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Gaussian graphical models are a popular tool to learn the dependence structure in the form of a graph among
variables of interest. Bayesian methods have gained in popularity in the last two decades due to their ability to
simultaneously learn the covariance and the graph. There is a wide variety of model-based methods to learn the
underlying graph assuming various forms of the graphical structure. Although for scalability of the Markov chain
Monte Carlo algorithms, decomposability is commonly imposed on the graph space, its possible implication on
the posterior distribution of the graph is not clear. An open problem in Bayesian decomposable structure learning
is whether the posterior distribution is able to select a meaningful decomposable graph that is “close” to the true
non-decomposable graph, when the dimension of the variables increases with the sample size. In this article, we
explore specific conditions on the true precision matrix and the graph, which results in an affirmative answer to this
question with a commonly used hyper-inverse Wishart prior on the covariance matrix and a suitable complexity
prior on the graph space. In absence of structural sparsity assumptions, our strong selection consistency holds in a
high-dimensional setting where p = O (n%) for « < 1/3. We show when the true graph is non-decomposable, the
posterior distribution concentrates on a set of graphs that are minimal triangulations of the true graph.

Keywords: decomposable graph; Gaussian graphical model; graph selection consistency; hyper-inverse Wishart
distribution; minimal triangulation; model misspecification; partial correlation

1. Introduction

Graphical models provide a framework for describing statistical dependencies in (possibly large) col-
lections of random variables [27]. In this article, we revisit the well-known problem of inference on
the underlying graph using observed data from a Bayesian point of view. Research on Bayesian infer-
ence for natural exponential families and associated conjugate priors, called the Diaconis—Ylvisaker
(DY priors), is pioneered by [13] and has a profound impact on the development of Bayesian Gaus-
sian graphical models. Consider independent and identically distributed vectors Y7, Y>, ..., Y, drawn
from a p-variate normal distribution with mean vector 0 and a sparse inverse covariance matrix 2. The
sparsity pattern in €2 can be encoded in terms of a graph G on the set of variables as follows. If the
variables i and j do not share an edge in G, then 2;; = 0. Hence, an undirected (or concentration)
graphical model corresponding to G restricts the inverse covariance matrix €2 to a linear subspace of
the cone of positive definite matrices.

A probabilistic framework for learning the dependence structure and the graph G requires specifica-
tion of a prior distribution for (€2, G). Conditional on G, a hyper-inverse Wishart (HIW) distribution
[11]on = = Q™! and the corresponding induced class of distributions on €2 [36] are attractive choices
of DY priors. A rich family of conjugate priors that subsumes the DY class is developed by [29].
Bayesian procedures corresponding to these Letac—Massam priors have been derived in a decision
theoretic framework in the recent work of [33]. The key component of Bayesian structure learning is
achieved through the specification of a prior distribution on the space of graphs. There is a need for
a flexible but tractable family of such priors, capable of representing a variety of prior beliefs about
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the conditional independence structure. During the last two decades, there has been a growing lit-
erature on the development of HIW priors focusing on decomposable graphs [9,10,19,20] and their
non-decomposable counterparts [2,12,25,31,37,41]. Although deemed as a restrictive model choice in
the space of graphs, in the interest of tractability and scalability, HIW priors on decomposable graphs
continue to be widely used. In this paper, we focus on the HIW priors on decomposable graphs as this
construction enjoys many advantages, such as computational efficiency due to its conjugate formula-
tion and exact calculation of marginal likelihoods [38]. Stochastic search algorithms are empirically
demonstrated to have good practical performances in these models. For detailed descriptions and com-
parisons of various Bayesian computational methods in these scenarios, see [15,24].

There has been a growing literature on model selection consistency in Gaussian graphical models
from a frequentist point of view [16,30,34,42]. Beyond the literature on Gaussian graphical models,
there has been an incredible amount of frequentist work in the context of estimating high-dimensional
covariance matrix with rates of convergence of various regularized covariance estimators derived in [6,
7,17,26] among others. There is a relatively smaller literature on asymptotic properties of Bayesian pro-
cedures for covariance or precision matrices in graphical models; refer to [3,4]. Although the method-
ology in [4] can be used for graph selection, the theoretical results in [3,4] are focused on achieving an
optimal rate of posterior convergence for the covariance and precision matrices. The literature on graph
selection consistency in a Bayesian paradigm is surprisingly sparse [8,18,28]. In the context of decom-
posable graphs, the only article we were aware of is [18] which considered the behavior of Bayesian
procedures that perform model selection for decomposable Gaussian graphical models. However, the
analysis is restricted to the fixed dimensional regime and involves the behavior of the marginal likeli-
hood ratios between graphs differing only by one edge. Although Bayes factors in the general case can
be decomposed using Bayes factors between graphs that differ by one edge, it is not possible to derive
the consistency results by simple aggregation of Bayes factors for single edge moves. Furthermore, in
high dimension the number of single edge moves involved in the aggregation may increase with the
graph size. In such cases, the consistency results necessitate more restrictive assumptions on the growth
of the number of edges. For general graph selection consistency within a Bayesian framework, refer to
the very recent articles [8,28] in the context of Gaussian directed acyclic graph (DAG) models.

In this article, focusing on the hyper-inverse Wishart g-prior [10] on the covariance matrix and a
complexity prior on the graph, we derive sufficient conditions for strong selection consistency when
p = 0(n*) with a < 1/3 considering both the cases when the true graph is decomposable and when
it is not. The key conditions relate to the precise upper and lower bounds on the partial correlation
coefficients and a suitable complexity prior on the space of graphs. We emphasize here that we do not
need conditions to be verified on all subgraphs — all assumptions are easy to understand and relatively
straightforward to verify. Regarding our findings, we discover that the HIW g-prior places a heavy
penalty on missing true edges (false negatives), but a comparatively smaller penalty on adding false
edges (false positives). Henceforth in the high-dimensional regime a carefully chosen complexity prior
on the graph space is needed for penalizing false positives and achieving strong consistency.

In the well-specified case, the hierarchical model used here is a subset of [8] since hyper-inverse
Wishart prior is a special case of DAG-Wishart prior proposed in [5] under perfect DAGs. However, the
assumptions in this paper are distinctly different from those stated in [8]. In particular, our assumptions
are on the magnitude of the elements of the partial correlation matrix rather than on the eigenvalues
of the covariance matrix as in [8]. Also, the main focus of this article is to study the behavior of
graph selection consistency under model misspecification, which cannot be addressed within a DAG
framework. To the best of our knowledge, this is the first paper to show the strong selection consistency
under HIW priors for high-dimensional graphs under model misspecification. In particular, we show
that the posterior concentrates on decomposable graphs which are in some sense closest to the true non-
decomposable graph. Interestingly, the pairwise Bayes factors between such graphs are stochastically
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bounded. Our result under model-misspecification is inspired by [18], but extends to the case when p
is growing with n and provides a rigorous proof of the convergence of the posterior distribution to the
class of decomposable graphs which are closest to the true one. We also present a detailed simulation
study both for the well-specified and misspecified case, which provides empirical justification for some
of our technical results.

En-route, we develop precise bounds for the Bayes factor in favor of an alternative graph with re-
spect to the true graph. The main proof technique is a combination of (a) localization: which involves
breaking down the Bayes factor between any two graphs into local moves, that is, addition and deletion
of one edge using decomposable graph chain rule [27] and (b) correlation association: which converts
the Bayes factor between two graphs differing by an edge into a suitable function of sample partial
correlations. By developing sharp concentration inequalities and tail bounds for sample partial corre-
lations, we obtain bounds for ratios of local marginal likelihoods which are then combined to yield
strong selection consistency results.

The remaining part of the paper is organized as follows. In Section 2, we introduce the necessary
background and notations. Section 3 introduces the model with the HIW prior. Section 4 describes the
main results of pairwise posterior ratio consistency and consistent graph selection when the true graph
is decomposable. In Section 4, the results are presented progressively as follows. First, we provide a
non-asymptotic sharp upper bound for pairwise Bayes factors. Next, we state the main theorem for
posterior ratio consistency when p diverges with n where p is of the order n® for « < 1/2. Finally, we
state the main theorem on strong graph selection consistency which further requires « < 1/3. Section 5
states the main results on consistent graph selection under model misspecification and results on the
equivalence of minimal triangulations. Numerical experiments are presented in Section 6 followed by
a discussion in Section 7.

2. Preliminaries

In this section, we define a collection of notations required to describe the model and the prior. Sec-
tion 2.1 introduces sample and population correlations and partial correlations, Section 2.2 sets up the
notations for undirected graphs and briefly introduces the definitions and properties associated with
decomposable graphs. Section 2.3 contains matrix abbreviations and notations used throughout the

paper.

2.1. Correlation and partial correlation

Let X, = (X1, X2,..., X p)T denote a random vector which follows a p-dimensional Gaussian distri-
bution and xV, x@ ... x™ denote n independent and identically distributed (i.i.d.) sample observa-
tions from X ,,. Clearly, the n x p matrix formed by augmenting the n-dimensional column vectors X;,
denoted by (xi, X2, ...,Xp), is the same as (x(l), x@, ., x("))T and X; = n_ljl,{xi, i=1,2,...,p.

Here 1,, is an n-dimensional vector with all ones. Let I, denote the n x n identity matrix and E denote
the expectation with respect to the Gaussian random variable X ,,.

Definition 2.1 (Population correlation coefficient). The population correlation coefficient between
X;and X;, 1 <1, j < p,is defined as

Oij
where o = E(X,' — ]EX[)2 and Ojj = E{(Xi — EX,')(XJ' — EX.,')}.

pij =
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Definition 2.2 (Sample/Pearson correlation coefficient). The sample correlation coefficient between
X;and X;,1 <1, j < p,is defined as

ﬁij=7A —,
V0iin/0jj
where 6;; = (x; — X;1,)T (x; — X;Ln)/n and 6;; = (x; — XL, (x; — X;1,)/n.

Definition 2.3 (Population partial correlation coefficient). Let S = {i1,i2,..., {5/}, where 1 <
i1,12,...,05) < p and |S] is the cardinality of set S. Define X5 = (X;,, X,-z,...,Xim)T. The popu-
lation partial correlation coefficient between X; and X ;, where i, j ¢ S and 1 <i, j < p, holding X
fixed is defined as
gij|s
pijls = ———,
0ii|SA/OjjIS

where o5 = 0j; — O‘EO‘{SIO'Si, Oij|s = 0ij — O’STiO‘E;O‘Sj. And o5; = E{(Xs — EX5)(X; — EX;)},
oss =E{(Xs —EX9)T (X5 —EX¢)}.

