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Circular and spherical data arise in many applications, especially in biology, Earth sciences and astronomy.
In dealing with such data, one of the preliminary steps before any further inference, is to test if such data
is isotropic, that is, uniformly distributed around the circle or the sphere. In view of its importance, there is
a considerable literature on the topic. In the present work, we provide new tests of uniformity on the circle
based on original asymptotic results. Our tests are motivated by the shape of locally and asymptotically
maximin tests of uniformity against generalized von Mises distributions. We show that they are uniformly
consistent. Empirical power comparisons with several competing procedures are presented via simulations.
The new tests detect particularly well multimodal alternatives such as mixtures of von Mises distributions.
A practically-oriented combination of the new tests with already existing Sobolev tests is proposed. An
extension to testing uniformity on the sphere, along with some simulations, is included. The procedures are
illustrated on a real dataset.
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1. Introduction

Directional statistics is a branch of statistics that deals with observations that are directions
or more generally observations lying on nonlinear manifolds. In several applications, these
observations lie on the surface of the unit circle S

1 := {u ∈ R
2,u′u = 1} or the unit sphere

S
2 := {u ∈ R

3,u′u = 1}; throughout v′ denotes the transpose of a vector v ∈ R
p (similarly V′

denotes the transpose of a matrix V). Many applications of circular or spherical statistics can
be found in various scientific domains such as astronomy (see, e.g., [8,12]), biology (see, e.g.,
[1,7,18,19,38,40,46]) but also geology, medicine and ecology. To quote [31], “Circular data are
common in biological studies. The most fundamental question that can be asked of a sample of
circular data is whether it suggests that the underlying population is uniformly distributed around
the circle, or whether it is concentrated around at least one preferred direction (e.g., a migratory
goal or activity phase).”

When dealing with circular data, testing for uniformity or isotropy is therefore an essential first
step before doing any further inference. If isotropy is indicated for a given sample, no modeling
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or estimation is needed, and the resulting sequence of observations can be seen as having no pre-
ferred direction or as noise on S

1. Thus the uniform distribution occupies a central role amongst
all circular distributions and as a result there is considerable literature on testing uniformity on
the circle. Observations on the one dimensional manifold S

1 can obviously be seen as realiza-
tions of a random variable taking values on [0,2π) that will be referred to as a circular random
variable in the sequel. Letting �1, . . . ,�n, be a sequence of independently and identically dis-
tributed (i.i.d.) circular random variables, the most classical test of uniformity on the circle is the
Rayleigh [44] test that rejects the null hypothesis at the nominal level α when

2n−1

(
n∑

i=1

sin(�i)

)2

+ 2n−1

(
n∑

i=1

cos(�i)

)2

> cα, (1)

where, for large samples, cα ≈ χ2
2;1−α

with χ2
p;ν standing for the ν quantile of the chi-square

distribution with p degrees of freedom. The Rayleigh test is a very simple test which is powerful
to detect unimodal alternatives. However, it is not uniformly consistent in the sense that it is blind
against some alternatives to uniformity.

Since then, a lot of work has been devoted to the problem in particular to obtain uniformly
consistent tests. The Kuiper [29] and Watson [47] tests are the circular versions of the classical
Kolmogorov–Smirnov and Cramér–von Mises tests, respectively. Tests based on arc-lengths or
spacings have been studied in [43]. Beran [3] and Gineé [17] studied the very broad class of
Sobolev tests; see Section 2 for details on Sobolev tests. For more information on these and other
classical tests for uniformity as well as for circular statistical analyses in general, the reader is
referred to [22,36] or [33]. See also a recent review paper on this topic by García-Portugués and
Verdebout [15].

Testing uniformity on the circle or on the sphere is still a very much studied problem: we
mention Jupp [25] who provided modifications of the classical Rayleigh test, Feltz and Goldin
[13] who proposed partition-based tests on the circle, Figueiredo [14] who provided a comparison
of various tests, while data-driven Sobolev tests for uniformity are obtained in [6] and [26].
Cuesta-Albertos et al. [8] proposed projection-based tests, Pycke [41] obtained new Sobolev
tests on the circle, and Lacour and Pham Ngoc [30] considered uniformity tests on the sphere for
data perturbed by random rotations. Jammalamadaka and Terdik [23] used spherical harmonics
for various tests of symmetry including uniformity on S2, while Cutting et al. [9] studied tests of
uniformity on high-dimensional spheres.

In general, Sobolev test statistics of uniformity on the circle are based on weighted or un-
weighted sums of a fixed number M of terms involving empirical trigonometric moments. Here,
we show that the tests based on such unweighted sums of M terms are locally and asymptoti-
cally optimal within a parametric model; see Section 3 for details. However, in order to obtain
Sobolev tests that are uniformly consistent, it is well known that M has to be arbitrarily large.
Many papers including the recent paper by Pycke [41] considered weighted infinite sums of
squared empirical trigonometric moments letting M diverge to infinity; see Section 2 for details.
Although Pycke [41] used weights to obtain converging series, the chosen sequences of weights
converge slowly to zero in order to provide uniformly consistent tests that detect multimodal
alternatives well. Bogdan et al. [6] and Jupp [26] used a different approach to reach uniform con-
sistency. Rather than letting M diverge to infinity they considered a data-driven selection of M .
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While for large-M tests it seems to be a common belief that it is necessary to use weighted sums
in order to get asymptotically valid and uniformly consistent tests, we show the contrary in the
present work. We assume here that M := Mn is a sequence of positive integers that diverges to
infinity together with the sample size n. Inspired by high-dimensional techniques, we obtain an
original asymptotic result for unweighted sums of squared empirical trigonometric moments in
this double asymptotic framework. We also show that the resulting tests are uniformly consis-
tent; see Section 4 for details. Moreover, a simulation study (see Section 5) indicates that our
tests dominate all the competitors under various important multimodal alternatives. In Section 6,
a test that combines the data-driven test of Bogdan et al. [6] with the new test is proposed for
practical purposes while in Section 7 an extension of the main result to the sphere S

2 is ob-
tained. A real-data example follows in Section 8. The proofs of the various results are collected
in the Appendix and in the Supplementary Material [21]. The latter Supplementary Material also
includes simulation results related to the proposed test on S

2.

