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1. Introduction

In this paper we consider discrete-time approximation schemes for the solution of a

stochastic differential equation (SDE), and we will focus on the properties of such

approximation schemes as discrete-time Markov chains. We will then be able to discuss

aspects of the schemes related to their numerical stability and to discuss whether the

schemes have the same qualitative behaviour as the diffusion itself.

We will restrict ourselves to SDEs of the form

dX (t) ¼ �=H(X (t))dt þ �dW (t) (1)

where (W (t)) t>0 is a k-dimensional Brownian motion, � . 0 and H : Rk ! R is a potential.

In the literature on approximations of the solution to SDEs (such as Kloeden and Platen

1992) the focus is on developing the solution of the SDE using stochastic Taylor expansions,

usually leading to rough approximations of the term =H(X (t))dt as a constant over small

time intervals. We will consider a better approximation of the term =H(X (t))dt, which is

called local linearization (Biskey et al. 1996; Ozaki 1992; Stramer and Tweedie 1999a).

Another approach is to consider implicit schemes instead (Mattingly et al. 2002).

One of the reasons for looking at SDEs of the form (1) is that they appear as continuous-

time analogues of the many discrete-time Markov chain Monte Carlo (MCMC) algorithms

considered in, for instance, Roberts and Tweedie (1996a) and Stramer and Tweedie (1999a).

Furthermore, they appear as simple models of Brownian particles in a force-field given by

the potential H – at least on a sufficiently large time scale – as described in Section 6.4 in

Gardiner (1983).
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We will in this paper focus on the ergodic properties of the local linearization scheme as

a discrete-time Markov chain, and in particular we will derive criteria for geometric

ergodicity, our general results being Theorems 4.3 and 4.5 In Theorem 4.10 we use the

general results to verify geometric ergodicity for a large class of potentials. We will also

compare the results obtained with similar results related to the classical forward Euler

discretization scheme and some implicit schemes such as backward Euler. Finally, we will

discuss the use of these discretization schemes as proposal distributions in the Metropolis–

Hastings algorithm.

2. Langevin diffusions and approximation schemes

In this section discrete-time approximation schemes for the solution of the kind of

stochastic differential equations described in Section 1 are considered.

Definition 2.1. Let H : Rk ! R be a differentiable function. The Langevin diffusion with

potential H is then the solution (X (t)) t>0 to the Langevin equation

dX (t) ¼ �=H(X (t))dt þ � dW (t), (2)

where (W (t)) t>0 is a k-dimensional Brownian motion and � . 0.

The name ‘Langevin’ is used in, for instance, Mattingly et al. (2002) and also in the

physics literature for another SDE, but in the statistical literature such as Roberts and

Tweedie (1996a) it seems that ‘Langevin equation’ and ‘Langevin diffusion’ have been

reserved for the case given by (2). We use the word ‘Langevin’ in this last sense. One

should especially note that Mattingly et al. (2002) call equations given by (2) gradient

systems instead.

We are implicitly assuming that there is a solution to (2), and, as proved by Roberts and

Tweedie (1996a, Theorem 2.1), that there exists a continuous, non-explosive solution to (2)

if H is continuously differentiable, if x 7! exp(�H(x)) is integrable and if there are

constants Æ and � such that

�h=H(x), xi < �jxj2 þ Æ: (3)

Furthermore, the solution is �Leb-irreducible, aperiodic, the compact sets are small and the

solution has an invariant initial distribution with a density � satisfying �(x) /
exp(�(2=� )H(x)). Finally, if Qt, for t . 0, denotes the transition probabilities for the

solution, then

kQt(x, �)� �k tv ! 0

for t!1.

If � is a strictly positive, twice continuously differentiable density on Rk , then if

H(x) ¼ �1
2

log�(x) satisfies (3), the Langevin diffusion with potential H and � ¼ 1 has �
as invariant initial distribution. Note that if � is only known up to a constant of

proportionality, =H is completely known and hence the Langevin equation is completely
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known. Therefore the Langevin diffusion can be viewed as a continuous-time analogue of

the many discrete-time MCMC algorithms.

A simple approximation scheme is the Euler scheme, where we assume that =H is

almost constant in small time intervals of length h . 0 and this leads to an approximating

Markov chain in discrete-time at the times 0, h, 2h, 3h, . . . with transition probabilities

Q0(x, �) ¼ N (x� h=H(x), � 2hI):

Roberts and Tweedie (1996a) demonstrate that this kind of approximation is quite ill behaved

in an MCMC set-up if the tails of � are decaying too rapidly, that is, if the potential is

increasing too fast. Indeed, even if � is a Gaussian distribution, one has to choose h

sufficiently small to avoid the approximation becoming transient – in contrast to the

behaviour of the Langevin diffusion itself. Mattingly et al. (2002) also give examples of loss

of ergodicity for the Euler scheme.