Definition 2.4 (Sample partial correlation coefficient). Define x5 = (X;, X5, ..., Xig, ). The sample
partial correlation coefficient between X; and X ;, where i, j ¢ S and 1 <i, j < p, holding X fixed is
defined as

5 Gijls
ijlS = T = = L
V0ii|sy/0jj|s
~ ~ AT A—]1~ ~ ~ AT A—]1~ ~ - - ~
where 6iijs = 6i; — 6,655 6si, Gijis = 6ij — 64;655 6sj. And 65; = (xs — Xs)T (x; — X;)/n, 655 =
(XS - )_(S)T(XS - )_(S)/n7 )_(S = ()_(l'l ]]-na LR )_(i‘s|]]-n)-

2.2. Undirected decomposable graphs

Denote an undirected graph by G = (V, E) with a vertex set V ={1,2,..., p} and an edge set E =
{(r,s) :e,s =1,1 <r <s < p} with ¢,; = 1 if the edge (r, s) is present in G and 0 otherwise. For
the purpose of a self-contained exposition, we first review some basic terminologies of graph theory.
A path of length k in G from vertex u to v is a sequence of k — 1 distinct vertices of the form u =
V0, VU1, ..., Vk—1, Uk = v such that (v;i_1,v;) € E foralli = 1,2, ..., k. The path is a k-cycle if the end
points are the same, u = v. If there is a path from u to v, then we say u and v are connected. A subset
S C V is said to be an uv-separator if all paths from u to v intersect S. The subset S is said to separate
A from B if it is an uv-separator for every u € A, v € B. A chord of a cycle is a pair of vertices that
are not consecutive on the cycle, but are adjacent in G. A graph is complete if all vertices are joined by
an edge. A clique is a complete subgraph that is maximal, i.e., maximally complete subgraph. See [27]
for more graph related terminologies.

We shall focus on decomposable graphs in this paper. A graph is decomposable [27] if and only if
its every cycle of length greater than or equal to four possesses a chord. A decomposable graph G can
be represented by a perfect ordering of its cliques and separators. Refer to [27] for formal definitions
of a clique and a separator, and other equivalent representations. An ordering of cliques C; € C and
separators S; € S, where C = {C,‘}i.‘=1 and S = {Si}i.‘zz, (Cy, $2,C3, 83, ...Cy), is said to be perfect
if for every i =2, 3, ..., k the running intersection property ([27], page 15) is fulfilled, meaning that
there exists a j < i such that S; = C; N H;_1 C C; where H;_| = Ulj;l1 C;. A junction tree for the
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Figure 1. Gg is a 6-node decomposable graph and its junction tree decomposition (right) has 3 cliques and 2
separators, that is, C; = {1,2}, S» = {2}, C» ={2, 3,4}, S3={3,4}, C3 ={3,4,5, 6}.

decomposable graph G is a tree representation of the cliques. (For a non-decomposable graph, the
junction tree consists of its prime components that are not necessarily cliques, i.e., not complete).
A tree with a set of vertices equal to the set of cliques of G is said to be a junction tree if, for any two
cliques C; and C; and any clique C on the unique path between C; and C;, we have C; N C; C C. A
set of vertices shared by two adjacent nodes of the junction tree is complete and defines the separator of
the two subgraphs induced by the two adjacent nodes. Figures 1 and 2 briefly illustrate a decomposable
and a non-decomposable graph, both defined on 6 nodes.

2.3. Miscellaneous notations

For an n x p matrix Y, Y¢ is defined as the submatrix of Y consisting of columns with indices
in the clique C. Let (y1,y2,...,yp) = (X1, Ya, ..., YT, where yi is the ith column of Y, ,. If
C=\iy,i2,...,ic|},where l <ij <ip <--- <ijc| < p,thenY¢c = (yi;, iy - - .,y,-lC|).F0rany square
matrix A = (aij)pxp, define A¢c = (aif)\CIXIC\ where i, j € C, and the order of entries carries into the
new submatrix Ac. Therefore, Ych =XTY)c. MN,,xn(M, =, =) is an m x n matrix normal
distribution with mean matrix M, X, and X, as covariance matrices between rows and columns, re-
spectively.

Let IP be the probability corresponding to the true data generating distribution. Denote Gy and Dy
as the k-dimensional graph space and the k-dimensional decomposable graph space. Let M; be the
minimal triangulation space of G; when G, is non-decomposable. a < b denotes C1b < a < Cb for
positive constants C; and C». a 3 b denotes a < C3b for a positive constant C3. a - b denotes a > Cyb
for a positive constant C4. For set relations, A C B means A is a subset of B; A C B means A C B and
A # B; A ¢ B means A is not a subset of B. | - | determined by context can be the absolute value of a

Pl S2 P2

(H—0O COE-CsD
S G

Figure 2. G% is a 6-node non-decomposable graph because it has a cycle of length four, 3 —4 —5 — 6 — 3, that
does not have a cord. Its junction tree decomposition (right) has 3 prime components and 2 separators, that is,
P ={1,2}, S ={2}, P, =1{2,3,4}, S3=1{3,4}, P3 ={3.,4,5, 6}. Out of three prime components only P and
P, are cliques.



642 Y. Niu, D. Pati and B.K. Mallick

real number, the cardinality of a set or the determinant of a matrix. 7 (-) and 7 (- | Y) are the prior and
the posterior distribution of graphs, respectively. Refer also to Table 2 for a detailed list of notations
used in the theorem statements and the proofs.

3. Bayesian hierarchical model for graph selection

Suppose we observe independent and identically distributed p-dimensional Gaussian random variables
Yi,i =1,...,n. To describe the common distribution of Y;, define a p x p covariance matrix g
that depends on an undirected decomposable graph as defined in Section 2.2. Assume Y; | £g, G ~
N, (0, Z¢). In matrix notations,

Ynxp | X6, G ~ MNnxp(Onxp» Iy, %),

where Y, xp = (Y1,Y2,..., Yn)T and 0, is an n x p matrix with all zeros. The prior used here for
covariance matrix X given a decomposable graph G is the hyper-inverse Wishart prior, described
below. We emphasize here that although we restrict our model and prior to decomposable graphs only,
our results in Section 5 allow for model misspecification.

3.1. The hyper-inverse Wishart distribution

Denoted by HIW (b, D) [10,11] the hyper-inverse Wishart (HIW) distribution is a distribution on the
cone of p x p positive definite matrices with b > 2 degrees of freedom [24] and a fixed p x p positive
definite matrix D such that the joint density factorizes on the junction tree of the given decomposable
graph G as

[lcec P(Ec 1b, De)
[Ises P(Es|1b, Ds)’
where for each C € C, ¢ ~IW|c|(b, D¢) with density

p(X61b, D)= (3.1)

_ 1__
p(Zc | b, De) o | Ec| -+ etr{—EECIDC},

where |C] is the cardinality of the clique C and etr(-) = exp{tr(-)}. IW, (b, D) is an inverse Wishart
distribution with b degrees of freedom and a fixed p x p positive definite matrix D. Its normalizing
constant is

1 |®+p=D/2 b 1
iy ) r-! L ,

2 P 2
where I, (-) is a multivariate gamma function. Refer to [10] for more details about this parametrization
of the inverse Wishart distribution.

3.2. Bayesian inference on decomposable graphs

Since the joint density factorizes over cliques and separators in the same way as in (3.1), the likelihood
function can be rewritten as

_p [Teee |Zcl ™2 etr(—3 5 YEY )

fY | 26)=Q2n) 7 = .
[Tses 1 EsI 2 etr(—=1 25" YY)

(3.2)
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From (3.1), the prior on X is

[lcec P(Zc | b, D)

f(Xg1G)=
biCI=1t B B
HCEC| Dc|™ 27 |C\(b+‘cl ])|Z | = etr(—%ECIDc)
BHSIT 1 21s] — .
[Mses 150173 Tl L 36 =55 ew(- 455 D)

It is straightforward to obtain the marginal likelihood of the decomposable graph G,

h(G7b7 D) _ 7—[7 HCeCw(C)
o= Q) T =
h(G,b+n,D+YTY) [Tsesw(S)’

fY]1G)=@n)~ 7%

where

1 bHCIZL L1 p|Cl—1
[TeeclzDcl™ 27 T (7))

il 1 -1 b+\S|71) ’
ses 12 NN

h(G,b, D) =

_ btn+|Cl-1

w(C) =

H\C\ _
2— F|C|(b+|C| l)r 1(b+n+2|C\ 1)

Throughout the remainder of the paper, we shall be working with the hyper-inverse Wishart g-prior
[10], denoted as

26 | G ~HIWg(b, gY"Y), (3.3)

where g is some suitably small fraction in (0, 1) and b > 2 is a fixed constant. Following the recom-
mendation in [10], we choose g = 1/n for the rest of the paper. Intuitively, this choice of g avoids
overwhelming the likelihood asymptotically as well as arbitrarily diffusing the prior. In that case,

[Cl(b+n+[C[=1)

n+1~ 7|YTYC|"

w(C) = —alCl b+|C|—1 btn+|Cl=1+"
2m) ™7 Tye (PHE=H T (A=

The choice of focusing on the HIW g-prior in this paper is driven by the following two reasons. First,
we can simplify the signal strength assumption in terms of the smallest nonzero entry in the partial cor-
relation matrix, which serves as a natural interpretation of the edge strength compared to assumptions
on the eigenvalues of the correlation matrix. Second, we conjecture that the results stated in Section 4
and Section 5 continue to hold for any choice of HIW priors. The proof techniques under HIW g-priors
serve as representations to the principle ideas in the article and can be easily adapted to other variations
of HIW priors.

To complete a fully Bayesian specification, we place a prior distribution 7 (-) on the decomposable
graph G. Our theoretical results in Section 4 and Section 5 are independent of the prior choice on G
if we consider a fixed p asymptotics. However, for p increasing with n we need a suitable penalty on
the number of edges of the random graph to penalize the false positives. Here is a popular example
[8,10,14,24,38] we use in the paper. Considering an undirected decomposable graph G, we assume the
edges are independently drawn from a Bernoulli distribution with a common probability ¢,

7(G | q) []‘[q“”(l —q)“’”} 1p,(G).

r<s
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Here, ¢ is the prior edge inclusion probability. We control the parameter ¢ to induce sparsity on the
number of edges. [24] recommends using 2/(p — 1) as the hyper-parameter for the Bernoulli distri-
bution in practice. For an undirected graph, it has its peak at p edges and the mode is smaller for
decomposable graphs. We outline specific choices in Section 4 and Section 5 below.

To summarize, the Bayesian hierarchical model for Gaussian graphical models with decomposable
graphs is as follows.

Ynxp | 26, G ~ MNnxp(Onxpa I, X6),
26| G~HIWg(b,gY"Y),

(G |q) x []_[ g (1 - q)l‘e”} -1p,(G).

r<s

This model and its numerous variations have been studied extensively during the past few decades
and many efficient algorithms have been proposed for posterior sampling [1,20,24]. The most com-
monly used one is the add-delete Metropolis—Hastings sampler which is based on the reversible jump
Markov chain Monte Carlo (MCMC) algorithm proposed in [20,21]. The algorithm samples decom-
posable graphs through local updates to traverse through D,,. To highlight the key steps of the MCMC
procedure, let G denote the current decomposable graph at a certain step of the MCMC. Then

e Propose a new decomposable graph G’ by adding or deleting an edge with equal probability from
the current decomposable graph G while maintaining decomposability. This can be achieved by
applying the procedure in [20].

e Calculate the acceptance probability

/ /
a(G',G) = min{ 1, w}
FY|G)n(G)

e Let Gpew be the updated decomposable graph. Sample ¢, ., from its posterior distribution
6w | Yo Grew ~HIWG, {b+n, (g +DY' Y}

This step can be performed by using the sampling procedure in [9].