2. Characteristic function and Sobolev tests

Let � denote an arbitrary circular random variable with an absolutely continuous circular distri-
bution function F�(ϑ) := P(� ≤ ϑ), � ∈ [0,2π) with respect to an arbitrary origin. We wish
to test the null hypothesis of uniformity H0 : F�(ϑ) = ϑ

2π
, for all ϑ ∈ [0,2π). As already men-

tioned in the Introduction, the present problem plays a central role in directional statistics. In our
approach for testing uniformity, we will make use of the characteristic function of � which is
defined for any integer m ≥ 1 by

ϕ�(m) := E
[
cos(m�)

] + iE
[
sin(m�)

] =: αF (m) + iβF (m); (2)

ϕ�(m) is also often called the mth trigonometric moment of F� in the circular setup; in the sequel
we also refer to (αF (m),βF (m)) as the mth trigonometric moments of F�. It is well known
that for circular distributions the characteristic function needs to be defined only for integer
values of the argument (see, e.g., p. 26 of [22] or [37]). Thus writing (α0(m),β0(m)) for the
mth trigonometric moments under the null hypothesis H0 of uniformity, we have that α0(m) =
β0(m) = 0, and consequently that α2

0(m) + β2
0 (m) = 0 for any integer m ≥ 1. Letting

αn(m) = 1

n

n∑
j=1

cos(m�j ) and βn(m) = 1

n

n∑
j=1

sin(m�j ) (3)

stand for the natural estimators of the trigonometric moments, the tests we study throughout the
paper reject the null hypothesis H0 for large values of test statistics of the form

Sn,w = 2n

∞∑
m=1

(
α2

n(m) + β2
n(m)

)
w(m) = 2

n

n∑
j,k=1

∞∑
m=1

cos
(
m(�j − �k)

)
w(m), (4)

where w(m) is a sequence of nonnegative weights. The test statistics in (4) are weighted com-
binations of V-statistics that provide an important class of tests called the Sobolev tests (see,
e.g., [15]). In this particular context of testing isotropy, Sobolev tests can be traced back to [3]
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and [42]. Within this class, one finds the Watson test that is obtained by taking w(m) = m−2,
m ≥ 1, which shows power against any nonuniform alternative. Other tests belonging to the
Sobolev class include the tests due to Rothman [45], Bingham [5], Giné [17] and Hermans and
Rasson [20] to cite only a few. Provided that

∑∞
m=1 w(m) < ∞, classical results on V-statistics

imply that Sn,w is asymptotically distributed as
∑∞

m=1 w(m)Ym, where Y1, Y2, . . . , is a sequence
of independent chi-square random variables with two degrees of freedom.

Now the weights w(1),w(2), . . . in (4) can be given an intuitive interpretation. For instance, if
one chooses w(1) = 1 and w(m) = 0 for all m ≥ 1, the resulting test is the classical Rayleigh test
in (1) which is powerful against unimodal alternatives; it is indeed the uniformly most powerful
invariant test against von Mises alternatives and the locally most powerful invariant test against
symmetric wrapped stable families (see [22], Section 2.2.8), as well as the locally and asymptoti-
cally maximin test within a class of rotationally symmetric deviations (see [9]). For the definition
of a maximin test, see the comment just above Proposition 3.1. However, these alternative dis-
tributions are all unimodal. In general, the coefficient w(m) can be interpreted as the weight
associated with the eigenfunctions cos(mϑ) and sin(mϑ). Clearly, the bigger the weight w(m),
the better the resulting Sobolev test in detecting differences involving the mth trigonometric mo-
ment. In particular, the slower the sequence w(m) converges to zero the better the resulting test
will detect multimodal alternatives. This is the motivation underpinning the two Sobolev tests ob-
tained by putting w(m) = m−1 and w(m) = am−1 (a < 1), respectively, that have been suggested
by Pycke [41]. The tests in [41] are shown to perform well against multimodal alternatives. As
suggested there, natural choices for the weights w(1),w(2), . . . are weights related to probabil-
ity distributions on the set of positive natural numbers N0 := {1,2, . . .}. In these cases, the series
Cw(ϑ) = ∑∞

m=1 cos(mϑ)w(m), yields the value of the real part of the characteristic function cor-
responding to w(·) computed at the argument ϑ : for example, the geometric distribution/weight
wa(m) = (1 − a)am,m ≥ 1, leads to

Ca(ϑ) = (1 − a)

(
1 − a cosϑ

1 − 2a cosϑ + a2

)
, (5)

the positive Poisson distribution, the weight wa(m) = (1 − e−a)−1e−a(am/m!),m ≥ 1, leads
to Ca(ϑ) = (ea − 1)−1ea cosϑ cos(a sinϑ) − 1, or the logarithmic distribution while wa(m) =
c(am/m),m ≥ 1, with c = −(log(1 − a))−1, leads to Ca(ϑ) = c log(1 − 2a cosϑ + a2)−1/2.

