )" AF (@A F 1 (0 F 110 (0)AF (), (3.20)
RJRJRJIR

where

D(u, v, w, x) = kp(u+0v+w) — kp(©+w+x) — (kp(u+0) — k(v + x)).

Observe now that 4,1 = (fomfl |a(x)| dx)'/* is the scale parameter of the a-stable random

variables X1 ,,—1. Since Ay ,—1, m = 2, is uniformly bounded away from 0 and from infinity,
relation (3.2) of Lemma 3.2 implies that the functions k,(x) have their first two derivatives
bounded uniformly for m = 2 and x € R. Then, by the mean value theorem,

D(u, v, w, x)*> < Cmin{1, w?, (u — x)%, (u — x)*w?}. (3.21)

To show, for example, that D(u, v, w, x)> < Cw?, write D(u, v, w, x) = g2(w) — 22(0) with
aow)=kuy(u+v+w)—ky,(v+w+x) and apply the mean value theorem using the
uniform boundedness of the derivatives k{!(x). To obtain D(u, v, w, x)> < C(u — x)?, write
D(u, v, w, x) = g1(u) — g1(x) with g(z) = k,(z+ v+ w) — k,,(z 4+ v) and apply the mean
value theorem, and to obtain D(u, v, w, x)*> < C(u — x)>w?, use the previous mean value
relationship D(u, v, w, x) = g(ll)(z*)(u —x) and again apply the mean value theorem to
") = kD" + v 4+ w) — k(=" + v). Then, by using (3.20) and (3.21), we obtain that
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EUS,., < C (J (u — x)? dFm(u)dFm(x)> (J w? dFl+1,oc(W)>
—x|<1 [w|<1

Ju
+ C< dFm(Ll)dFm(X)> (J W2 dFl-H,oc(W))
Ju—x[>1 [wl=1

+C (u — x)? dFm(u)dF,,,(x)> (J

Ju—x|<1 |w|>1

dFl+1,oc(W)>

e < dFm(u)dFm(x)> (J dF,H,OC(w)). (3.22)
Ju—x|>1 [w|>1

We will now wuse the fact that, for an «-stable standard random variable Z,
PA|Z] > 1) < CA* and E((AZ)zl{MZKl}) < CA“* for any A > 0, where the constant C does
not depend on the skewness parameter of Z. These bounds follow from the asymptotic
behaviour of the tails P(|Z| > z) ~ cz™* as z — oo (see, for example, Samorodnitsky and

Taqqu 1994, p. 16) and the relation
EX21{|X\Sx0} = f(fo 2xP(|X\ > x)dx which yields E((AZ)zl{Mz‘gl}) =
AZEZZIHZ‘sl/M < A*CA*=2 = CA*. Since AmZ, has the distribution F,, with /I?n =
o la(x)|* dx and 47410 Z> has the distribution Fy . with 47, = [ ]a(x)|* dx, where
Z, and Z, are a-stable standard random variables (with perhaps different skewness
parameters), we conclude that each of the four terms in (3.22) is bounded by CA7 A%, ., and

hence that the bound (3.16) holds. One may prove the bound (3.17) in a similar (in fact,
simpler) manner.

Non-causal moving averages. Assuming for simplicity that xy = 0 in Definition 2.1 for a
non-causal moving average X,, we have X, = f;’c a(n — x)M(dx). We need to prove that

lim limsup N~' var(Sy. 0 — Sy..0) = 0, (3.23)

l=—00 Nooo
where

N
SN0 = 3 (K(Xp 500) = EK(X s c0))

n=1
N

Svio =Y (K(Xy10) = EK(X,10).
n=1

We will show that the proof of (3.23) can be reduced to that of (3.13). While
(X =000 Xny10, [ < 0)p—i, . n does not have the same distribution as
(XN—nt1,-00,00 XN—nt1,20, I < 0),=1_.~, One has, for fixed N,

.....
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N
S0 = Y (KX N i1 -000) = BK(X N n11,-500) (3.24)
n=1
and
N
Swio =Y (K(Xn-ni1.0) = EK(Xy_ni1.00))- (3.25)
n=1

Now, for fixed N, by making the change of variables N + 1 —x = y below,
(XN—nt1,-00,00 Xn-nt1,00, [ <0),_;
N—n+2-1