4. Theoretical results in the well-specified case

In this section, we present our main consistency results when the true graph is assumed to be decom-
posable. The assumptions and theorems introduced here serve as the foundation for the consistency
results when the model is misspecified. Understanding the mechanism of how the results are derived
for decomposable graphs is crucial to develop the theoretical tools when the true graph is nondecom-
posable. This section provides an alternative perspective of selection consistency problems for perfect
DAGs [8] based on a set of new assumptions. A detailed comparison of assumptions with those in [8]
is given in Section 4.4. The proofs are deferred to the Appendix and Supplementary Materials [32].
Before introducing the assumptions, we adapt previous notations to the high-dimensional graph
selection problem. Let Y = (Y1, Y2, ..., Y,)T and Qg = P2y ! be the corresponding precision matrix.
Without loss of generality, we assume all column means of Y are zero. Let p;jjv\;, j; denote the true
partial correlation between nodes i and j given the rest of the nodes V\{i, j}. Let pr and py be the
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smallest and largest (in absolute value) non-zero population partial correlations, that is,

., = min N —  max —
Iy l§i<j§p|pl]|V\{l,j}| pU 15i<j5p|p’”v\{”’}|
@i, j)EE; (i, ))EE,

Furthermore, assume all partial correlations (with the form p;jv\y;, j}) are uniformly bounded above
by 1 to avoid degeneracy in the Gaussian distribution. More precisely, we assume 0 < p;, < py < 1.

Let G; = (V, E;) denote the true decomposable graph induced by . Let G, = (V, E,) be any
alternative decomposable graph other than the true graph G;. E Jl = E; N E, denotes the set of true
edges in G,. Notice, when E;, C E,, we have E; = E,. Letting | - | denote the cardinality of a set,
|E;| is the number of edges in G, (number of true edges) and |E ,1| is the number of true edges in
G,. Define G, = (V, E;), where Ec ={(i, j):e;j =1,1<i < j < p}land |E.|= p(p —1)/2, to be
the complete graph. By definition G, is a decomposable graph. We use G, # G, to denote E, # E;,
G, ¢ G; for E, ¢ E;, and G, C G; for E, C E;. In the following, we introduce a set of general
assumptions essential to establish the theoretical results of the graph selection consistency. The main
results will have additional restrictions on the parameters (o, A, o, ) introduced below in the general
assumptions.

Assumption 4.1 (Graph size).

* where0 <o < 1.

p3n

This assumption states that the dimension p of graphs has to grow slower than n, unlike [8]

(hereafter CKG19) where p is allowed to grow up to a sub-exponential rate in n. This is simply be-

cause the sparsity assumptions in our paper are completely different from those in CKG19. As clarified

below, we allow graphs to be “dense” while graphs considered by CKG19 are sparse in a systematic

way. Similar to CKG19, [28] (hereafter LLL19) allows p to be sub-exponential in n but with some
compromise in allowing dense graphs.

Assumption 4.2 (Signal strength and identifiability).
A 1
oL N Where0§k<§.

This assumption indicates that the smallest nonzero partial correlation (in absolute value) cannot
converge to zero faster than 1/,/n. Interpreting oy as the “signal size”, the assumption restricts the
smallest signal size such that the hierarchical model in Section 3 is identifiable. We compare this
assumption with analogous assumptions from CKG19 and LLL19 in Section 4.4.

Assumption 4.3 (Maximum number of edges in G;).

|E;| 3n° where 0 <o <2a.

In the well-specified case (Theorems 4.2 and 4.3), the maximum number of edges in G, is not re-
stricted, that is, G, is allowed to be complete, meaning that we do not impose any sparsity conditions
on the true graph. For model misspecification, some restrictions on | E;| are needed to ensure the selec-
tion consistency. CKG19 and LLL19 mainly focus on ultra high-dimensional cases (p > n and p > n)
with sparsity assumptions on G, which apply to the p < n case as well.
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Assumption 4.4 (Prior edge inclusion probability).

g=e %" whereO<y <1,0< Cy <o0o0.

The assumption states that —log(q) has to be a fractional power in n and cannot increase faster
than n. A similar assumption on prior edge inclusion probability can be found in CKG19. A detailed
comparison of assumptions on g is provided in Section 4.4. On the other hand, LLL19 uses a different
prior specification, called the empirical sparse Cholesky (ESC) prior which has close connections with
the prior setting in CKG19. However, the ESC prior does not impose elementwise sparsity with inde-
pendent Bernoulli distributions, thus it loses the interpretation of the prior edge inclusion probability.

Assumption 4.5 (Imperfect linear relationship).
1—py =n~* wherek > 0.

In general, py is strictly less than 1 to avoid degeneracy in the Gaussian distribution. However, it is
allowed to grow with n to 1 at any polynomial rate (or slower). This limitation on the growth is due
to a technical condition on the tail behavior of the distribution of non-zero sample partial correlations.
See Section S.1 in the Supplementary Materials [32] for more details.

4.1. Pairwise Bayes factor consistency for fixed p

In this section, we investigate the behavior of the pairwise Bayes factor
J(Y1Ga)
FYIG)'

for fixed p, pr, and py. We aim to derive sufficient conditions on the likelihood (3.2) and the prior on
¥ given by (3.3) such that the Bayes factor (4.1) converges to 0 as n — oo for any graph G, # G;.

BF(G,; Gy) = 4.1)

Theorem 4.1 (Upper bounds for pairwise Bayes factors). Letr p be fixed. Given any decomposable
graph G, # Gy, there exists a set A, such that on the set Ay, if n > max{p + b, 4p}, we have

1. when G; ¢ G,
npl%
BF(G4; G;) <exp - +8(n) ¢,

2. when G, € G,
BF(G.: G,) < (e,,2) -~ 2Eal=ED(1=2/7%)
and

1
2

2 1 1 -
(n —p)_“_*{r—*log(n —p)} ,

42p
(1 —pp)?

where T > 2 and §(n) = p*logn + /nlogn + 3p®log p satisfying 8(n)/n — 0, as n — oo.

P(Ag) =1 -

When G, ¢ G,, G, lacks at least one true edge in G;. The first part of Theorem 4.1 says that the
Bayes factor in favor of true-edge deletions is exponentially small with the actual rate depending on
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pL. When G, C G,, G, contains all true edges in G; and at least one false edge. The Bayes factor in
favor of false-edge additions decreases to zero only at a polynomial rate depending on the number of
false edges in G,.

The behavior of Bayes factors observed from Theorem 4.1 depends solely on the property of the
HIW prior as no prior on the graph space is involved and no sparsity condition on G, is imposed.
The HIW prior enforces a stronger penalty on true-edge deletions than false-edge additions. In high-
dimensional cases, as the complexity of the graph space grows, the polynomial penalty on false-edge
additions is not enough to overcome the complexity of the graph space. In such situations, a prior
on the graph space is needed to achieve the selection consistency (refer to Theorems 4.2 and 4.3).
In high-dimensional cases, the HIW prior alone does not favor parsimonious models, that is, it does
not guarantee the selection of sparse graphs when G; is sparse. The next two corollaries are direct
consequences of Theorem 4.1.

Although Theorem 4.1 holds for finite dimensional graphs, its proof techniques serve as the foun-
dation to the subsequent theorems on decomposable graphs presented in this article. Therefore, it is
important to discuss the key steps of the proof. First, to find an upper bound of Bayes factors between
any two decomposable graphs, the Bayes factors are decomposed in terms of “local moves” consisting
of adding or deleting edges between two decomposable graphs. Hence, the Bayes factor between any
two decomposable graphs which differ by one edge can be seen as the basic unit in the proof. Lemmas
A.1-A.4 in Appendix A provide the theoretical support for this procedure. Second, we enumerate all
such Bayes factors and express them as functions of sample partial correlations specific to each Bayes
factor. Finally, in Section S.1 we develop results on the tail behavior of sample partial correlations,
which enable us to replace the sample partial correlations with the upper or lower bound defined in
Assumptions 4.2 and 4.5.

Corollary 4.1 (Finite graph pairwise Bayes factor consistency). Let G, be any decomposable graph
and G, # G;. If the graph dimension p is a fixed constant, BF(G,; G¢) £ 0, asn — oo.
Corollary 4.2 (Finite graph strong selection consistency). Let p be fixed. Define

1
1 + ZG‘,¢G, BF(Ga; Gt)

(G 1Y) = (4.2)

We have 7 (G, | Y)LP; 0, as n — oo.

Notice, the number of Bayes factor terms in the denominator on the right-hand side of (4.2) is finite.
Thus, the strong selection consistency is trivial given Theorem 4.1.

4.2. Posterior ratio consistency for growing p

Next, we examine the convergence of the following posterior ratio,

JY1Ga)m(Ga)

PR(Gy; G1) = "=
FXY[G)r(Gy)

when the dimension of graphs p grows with the sample size n.
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Figure 3. Possible range of («, A, 0, y) required for the high-dimensional graph posterior ratio consistency. (a)
The gray area shows all possible values of («, 1) in the assumptions of Theorem 4.2. The range of X is (0, 1/4) for
all « € (0, 1/4). As « increases passing 1/4, the range of A becomes narrower. (b) For « = 1/4, then X € [0, 1/4)
and o € (0, 1/2]. The plotted plane is the upper bound of y in Theorem 4.2, thatis, y =1 — o — 2A. The lower
bound of y is the bottom plane y = 0 in this plot. The area between the upper and bottom planes contains all
possible values of (%, o, y) when o = 1/4.

Theorem 4.2 (High-dimensional graph posterior ratio consistency). Let G, be any decomposable
graph and G, # G;. If Assumptions 4.1-4.5 are satisfied with

1 1-2«x
}, 4.3)

1
O<a<—, 0 <A <min;g —,
2 4 2

by choosing y in the interval (0,1 — o — 2X), we have PR(G; G;) E 0, as n — oo.

We provide some intuitions of the constraints imposed on («, A, o, ) in Theorem 4.2. For posterior
ratio consistency, the graph size p cannot grow at a rate equal to or faster than /n. In Figure 3(a),
if @ > 1/4 and increases to 1/2, the range of A becomes narrower. This means the rate at which
pL converges to zero needs to be slower to achieve the selection consistency. Therefore, for larger
dimensional graphs a stronger identifiability is needed for consistent recovery of the true graph.

From Theorem 4.1, recall that HIW priors do not enforce a strong penalty on false-edge additions.
When the graph size grows with n, a prior on the number of edges is needed. The penalty on the
number of edges is controlled by y, that is, larger y means smaller edge inclusion probability and
larger penalty on dense graphs, and vice versa. Only the upper bound of y is restricted by o and A,
see Figure 3(b). The upper bound of y decreases when o increases (the total number of edges |E/|
increases). This ensures the consistency when G; is dense.

The upper bound of y also decreases when X increases (pr converges to zero faster). As pr, goes to
zero faster, the identifiability issue becomes more severe. Based on Theorem 4.1, the risk of false-edge
additions (polynomial) is lower than the risk of true-edge deletions (exponential). In order to overcome
the identifiability issue, increasing the edge inclusion probability would result in a lower risk. This
explains the decrease in the upper bound of y when A increases. Furthermore, there is no restriction
on o in Assumption 4.3 suggesting that no sparsity assumption on the true graph is needed for the
consistency.
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4.3. Strong graph selection consistency for growing p

In this section, we examine the behavior of

JY [G)n(G)

G|Y)= )
O = s FY (6@

asn, p — oo.

Theorem 4.3 (Strong graph selection consistency). Let G, be any decomposable graph and G, #
G;. If Assumptions 4.1-4.5 are satisfied with

| — 1—30{}, 44)

1
O<a<—, 0 <A <min ,
3 4 2
by choosing y in the interval (a, 1 — o — 21), we have
P
7(G;|Y)—>1 asn— oo.

Strong selection consistency demands all posterior ratios to be converging simultaneously at a suf-
ficiently fast rate so that the sum is convergent. Since the number of alternative graphs is of the order
27 , to make the summation convergent, we require further assumptions on the model complexity and
an accompanying stronger penalty on the number of edges. We achieve this by shrinking the dimension
of the graph space (o« < 1/3) and inducing a slightly stronger sparsity (by selecting larger y) on the
prior over the graph space. As « increases, the upper bound of X (the fastest rate allowed for pr, to con-
verge to zero) becomes more restrictive and so does its feasible range. This alleviates the identifiability
problem caused by the growth of p.