3. Exponential model and optimal tests

In the present section, we consider an absolutely continuous exponential family with densities of
the form

ϑ → cκκκM
exp

(
κκκ ′

Mβββ(ϑ)
)
, (6)

where βββ(ϑ) := (cos(ϑ), sin(ϑ) . . . , cos(Mϑ), sin(Mϑ)), κκκM := (κ1, . . . , κ2M) ∈ R2M is a vector
of real parameters and c−1

κκκM
:= ∫ 2π

0 exp(κκκ ′
Mβββ(ϑ)) dϑ is a normalizing constant. This exponential

model that can be traced back to [35] has been studied in [2] and [16]. In the sequel, this model
is referred to as the generalized von Mises model; κ1 > 0 and κ2 = · · · = κ2M = 0 yields the
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very classical von Mises distribution. In the rest of the section, we denote by P(n)
κκκM ;M the joint

distribution of �1, . . . ,�n, under density (6). In the exponential model (6), the score test of
uniformity on S

1 is the score test for H0 : κκκM = 0 against H1 : κκκM 	= 0 that is obviously based on
the first M empirical trigonometric moments (αn(1), βn(1), . . . , αn(M),βn(M)). More precisely,
the score test φ

(n)
M rejects the null hypothesis at the asymptotic nominal level α when

S1,M := 2n

M∑
m=1

(
α2

n(m) + β2
n(m)

)
> χ2

2M;1−α. (7)

Note that S1,M is an unweighted and truncated (at M) version of Sn,w in (4). The asymptotic
distribution of S1,M under the null hypothesis can easily be obtained since a simple application of
the central limit theorem allows us to show that under the null hypothesis each term 2n(α2

n(m)+
β2

n(m)) is in the limit distributed as a chi-square random variable with two degrees of freedom
and that any pair 2n(α2

n(mi) + β2
n(mi)) and 2n(α2

n(mj ) + β2
n(mj )), i 	= j , is asymptotically

independently distributed. In the next result, we complement the existing results by showing
that the test φ

(n)
M is also locally and asymptotically maximin for testing H0 : κκκM = 0 against

H1 : κκκM 	= 0 and by computing the limiting distribution of S1,M under local alternatives. In this
connection, recall that a given test φ∗ is called maximin in the class Cα of level-α tests for H0
against H1 if (i) φ∗ has level α and (ii) the power of φ∗ is such that

inf
P∈H1

EP
[
φ∗] ≥ sup

φ∈Cα

inf
P∈H1

EP[φ].

In the following result, we show that the test φ
(n)
M is locally and asymptotically maximin against

local alternatives P(n)

n−1/2k(n)
M ;M , where k(n)

M is a bounded sequence of R2M ; for a precise definition

of locally and asymptotically maximin tests see, for example, Chapter 5 of [33].

Proposition 3.1. Fix M ∈N0. For testing H0 : κκκM = 0 against H1 : κκκM 	= 0,

(i) the test φ
(n)
M is locally and asymptotically maximin and

(ii) under local alternatives P(n)

n−1/2k(n)
M ;M , where k(n)

M is a bounded sequence of R2M such that

kM := limn→∞ k(n)
M , S1,M converges weakly to a chi-square random variable with 2M

degrees of freedom and noncentrality parameter ‖kM‖2/2.

In Proposition 3.1, we show that φ
(n)
M is the locally and asymptotically maximin test for

H0 : κκκM = 0 against H1 : κκκM 	= 0. The following result enables the computation of the local
asymptotic power of the test φ

(n)
M under various local alternatives within the [2] family.

Proposition 3.2. Fix (M,M ′) ∈N
2
0. Then

(i) under P(n)

n−1/2k(n)

M ′ ;M ′ with M ′ > M and k(n)

M ′ := (k(n)
M , k

(n)
2M+1, . . . , k

(n)

2M ′)′ a bounded se-

quence of R
2M ′

, S1,M is asymptotically chi-square with 2M degrees of freedom and

noncentrality parameter ‖kM‖2/2, where kM := limn→∞ k(n)
M .
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(ii) under P(n)

n−1/2k(n)

M ′ ;M ′ with M ′ < M and k(n)

M ′ := (k1, . . . , k2M ′)′ a bounded sequence of

R
2M ′

, S1,M is asymptotically chi-square with 2M degrees of freedom and non-centrality

parameter ‖kM ′‖2/2, where kM ′ := limn→∞ k(n)

M ′ .

Note in particular that point (i) of Proposition 3.2 entails that if kM = 0 and if limn→∞(k
(n)
2M+1,

. . . , k
(n)

2M ′) 	= 0, the limiting distribution of S1,M under the local alternatives in point (i) is a central
chi-square with 2M degrees of freedom so that the resulting test is blind to the corresponding
alternatives while from Proposition 3.1 the optimal test S1,M ′ has a limiting power in the interval
(α,1).

To obtain uniformly consistent tests, that is, tests that are consistent against any fixed alter-
native, two possibilities naturally arise: the first one consists in providing a suitable data-driven
selection of M . As explained in the Introduction, this first solution has been studied in [6] who
provided a smooth test in which w(m) = 1,m ≤ M̂ and w(m) = 0,m > M̂ , where the threshold
M̂ is data-driven; see also its multivariate extension by [26]. The empirical selection procedure
proposed by [6] is based on results in [32]. In the next section, we investigate a second solution.
More precisely, we provide a new test based on the investigation under the null hypothesis of the
asymptotic behavior of a standardized version of the unweighted sum

S1,Mn := 2n

Mn∑
m=1

(
α2

n(m) + β2
n(m)

)
, (8)

when Mn → ∞, as n → ∞.