= <J00 a(N—n—l—l—x)M(dx),J alN—n+1—-x)M(dx), /<0
N—n+l N—n+l1

N—
3
I
=

n

a(y —n)Md(N +1—y)), —J a(y —n)MA(N+1—y)), = 0)

n+1—1

n

N A

(-]
a ( atn ~ )t |
= (x

n,1,00s A nl,—I141> IS O)n:1

where M is an a-stable random measure with the Lebesgue control measure and the
skewness intensity 3, d(z) = a(—z) for z€ R and X,m = """ d(n — y)M(dy),

n—nip

—00 < m < my < oco. Then, by using (3.24) and (3. 25) we obtain that, for fixed N,
(SN 00,05 SN 10) —d (SN] 00 SNl —l+1) with SN mi,my — Z 1(K(Xn mi, mz) EK(Xn mi, mz))
and hence

—1 -1 Q o
N7 var(Sy,—c00 — Sn,10) = N7 var(Sy 100 — SN,1,—1+1)-

The convergence (3.23) then follows from (3.13) since d satisfies condition (2.7) and X is
causal.

Two-sided moving averages. We need to prove (3.12) for X, = jfcoc a(n — x)M(dx) and
for a function K which is twice differentiable with bounded derivatives. As in the case of
causal moving averages, we can write

N o)
=5 N (BKXD)IF wm) = EKXDIF umi),

n=1 m=—

b
Svit =Y > (BKX p iy )IF nem) = BKX 1 t)IF nemi1))

n=1 m=1,

N .
and hence Sy — SN = D 1P me—oo Unm i1, Where the random variables
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Un,m,ll,lz = (E(K(Xn”fnfm) - E(K(Xn)‘}—nf(m+l)))
— (BK(X 10 1)IF nem) = E(K(X DI F n—me1)) Ln=m=ry (3.26)

satisfy cov(U,m1.1> Un'omty.1,) =0 unless n—m=n"—m'. Then E(Sy — Sn.;.5,)° <
30w, +30nN2,1,,1,, Where

5 [P

N
Oviin =Y > Y (BUL, . )PEU,,. . )

n=1 m=0, m'=1

N -1 L—1

o0 o0
Ovann=>_ | D2 D0+ > X |EUL) AEU )"
n=1 \ m=—o00 m'=—o00 m=0L+1 m'=5L+1
with n' = n — m + m’, and one needs to show that
lim  limsupN 'Qy 1.5, =0, fori=1,2. (3.27)

(l,1)=(=00,00) N o0

The convergence (3.27) will follow from the bounds

m L—1 00
EU%hm,llj,2 < C(J la(x)|* dx> (J |a(x)|“dx+J la(x)|* dx), for Iy < m <1,
2

I}

m—1 —00
(3.28)
BUS i < c(J |a(x)|* dx>, form<Ili—lorm=15L+]1. (3.29)
m—1
We will first prove (3.28). Setting
km1,(z) =EK(z+ Xu1.m-1), (3.30)

we can write E(K(X 1, )| F nem) = kmi,(Xn.m.1,) and
E(K(X,,)|.7:,,_m) =EK(z+ Xn,—oo,rn—l)|z:X

n,m,00

= EK(Z + Xn,—oo,ll—l + Xn,ll,m—l)|z:X

n,m,00

- Jka,h (4 DAF et 1) oy

and hence, in view of (3.26),

Unm,i,,1, :Jka,ll (z+ )AF_-1(») |z:X - Jka‘HJl(Z + WAF o, 1-1(») |z:Xn,m+1.oc

n,m,00

- (km,ll(Xn,m,lz) - km+1,ll(Xn,m+1,lz))-

Then, by writing, as in the causal case,
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Xn,m,oo = Xn,m,m + Xn,m+1,lz + Xn,lerl,OO)
Xn,m+1,oo = Xn,m+1,lz + Xn,lg+1,oo:
Xn,m,12 = Xn,m,m + Xn,m-&-l,l;z

and by using the relation k414 (2) = fk,,,,;1 (z+x)dF,(x) and the Cauchy—Schwarz
inequality, we obtain that

2
EU%t,m,ll,lz = JRJRJR{JRJRD(% v, w, X, y)dF—oo,ll—l(y)dFm(x)}

X dFm(u)dFerl,lz(U)dFlz+l,oo(W)

< JR . JRD(u, v, w, x, ) dF(u)dF 1., (V)AF 111 0oWAF n(X)AF o0 1, -1(1),
(3.31)
where
D(u, U, w, %, ) = ki, (U+0+w+y)—kp,(V+w+x+y)
— (K, (u+0) = ko, (V+x)).