The upper bound of y is the same as in Theorem 4.2, but A has a different range in Theorem 4.3,
see Figure 4(b). While there is no specific lower bound of y in Theorem 4.2, there is a lower bound on
y increasing with « in Theorem 4.3. This ensures when p grows with n, the upper bound of the edge
inclusion probability ¢ becomes smaller imposing a stronger penalty coming from the prior on the
graph space. Finally, as in Theorem 4.2 we do not need any further restriction on o in Assumption 4.3
meaning that the true graph is allowed to be dense or even complete in the strong selection consistency.

In practice, one might be interested in a consistent point estimate rather than the entire posterior
distribution. In Bayesian inference for discrete configurations, the posterior mode provides a natural
point estimate. In the following, we investigate the consistency of the posterior mode obtained from
our Bayesian hierarchical model as a simple by-product of Theorems 4.2 and 4.3. Define G to be the
posterior mode in the decomposable graph space, that is,

G= argmax7(G | Y).
GeD,

Then the following is true.

Corollary 4.3 (Posterior mode consistency when G, is decomposable). Under the assumptions of
Theorem 4.3, the probability which the posterior mode G is equal to the true graph G; goes to one,
that is,

IP’(G:G,)—)I asn — oo.
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(a) the region of (a, A) described by (4.4) (b) 3d plane of y =1 — 0 — 2\ when a =
Figure 4. Possible range of (o, A, 0, ) required for the high-dimensional strong graph selection consistency.
(a) The gray area shows all possible values of (&, A) in Theorem 4.3. For « € (0, 1/5], the range of A narrows
slowly with a rate of 1/4; for « € (1/5,1/3), the upper bound of A decreases faster at a rate of 3/2. (b) For
a=1/5,then X € [0,1/5) and o € (0,2/5]. The plotted plane is the upper bound of y in Theorem 4.3, that is,
y =1 — o0 — 2. The lower bound of y is the bottom plane y = 0.2 in this plot. The area between the upper and
bottom planes contains all possible values of (A, o, y) when o =1/5.

4.4. Comparing assumptions with CKG19 and LLL19

The results in Section 4.2 and Section 4.3 are established with certain restrictions on the parame-
ters (a, A, 0, y) in Assumptions 4.1-4.5. Recently, CKG19 and LLL19 developed the DAG selection
consistency with the DAG-Wishart prior [5] and the ESC prior [28], respectively. For any undirected
decomposable graph there exists a directed acyclic graph whose skeleton is the same as the decom-
posable graph [8]. Also, the DAG-Wishart prior is equivalent to the hyper-inverse Wishart prior if one
considers decomposable graphs. The ESC prior is related to the DAG-Wishart prior from an autore-
gressive perspective of Gaussian DAG models [28]. Thus, most assumptions in LLL19 can be related to
CKG19. Due to the similarities between the hierarchical models in CKG19 and this paper, we mainly
focus on comparing the differences of assumptions between these two papers. For a fair comparison of
the assumptions, we consider p to be increasing only at a fractional exponent in .

4.4.1. Assumptions on eigenvalues of Qg

In CKG19, the lower bound of the smallest eigenvalue of the true precision matrix 2 has to decrease
at a rate slower than n~!/% and the upper bound of the largest eigenvalue cannot grow faster than
n'/8. In LLL19, only a fixed constant and its reciprocal are used to restrict the smallest and largest
eigenvalues of the true precision matrix, but it can be relaxed to a similar assumption as in CKG19
with some scarification of other conditions. We do not need any assumptions on the eigenvalues of the
true precision matrix. Instead, we only restrict the smallest nonzero partial correlation p;, in absolute
value. This assumption will be further examined below.

In general, there is no association between eigenvalues and partial correlations of a positive definite
matrix. Here is a simple example to demonstrate this. Consider a (p + 2)-dimensional positive definite
precision matrix

[05; OZI:"] WhereAz[Z Z} and a> — b2 > 0,b 0.
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The two nontrivial eigenvalues are a & b and the only non-zero partial correlation is b/a. For example,
let a =n® and b = n’, where s >t > 0. Setting s — ¢ < 1/2, the partial correlation does not go to
zero faster than 1/,/n. But in this case, both eigenvalues a & b = O (n*) can diverge to infinity at any
arbitrary polynomial rate. On the other hand, restricting the eigenvalues of 2o does not guarantee pr
can be controlled. Leta =n~ and b =n"", where t > s > 0. If we restrict the eigenvalues to decrease
slower than n~!/3 with s < 1/8. In this case, t — s > ¢ — 1/8 which means the partial correlation can
converge to zero at any arbitrary polynomial rate. We state that there exist examples which eigenvalues
and partial correlations are related as well. We omit the details for simplicity.

4.4.2. Assumptions on the sparsity of G;

Considering decomposable graphs, CKG19 restricts the number of edges directed from any node of
the true graph to be less than n'/4. Assumption 4 in CKG19 involving the signal size and eigenvalue
restrictions limits this number even further. But Theorems 4.2 and 4.3 do not enforce any sparsity
assumptions on G;. For p = o(n'/?), CKG19 requires the number of children for each node in G, to
grow slower than 73/, while Theorem 4.2 does not have any constraints on |E,| (it can be as large as
p(p —1)/2). On the other hand, LLL19 sets the same upper bound for the cardinality of the parent set
and children set of each node which is allowed to increase with the sample size. When p < n, LLL19
does not have any constraints on the total number of edges.

In the strong selection consistency results, CKG19 adds another restriction on the total number of
edges. Assuming p = o(n'/3) in CKG19, this implies that the total number of edges has to increase
slower than n’/12, while Theorem 4.3 only requires it to be slower than n%/3 where G, is allowed to
be G.. Overall, for p < n, CKG19 enforces stronger sparsity conditions on G, at least in the well-
specified case.

4.4.3. Assumptions on the prior edge inclusion probability

In CKG19, the prior edge inclusion probability always penalizes dense graphs through the maximum
number of children for each node, while in this paper the prior edge inclusion probability is chosen
based on py, |E;| and p (only in Theorem 4.3) under the well-specified case. There is no direct com-
parison between these two assumptions due to very different sparsity assumptions and perspectives
under which the consistency is studied in both papers. As discussed before, the ESC prior in LLL19
does not have an interpretation of the prior edge inclusion probability.

4.4.4. Assumptions on the signal size

In CKG19, the signal size is defined as the smallest (in absolute value) non-zero entry in the lower tri-
angular matrix of the modified Cholesky decomposition of €2y, denoted by s,,. The beta-min condition
in LLL19 restricts the square of the signal size defined in CKG19. In this paper, we consider pr, the
smallest non-zero partial correlation (in absolute value), as the analogue of the signal size. Although
the definitions are different, s, and py both relate to some quantities about the number of edges. In
CKG19 the signal size goes to zero slower when the maximum number of children for each node in-
creases; in this paper the signal size converges to zero slower when | E; | increases; in LLL19 the signal
size cannot converge to zero faster than 1//n which is similar to our general assumption on py . Both
signal sizes serve as a measure of identifiability in the selection consistency.

In the following, we look at an example to show that neither of the assumptions in CKG19 and this
paper implies the other. Let Q2 denote the precision matrix of a complete graph with the maximum
number of children d in the modified Cholesky decomposition 2 = L(al p)’lLT, where a > 0. The
following calculation does not depend on the choice of a as long as it is greater than zero. For simplicity,
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all non-zero lower triangular entries are assumed to be the same, say s. Thus, s is also the signal size
defined in CKG19. The smallest partial correlation in terms of d and s is given by

1

SNy

First, when s — oo, pr — 1/ Jd. In CKG19, d cannot grow faster than n%, hence the assumption
about py, in this paper is always satisfied. When s — 0, based on Assumption 4 in CKG19, the signal
size must be converging to zero at a rate slower than n~!/4 while d grows slower than 1/s2. In this
case, pz must be slower than n~!/4 as well. Thus, the assumptions of the strong selection consistency
(Theorem 4.3) in this paper are not met since it requires pz, to be slower than n~!/3. But Theorem 4.2
still holds.

4.4.5. Assumptions on HIW g-priors and DAG-Wishart priors

For the HIW g-prior used in this paper, the assumption that its degrees of freedom b > 2 is analogous
to Assumption 5(i) in CKG19. Also, the fact that (1/ n)YTY has a constant order of eigenvalues is
essentially the same as Assumption 5(ii) in CKG19. Although the ESC prior in LLL19 is closely
related to the DAG-Wishart prior under certain conditions, there is no direct connection with the HIW
g-prior.

Based on the comparisons presented in this section, the assumptions in CKG19 (and LLL19) do not
imply the ones in this paper and vice versa even when p < n. The assumptions in all three papers are
only the sufficient conditions and violation of any assumption does not necessarily compromise the
consistency.

5. Theoretical results under model misspecification

In this section, we investigate the effect of model misspecification when the underlying true graph
G; is non-decomposable. We develop theoretical results for non-decomposable graphs based on the
theorems and techniques in the well-specified case. The general assumptions remain the same as in
Assumptions 4.1-4.5 but different versions of restrictions on («, A, o, y) are introduced to handle the
misspecification. We begin with some definitions on triangulations and minimal triangulations of a
graph.

Definition 5.1 (Triangulation). Let G = (V, E) be a non-decomposable graph. A graph G* =
(V,EU F) where EN F = @ is called a triangulation of G if G* is decomposable. The edges in
F are called fill-in edges.

Definition 5.2 (Minimal triangulation [22,35]). Let G® = (V, E U F) be a triangulation of the
non-decomposable graph G = (V, E). G® is a minimal triangulation of G if (V, E U F’) is non-
decomposable for every F’ C F. In other words, a triangulation is minimal if and only if the removal
of any single fill-in edge from it results in a non-decomposable graph.

Definition 5.2 captures the important aspect of minimal triangulations, that is, no fill-in edge in a
minimal triangulation is redundant. To better understand this concept, see the following example in
Figure 5. Graph G, is not decomposable since it contains a cycle with length 6,i.e., 1 —2 -3 —4 —
5—6—1.Graph G, Gy, Gy, Gyi are all triangulations of G, since they are all decomposable and
the edge set of G is a subset of theirs. Furthermore, G, G,, G, are minimal triangulations of
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Figure 5. G ¢ is not decomposable; G, ,Gm,,Gm, are all minimal triangulations of G 6; Gy is a triangulation
of G, but not minimal; G4 is not a triangulation of G ,¢.

G 6 since removing any fill-in edge in them results in non-decomposable graphs. Gy is not a minimal
triangulation of G, since the removal of edge 3 — 6 or 1 — 5 results in decomposable graphs G,,, or
G, respectively. It has redundant fill-in edges, thus not minimal. G4 is not a triangulation of G
since it is not decomposable due to the cycle with length 4, i.e., 1 —3 — 4 — 6 — 1. This example
shows that minimal triangulations are not unique. For a summary of minimal triangulations, see [22]
for more details. Next, we state theorems of graph selection consistency when the true graph G; is
non-decomposable.

Theorem 5.1 (Convergence of minimal triangulations for finite graphs). Assume the true graph G,
is non-decomposable. When the graph dimension p is a fixed constant (py, and py are fixed constants),
we have the following results.