4. A new Sobolev test

In the present section, we provide a new test φ
(n)
MRV of uniformity on the circle. As explained

at the end of the previous section, the test φ
(n)
MRV will be based on a standardized version of the

quantity S1,Mn in (8). More precisely, we consider as test statistic the standardized version

Sstand
1,Mn

:= S1,Mn − 2Mn

2
√

Mn

, (9)

of S1,Mn for which the following result provides the asymptotic null distribution as Mn → ∞
with Mn = o(n2), as n → ∞.

Proposition 4.1. Let Mn be a sequence of integers such that Mn → ∞ with Mn = o(n2) as n →
∞. Then, under H0, Sstand

1,Mn
converges weakly to standard normal random variable as n → ∞.

Proposition 4.1 shows that once S1,M in (8) is properly rescaled, it is possible to obtain its
asymptotic behavior with a large number Mn of weights w(m) that are equal to one provided
that Mn is not too large with respect to n. The resulting test φ

(n)
MRV rejects the null hypothesis
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Figure 1. Standard Gaussian qq-plots of Sstand
1,M

for various values of n and M based on 5000 replications.

at the asymptotic level α when Sstand
1,Mn

> z1−α where zν stand for the ν-quantile of the standard
Gaussian distribution.

In order to illustrate numerically Proposition 4.1, we generated 5000 samples of uniform ran-
dom vectors on S

1 with various sample sizes n = 30,100,500,1000. For each replication, we
computed the test statistic Sstand

1,M with various values of M = 30,100,500,1000. In Figure 1, we

provide standard Gaussian qq-plots of the resulting 5000 values of Sstand
1,M for any pair (n,M). In

Figure 2, we provide the empirical type-I risks (i.e., rejection rates under the null hypothesis) of
the tests φ

(n)
MRV performed at the nominal level 0.05 for any pair (n,M); more precisely letting

(Sstand
1,M )k stand for the value of Sstand

1,M obtained from the kth replication, k = 1, . . . ,K = 5000, we
computed

r
(0.05)
n,M := 1

K

K∑
k=1

I
[(

Sstand
1,M

)
k
> z0.95

]
,

where I[·] denotes the classical indicator function. Obviously, a value close to 0.05 for r
(0.05)
n,M

indicates a correct type-I risk (the expectation of the test under the null hypothesis) for φ
(n)
MRV
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Figure 2. Estimated type-I risks (null rejection frequencies) of the φ
(n)
MRV test performed at the nominal

level α = 0.05 for various values of n and M based on 5000 replications.

performed at the nominal level 0.05. While inspection of Figure 1 clearly reveals that the Gaus-
sian approximation is better when the sample size is greater than M , Figure 2 shows that in
practice, the type-I risk of φ

(n)
MRV is not drastically influenced by the choice of M . Indeed when

M = 1000 and n = 30, the resulting empirical type-I risk of φ
(n)
MRV is 0.068. Hence choosing M

not too large with respect to n seems to be a good rule of thumb in order to get an asymptotically
valid test.

In the next result, we show the uniform consistency of the test within a very natural class of
alternatives, also considered in [41].

Proposition 4.2. Let F denote a class of distributions with trigonometric moments ϕ�(m) =
αF (m) + iβF (m), such that 0 <

∑∞
m=1(α

2
F (m) + β2

F (m)) < +∞ for all F ∈ F . Then the test

φ
(n)
MRV is uniformly consistent within the class F .

In the next section, we compare the empirical power of the test φ
(n)
MRV with that of several

competitors.

5. Power comparisons

The objective of the present section is to compare the empirical power of the proposed test with
several competitors. Before starting the description of the simulation schemes, we recall that a
von Mises distribution with a density of the form ϑ → cκ exp(κ cos(ϑ − μ)), where μ ∈ [0,2π)
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is a location parameter, κ > 0 is a concentration parameter and cκ is a normalizing constant (as
mentioned already note that the latter density with μ = 0 can be obtained by setting βββ(ϑ) =
cos(ϑ) in (6)). To perform our empirical comparison, we generated N = 1500 samples of i.i.d.
circular random variables

�
(ρ)


;j , ρ = 1, . . . ,8, 
 = 0, . . . ,3, j = 1, . . . , n = 100,

where the �
(1)

;j ’s have a von Mises distribution with location 0 and concentration param-

eter 
/6, the �
(ρ)


;j ’s for ρ = 2, . . . ,4, are distributed as mixtures of the form
∑m

j=1 εj�j

where εj := I(j−1)/m≤U≤j/m, with U ∼ unif[0,1] and where �j has a von Mises distribution

with location 2π(j − 1)/m. The �
(2)

;j ’s are obtained taking m = 4 and concentration 3
, the

�
(3)

;j ’s are obtained taking m = 8 and concentration 15
 while the �

(4)

;j ’s are obtained tak-

ing m = 16 and concentration 50
. The �
(ρ)


;j ’s for ρ = 5, . . . ,8 are distributed as generalized

von Mises random variables in (6); the �
(5)

;j ’s are obtained taking M = 4 and κκκM = (
/9)12M

(1k := (1, . . . ,1) ∈ R
k), the �

(6)

;j ’s are obtained taking M = 8 and κκκM = (
/10)12M , the �

(7)

;j ’s

are obtained taking M = 12 and κκκM = (
/12)12M while the �
(8)

;j ’s are obtained taking M = 16

and κκκM = (
/16)12M . The value 
 = 0 always yields a uniform distribution while the values

 = 1,2,3, provide distributions that are increasingly away from uniformity.

The resulting rejection frequencies of the following tests, all performed at nominal level 5%,
are plotted in Figures 3 and 4: the well-known Rayleigh test φ

(n)
Ray, the Pycke [41] test φ

(n)
Pyc based

on h4 (see equation (10) in [41]), the Bogdan et al. [6] test φ
(n)
Bog performed using the practical

remarks of Section 5 of [6], the Rao spacings test φ
(n)
Rao (see [43]), the test based on Sn,w with

Geometric distribution weights in (5) with a = 3/4 and the test φ
(n)
MRV based on Sstand

1,Mn
performed

with Mn = 30. The critical values used for the test based on Sn,w were computed numerically
using 5000 replications.