To avoid the problems with the Euler scheme we will consider the local linearization of

the diffusion instead. The local linearization scheme can be derived based on the solution of

the Ornstein–Uhlenbeck diffusion.

For A 2 Rk and B, C 2 M(k) (the set of k 3 k matrices) the k-dimensional Ornstein–

Uhlenbeck diffusion is the solution (Y (t)) t>0 to the SDE

dY (t) ¼ (Aþ BY (t))dt þ CdW (t), (4)

where (W (t)) t>0 is a k-dimensional Brownian motion. The solution of this diffusion is well

known and one can give an explicit expression in terms of stochastic integrals (Ikeda and

Watanabe 1989, Section 4.8). The Gaussian transition probabilities of the solution can be

found explicitly:

Qt(x, �) ¼ N (�(x, t), �(t)), (5)

where

�(x, t) ¼
ð t

0

exp(sB)Adsþ exp(tB)x

�(t) ¼
ð t

0

exp(sB)CCT exp(sBT)ds:

See, for instance, Jacobsen (1991; 1994, Theorem 2.2).

If H is twice continuously differentiable we can use the best affine approximation of =H

instead of a constant approximation, that is, a first-order Taylor approximation. Thus with

=2H(x) the matrix of second-order partial derivatives at x, approximate X (t) by the process
~XX (t), which on [kh, (k þ 1)h], given ~XX (kh) ¼ x, is the solution to

d ~XX (t) ¼ (�=H(x)� =2H(x)( ~XX (t)� x))dt þ �dW (t):

On the interval [kh, (k þ 1)h] this is an Ornstein–Uhlenbeck diffusion, and the transition

probabilities for the discrete-time chain ( ~XX (kh))k2N0
become

Q1(x, �) ¼ N (�(x, h), �(x, h)),
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where

�(x, h) ¼
ð h

0

exp(�s=2H(x))ds(=2H(x)x� =H(x))þ exp(�h=2H(x))x

¼ x�
ð h

0

exp(�s=2H(x))ds=H(x),

�(x, h) ¼ � 2

ð h
0

exp(�2s=2H(x))ds:

Definition 2.2. A Markov chain with transition probabilities Q1 is called a local linearization

of the Langevin diffusion with time-step h.

The local linearization presented here and other similar schemes have been considered by

Ozaki (1992) and by Biskey et al. (1996). Furthermore, Stramer and Tweedie (1999a)

consider the scheme in an MCMC set-up primarily in the one-dimensional case.

3. Geometric ergodicity of Gaussian transition probabilities

Markov chains on Rk with Gaussian transition probabilities like those resulting from both

the Euler scheme and the local linearization scheme can be treated quite generally. Thus we

consider Markov kernels

Q(x, �) ¼ N (�(x), �(x)) (6)

with � : Rk ! Rk and � : Rk ! PD(k) being measurable maps – here PD(k) denotes the set

of positive definite k 3 k matrices. That is, Q(x, �) is a regular Gaussian distribution with

mean value �(x) and variance �(x), and the two maps � and � will be called the mean value

map and the variance map, respectively. Assume in the following that � as well as � map

compact sets into compact sets, which is the case if, for instance, � and � are continuous.

Theorem 3.1. The Markov kernel Q given by (6) is �Leb-irreducible and aperiodic, with �Leb

being the Lebesgue measure, and the compact sets are small.

Proof. The Markov kernel has density

q(x, y) ¼ det(�(x)�1=2) f (�(x)�1=2(y� �(x))) (7)

with respect to �Leb, where f is the density for the normalized Gaussian distribution.

Therefore q(x, y) . 0 for all (x, y) 2 Rk 3 Rk , in which case it is well known that Q is

irreducible and aperiodic. Moreover, q can in fact be bounded below by a strictly positive

constant on a compact set, which proves that the compact sets are small. h
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We will give a general condition for geometric ergodicity based on the drift function

1þ jxj2 – see the Appendix – so put

V2(x) ¼ 1þ jxj2

from here onwards. The following lemma and corollary hold for more general Markov

kernels on Rk , but we state the result for the Gaussian ones only.