1. Let G, be any minimal triangulation of G; and G, be any decomposable graph that is not a
minimal triangulation of G;. If py # 1, then BF(G,; G,) E) 0, as n — oo.

P
2. If py # 1, we have ZG,,,EM, (G |Y) = 1,as n — o0, where M, is the minimal triangulation
space of G;.

Theorem 5.1 states that Bayes factors favor minimal triangulations over any other decomposable
graphs. This leads to the pairwise Bayes factor consistency for minimal triangulations. The second part
of the theorem ensures that the posterior of a candidate graph under model misspecification eventually
concentrates within the minimal triangulation space, that is, the sum of all posterior probabilities of
minimal triangulations converges to 1. The minimal triangulations serve as a proxy of G,. They contain
all edges in G; with the minimal number of fill-in edges. Thus, the minimal number of false positive
edges and no false negative edges are both guaranteed during model fitting.

Theorem 5.2 (Equivalence of minimal triangulations for finite graphs). Assume the true graph
G; is non-decomposable. Let G,,, and G, be any two different minimal triangulations of G, (with
the same number of fill-in edges). When the graph dimension p is a fixed constant, the Bayes factor
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between them are stochastically bounded, that is, for any 0 < € < 1, there exist two positive finite
constants A1(€) < 1 and A, (€) > 1, such that

P{A; <BF(Gm,; Gm,) <Az} >1—€ forn> p+max|3,b,6log(10p*/e)}.

Although minimal triangulation graphs are not unique, Theorem 5.2 says that the Bayes factor be-
tween any two minimal triangulations is stochastically bounded. Asymptotically the posterior prob-
ability may not converge to 1 for a single minimal triangulation of G;. In fact, the posterior assigns
non-vanishing probabilities to different minimal triangulations. The highest posterior probability model
depends on the given data set. Refer to the second simulation in Section 6 for an example. In [18], an
asymptotic version of Theorem 5.3 is presented. In contrast, our result is non-asymptotic and provides
an exact form of the constants, see Section B.2 in the Supplementary Materials [32] for details.

The Bayes factors considered in Theorems 5.1 and 5.2 are in fact between two decomposable graphs,
except one of them is a minimal triangulation (which is decomposable) of the true graph. Therefore,
the proofs follow similar steps as in the proof of Theorem 4.1.

Theorem 5.3 (Convergence of minimal triangulations for high-dimensional graphs). Assume the
true graph G; is not decomposable. When the graph dimension p grows with n, we have the following
results.

1. Let Gy, be any minimal triangulation of G; and G, be any decomposable graph that is not a
minimal triangulation of G;. Assume

1—-2«a

1 1
O<a<—, 0 <X <minj —,
2 4 2

}, O<o<1—2a—2A.
Choose y in the interval (2o,1 — o — 2)). Then under Assumptions 4.1-4.5, we have
PR(Ga; Gm) - 0, as n — 0.

2. If

l—a 1—-3«x
4 7 2

1
O<o¢<§, O§A<min{ }, O<o<1—3x—2A.

And we choose y in the interval 3a,1 — o — 2)), then under Assumptions 4.1-4.5, we have

P . .. . .
ZG,,, M, T(Gm | Y) —> 1, as n — 00, where M; is the minimal triangulation space of G;.

Theorem 5.3 is the high-dimensional version of convergence of minimal triangulations under model
misspecification. The consistency results are the same as in Theorem 5.1 with some additional assump-
tions on the parameters («, A, o, y). Comparing with Theorems 4.2 and 4.3, assumptions on « and py,
remain the same. The upper bound of y is also the same as in the well-specified case. Under model
misspecification, a sparsity assumption on the number of edges through ¢ and a larger lower bound on
y are needed to ensure the consistency of minimal triangulations.

In the well-specified case, we only consider two cases in the proofs, i.e., G; C G, and G; € G,.
In the case of model misspecification, there are three scenarios which are G,, € G4, G, ¢ G, with
|E;| < |E¢|, and G,, ¢ G, with G; € G, G,. The first two scenarios mirror the two cases in the
well-specified case. The third scenario is added because of properties of minimal triangulations. Due
to the proof techniques adopted here, in order to show the consistency for the third scenario, additional
constraints on y have to be placed. It results in lowering the edge inclusion probability which in return
imposes a sparsity condition on the total number of edges. This occurs in both parts of Theorem 5.3. We
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state that the assumptions in Theorem 5.3 are only sufficient conditions needed to achieve consistency.
The current proof techniques are not suitable to remove the extra assumption on the number of edges.

Theorem 5.4 (Equivalence of minimal triangulations for high-dimensional graphs). Assume the
true graph G; is not decomposable and the graph dimension p grows with n. Let G, and G, be any
two different minimal triangulations of G;. If the number of fill-in edges is finite, then the Bayes factor
between them are stochastically bounded.

This is an extension of Theorem 5.2 when p grows with n. Based on Theorem 5.4, the equivalence
among minimal triangulations is true when the number of fill-in edges is finite. Adding infinitely many
fill-in edges prompts the minimal triangulations to drift further away from each other; thus, the equiv-
alence may not be valid in such case. It is worth noting that any decomposable subgraph of the true
graph is not a good posterior estimate. This is simply due to the fact that false-edge deletions result
in an exponential decay of Bayes factors in favor of decomposable subgraphs. Analogous to Corol-
lary 4.3, we show in Corollary 5.1 that when the true graph G; is not decomposable, the posterior
mode is one of the minimal triangulations and is consistent.

Corollary 5.1 (Consistency of the posterior mode when G, is non-decomposable). Under the as-
sumptions of the second part of Theorem 5.3, the posterior mode G is in the minimal triangulation
space M; of the true graph G, with probability converging to one, that is,

IP(GEM,)—)I asn — 0o.

6. Simulations

We conduct two sets of simulations for demonstrating the convergence of Bayes factors in the well-
specified case (Theorem 4.1) and in the misspecified case (Theorem 5.1) for fixed p.

6.1. Simulation 1: Demonstration of pairwise Bayes factor convergence rate

In this section, we conduct a simulation study in D3 to demonstrate the convergence rate of pairwise
Bayes factors. Since there is no non-decomposable graph with 3 nodes, D3 is the same as G3. All 8
graphs in D3 are enumerated in Figure 6.

The underlying covariance matrix X3 and its precision matrix €23 are shown below along with the
correlation matrix R3 and the partial correlation matrix R3. Samples are drawn independently from
N3(0, 23). The range of the sample size simulated is from 100 to 10,000 with an increment of 100.
The Bayes factor for each sample size is averaged over 1000 simulation replicates. The degrees of
freedom b in the HIW g-prior is chosen to be 3. The first six pairwise Bayes factors in logarithmic
scale are shown in Figure 7(a) and the logarithm of BF(G; G;) is shown separately in Figure 7(b) due
to its slower convergence rate. To better understand the simulation results, asymptotic leading terms of
pairwise Bayes factors in logarithmic scale and the empirically estimated slopes for n or logn are listed
in the second and third columns of Table 1. To calculate the leading terms, sample partial correlations
or sample correlations are replaced with their population counterparts that do not depend on n. The
slopes of logarithms of the first six Bayes factors in Figure 7(a) are calculated in Table 1 by performing
linear regressions on n. The last slope in Table 1 is calculated with a linear regression on log n; refer to
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Figure 6. Enumerating all 3-node decomposable graphs in D3 with G, as the true graph, G as the null graph
and G as the complete graph.

Figure 7(b). Table 1 shows that the theoretical asymptotic leading terms match well with their empirical
values.

[ 07119 —0.4237  0.1695] 2 1 0]
$y=|-04237 08475 —03390|, =] 1 2 08],
| 01695 —0.3390  0.6356 | | 0 08 2
1.0000 —0.5456  0.2520]] (1 05 0]
Ry=|—05456 10000 —0.4619(, R3=[05 1 04
| 02520 —0.4619  1.0000 | 0 04 1

From the simulation results, we can see that missing at least one true edge of G, in G, results in the
Bayes factor converging to zero exponentially. This is perfectly illustrated by all six Bayes factors in
Figure 7(a). On the other hand, adding false edges in G, results in the Bayes factor going to zero at
a polynomial rate which is much slower than the case of missing a true edge, see Figure 7(b). These
discoveries are consistent with Table 1 and our proofs.

Next, we compare the rates in the convergence of the first six Bayes factors. The convergence rate as-
sociated with missing two true edges of G is faster than missing only one true edge, that is, BF(Go; G¢)
vs. BF(G23; G¢) and BF(Gy; G;) vs. BF(G12; G;). The convergence rate is faster when the missing
true edge of G; corresponds to a larger partial correlation (or correlation) in absolute value, that is,
BF(G_12; G;) vs. BF(G_»3; G;) and BF(G23; G¢) vs. BF(G12; G;). One interesting fact is although
Go and G3 are both missing two true edges of G, with G3 having an additional false edge of G;

Table 1. Asymptotic leading terms and simulation slopes of Bayes factors in logarithmic scale

Bayes factor Asymptotic leading term Simulation slope
BF(Go; Gr) {log(1 — p122) +log(1l — ,0%3)} -n/2=-0.2967-n —0.2963
BF(G13; Gy) {log(1 — ,0%2) +log(1l — p%3|1)} -n/2=-0.2639 -n —0.2637
BF(G23: Gy) log(1 — ,0122) -n/2=-0.1767-n —0.1765
BF(G_12; Gt) log(1 — p122|3) -n/2=-0.1438 -n —0.1439
BF(G2; G1) log(1 — p2;) -n/2=—0.1120-n —0.1198
BF(G_»3; Gy) log(1 — p§3|1 y-n/2=—0.0872-n —0.0873

BF(G¢; Gt) —0.5-logn —0.5106
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Figure 7. Simulation results of pairwise Bayes factors of D3 in logarithmic scale. (a) Six Bayes factors where
G; ¢ G4 (at least missing one true edge of G;). (b) Bayes factor BF(G.; G;) when G; C G, = G (only
false-edge additions).

compared to G, the convergence rate of the Bayes factor for G3 is slower than that for G¢. The reason
is clear from Table 1. As the absolute value of the correlation between nodes 2 and 3 (| 03| = 0.4619)
is larger than the absolute value of the partial correlation between them given node 1 (]p231| = 0.4);
thus, the leading term of BF(Gy; G;) is smaller than that of BF(G13; G;). The effect due to the false
edge 1 — 3 (polynomial rate) is overwhelmed by the leading term (exponential rate). It is evident that
HIW priors place a larger penalty on false negative edges compared to false positive edges. This con-
firms Theorem 4.1. Similar conclusions can be made by comparing BF(G»3; G;) and BF(G_12; G;),
also by comparing BF(G12; G;) and BF(G_23; G/).

6.2. Simulation 2: Examination of model misspecification

In this section, we illustrate the stochastic equivalence between minimal triangulations when the true
graph is non-decomposable. The smallest non-decomposable graph is a cycle of length 4 without a
chord. So we focus our simulation in Dy4. Since the number of decomposable graphs increases expo-
nentially with the dimension of graphs, we only select 5 alternative graphs in D4 besides the minimal
triangulation, see Figure 8. The true covariance matrix X4 and its precision matrix €24 are listed below
along with the correlation matrix R4 and the partial correlation matrix R4. All simulation settings are
the same as the simulation in Dj.