Inspection of Figures 3 and 4 reveals first that all the tests respect the 0.05 nominal level
constraint and that they are therefore valid. As expected, the Rayleigh test dominates all the other
tests in the von Mises case. The test based on Sn,w with geometric distribution weights enjoys
a nice global behavior while for mixtures of m ≥ 8 von Mises distributions and for generalized
von Mises distributions with M ≥ 8, the new test φ

(n)
MRV dominates the competitors.

6. A new test for practical use

As shown in the simulation results of the previous section, the test φ
(n)
MRV based on Sstand

1,Mn
clearly

behaves well when the alternative hypothesis is multimodal. On the other hand, it is not powerful
against unimodal alternatives. Following the discussion at the end of Section 2, this might have
been expected. Another point that may be seen as an issue in practice is the selection of Mn

since a priori the asymptotic normality of Sstand
1,Mn

is guaranteed for any choice of Mn as long as

Mn = o(n2). For instance, Mn = �nγ � with γ ∈ (0,2) are possible choices. Clearly, the larger one
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Figure 3. Empirical rejection probabilities of various tests of uniformity under various alternatives: (top
left) von Mises, (top right) mixture of four von Mises distributions, (bottom left) mixture of eight von Mises
distributions, (bottom right) mixture of sixteen von Mises distributions.

selects Mn the more the test will detect alternatives with a lot of modes. Unfortunately, taking Mn

very large will decrease the power of the test against unimodal alternatives. Therefore, in a sense,
the selection of the sequence Mn that diverges to ∞ should be driven by the alternative which
is arguably unrealistic in practice. It is nevertheless exactly the same nice idea underpinning the
data-driven selection M̂ of M by Bogdan et al. [6] and Jupp [26]. The fact that the test φ

(n)
Bog

is dominated by φ
(n)
MRV under multimodal alternatives theoretically comes from the fact that as

shown in [6] and [26] limn→∞ P[M̂ < ∞] = 1 so that M̂ will diverge to infinity with probability
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Figure 4. Empirical rejection probabilities of various tests of uniformity under various alternatives: (top
left) generalized von Mises distribution with M = 4, (top right) generalized von Mises distribution with
M = 8, (bottom left) generalized von Mises distribution with M = 12, (bottom right) generalized von
Mises distribution with M = 16.

zero. Now in practice the algorithm proposed to compute the data-driven M̂ as explained in [6]
is as follows:

(i) Compute L(M) := S1,M − 2M logn for 1 ≤ M ≤ Mthr, where (quoting Bogdan et al.
[6]), “in theory Mthr is ∞ but simulations suggest that in practice it is sufficient to take
Mthr = 10 for n ≤ 100”.

(ii) Compute M̂ = argmax1≤M≤Mthr
L(M).
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In a sense, the question of the selection of the threshold Mthr can be compared to the question of
selecting Mn in Sstand

1,Mn
since in theory Mthr has to be taken as +∞. Note that Jupp [26] suggested

to take Mthr = 5 in practice. Discussing the selection of the sequence Mn that diverges to ∞ is
therefore a delicate issue. Again, the larger Mn, the more multimodal alternatives the test will be
able to detect but at the cost of giving up power against unimodal alternatives.

However, even with Mn being relatively small, the power of φ
(n)
MRV against unimodal alterna-

tives remains an issue. We propose here a new test that uses together the data-driven selection of
M explained above as well as the test φ

(n)
MRV. The idea underpinning the new test finds its roots

in the power enhancement principle studied in [11] and [28]. The new test φ̃(n) is based on a
combination of the two tests φ

(n)
Bog and φ

(n)
MRV given by

φ̃(n) := I[M̃<Vthr]φ
(n)
Bog + I[M̃≥Vthr]φ

(n)
MRV, (10)

with the natural number M̃ defined as M̃ := max1≤j≤n M̂j , where M̂j ∈ N0 is obtained
by performing the algorithm for the selection of M described above based on the sample
�1, . . . ,�j−1,�j+1, . . . ,�n; that is leaving �j out of the sample. The threshold Vthr ∈ N0 in
(10) can be chosen by the practitioner. Any choice of Vthr yields a test with the correct asymptotic
size. Note that if Vthr is taken larger than Mthr in the algorithm above, φ̃(n) is simply equivalent to
φ

(n)
Bog while if Vthr = 1, then φ̃(n) is equivalent to φ

(n)
MRV. The idea underpinning the test φ̃(n) is that

if M̃ is small (smaller than Vthr), then φ̃(n) is equivalent to φ
(n)
Bog. On the other hand if M̃ is larger

than Vthr, φ̃(n) is equivalent to φ
(n)
MRV. The practical motivation of φ̃(n) is therefore to improve the

power of φ
(n)
MRV under unimodal alternatives (or alternatives with a small number of modes) or

equivalently to improve the power of φ
(n)
Bog under multimodal alternatives, while keeping its nice

properties under unimodal alternatives.
In order to illustrate the finite-sample properties of the test, we performed the following simu-

lation exercise: based on samples of size n = 50, we performed the tests φ
(n)
Bog at level 0.05 taking

Mthr = 30 in the selection of M algorithm and the test φ
(n)
MRV at level 0.05 taking Mn = 30. Note

that we took here Mthr as large as Mn to perform a fair comparison. We then performed the
test φ̃(n) with Vthr = 5. We generated N = 1500 mutually independent samples of i.i.d. circular
random variables