By assumption on K and by using (3.7) in Lemma 3.3, we obtain that the functions k,, ;,(x)
have their first two derivatives bounded uniformly for m, /; € Z and x € R. Then, as in (3.21)
with w replaced by w + », we obtain that

D(u, v, w, x, p* < Cmin{1, (w+ »)*, (u — x)%, (u — x)*(w + »)*}
and hence, by (3.31),

EU%WJIJ2 < C(JJ ‘ 1(u —x)? dFm(u)dFm(x)>

x (” (Wt vy szﬁl,oo(w)dFm,zll(w)
lwtyl<1

+
a

dFm<u>dFm<x>> (“ (w+ ) dFlm,oo(w)dFoo,hmy))
lu—x|>1 [w+y|<I1

+
)

+C

( (u — x)? dFm(u)dFm(x)> (“ dF,ZH,OO(w)dF_xJ]_l(y))
lu—x|<1 [w+y[>1

dFm<u>dFm<x>> (” szﬁl,oc(w)dFoo,,ll(y)). (332)
[u—x|>1 [w+y[>1
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Since A_oo,—1Z1 has the distribution F_ ;-1 with 1% Sl 1 = fll*l la(x)|*dx, A1,11.0022
has the distribution F), | with A7 Iyt 100 L la(x)|* dx and AmZ3 has the distribution F,

with 19 = jm , |a(x)|* dx, where Z;, Z, and Z3 are a-stable standard random variables (with
perhaps different skewness parameters), we conclude as in the case of (3.22) that each of the
four terms in (3.32) is bounded by Cim(i‘foo, 11 T 4% 41.0) and hence that the bound (3.28)

holds. One can prove the bound (3.29) in a similar way. O

Remark 3.1. The proof for two-sided moving averages does not apply to partial sums with
any bounded function K because the scale parameters of a-stable random variables

n—1+1
Xt = | atn—0prcan,
n—m+1

namely, A;, -1 (fl | la(x)|* dx)"/®, are not bounded away from zero uniformly in m and
[y, since A4, -1 — 0 as I} — —oo and m — —oo. Hence, the first and second derivatives of
the functions k,,;,(x) in (3.30) are not necessarily bounded uniformly in m and /; (see
Lemma 3.2, which involves a scale parameter ¢ > 0). Whether Theorem 2.1 is valid for two-
sided moving averages with any bounded functions K is still an open question.

Proof of Theorem 2.2. Observe first that the moving average X, is well defined since, by
assumptions (2.17) and (2.18), > ;|a;|° < oo for some 0 <O <min{l, a} and hence
E|X,]° < 2:],|cj|5E|e,,,j|(S :E|61|5§:j|cj\é < o0o. As in the proof of Theorem 2.1, it is
enough to show the convergence (2.19). Let Fj, k&€ Z, be o-algebras generated by
innovations ¢;, i < k. (This notation corresponds to that used in the continuous case with

= J";H M(dx).) We set X, . my, = Zmlstmza.fcn—j' Then, by proceeding as in the proof of
Theorem 2.1 for two-sided moving averages, it is enough to prove (3.27), which will follow
here (compare with (3.28) and (3.29)) from the bounds

1 = e
BV, IZ\CTIamI"‘L(| |) IR |aj|“L(w), for y <m<1h, (333)
am J

j=—00  j=hL+I

(1
EUS 1 < C|am|aL<—>, form<1l —lorm=15L+1, (3.34)
a

||

where L is defined in (2.22).
To show (3.33), observe that we can bound EU> wm.l.1, 8 1 (3.32) and hence it is enough
to prove that there is a constant C such that, for every —oo < m; < my < o9,

P( f:b,cj >1> CZ|b L (|b > (3.35)
o3

J=m J=mi
Z bj ‘f
where {b;} satisfies Zj|bj|“1:(1/|bj|) < oo. For example,

{|Zm2 bJ(/|<l}> <C Z |b ‘(1 (|b )9 (336)

J=my
J=m J=my
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-1 o0
” dF 1 100WAF oo 1) =P | D ajehj+ Z ajen_j| >1
[wty|>1 j=— =l+1
(o)
=P(| > bi|>1],
Jj=—00

where ¢’, ¢” are independent copies of the sequence ¢, and b; = a; for —oo < j =</, — 1 and
I+ 1=<j<oo and 0 otherwise.
Consider inequality (3.35) first. By using

2/x )
P(Z|=x) < %J (1 —Ee?%)do, x>0,
-2/x

(Billingsley 1995, p. 350), we obtain that

oSol) <l -
- CJ

by applying the inequality [1 —[]72,, ¢;| <3272, [1 — ¢/| valid for |c;| <
Consider first the case a # 1. By using (2.15), (2.16) and Ibragimov and Linnik (1971,
Theorem 2.6.5), there exist ¢ >0, f € [—1, 1] and a function A(u) = hi(u) + ihy(u) with

h(u) — 1, as u — 0, such that

Eexp{iue} = exp{—c|u|az<|tll> (1 — i3 sign(u) tan a;r) h(u)}

= exp{—c|u|a <|u> <h1(u) + [ sign(u) tan — hz(u))