1.8364 —1.0909  0.8909 —1.3636 | 2 12 0 1
5, = —1.0909 1.0606 —0.7273  0.9091 Q= 12 3 12 0
0.8909 —-0.7273  0.9273 —-0.9091 |’ 0 12 3 1)’
| —1.3636  0.9091 —0.9091 1.6364 | |1 0 1 2
1.0000 —0.7817  0.6827 —0.7866 | 1 049 0 0.50
Ri— —0.7817 1.0000 —0.7334  0.6901 Ry = 0.49 1 0.40 0
0.6827 —0.7334 1.0000 —0.7380 |’ 0 040 1 041
| —0.7866  0.6901 —0.7380 1.0000 | | 0.50 0 041 1

When the true graph G, is non-decomposable, the two minimal triangulations of G, act like two
proxy graphs of G;. We plot the first four pairwise Bayes factors where G,,; ¢ G, (i = 1,2) for G,
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Figure 8. Some selected graphs in G4, including G; as the true graph which is non-decomposable. G, and G,
are two minimal triangulations of G;.

and G,,, in logarithmic scale together in Figure 9(a) and (b), respectively. The logarithm of the Bayes
factor between the two minimal triangulations is in Figure 9(c). Finally, we plot the Bayes factors
between G, (one triangulation of G, but not minimal) and both minimal triangulations in logarithmic
scale in Figure 9(d).

Figure 9(a) and (b) are Bayes factors with true-edge deletions from G,,, and G,,,, respectively. They
behave the same as in the well-specified case, meaning that true-edge deletions cause exponential decay
of Bayes factors under model misspecification as well. Figure 9(d) shows that Bayes factors with false-
edge additions decay at a polynomial rate under model misspecification. This is also the same as in the
well-specified case. Based on the simulation result in Figure 9(c), we can see the Bayes factor between
the two minimal triangulations G, and G, appears to be stochastically bounded.

7. Discussion

In this paper, we provide a complete theoretical foundation for high-dimensional decomposable graph
selection under model misspecification. When the graph dimension is finite, Fitch, Jones and Massam
[18] present pairwise Bayes factor consistency results and stochastic equivalence among minimal tri-
angulations. We provide more general results of both pairwise consistency and strong selection consis-
tency in high-dimensional scenarios. To the best of our knowledge, these are the first complete results
on this topic so far. Our current choice of edge inclusion probability requires the knowledge of total
number of edges in the true graph. We anticipate this can be relaxed by placing an appropriate prior on
V.
In our results, the graph size cannot be equal to or exceed n'/% and n!/3 for posterior ratio consistency
and strong selection consistency, respectively. The limitation of the growth rate of the graph dimension
is caused by the convergence rate of sample partial correlations and sample correlations. With the
current techniques, without further investigating the relationship among sample partial correlations,
these results cannot be improved. Observe that in the i.i.d. case without any sparsity assumptions,
such an assumption on the growth of the graph dimension is common [23,39]. We conjecture that it
may not be possible to relax the growth rate of p for achieving strong selection consistency using the
current formulation of HIW priors. This is simply because HIW priors do not penalize false edges
significantly enough so that in high dimension a prior on the graph space is needed to achieve both
pairwise and strong selection consistency. Also any other sparsity restriction on the elements of the
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Figure 9. Simulation results of pairwise Bayes factors of Dy in logarithmic scale. (a) Bayes factor BF(G4; G )
when G, ¢ G, (missing true edges). (b) Bayes factor BF(G4; G,) when Gy, ¢ G (missing true edges). (c)
Bayes factor between the two minimal triangulations of G, BF(Gy,; Gy ). (d) Bayes factor BF(G4; G;) when
Gm; € Ga=Ge,i=1,2 (only false-edge additions).

precision matrix is not supported by HIW priors due to its inability to enforce sufficient shrinkage
conditional on the graph. This limits extending the technical results to ultra-high-dimensional cases by
enforcing additional sparsity assumptions on the elements of the precision matrix. This apparent “flaw”
lies in the construction of HIW priors and cannot be improved by adding any reasonable penalty on the
graph space.

For technical simplicity, our results are based on the HIW g-prior only. We conjecture that the con-
sistency results continue to hold for general HIW priors. Moreover, extensions to non-decomposable
graphical models can be done by using G-Wishart priors, but major bottlenecks are expected stemming
from the lack of a closed form for the normalizing constant. A recent work [40] on the development
of exact formulas for the normalizing constant can be used to show consistency results of Bayes fac-
tors for general graphs. A future area of research will also involve studying repercussion of model
misspecification on other related approaches of Bayesian graph learning [18,24].

Overview of results in the Appendix. Note that the proofs in the Appendix require a set of auxiliary
results. The readers are deferred to the Supplementary Materials [32] for these results. The Appendix
begins with a set of graph theoretic results required to prove Theorem 4.1. Then we provide the proof
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Table 2. Summary of notations

Y. Niu, D. Pati and B.K. Mallick

Symbol Definition

P The probability corresponding to the true data generating distribution
Gk, Dy, k-dimensional graph space, k-dimensional decomposable graph space
M; The minimal triangulation space of G; when G is non-decomposable
axb C1b < a < Cyb for positive constants C1, Co

alb,arzb a < C3b for a positive constant C3, a > Cy4b for a positive constant Cy
ACB,A¢B A is a subset of B, A is not a subset of B

ACB ACBand A#B

[ -] Absolute value, cardinality of a set or determinant of a matrix by context
7(), w(-1Y) The prior distribution and posterior distribution of graphs

Y, YiT, Vi The n x p data matrix, the ith row of Y, the ith column of Y

Pij»> Pij|S The correlation and partial correlation between X; and X ; given X
Dijs Pij|s The sample correlation and partial correlation between X; and X ; given Xg
POL> PU The lower and upper bound for all |p;j|v\(i, j}|, where (i, j) € E;
c;,C,S;, S A clique, the set of cliques, a separator, the set of separators

Gt, Gy, Ge The true graph, any decomposable graph, the complete graph

Gm, Go A minimal triangulation of G, the empty graph

G The posterior mode in the decomposable graph space

E:, E4, E, E; Edge sets of G, G4, G¢ and Eé =E,;NE;

p,V The graph dimension, the vertex set, where V = {1,2, ..., p}

X, %, X Nodes in the graph

i, J Determined by context, nodes in the graph or indices of nodes

s, 8.8 Separators in the graph

ds, q The cardinality of separator S, the prior edge inclusion probability

Ag, Ag(n), AL (n)

Probability regions of sample partial correlations

My The set of all sets that separates nodes x and y, where (x, y) ¢ E;
Gi(x,y)eE, A graph with/without true edge (x, y)

Gx(x,y)¢E, A graph with/without false edge (x, y)

Gi ¢ Gi~e The ith graph in the sequence from G, to G, and G; to G,

of Theorem 4.1 followed by the proof of Theorem 4.2. We also provide the proofs of theorems related
to minimal triangulations, that is, Theorems 5.1 and 5.2.

Appendix A: Pairwise Bayes factor consistency and posterior ratio
consistency — any graph G, versus the true graph G;

Lemma A.1 (Decomposable graph chain rule [27]). Let G = (V, E) be a decomposable graph and
let G' = (V, E') be a subgraph of G that also is decomposable with |E\E'| = k. Then there is an
increasing sequence G' = Go C G1--- C Gy—1 C Gx = G of decomposable graphs that differ by
exactly one edge.

Assume G; ¢ G, then |E;| > |E a] |. By Lemma A.1, there exists a decreasing sequence of decom-

posable graphs from G, to G, that differ by exactly one edge, say {Ef%a}lico‘flbﬂ”‘, where G, =
G, “2Gy “2---2 ET;f_|Ea|_l ) ng_wal = G,. There are |E.| — | E,| steps for moving from

G. to Gg. Let {pfiy_lgi}i.i"l‘_w"l be the corresponding population partial correlation (or correlation,
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when S; = @) sequence and {BF(ES_)H; Ef:a)}li‘i‘_lE“‘ be the corresponding Bayes factor sequence
—Cc—>a c—)a

for each step. By that, we mean in the ith step, edge (x;, y;) is removed; P%.3.15; and BF(G;, ;G;_;)

are the population partial correlation and the Bayes factor accordingly, i = 1, 2, ..., |Ec] = |Eql. S is
the specific separator corresponding to the ith step. Among them |E;| — | E, al | steps are removals of true
edges that are true-edge deletion cases; |E.| — |E4| — |E¢| + |E ;| steps are removals of false edges that
can be seen as false-edge deletion cases.

Lemma A.2 (Origin of the exponential rate in true-edge deletion cases). Assume G; ¢ G,. There
exists at least one sequence of partial correlations {p. .15 }‘E el =] for moving from G to G, such
that among all population partial correlations in the sequence that are corresponding to the removal
of true edges, at least one is non-zero and it is not a population correlation (S; # ).

Proof. There are many sequences of {(X;,y; )}‘EC| |Eal (in different orders) that can achieve mov-
ing from G, to G, and still maintain decomposability along the way. Let (x,,y,) € E,\E;. Thus,
%, v, € {(x, yl)}lE” ~IEal Choose (*1,y1) = (X, y,). This means the first step is the removal of a
true edge in E,\Ea from G.. (The rest of steps can be arbitrary as long as they maintain decompos-
ability.) Let S, be the corresponding separator for the first step. Thus, we know S, = V\{X4,y,} # 9,
since (X, y,) is removed from G.. In fact, the removal of any edge from a complete graph still main-
tains decomposability, that is, Ei_)a is a decomposable graph. Since (¥,,y,) € E;, by the pairwise
Markov property, oz, 5, |v\(%,.5,} 7 0- And pp < |p7,.5,1V\(%.5,}| < pu. Therefore, the partial corre-
lation sequence starting with o5, 5, |v\(%,.7,} is the one which satisfies all conditions according to the
lemma since oz, 3, |v\(%,.5,} # 0 and it is corresponding to the removal of a true edge (X, y,). Thus,
we have proved the existence and found the sequence as well. g

Lemma A.3 (The inheritance of separators). Ler G = (V, E) and G' = (V, E') be two undirected
graphs (not necessary to be decomposable). Assume E C E'. If S C V separates node x € V from node
y €V inG',where (x,y) ¢ E', then S also separates them in G.

Proof. First, if x and y are not connected in G (x and y are not adjacent as well), any node set can
separate them by definition, so does S. The lemma holds trivially in this case. When x and y are
connected in G, assume S does not separate x from y in G. By the definition of separators (with the
fact that x and y are connected), there exists a path from x to y in G, say x = vg, V1, ..., V1, 0y =Y
and v; ¢ S,foralli =0,1,...,1. Since E C E’, the path from x to y, {vi}g;i, is still a path from x to
y in G’. By the definition of separators again, we know that S does not separate x from y in G’. But
this contradicts with the assumption in the lemma. Therefore, S separates x from y in G. ]

Assume G; C G, thus |E;| = |Ea1|. By Lemma A.l, there exists an increasing sequence of de-
composable graphs from G; to G, that differ by exactly one edge, say {5’”“}|E“|_|E’I, where
G = 56"“ - 5‘1_’“ c.. G[_m—|E 1 & GE’“‘“ £, = Ga- There are |E4| — |E;| steps for mov-
ing from G; to G,. All of them are additions of false edges that are false-edge addition cases. Let
{px’\lls }lElll |El
quence and {BF(G’ e, Gf _’1")}|E“| Etl be the corresponding Bayes factor “sequence for each step. By

that, we mean in the ith step, edge (X;, y;) ¢ E; is added,; P%, 515 and BF(G’_’“ G’_’“) are the popu-

' be the corresponding population partial correlation (or correlation, when S; = @) se-

lation partial correlation and the Bayes factor accordingly, i = 1,2, ..., |Es| — |E¢|. S, is the specific
separator corresponding to the ith step.
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Cs, Cy;

Glre - Zi, Sy P S; i, Si, Q

Figure 10. (N?f _ before adding edge (¥}, y;) ¢ E; where S £ .