�
(ρ)


;j , ρ = 1, . . . ,4, 
 = 0, . . . ,3, j = 1, . . . , n,

where the �
(1)

;j ’s have a von Mises distribution with location 0 and concentration parameter 
/4,

while the �
(ρ)


;j ’s for ρ = 2,3,4, are distributed as a mixtures of the form
∑m

j=1 εj�j already

defined in Section 5. Specifically, the �
(2)

;j ’s are obtained taking m = 4 and concentration 6
,

the �
(3)

;j ’s are obtained taking m = 8 and concentration 25
 and the �

(4)

;j ’s are obtained taking

m = 12 and concentration 200
.
In Figure 5, we provide the empirical powers of the three tests: φ

(n)
Bog (orange curve), φ

(n)
MRV

(dark green curve) and φ̃(n) (blue curve). Inspection of Figure 5 shows that when the number
of modes under the alternative is low, the tests φ

(n)
Bog and φ̃(n) are equivalent; the blue curve and
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Figure 5. Empirical rejection probabilities of φ
(n)
Bog (orange), φ

(n)
MRV (dark green) and φ̃(n) (blue) under

various alternatives: (top left) von Mises distributions, (top right) mixture of four von Mises distributions,
(bottom left) mixture of eight von Mises distributions, (bottom right) mixture of twelve von Mises distribu-
tions.

the orange curve cannot be distinguished in the top left and top right plots. In such situations,
φ

(n)
Bog and φ̃(n) dominate φ

(n)
MRV as expected. However, when the number of modes is larger, φ

(n)
MRV

dominates both φ
(n)
Bog and φ̃(n). Nevertheless, we can see that φ̃(n) performs better than φ

(n)
Bog in

both bottom left and right plots. On the basis of this behavior of φ̃(n) and in view of the fact
that there is no omnibus test that is uniformly most powerful against all possible alternatives (see
[24], and [10]), the combined test may seem a good compromise.
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7. Extension to S
2

In view of (4), the test statistic S1,Mn in (8) may be interpreted geometrically in the Hilbert space
L2(S1,μ) of square-integrable real functions on S

1 with respect to μ, the uniform probability
measure on S

1 equipped with the inner product

〈f,g〉 :=
∫
S1

f (x)g(x) dμ(x)

for f,g ∈ L2(S1,μ). To this end note that a well-known orthonormal basis of L2(S1,μ)

is {√2em}m∈Z, where, in spherical coordinates, em(θ) := ei2πmθ or equivalently em(θ) =
(cos(mθ), sin(mθ)). With this in mind, let Em be the two-dimensional subspace of L2(S1,μ)

spanned by the orthonormal functions g1,m : θ → √
2 cos(mθ) and g2,m : θ → √

2 sin(mθ)

and consider a mapping t
(1)
m : [0,2π ] → Em that maps a random angle �i onto t

(1)
m (�i) :=

g1,m(�i)g1,m + g2,m(�i)g2,m. Then standard properties of inner products entail that S1,Mn can
be rewritten as

S1,Mn = 1

n

n∑
i,j=1

Mn∑
m=1

〈
t (1)
m (�i), t

(1)
m (�j )

〉 = 1

n

∥∥∥∥∥
n∑

i=1

t
(1)
(Mn)(�i)

∥∥∥∥∥
2

L2

, (11)

where the mapping t
(1)
(Mn) : [0,2π ] → L2(S1,μ) is defined as t

(1)
(Mn)(θ) := ∑Mn

m=1 t
(1)
m (θ). There-

fore, the geometric interpretation provided here finds its roots in the fact that the space L2(S1,μ)

admits a Hilbert sum decomposition L2(S1,μ) = ⊕∞
m=0 Em into pairwise orthogonal subspaces

Em that contain orthonormal functions.
Following Jupp [26], Sobolev test statistics on Sp−1 with p ≥ 2 (or more generally on Riema-

nian manifolds) can be obtained similarly by constructing an orthonormal basis of L2(Sp−1,μ),
where μ now denotes here the uniform probability measure on S

p−1. Such orthonormal bases can
be obtained via the eigenfunctions associated with the nonzero eigenvalues of the Laplace oper-
ator � acting on S

p−1. For more details on the Laplace operator on closed, smooth Riemanian
manifolds see, for instance, [17] and the references therein. Mimicking the construction above
on S

1, denote by Em the space of eigenfunctions S
p−1 → R corresponding to the mth nonzero

eigenvalue of the Laplacian �, with dimension dp,m := dimEm. There exists a well-defined map-

ping t(p−1)
m : Sp−1 → Em that can be written as t(p−1)

m (u) := ∑dp,m

i=1 gi,m(u)gi,m, where {gi,m}dp,m

i=1

form an orthonormal basis of Em. The function u �→ t(p−1)

(Mn) (u) := ∑Mn

m=1 t(p−1)
m (u) is a mapping

from S
p−1 to the Hilbert space L2(Sp−1,μ). Based on n observations U1, . . . ,Un on S

p−1, a
Sobolev test rejects H0 for large values of the test statistic

Sp−1,Mn := 1

n

∥∥∥∥∥
n∑

i=1

t(p−1)

(Mn) (Ui )

∥∥∥∥∥
2

L2

= 1

n

n∑
i,j=1

〈
t(p−1)

(Mn) (Ui ), t(p−1)

(Mn) (Uj )
〉

= 1

n

n∑
i,j=1

Mn∑
m=1

〈
t(p−1)
m (Ui ), t(p−1)

m (Uj )
〉
, (12)
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where 〈f,g〉 denotes the inner product on L2(Sp−1,μ). Note that the second equality in (12)
follows from 〈f,g〉 = 0 for any f ∈ Ek, g ∈ El , k 	= l, due to the definition of the Ek’s. Clearly,
from the discussion above, we have that the circular test statistic S1,Mn corresponds to Sp−1,Mn

with p = 2.
In the spherical case (on S

2), an explicit expression for S2,Mn can be obtained using the fact
that for u,v ∈ S

2, 〈
t(2)
m (u), t(2)

m (v)
〉 = (2m + 1)Pm

(
u′v

)
,

where Pm denotes the Legendre polynomial of order m. For p ≥ 4, similar expressions can be ob-
tained and involve Gegenbauer polynomials. The following result is the analog of Proposition 4.1
in the spherical case.