Lemma 3.2. A Markov kernel Q given by (6) has V2-geometric drift towards a compact set if

and only if

lim sup
jxj!1

j�(x)j2 þ tr(�(x))

jxj2 , 1: (8)

Proof. Calculation of the conditionally expected drift leads to

QV2(x) ¼ 1þ j�(x)j2 þ tr(�(x)):

Assume that

Æ :¼ lim sup
jxj!1

j�(x)j2 þ tr(�(x))

jxj2 , 1,

and choose � , 1 with Æ , �. For some suitable compact set C we obtain

QV2(x) ¼ 1� j�(x)j2 þ tr(�(x))

jxj2 þ j�(x)j2 þ tr(�(x))

jxj2 V2(x)

< �V2(x)þ b1C(x),

with b ¼ sup x2C1þ j�(x)j2 þ tr(�(x)) ,1. If, on the other hand,

QV2(x) ¼ 1þ j�(x)j2 þ tr(�(x)) < �V2(x),

for jxj > R and some � , 1, then it follows immediately that

lim sup
jxj!1

j�(x)j2 þ tr(�(x))

jxj2 < � , 1:

h

As a consequence of Lemma 3.2, Theorem 3.1 and Theorem A.3, we have the following

corollary.

Corollary 3.3. If (8) holds, then Q has a unique invariant probability measure and is V2-

geometrically ergodic.

It should also be noticed that if � is a bounded map or if just tr(�(x)) ¼ o(jxj2), then (8)

is equivalent to
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lim sup
jxj!1

j�(x)j2
jxj2 , 1: (9)

Henceforth we will put n(x) ¼ x=jxj for x 6¼ 0.

Lemma 3.4. Let K(x) ¼ �(x)� x. Then (9) is satisfied if and only if

lim sup
jxj!1

K(x)

jxj ,
K(x)

jxj þ 2n(x)

� �
, 0 (10)

Proof. We have that �(x) ¼ K(x)þ x, hence

j�(x)j2
jxj2 ¼

jK(x)j2 þ jxj2 þ 2hK(x), xi
jxj2

¼ jK(x)j2
jxj2 þ 1þ 2

K(x)

jxj , n(x)

� �

¼ 1þ K(x)

jxj ,
K(x)

jxj þ 2n(x)

� �
,

and the result follows. h

4. Geometric ergodicity of the local linearization

The Langevin diffusion can itself be geometrically ergodic (Roberts and Tweedie 1996a,

Theorems 2.2 and 2.3). We will give another (very simple) criterion for geometric

ergodicity for the diffusion, which is based on the drift function V2. We will assume that

the conditions stated in Section 2 to ensure ergodicity are fulfilled. First note that the

generator of the diffusion is given by

A f (x) ¼ �h=H(x), = f (x)i þ �

2
˜ f (x)

for a suitable test function f . Then

AV2(x) ¼ �2h=H(x), xi þ k� , (11)

and since =H is continuous, we have that

AV2(x) < �cV2(x)þ b

for some c, b . 0 if

lim inf
jxj!1

h=H(x), xi
jxj2 . 0: (12)

The drift function V 2 tends to infinity for jxj ! 1, and the compact sets are small, hence

it follows from Down, et al. (1995, Theorem 5.2) that if (12) holds the diffusion is
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V2-geometrically ergodic, that is to say, with Qt denoting the transition probabilities, we have

that

kQt(x, �)� �kV2
< RV2(x)r t

for some constants R and r , 1. The criterion (12) is simpler than the similar criterion in

Roberts and Tweedie (1996a, Theorem 2.3), which is based on the drift function exp(dH(x))

for some d 2]0, 1[.

The question is now to what extent the local linearization preserves geometric ergodicity.

If H : Rk ! R is a twice continuously differentiable potential, we have seen in Section 2

that the local linearization with time-step h . 0 of the Langevin diffusion is a discrete-time

Markov chain with transition probabilities Q1 of the form (6) with mean value map

�1(x) ¼ x�
ð h

0

exp(�s=2H(x))ds=H(x)

and variance map

�1(x) ¼ � 2

ð h
0

exp(�2s=2H(x))ds,

suppressing the dependence on h in the notation. As in Lemma 3.1, we also put

K1(x) ¼ �
ð h

0

exp(�s=2H(x))ds=H(x),

and we will use ºmin(x) to denote the minimum eigenvalue of the symmetric matrix =2H(x).

Observe that �1 as well as �1 are continuous, hence, from Theorem 3.1, Q1 is �Leb-

irreducible, aperiodic and the compact sets are small.

Theorem 4.1. The variance map �1 is bounded if and only if ºmin(x) is bounded below.