Lemma A.4 (Origin of the polynomial rate in false-edge addition cases). Assume G; C G,. For any

edge sequence {(X;, yi)}l.’j’l"‘E" from G, to G, described above, all population partial correlations in
{0515 }!i“ll_lE'l are zero (or correlation, when S; = @).

Proof. Assume in the ith step, we add edge (X;,y;) ¢ E; to graph 5;:“ and §l is the corresponding
separator, where 1 <i < |E,| — |E;|.

First, when §i # &, this case is showed in Figure 10. Since edge (X;, ;) ¢ E; is added in the ith step,
by Lemma S.3.1, Cy, and Cj5; are adjacent in some junction tree of 5;?1“ where C3; and Cy; are the
cliques that contain X; and y;, respectively. And §,~ is the separator between them, i.e., §,- =Cz N Cy,.
By the property of junction trees, we know S; separates %; from 3; in 5;:’1“. Since {éf_’“}l.i‘z)l_lE’l is
an increasing sequence by edge, by Lemma A.3, we know E also separates x; from y; in 56"” =G;.
By the global Markov property, p 55, = 0.

Next, when §l = J, see Figure 11, we show pz,5 = 0. By the property of junction trees, we know
node X; and y; are disconnected. Furthermore, in the current graph éffl’l, nodes before clique Cy;
(including nodes in C;) and nodes after clique Cy; (including nodes in Cy;) are disconnected. Since

G ¢ 55:’1“, then this is also true in G;. Thus, nodes before clique C%, (including nodes in C%;) and
nodes after clique Cy; (including nodes in C5;) are disconnected in G,. We can rearrange the precision
matrix of G; into a block matrix such that the block which X; is in and the block which ; is in are
independent. Therefore, node X; and y; are marginally independent in G;, pz5; = 0. Notice when

G, = G, this lemma still holds. U

For the rest of proofs, when G; ¢ G,, moving from G, to G, is restricted to the sequence mentioned
in Lemma A.2 (deleting a true edge at the beginning); when G, C G,, moving from G, to G, (or
G.) can be sequences with any order of adding false edges (as long as decomposability is satisfied)
according to Lemma A.4. Notice, there can be many other sequences of decomposable graphs for
moving from G, to G, and G; to G,. We chose the sequences according to Lemma A.2 and A.4 mainly
to simplify the proofs. The specific choices of sequences of decomposable graphs do not affect the final
consistency results, but they do determine the sufficient conditions of each theorem. Other sequences of
decomposable graphs can also be used to prove the consistency results, but they may result in different
assumptions. Following the notations in Lemma A.2 and A.4, we have the decomposition of the Bayes

Cs. 5,

(2 J
~t—a .
Gi G o G D

Figure 11. 5;:)1‘1 before adding edge (%, 5;) ¢ E; where S; = @.
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factor in favor of G, as follows. (i) When G; ¢ G,

JXY1Ga)  fYIGa) fYIG)

CEUTFYIGH T f(YIG) f(YIGy)
_ pMYIG) PG g ) p(YIGy ) p(YIGY)
PY G L= PY I Gl gm0 p(YIG, D PY1Go)
p(Y|Go) p(YIsz‘ -1 p(YI1G57¢) p(Y|G™°)
P(Y|G|EC| |E/|— 1) P(Y|G|E‘ |E/|— 2) p(Y|th_)C) P(Y|G1)
A |Ec|~|E1|
= [] BFG“G")- [] BFG:GZY)
i=1 i=1
= BF..,,-BF; .,
G, Y Y| G G G
PR(GQ;GT)ZP( al )=f( | Gy ( a):BF(Ga, Z)T[( a)
p(G 1Y) f(Y|G)n(G) 7(Gy)
q |Eql—|E;|
= BF., -BF;, <—> .
l—g¢g

BF._,, contains |E.| — | E,| terms, in which |E,| — |Ea1| terms are true-edge deletion cases and |E.| —
|Eql — |E¢| + |E;| terms are false-edge deletion cases. BF;_, . has |E.| — | E;| terms that are all false-
edge addition cases. (i) When G, C G,

|Ea|—|Ef|
BF(Gs:G)= [] BF(G/~“Gi=f) =BFi_..
i=1
q |Eal—|E/|
PR(G; G;) = BF; 4 <—) .
l—q
Here, we introduce the notation like BF,_,,. The use of such notations is to directly point out the
moving direction in the sequence of decomposable graphs, since the traditional Bayes factor notation,
in this case BF(G,; G.), may be confused for denoting the movement from G, to G but in reality we
look at it as the movement from G, to G,. These two directions are very different, one corresponds
to adding edges and the other corresponds to deleting edges. The additional notation is introduced to
make these two cases distinct.

A.1. Proof of Theorem 4.1

First, for any t* > 2, let €} , = lof((: 117])) Then define

R s ={1hijis — pijis| < €1.n}-

Given any decomposable graph G, # G, when G; ¢ G,, by Lemma A.2, we have the edge sequence
{(x;, yl)}lEC‘ 1Eal for moving from G, to G, and let (x1,y;) = (x4, y,) be the first in the sequence
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where a true edge is deleted from G.. Let {(X;, %)}!i‘i‘_lE’l and {§i }l.i"ll_lE’l be the edge sequence and
the corresponding separator sequence for moving from G, to G, according to Lemma A.4. Let

IEzrl_IEt‘
Af@mZ(Rﬁ—c*i*lvm,m)”< N R)/?,-;,E)'

i=1

Since py # 1, by the proof of Lemma S.1.1, we have

D=

P P(AL) > 1 — 20 Sl )
(Atgae) = (AEI) el m(” —-p) * o og(n — p) .
When G; C G, let {(X;, Tq)}li"l‘_lEtl and {gi}l.i"l‘_lEtl be the edge sequence and the corresponding
separator sequence for moving from G, to G, according to Lemma A.4. (Notice here we use the same
edge and separator notations as in G; to G, for consistency reason and G; to G, can be seen as a part

of G; to G..) Let
[Eql—|E;|
— / ~
Aigae = Resis:
i=1

Since py # 1, by the proof of Lemma S.1.1, we also have

B|—

, 42p? a1 -
]P)(Atg_a,el) > ]P(Ael) > 1-— m(}’l — p) 4t r_* IOg(I’l — p) .

Thus, Ay e, = Argae, When Gy & G, and Ay ¢ = AtCa,e when G; C G,. For the following proof,
we restrict it to the event A, ¢, . Next, we consider two scenarios for Bayes factor consistency, that is,
G: ¢ G, and G; C G,.

First, when G; ¢ G, and G; # G, we have |E;| > |E;| and |E.| > | E;|. We begin by simplifying
the upper bound of BF;_, .. (For G; = G, BF,_,. = 1.) By Lemmas S.3.1 and A .4,

|Ec|—|E/ |Ec|—|E| b »
~ o~ ) g +I’l+ds ~2 _n
BF,_ .= BF(G!7¢% G\~F) < < ) ~(1—p2~ =) 2
t—c 111 ( i l—l) E g+1 b+d§[_%( px,-y,-lSi)
o EeE log(n — p) | ~UEI-IEDS
<[ - l—-—
n ™*(n — p)
)
<z
n
(%)
<z
n
2 1 1
<expip’—(5-= (IEc| — |E;|)logn {.

Next, we examine BF._,,. Based on Lemma A.2 and its proof, we divide it into two parts,
that is, true-edge deletion cases and false-edge deletion cases. For true-edge deletion cases, we

whenn >b+ p

|Ec|—|E¢|
2

n |Ec| — |Ei]
exp . -logn
n—p-—1/t*logn 2t*

E.|—|E
exp(Mdogn) whenn > 4p

7:*

|Ec|—|Et|
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—d ~dyy|E—IE}| <d,|E|—|E}|
use {(x7, ¥}, to denote the sequence of true edges and {S;},_; are the correspond-

. . —a —as|Ecl—|Eq|—|E/|+|E}
ing separator sequence. For false-edge deletion cases, we use {(x;-’,yl?‘)}l.:‘ll Eal=lEdHIEal o ng

—a . |Ec|—|Eal—|E:|+|E}| . . . .. . .. .
{S?}!: ll |Eal=IE2 |+ “l. Since p is finite, by the definition of pr, then py, is a positive finite constant.
|Ecl—|Eq|
—C—>a ——=C—>da
BF...= [] BF(G; %G )

i=1
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e

i=1

b +d§;1

S (1=, )
b—l—n—l—dE;i—i( Prastis!)

3o}

|Ecl—|Eq|~|E/|+|E}|

<1

i=1

n

A2
1 —0° 2
Prsyisy)

lEc|—|Eal n

(1= 335, v\w,5.y)°  Wlog assume p > b

< {2p(n + 1)}

|Ec|—|Eal

<{2pmn+D} T {1— (a1 - |PEJ*\V\{E*,Y*}|)2}

|Ec|—|Eql no? ne?
<{2pr+1)} 2 exp(—% +nep — —1)

SIS

lEc|—|Eal

2
1
<{2p(n+1)} 2 exp{—%+ nlogn—z—r*log(n—p)} whenn > 2p

2
1
< exp{—% +p210gn + /nlogn — Flog(n —-p) +2p210gp} whenn > 1.

Let 8(n) = plogn + /nlogn + 3p>log p and §(n)/n — 0 as n — oco. Hence,
np?
BF(G4; Gi | Gt & Go) =BF.4-BF;,. <exp - +38(n)¢.

When G; C G,, by Lemmas S.3.1 and A.4 we have

|Ea|—|E|

~ ~ 1 1
BF(Gy; G | G S Gy) = l_[ BF(Gﬁ_)a; G;:qa) < eXP{P2 - (E - F>(|Ea| - |Et|) logn}.
i=1

A.2. Proof of Theorem 4.2

From A < % —a,wehave o + A < %; from A < %, we have 2\ < % For any * that satisfies

ata Y ]
maxq2A, o ,—— < B <=,

2 2
letey , = (n — p)_ﬂ*. Then define

" A
Rijis = {16ij1s — pijis| < €20}
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Given any decomposable graph G, # G;, when G; ¢ G,, by Lemma A.2, we have the edge sequence
|Ec | |Eq
{(xi, yz)}

where a true edge is deleted from G.. Let {(;, yl)} and {g‘i }li‘llflE’l be the edge sequence and
the corresponding separator sequence for moving from G to G, according to Lemma A.4. Let

|Ec|—|E:|
At¢a,ez(”)=(R;/_c/J*V\{f*,?*})m( m R,’é,,;,,g,,)-

i=1

| for moving from G, to G, and let (x1,y) = (X, y,) be the first in the sequence
IEc\ |E:|

Since 0 < B* < % and Assumption 4.5, by Lemma S.1.2, when n — oo,

- ————m—-pf e {——(n—p) Al 1.
(1—pv)? P74

P{Aigae ) = P{AL 1)} =
When G; C G, let {(X;, %)}li“l‘_lE’l and {E}li“l‘_lE’l be the edge sequence and the corresponding
separator sequence for moving from G, to G, according to Lemma A.4. (Notice here we use the same
edge and separator notations as in G, to G for consistency reason and G; to G, can be seen as a part
of G; to G..) Let

|Eal—|E

Aicaem= [ Ri.z

XiyilSi”
i=1
Since 0 < B* < % and Assumption 4.5, by Lemma S.1.2, when n — oo,

42 p? i1 1
ﬁ(n —pf2 exp{—zm - p)”ﬁ} - 1.
Thus, Ay e,(n) = Atga,e,(n) when G, & G, and A, ¢, (n) = Ajcq e, (n) when G, C G,. For the fol-
lowing proof, we restrict it to the event A, , (n). Similar to the proof of Theorem 4.1, we consider two
scenarios here for posterior ratio consistency, i.e., G; ¢ G, and G; C G,.