Proposition 7.1. Let Mn be a sequence of integers such that Mn → ∞ with Mn = o(n2/3) as
n → ∞. Then, under the null hypothesis of uniformity on S

2,

Sstand
2,Mn

:= S2,Mn − Mn(Mn + 2)√
2Mn(Mn + 2)

converges weakly to a standard normal random variable as n → ∞.

Proposition 7.1 provides a natural extension of the test φ
(n)
MRV to S

2. Note that the assumption
Mn = o(n2), n → ∞, in Proposition 4.1 that allows us to obtain the asymptotic normality of the
standardized test statistic on S1 is less restrictive than the standing assumption Mn = o(n2/3),
which guarantees the asymptotic normality of its S

2 counterpart. A generalization of Proposi-
tion 7.1 to tests on S

p−1 with p ≥ 4 remains unclear. However, most practical applications on
this topic lie on S

1 and S
2 which are covered by Propositions 4.1 and 7.1. Finally, note that

a practical test similar to the one provided in Section 6 can readily be obtained by combining
the test that rejects at the (asymptotic) level α when Sstand

2,Mn
> z1−α with the test based on the

data-driven selection of M provided in [26].

8. Real data illustration

As mentioned in the Introduction, circular data are common in biological studies. In the present
section, we illustrate the proposed methods on a real data set obtained in [18] who studied migra-
tory orientation of hirundines. More precisely, the latter paper reports on a study of the orientation
of the barn swallow (Hirundo rustica), a typical diurnal trans-Saharan migrant. The major aim
of their study is to examine the role of visual and magnetic cues in juvenile swallows during
their first migratory journey. In this illustration, we consider the orientations of a control group
of swallows under overcast conditions. The data plotted in Figure 6 consists of n = 66 orienta-
tions.

Although inspection of Figure 6 shows a very weak tendency for hirundines to choose the
north direction, nonuniformity seems however difficult to detect. We performed the following
analysis on the dataset: we considered the n samples of 65 orientations obtained by omitting
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Figure 6. Orientations of a control group of n = 66 swallows.

each time one observation from the sample. On each of these n samples, we performed various
tests of uniformity: the Rayleigh test, the test φ

(n)
Bog of [6] taking Mthr = 30 in the selection of M

algorithm described in Section 6, the test φ
(n)
MRV with Mn = 30 and the test φ̃(n) with Vthr = 5 (see

Section 6 for details). In Figure 7, we provide boxplots of the asymptotic p-values of the four
tests. Inspection of Figure 7 clearly reveals that the p-values of the Rayleigh test, φ

(n)
Bog and φ̃(n)

are the same. This comes from the fact that for all samples the selection of M algorithm provides
M̂ = 1 so that φ

(n)
Bog is equivalent to the Rayleigh test. For all samples, we also obtain that φ̃(n)

is equivalent to φ
(n)
Bog. The three tests do not reject the null hypothesis of uniformity. In contrast,

the test φ
(n)
MRV strongly rejects the null hypothesis of uniformity. As a conclusion, when using

a model to describe the orientations of this group of hirundines, one should definitely select a
multimodal model.

Figure 7. Boxplots of the 66 p-values of the Rayleigh test, φ
(n)
Bog, φ

(n)
MRV and φ̃(n).
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Appendix: Proofs of Propositions 4.1 and 7.1

The appendix collects the proofs of Propositions 4.1 and 7.1. As mentioned above, the proofs
of Propositions 3.1, 3.2 and 4.2 are provided in the Supplementary Material. As explained in
Section 7, the Sobolev statistics we investigate in the paper may be rewritten as

S1,Mn = 1

n

n∑
i,j=1

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�j )

〉

= 2

n

∑
1≤i<j≤n

〈
t
(1)
(Mn)

(�i), t
(1)
(Mn)

(�j )
〉 + 1

n

n∑
i=1

〈
t
(1)
(Mn)

(�i), t
(1)
(Mn)

(�i)
〉

= 2

n

∑
1≤i<j≤n

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�j )

〉 + 2Mn (13)

and

S2,Mn := 1

n

n∑
i,j=1

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Uj )

〉

= 2

n

∑
1≤i<j≤n

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Uj )

〉 + 1

n

n∑
i=1

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Ui )

〉
= 2

n

∑
1≤i<j≤n

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Uj )

〉 + Mn(Mn + 2), (14)

where we used the fact that

〈
t
(1)
(Mn)

(�i), t
(1)
(Mn)

(�i)
〉 = ∥∥t

(1)
(Mn)

(�i)
∥∥2

L2 =
Mn∑
m=1

〈
t (1)
m (�i), t

(1)
m (�i)

〉

= 2
Mn∑
m=1

cos2(m�i) + sin2(m�i) = 2Mn (15)

and that

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Ui )

〉 = ∥∥t
(2)
(Mn)(Ui )

∥∥2
L2 =

Mn∑
m=1

〈
t (2)
m (Ui ), t

(2)
m (Ui )