+ 1c|u“L<| |> (ﬂ sign(u) tan az—nhl(u) - hz(u)> },

where L(z) = L(z). Then, by using the fact that /;(u) + 8 sign(u)tan(am/2)hy(u) — 1, as
u — 0, and the inequalities |l —cieof < |1 — 1| + |1 — o for |1, [eof < 1, [I —e™| < x
for x >0, and |1 — ™| < |x| for x € R, we conclude that

/1
< cmm(m), (3.38)

for small enough u. We may suppose without loss of generality that (3.38) holds for all u.
Indeed, since the function L(z) = L(z) need not be defined around z =0 (see (2.15) and
(2.16)), we can define it as

my

Zbej

Jj=m

1 IQEJ mlb i€ d0

my

1 — H Eel@b i€l

J=m

— Eel%\d,  (3.37)

6<CZJ

J=m

‘1 — Eelt
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7 L(z) ~ 1, (3.39)

as z — 0. With this non-restricting assumption in mind, by observing that the the left-hand
side of (3.38) is bounded by 2 and by increasing C, we obtain that the bound (3.38) holds for
all u.

For a =1, by using Aaronson and Denker (1998, Theorem 2), we can write

Eexp{iue;} = exp{—c|u|L< ) ( — 1—Cs1gn(u)> h(u) + iu (y + H( |)> }
= exp{—c|u|L< ) (hl(u) +— C51gn(u)h2(u))
p

+ 1c|u|L(| |> < Csign(u)hy(u) — hg(u)) + iu <y + H(| |)>}

where ¢, C, 8 are constants, h(u) = hi(u) +ihy(u) — 1 as u — 0, and the function H and
the constant y are defined by (2.20) and (2.21). Then, by arguing as in the case a # 1, we
can conclude that (3.38) holds for small enough u with L(z) = L(z) + |y + H(z)|. Recall
from Remark 2.1 that L is a slowly varying function at infinity. By choosing L(z) such that
z7'L(z) ~ 1 — |y + H(z)|z"! as z — 0, we can suppose without loss of generality that (3.39)
holds and hence that (3.38) holds for all u.

By using (3.38), we obtain from (3.37) that

P( > b > 1) < CZ |bA,-|“J |9“L<|b 0>d0

j=mi j=m

The bound (3.35) follows since, by Potter’s bounds (see, for example, Bingham et al. 1987),
L(1/|6b;)(L(1/|b;]))"" is bounded by C|6]~¢ with any ¢ > 0, umformly for j and |0] <2.

To prove inequality (3.36), observe that EX? Lio<ixi<1y < fo 2xP(]X| > x)dx and hence

that
2
( (=02, by, |<1}> szp <

By arguing as above, we can conclude that

my my 2/x
p< > bje; >x> <Cx > |b \aji 16|“L (Ib 0|)d0

Then, by using Karamata’s theorem for the case 2|b;| < x and by making the change of
variables z = 1/v, we obtain that

ZbC/

J=m

Zbcl

Jj=m

> x> (3.40)

j=m j=m
1 2|b;|/x 1

< Cx |b;|~ J [v|*L ( )dv
jzml 2|b;|/x V|
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m |b | a+1 ¥
P( x) =Cx) Il 1( ) L<|b_|>1{2b;f|<x}
J

ny

ijéj >

Jj=mi Jj=my
+Cx Y byl ‘J 2722 “L(2)dz] )p =)
,Z;l x/2|b))) !
my
<C' Yy [by|" ‘“L<|b |>1{2b <q + C’ Z Lo = (3:41)
J=m J=m

The last term in (3.41) follows from (3.39), yielding the bound
J 27227 [(2)dz < CIJ
x/@[bjl) x/2[b;])

By substituting the bound (3.41) into (3.40) and by using Karamata’s theorem with a change
of variables as above, we obtain that

my 2(b| 1 1
( ZbE/ 2;’12,,,1b€j|<]}> CZ{J xdx+‘b]| J2|b L(|b |>dx}

o0

b:
Zizdzﬁ Czu
X

J=m J=m

U 1/1b;] ~
<C ) {|bj|2 + |bj\2L ylaL(y)dy}

J=m

”n mz 1
=¢ Z{'b [+ bl <|b |)}
J=my

=3 L)

Jj=m

Finally, the bound (3.34) can be proved in a similar way by using (3.35) and (3.36). O
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