Proof. For a given x 2 Rk , let fº1(x), . . . , ºk(x)g be the eigenvalues of =2H(x). Then it

follows that the eigenvalues of �1(x) are

� 2

ð h
0

exp(�2sº1(x))ds, . . . , � 2

ð h
0

exp(�2sºn(x))ds

 !
,

and since �1(x) is symmetric k�1(x)k is equal to the spectral radius, that is, to the

numerically largest eigenvalue, hence

k�1(x)k ¼ � 2

ð h
0

exp(�2sºmin(x))ds,

and the claim follows. h

If the variance map is bounded, we can restrict our attention to the mean value map

exclusively – at least in questions concerning geometric ergodicity. And due to Lemma 3.4

we will focus on the map K1. If =2H(x) is invertible, it furthermore follows that
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K1(x) ¼ (exp(�h=2H(x))� I)(=2H(x))�1=H(x):

The following definition will turn out to be useful.

Definition 4.2. A map G : Rk ! Rk is said to be asymptotically homogeneous to x for

jxj ! 1 if there exists a function

c : S k�1 ! R

such that ����G(x)

jxj � c(n(x))n(x)

����! 0

for jxj ! 1. The function c is called the asymptotic function.

We are now able to give a general condition for Q1 to be geometrically ergodic. First, we

make the following useful but trivial observation. If B is a matrix, A ¼ B� I and jxj ¼ 1,

then

jAxj2 þ 2hAx, xi < kBk2 � 1 (13)

since

jAxj2 þ 2hAx, xi ¼ jBx� xj2 þ 2hBx, xi � 2jxj2

¼ jBxj2 þ jxj2 � 2hBx, xi þ 2hBx, xi � 2jxj2

< kBk2jxj2 þ 1� 2

¼ kBk2 � 1:

Theorem 4.3. Let H : Rk ! R be a twice continuously differentiable potential. If

lim inf
jxj!1

ºmin(x) . 0

and if

=2H(x)�1=H(x)

is asymptotically homogeneous to x for jxj ! 1 with the asymptotic function c satisfying

0 , inf
jxj¼1

c(x) < sup
jxj¼1

c(x) < 1,

then Q1 has V2-geometric drift towards a compact set and is V2-geometrically ergodic.

Proof. Start by choosing Æ . 0 and R 2 [0, 1[ such that

ºmin(x) > Æ

for jxj > R. We will in the following only consider x 2 Rk with jxj > R. Then all the
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eigenvalues of =2H(x) are strictly positive and =2H(x) is invertible. If we put

T1(x) ¼ exp(�h=2H(x))� I and G1(x) ¼ =2H(x)�1=H(x), then

K1(x) ¼ T1(x)G1(x)

and we obtain

K1(x)

jxj ,
K1(x)

jxj þ 2n(x)

� �
¼
����T1(x)

G1(x)

jxj

����2 þ 2 T1(x)
G1(x)

jxj , n(x)

� �
¼ jT1(x)n(x)j2c(n(x))2 þ 2hT1(x)n(x), n(x)ic(n(x))þ R(x),

with the residual term R(x)! 0 for jxj ! 1. To see this, note that R(x) is a sum of two

differences, one of them being����T1(x)
G1(x)

jxj

����2 � jT1(x)n(x)j2c(n(x))2 <

����T1(x)
G1(x)

jxj � c(n(x))n(x)

� �����2
þ jc(n(x)j jT1(x)n(x)j

����T1(x)
G1(x)

jxj � c(n(x))n(x)

� �����,
which tends to 0 for jxj ! 1, since T1 and c are bounded. The other difference is seen to

tend to 0 for jxj ! 1 by a similar argument.

If we let ª ¼ exp(�hÆ) , 1, then since exp(�h=2H(x)) < ªI and since 0 ,

inf j yj¼1c(y) < c(n(x)) < 1, it follows that

jT1(x)n(x)j2c(n(x))2 þ 2hT1(x)n(x), n(x)ic(n(x)) < jT1(x)n(x)j2 þ 2hT1(x)n(x), n(x)i
� �

c(n(x))

< (ª2 � 1)c(n(x))

< (ª2 � 1) inf
j yj¼1

c(y),

where the second inequality follows from (13). Therefore we have that

lim sup
jxj!1

K1(x)

jxj ,
K1(x)

jxj þ 2n(x)

� �
< (ª2 � 1) inf

j yj¼1
c(y) , 0,

and from Lemmas 3.2 and 3.4 we have that Q1 has V2-geometric drift towards a compact set,

and since the compact sets are small, Q1 is V2-geometrically ergodic. h

The theorem above will be used in the next section to show that Q1 is geometrically

ergodic for a special class of potentials.