First, when G; ¢ G, and G, # G, we have |E;| > |Ea1| and |E;| > |E;|. (For G, = G, BF,;_,. =
1.) By Lemmas S.3.1 and A 4,

P{Atga,ez (”)} = ]P{A/Q(n)} >1-

[Ec|—|E:] \EC|;\Et| .
BF—c = 1_[ BF(G;~% GIZY) < (;) {1-(n— p)_zﬂ*}_(‘ECl_‘E'D7 whenn >b+p
i=1
) |Ec|—|Eq| ) (1Ec|—E) 3 .
< (_) {1 + —2*} when n > max{2p, 2//#)+11
n (n—p) B
2
E.|—|E
< exp np *—| o= t|logn when n > 4.
(n — p)*# 4

Similar to the proof of Theorem 4.1, we have

|Ec|—|Eql

N |Ecl—1Eal A
BF.,= 1_[ BF(G; %G, _\") <{2pm+D} 7 (1- P%*y*\V\{f*,y*})
i=1

|Ec|—|Eql no? ne?
1 o 10

[N

when p > b




Bayesian graph selection consistency 667

|Ecl~|Eql np? n 1 | o
2 _ L - _ =
<{2p(n+1)} exp{ 5 + " 5"
2
L/ S A BT AR
<exp{ > + F—— 2n +3p“logn ;.

When n > 3exp{(l — 2,8*)_2}, we have n(n — p)_zﬁ* > 3logn. Hence,

2 2
np n 1 o ps 2np
BF(Gy: G/ |G ¢ Ga) < exp{—TL TaT o T e }

Therefore, when G; ¢ G, for n > (log 2/Cq)1/V,

2 2
np n | Y 2n
PR(GQ;G;|Gt¢Ga)<eXp{—TL+m—§nl 28 +m

T (1Edl~ |Et|)1og<2q>}.
By the construction of *, we have
1 —2i > max{2e, 1 —2B%, 1 — B*, 1 +2a — 28%},

and 1 —2X > o + y. Therefore, —n,oz/Z is the leading term in the upper bound of PR(G,; G, | G; &
G.). Thus, PR(G4; G;) — 0, as n — oo when G, ¢ G,.
When G; € G,, by Lemmas S.3.1 and A.4, we have

. (|1Eq| — |E)n
BF(Ga; G/ 1 G C Gy) <expy ——— (>
(n — p)*#
PR(G.. (|Eq|l — |E/)n
(Ga; G| G & Gg) <exp =P + (IEal — |E¢]) log(29) ¢ -

Since 8* > 1_Ty, then (|E,| — | E;|) log(2q) is the leading term above and |E,| — | E;| > 0. Therefore,
PR(G,; G¢|G; € G,) — 0,as n — oo.

Appendix B: Equivalence of minimal triangulations when G is not
decomposable

Let G,, = (V, E;;) be any minimal triangulation of G;, where E,, = E; U F, F # &. In here G,
denotes any decomposable graph other than minimal triangulations of G,. Since G, is a minimal
triangulation, then E, # E; U F’, where F’ C F. Different from when G, is decomposable, there are
three cases here: (1) |E}| < |EL| = |E;|, thus G, ¢ Gu; (2) |EX = |EL| = |E;| and G,y €G3 (3)
|E, ;| = |E,£1| = |E;| and G,,, ¢ G,. But in case (3) there exists at least one minimal triangulation of G,
which is a subset of G,. And in both (2) and (3), we have |E,| < |E4].

For case (1), when |Ea1| < |E,1n| = | E;|, i.e., one of the two cases where G,, ¢ G,, we inherit all
notations from Lemma A.2, {X;, y;} l,i”l‘flE”‘ is the edge sequence from G to G, and {'OYJ,- is; }l.ifl‘flE"l
is the corresponding population partial correlation sequence. And Lemma A.2 still holds here, that is,
we can find a sequence of partial correlations {pfl_yi‘gi}l.i"l‘_lE"‘ which has at least one population
partial correlation corresponding to the removal of a true edge is non-zero and not a correlation. The

proof carries out the same as in Lemma A.2, just let the first step of moving from G, to G, be the
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deletion of a true edge which is missing in G,. For case (3), where |E,l| = |E,11| =|E:| but G, ¢ G,
when moving from G, to G, all steps are false-edge deletion cases. There is no true-edge deletion
case here since G, has all the true edges of G;.

For case (2), when G,, € G, and |E | = |E1 | = |E;|, we still use {(%;, y)}‘E"| Enl to denote
the sequence of edges which are added in each steps from G, to G, and {pz 5 515 }lE al=1Enl 55 the
corresponding population partial correlation sequence. A similar version of Lemma A. 4 still holds
here.

Lemma B.1. For any edge sequence {(%;, yl)}lE al=|Em| from Gy, to G, described above in case (2),

}IEI |Em|

all population partial correlations in {pz 5 513, are zero (or correlation, when S; = @).

Proof. This proof follows similarly to the proof of Lemma A.4. Assume in the ith step we add edge
X,y ¢ E, to graph Gm_’“ and S; is the corresponding separator.

When S; # . Since adding edge (X;, y;) ¢ E; to graph G’”_’“ maintains decomposability of graph
Gm”” By Lemma S.3.1, X; and y; are in two cliques which are adjacent in the current junction tree of
Gm”“ Thus, by the property of junction trees, we know S; separates X; from y; in G’””“ Since this is
an increasing sequence in terms of edges from G, to G, thus G, C G;”__l’“. And due to the minimal
triangulati~on, G CGy S 51'”__1’“ By Lemma A.3, S; separates nodS X; from y; in G;, 55,5 = 0.

When S; = @, X; and y; are disconnected in the current graph G}"77“. Then they are also discon-
nected in G,. Thus, they are marginally independent in G, p3;5 =0. ]

Remark B.1. For |Ea1| = |E;| and |E,| — |Ea1| =0,...,|F| — 1, no decomposable G, exists; for
|E£11| = |E;| and |E,| — |E(1| > |F|, at least one decomposable G, exists; but for |E¢];| < |E;| and
|Eq] — |E,§| > 0, a decomposable G, may not exist. The Bayes factor BF(G,; G;,) under |E;| < | Ey|
and |E,| — |E ;l > 0 is only valid when a decomposable G, exists, otherwise it is defined to be zero.

B.1. Proof of Theorem 5.1
Part 1. For any given decomposable graph G, that is not a minimal triangulation of Gy, let

2(|Ec| - |Em|) }

> max{Z,
|Eq| — |Eml

The construction of A, ¢, is the same as in the proof of Theorem 4.1. After that, we restrict the follow-

ing proof to the set A, ¢, . For case (1), when |E | < |E1 | = |E;|, we have
2 1 1
BF, . <expyp” — 7 (|E|—|E |)10gn — 0,
BF., <exp{ BN L 4 plogn +/ p)+2p logp} — 0.
Hence,

BF(Ga; G |G € Ga,

E!| <|E)|) = BFcssy - BEyoc — 0.
For case (2), when G,,, C G, that is, |E |—|E1|—|Et| and |E,| > |E,;|, we have

>=

1 1
BF(Gy;Gn | G € Gy) < exp{p2 _ (5 _ 1:_)(|E | —|Em |) logn} — 0.
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For case (3), when |E}| = |E} | = |E;| and G, ¢ Gy, also |E,| > | E,,|, we have

2> |Ec|-|Eq| |Eql — |Epml 1
BF P 2 N — — Y(|E.| = |E;y]) 1 ,

BF.q < (4p)”' 02 whenn > 1.

Hence,

BF(Ga; Gm | Gm ¢ Ga,

Eo| =|En])

|Eql — | Eml 1
2Bl —Enh o U Eel T En D 0.
2(|Ec| - |Em|) T* (| °| | m|) ogn | —

<@p” exp[—{
Therefore, BF(G,; Gy,) — 0, as n — oo.
Part 2. Let G\, Gy, ..., Gy, be all the minimal triangulations of G;, where [ is a positive fi-
nite integer, since the graph dimension is finite. By Part 1, on the set A, ¢,, BF(Gp;; Go) — 00,i =
1,2,...,1, where G, ¢ M,. Therefore,

)
Y 2G| V)= 2= PV Gn)
GpeM; Zi:l p(Y | Gmi) + ZGa¢M, P(Y | Ga)

1

Zl : — 1 asn— oo.
+ L 6ueM ST BrGr G0

B.2. Proof of Theorem 5.2

A Ec - Em E(‘ - Em . . .
Let {,om,,,-}ll.zl| [ and {,oml,,-}l.:l‘ | be the sample and population partial correlation sequence

corresponding to each step from G,,, to G.. By Lemma B.1, p;,,,; =0,i =1,2,...,|E¢| — |Ep,|. By
Lemma S.1.4, for any 0 < € < 1, there exist 0 < M(€) < 1/4 and M>(¢) > 3 (the choice of M and
M is the same as in the proof of Lemma S.1.4), we have P(Ag) >1—¢€/2,forn> p+3.Let

|Ecl~|Em, |

M ) M,
Rm1,i={7<pm1,i< " p s Ay 1= m Ry i
i=1

Then
P(Am,) = P(A2) > 1 —¢/2.
By Lemma S.3.1, when n > b + p, we have
|Ecl=Em) | |Ec|—|Ep, | w(Ee|—|Em: D)
<%> 2 [T (- ﬁr%u,i)f%
el AEm) | |Ec|=|Epy|

2 R
<BF(G,: G,) < (;) [T (-5
i=1

’1(\Ec\—|Eml|)
-
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Under the event A,,,, whenn > p 4+ M>,

|Ec|—|Em | |Ec|—|Em |
eMi\ — =2 2e2M2 2
—_— <BF(G¢; Gwy) <
2n n
Thus we have
[Ec|—=|Emy| [Ec|—=IEmy|
eMi — 22M2 — €
Pi{ — <BF(G¢;Gmy) < | —— >1——.
2n n 2

Similarly,

|Ec|=|Em | |Ec|=|Em |
2

2e2M2\ T M- .
]P’{( ) <BF(Gm2;GC)<<—> }>1——.

n 2n 2

Therefore, let A} = %e_MZ and Ay = 4e2M2p2, we have P{A| < BF(G,,,; Gm,) < A2} >1—€.
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Supplementary Material

Supplement to “Bayesian graph selection consistency under model misspecification” (DOI:
10.3150/20-BEJ1253SUPP; .pdf). There are five sections in the Supplementary Materials [32]. In Sec-
tion S.1, we provide a set of auxiliary results related to the concentration and tail behavior of partial
correlations. The bounds for Bayes factors of local moves are developed in Section S.2 and Section S.3.
For the proofs of Theorems 4.3, 5.3, 5.4 and Corollaries 4.3, 5.1, see Section S.4 and Section S.5.
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