Remark 4.4. Geometric interpretation. That the matrix =2H(x) should become positive

definite as jxj ! 1 has a geometric interpretation in terms of the contour manifolds of H

becoming convex as jxj ! 1. Assume that H(x)!1 for jxj ! 0 and that H has no

stationary points outside some ball B(0, R), that is, that =H(x) 6¼ 0 for jxj > R. Then by

choosing r . 0 large enough, the contour manifold
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Cr ¼ fx 2 Rk jH(x) ¼ rg

satisfies Cr \ B(0, R) ¼ ˘, and Cr has a normal field N : Cr ! S k�1 defined by

N (x) ¼ =H(x)

j=H(x)j :

Differentiation yields

=N (x) ¼ =2H(x)

j=H(x)j �
N (x)

j=H(x)j (=j=H(x)j)T:

If Tx denotes the tangent hyperplane to Cr at x, then, for v 2 Tx,

h=N (x)v, vi ¼ 1

j=H(x)j h=
2H(x)v, vi

since v ? N (x). Now =N (x) restricted to Tx is a symmetric operator, with the eigenvalues

being the principal curvatures of Cr at x, and if we assume that =2H(x) is positive definite

for jxj large enough, all the principal curvatures are strictly positive. It follows that locally Cr

lies exclusively on one side of Tx, and hence that Cr is convex at x. Strict positivity of the

principal curvatures actually implies that Cr is strictly convex at x, that is, that there is a

neighbourhood O of x in Cr, such that O \ Tx ¼ fxg.

If ºmin(x)!1 for jxj ! 1 instead of just being bounded away from 0 it is actually

possible to prove geometric ergodicity with a less restrictive claim on the asymptotic

function c.

Theorem 4.5. Let H : Rk ! R be a twice continuously differentiable potential. If

ºmin(x)!1

and if

=2H(x)�1=H(x)

is asymptotically homogeneous to x for jxj ! 1 with the asymptotic function c satisfying

0 , inf
jxj¼1

c(x) < sup
jxj¼1

c(x) , 2,

then Q1 has V2-geometric drift towards a compact set and is V2-geometrically ergodic.

Proof (sketch). One can use the fact that ºmin(x)!1 for jxj ! 1 to show that K1 is

asymptotically homogeneous to x for jxj ! 1 with asymptotic function c if and only if

=2H(x)�1=H(x) is asymptotically homogeneous to x for jxj ! 1 with asymptotic function

�c, and one can easily show that since

�2 , inf
jxj¼1
� c(x) < sup

jxj¼1

� c(x) , 0

and since �1(x) ¼ K1(x)þ x, this gives that
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lim sup
jxj!1

j�1(x)j
jxj , 1,

in which case (9) is satisfied, and the claim follows from Corollary 3.3 h

4.1. A polynomial class of potentials

To illustrate the use of Theorem 4.3 in the previous section, we will consider a class of

potentials on Rk having a polynomial form.

Definition 4.6. Let Pd be the class of potentials H on Rk , which can be written as

H(x) ¼ p(x)þ r(x),

where p is a homogeneous polynomial of degree d and r is twice continuously differentiable

and satisfies

k=2 r(x)k ¼ o(jxjd�2)

for jxj ! 1. Let Pþd be the subset of Pd for which =2 p(x) is also positive definite for all x.

Remark 4.7. If r : Rk ! R satisfies k=2 r(x)k ¼ o(jxja) for jxj ! 1 with a > 0, then it

follows that

j=r(x)j ¼ o(jxjaþ1),

jr(x)j ¼ o(jxjaþ2):

We skip the proof since it is elementary, but note that it is crucial that the restriction on the

growth of r is on the second-order derivative and not on r itself, since it is impossible to

bound the derivative of a function in terms of the function itself.

Recall that we can write a homogeneous polynomial p of degree d as a sum of

monomials, that is,

p(x) ¼
X
jÆj¼d

cÆx
Æ,

where we have cÆ 2 R. Here we have also used the multi-index notation:

Æ ¼ (Æ1, . . . , Æn) 2 Nn
0 , jÆj ¼ Æ1 þ . . . þ Æn and xÆ ¼ xÆ1

1 . . . xÆ n
n . Furthermore, the homo-

geneous polynomials are completely determined by their values on the unit sphere since, for

x 6¼ 0,

p(x) ¼ jxjd p(n(x))

if p has degree d. Rather trivial calculations show that for p a homogeneous polynomial of

degree d, we have that
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h=p(x), xi ¼ d p(x), (14)

=2 p(x)x ¼ (d � 1)=p(x), (15)

h=2 p(x)x, xi ¼ d(d � 1) p(x): (16)

If p is a homogeneous polynomial of degree d, it follows that =p is a vector of

homogeneous polynomials of degree d � 1 and =2 p is a matrix of homogeneous polynomials

of degree d � 2 (if d > 1 and d > 2, respectively). We thus have, for x 6¼ 0, that

=p(x) ¼ jxjd�1=p(n(x)) (17)

and

=2 p(x) ¼ jxjd�2=2 p(n(x)): (18)

From this we see that =2 p(x) is positive definite for all x 2 S k�1 if and only if =2 p(x) is

positive definite for all x 2 Rk . It also follows that if ºmin(x) is the least eigenvalue of

=2 p(x), then

ª ¼ min
jxj¼1

ºmin(x) . 0

if and only if =2 p(x) is positive definite for all x.

Example 4.8. A subclass of potentials contained in Pd is the polynomials of degree d. If

H(x) is a polynomial of degree d we see that r(x) is a polynomial of degree d � 1, and we

have that

r(x) ¼
Xd�1

j¼0

c jq j(x),

where q j is a homogeneous polynomial of degree j. It follows that

k=2 r(x)k <
Xd�1

j¼2

jc jjk=2q j(x)k

<
Xd�1

j¼2

jxj j�2jc jjmax
jzj¼1
k=2q j(z)k,

from which we clearly have that

k=2 r(x)k ¼ o(jxjd�2):

Example 4.9. Another subclass of Pd is the potentials of the form H(x) ¼ p(x)þ log(q(x)),

where q is a strictly positive homogeneous polynomial and p a homogeneous polynomial of

degree d. Then r(x) ¼ logq(x), and we obtain
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=r(x) ¼ 1

q(x)
=q(x)

and

=2 r(x) ¼ 1

q(x)
=2q(x)� 1

q(x)2
=q(x)=q(x)T:

Since q was a homogenous polynomial, then in fact we have that

k=2 r(x)k ! 0

for jxj ! 1, which can easily be seen from (17) and (18), and therefore we also have that

k=2 r(x)k ¼ o(jxjd�2). Notice, however, that a similar statement is not in general true if q is a

non-homogeneous polynomial.

Theorem 4.10. If H 2 Pþd then Q1 is V2-geometrically ergodic.

Proof. First notice that since =2 p(x) is positive definite, it is invertible. Furthermore,

H(x) ¼ p(x)þ r(x) and, for z, y 2 S k�1,

h=2H(x)z, yi ¼ h=2 p(x)z, yi þ h=2 r(x)z, yi

> ºmin,=2 p(n(x))jxjd�2 � k=2 r(x)k

¼ ºmin,=2 p(n(x))� k=
2 r(x)k
jxjd�2

 !
jxjd�2,

with ºmin,=2 p(x) denoting the minimal eigenvalue of =2 p(x). Since =2 p(x) was positive

definite for all x, if d . 2 we have

ºmin,=2 p(n(x)) > ª . 0,

and therefore

ºmin(x) ¼ min
jzj¼j yj¼1

h=2H(x)z, yi ! 1

for jxj ! 1, and if d ¼ 2 we have

lim sup
jxj!1

ºmin(x) > ª . 0:

We need to show that =2H(x)�1=H(x) is asymptotically homogeneous to x for jxj ! 1,

and we have that

=2H(x)�1=H(x) ¼ (=2 p(x)þ =2 r(x))�1=p(x)þ (=2 p(x)þ =2 r(x))�1=r(x)

¼ 1

d � 1
(=2 p(x)þ =2 r(x))�1=2 p(x)x

þ (=2 p(x)þ =2 r(x))�1=2 p(x)=2 p(x)�1=r(x),
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where the last equality follows from (15). First, we see that

=2 p(x)�1=2 r(x) ¼ =2 p(n(x))�1 =
2 r(x)

jxjd�2
! 0

for jxj ! 1, and since inversion is continuous on the invertible matrices,

(=2 p(x)þ =2 r(x))�1=2 p(x) ¼ =2 p(x)�1(=2 p(x)þ =2 r(x))
� ��1

¼ I þ =2 p(x)�1=2 r(x)
� ��1! I

for jxj ! 1. Furthermore,

=2 p(x)�1 =r(x)

jxj ¼ =2 p(n(x))�1 =r(x)

jxjd�1
! 0

for jxj ! 1, since j=r(x)j ¼ o(jxjd�1) from Remark 4.7. All in all, we obtain that

=2H(x)�1=H(x) is asymptotically homogeneous to x for jxj ! 1 with the asymptotic

function being constantly 1=(d � 1), and since 1=(d � 1) 2]0, 1[ for d > 2, Theorem 4.3

shows that Q1 is V2-geometrically ergodic. h

Combining the fact that

ºmin(x) ¼ min
jzj¼j yj¼1

h=2H(x)z, yi

and (15) shows that

lim inf
jxj!1

h=H(x), xi
jxj2 ¼ lim inf

jxj!1
h=2H(x)n(x), n(x)i

> lim inf
jxj!1

ºmin(x):

This implies that if H 2 Pþd then (12) is satisfied and the Langevin diffusion is geometrically

ergodic. In this case we have shown that the local linearization is geometrically ergodic, too.

On the other hand, using (18), it is easily shown that

inf
jxj¼1

p(x) . 0 (19)

is sufficient for (12) to be satisfied and hence for the Langevin diffusion to be geometrically

ergodic. Thus it is not necessary that H is in Pþd for the Langevin diffusion itself to be

geometrically ergodic.

Example 4.11. We will illustrate by example what can happen if =2 p(x) is not positive

definite. Consider the homogeneous polynomial on R2 given by

p(x1, x2) ¼ x4
1 þ x4

2 � x2
1x

2
2:

For (x1, x2) 6¼ 0 we have p(x1, x2) . 0 and (19) gives that the Langevin diffusion with

potential H ¼ p is geometrically ergodic. The second-order derivative is
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=2 p(x1, x2) ¼ 12x2
1 � 2x2

2 �4x1x2

�4x1x2 12x2
2 � 2x2

1

� �
,

and if x2 ¼ 0 and x1 6¼ 0, the eigenvalues at (x1, 0) are seen to be 12x2
1 and �2x2

1. In

particular, =2 p(x1, 0) is not positive definite. In the direction given by (1, 0) the matrix =2H

tends to �1 in the lower left corner and for the variance matrix we find (using � ¼ 1) that

�1(x1, 0) ¼

1� exp(�24hx2
1)

24x2
1

0

0
exp(4hx2

1)� 1

4x2
1

0BBB@
1CCCA,

for which the trace tends to infinity very rapidly (exponentially). This prevents us from using

the techniques presented in this paper to check whether some kind of drift equation is

satisfied. Moreover, if we look at the behaviour of the Markov chain close to (but not on) the

axis given by (1, 0) we find that the mean value will grow rapidly in the second coordinate,

too.

In Figure 1 we consider the point (x1, x2) ¼ (3:3, 0:2), in which case �1(3:3,

0:2) ¼ (2:306, 6:261) and

�1(3:3, 0:2) ¼ 0:0399 2:077

2:077 119:56

� �
:

This covariance matrix results in a move to a point which almost certainly has a numerically

large second coordinate. The same problem is present in the direction along the other axis,

Figure 1. The density �(x) / exp(�2H(x)) from Example 4.11 (left), and the vector K1(3:3, 0:2)

together with the contour curves for the potential H (right). Notice that K1 is pointing in a completely

wrong direction, and note also the non-convexity of the contour curves.
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and the existence of these large jumps away from the centre leads us to question geometric

ergodicity of the local linearization Q1 – it even makes us question ergodicity.

Although we have not been able to prove or disprove ergodicity, we have certainly been

able to show some unpleasant features of the local linearization for potentials with

(asymptotically) non-positive definite second derivative.

5. Implicit and explicit schemes

As described in Mattingly et al. 2002, implicit schemes are also a possible way around

numerical instability of the Euler scheme. They derive, for a number of SDEs, geometric

ergodicity of the solution to the SDE, which they extend to different approximation

schemes. Considering some (in fact quite simple) implicit schemes instead of explicit

schemes, they are able to treat more general SDEs

dX (t) ¼ f (X (t))dt þ �dW (t), (20)

where f is not necessarily a gradient and where the noise W (t) might be degenerate. It

follows from Mattingly et al. (2002, Section 8.2) that the split-step backward Euler as well as

the backward Euler scheme for the solution of (20) possess geometric drift with a standard

quadratic drift function whenever the vector field f is sufficiently smooth, satisfies the

dissipativity condition

h f (x), xi < ��jxj2 þ Æ (21)

for some Æ, � . 0, and the time-steps are chosen sufficiently small. Condition (21) is

equivalent to condition (12), which is essentially what we need for the solution of the SDE

itself to be geometrically ergodic. So unpleasant features like those of Example 4.11 do not

occur when using these implicit schemes.

The geometric ergodicity is, however, only proved for sufficiently small time-steps,

whereas the local linearization is geometrically ergodic for all time-steps – whenever it is

geometrically ergodic. Also the probabilistic structure of the local linearization is explicitly

given as Gaussian transition probabilities, whereas for the implicit schemes we do not know

the transition probabilities. So since we also need to verify �-irreducibility, or in the

framework of Mattingly et al. (2002) some minorization condition, to completely prove

geometric ergodicity for the schemes, we might expect more trouble doing so for the

implicit schemes than we had for the explicit ones.

6. Langevin diffusions and the Metropolis–Hastings algorithm

Discretizations of the Langevin diffusion with invariant probability measure � have been

considered a useful approach to the construction of proposals for the Metropolis–Hastings

algorithm (Roberts and Tweedie 1996a; Stramer and Tweedie 1999a; 1999b), although some

problems have been encountered. For instance, Roberts and Tweedie (1996a) found that the

use of the Euler scheme does not lead to any fruitful results if � has light tails. The local
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linearization considered in this paper was initially studied with the purpose of avoiding

some of these difficulties. The general hope was that if the discretization to the diffusion is

good enough, geometric ergodicity would be inherited from the diffusion to the

approximation and then to the Metropolis–Hastings algorithm – for instance, in the way

described by Stramer and Tweedie (1999b). Counter-examples can, however, be given, for

instance using the density �(x) / exp(�x6) on R. Then it follows by Theorem 4.10 that the

local linearization is geometrically ergodic, but (tedious) calculations show that the

Metropolis–Hastings algorithm is not geometrically ergodic. The details are omitted, but the

essence is to show that rejection probabilities tend to 1 for jxj ! 1 and then use Roberts

and Tweedie (1996b, Proposition 5). Ad hoc corrections to the discretization can be made so

that geometric ergodicity is possible for the Metropolis–Hastings algorithm, but then the

relation to the original diffusion becomes rather obscure.

Another objection to the construction of proposals using discretization schemes concerns

the length h of the time-steps. If one is supposed to obtain a reasonable good

approximation of the diffusion, the length h should be rather small, but this will not

lead to a good proposal, since the suggested jumps will then be small too. To suggest jumps

of a useful size the choice of h should be much larger than seems to be reasonable, if we

want the discretization to approximate the diffusion.

Anyway, the use of a proposal like N (xþ (h=2)= log�(x), hI) seems perfectly natural

from a geometric point of view, since it suggests moves in the direction where the log-

density increases the most. As with optimization algorithms, = log�(x) might not have the

correct length and some kind of length modification should be used. This has been

considered in Christensen et al. (2001).

7. Concluding remarks

We have shown that the local linearization considered in this paper behaves better than the

simpler Euler discretization for the multidimensional Langevin diffusion, in the sense that

geometric ergodicity of the diffusion to a larger extent is preserved by the local

linearization. We have also shown for a large and rather concrete class of potentials that the

local linearization is geometrically ergodic. It seems, however, that even the local

linearization does not inherit geometric ergodicity in complete generality. One should

possibly turn to actually quite simple implicit schemes instead to obtain an even better

preservation of geometric ergodicity, though the implicit nature complicates some of the

analysis since the transition probabilities for the discrete-time approximation are not

explicitly known.

Furthermore, geometric ergodicity of the discretization of the Langevin diffusion does not

in general lead to geometric ergodicity of the Metropolis–Hastings algorithm, and the

diffusion-discretization approach to the construction of proposals is not considered

particularly fruitful.
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Appendix: Discrete-time Markov chain theory

We briefly review some results from the discrete-time Markov chain theory. We refer to

Meyn and Tweedie (1996) for further results and references on the theory of Markov chains

on a general state space. The notation follows Meyn and Tweedie (1996) closely.

We will consider ergodic Markov chains on a state space (E, E) with transition

probabilities given by a Markov kernel P. The convergence of Pn towards the invariant

distribution � is the main interest – especially geometric convergence of Pn in the V -norm.

Definition A.1. Let V : E ! [1, 1[ be a measurable function. If � is a signed measure on

(E, E) such that V is �-integrable we define the V-norm of � as

k�kV ¼ sup
j f j<V

����ð f d�

���� ¼ sup
j f j<V

j�( f )j:

The set of signed measures making V integrable forms a subspace of the vector space of

signed measures on which k � kV is indeed a norm.

Note that since V > 1, the V -norm is stronger than the total variation norm.

Definition A.2. Let V : E! [1, 1[ be a measurable function. A Markov kernel P with

invariant probability measure � is V-geometrically ergodic if there exist constants R and

r , 1 such that

kPn(x, �)� �kV < RV (x)rn

for all x 2 E.

Since r , 1 we obtain that kPn(x, �)� �kV ! 0 with a geometric rate.

In concrete cases it is often possible to verify geometric ergodicity by using the Foster–

Lyapunov drift conditions. A Markov kernel P is said to have V -geometric drift towards a

set C if V : E! [1, 1[ is a measurable function satisfying

PV (x) ¼
ð
V (y)P(x, dy) < �V (x)þ b1C(x)

for all x 2 E, some � , 1 and some b 2 [0, 1[. The function V is often called the drift

function. Meyn and Tweedie (1996, Theorem 15.0.1) implies:

Theorem A.3. If P is a �-irreducible and aperiodic Markov kernel with V-geometric drift

towards a small set, then P has an invariant probability measure �, �(V ) ,1 and P is V-

geometrically ergodic.
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