〉

=
Mn∑
m=1

(2m + 1)Pm

(
U′

iUi

) =
Mn∑
m=1

(2m + 1)Pm(1) = Mn(Mn + 2). (16)
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As a direct consequence, we have that

Sstand
1,Mn

= S1,Mn − 2Mn

2
√

Mn

= 1

n
√

Mn

∑
1≤i<j≤n

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�j )

〉

= 2

n
√

Mn

Mn∑
m=1

∑
1≤i<j≤n

cos(m�i) cos(m�j ) + sin(m�i) sin(m�j ) (17)

and that

Sstand
2,Mn

= S2,Mn − Mn(Mn + 2)√
2Mn(Mn + 2)

=
√

2

n
√

Mn(Mn + 2)

∑
1≤i<j≤n

〈
t(Mn)(Ui ), t(Mn)(Uj )

〉

=
√

2

n
√

Mn(Mn + 2)

∑
1≤i<j≤n

Mn∑
m=1

(2m + 1)Pm

(
U′

iUj

)
. (18)

We start now with the proof of Proposition 4.1.

Proof of Proposition 4.1. Our objective is to show that Sstand
1,Mn

is asymptotically standard normal
as n → ∞ (and Mn → ∞) under the null hypothesis of uniformity. First, note that letting Zi,m :=
(cos(m�i), sin(m�i))

′, we have that Sstand
1,Mn

in (17) can be written as

Sstand
1,Mn

:= 2

n
√

Mn

Mn∑
m=1

∑
1≤i<j≤n

Z′
i,mZj,m =: 2

n
√

Mn

Mn∑
m=1

∑
1≤i<j≤n

ρij,m.

Note that if �i is uniform on (0,2π ], clearly, Zi,m is uniform on S
1 and the Appendix of [39]

summarizes a lot of properties of the ρij,m’s in the uniform case.
We will now construct a martingale difference process. Define Fn
 as the σ -algebra generated

by �1, . . . ,�
, and, writing En
 for the conditional expectation with respect to Fn
, we let

S1
 := En


[
Sstand

1,Mn

] − En,
−1
[
Sstand

1,Mn

]
= 2

n
√

Mn

Mn∑
m=1


−1∑
i=1

ρi
,m

= 1

n
√

Mn


−1∑
i=1

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�
)

〉
.
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We obviously have that Sstand
1,Mn

= ∑n

=1 S1
. By construction, the process S1
 is a martingale

difference process so that in order to apply the central limit Theorem 35.12 in [4] we need to
show that

Lemma A.1. Letting σ 2
n
 = En,
−1[(S1
)

2], ∑n

=1 σ 2

n
 converges to one in probability as n → ∞.

together with the Lindeberg condition

Lemma A.2. For any ε > 0,
∑n


=1 E[(S1
)
2
I[|S1
| > ε]] → 0 as n → ∞.

Proof of Lemma A.1. First, note that

σ 2
n
 = En,
−1

[
(S1
)

2]
= 4

n2Mn

En,
−1

[
Mn∑

s,t=1


−1∑
i,j=1

ρi
,sρj
,t

]

= 4

n2Mn

En,
−1

[
Mn∑

s,t=1


−1∑
i,j=1

Z′
i,sZ
,sZ′


,tZj,t

]

= 4

n2Mn

Mn∑
s,t=1


−1∑
i,j=1

Z′
i,sE

[
Z
,sZ′


,t

]
Zj,t

= 2

n2Mn

Mn∑
s=1


−1∑
i,j=1

Z′
i,sZj,s

= 2

n2Mn

Mn∑
s=1


−1∑
i,j=1

ρij,s

= 1

n2Mn


−1∑
i,j=1

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�j )

〉
.

Since E[ρij,s] = 0 for i 	= j and any s, it directly follows from (15) that

E
[
σ 2

n


] = 2(l − 1)

n2

so that

n∑

=1

E
[
σ 2

n


] =
n∑


=1

2(l − 1)

n2
= 1.
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Therefore, it remains to show that Var[∑n

=1 σ 2

n
] converges to zero as n → ∞. Again from (15),
we have that

Var

[
n∑


=1

σ 2
n


]
= Var

[
1

n2Mn

n∑

=1

∑
1≤i<j≤(
−1)

〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�j )

〉]

= 4

n4M2
n

Var

[
Mn∑
s=1

∑
1≤i<j≤(n−1)

(n − j)ρij,s

]

= 4

n4M2
n

E

[(
Mn∑
s=1

∑
1≤i<j≤(n−1)

(n − j)ρij,s

)2]
. (19)

Since for i < j and k < 
, E[ρij,sρk
,t ] = 0, unless (i, j) = (k, 
) and s = t . In the latter case, we
have E[ρ2

ij,s] = 1
2 . It therefore follows from (19) that

Var

[
n∑


=1

σ 2
n


]
= 4

n4M2
n

Mn∑
s=1

∑
1≤i<j≤(n−1)

(n − j)2E
[
ρ2

ij,s

]
≤ 2

Mn

which is o(1) as n → ∞. �

For the proof of Lemma A.2, we need the following preliminary result.

Lemma A.3. Let � be a random angle uniformly distributed on (0,2π). Define

I1(a, b, c, d) = E
[
cos(a�) cos(b�) cos(c�) cos(d�)

]
,

I2(a, b, c, d) := E
[
cos(a�) cos(b�) cos(c�) sin(d�)

]
,

I3(a, b, c, d) := E
[
cos(a�) cos(b�) sin(c�) sin(d�)

]
,

I4(a, b, c, d) := E
[
cos(a�) sin(b�) sin(c�) sin(d�)

]
and

I5(a, b, c, d) := E
[
sin(a�) sin(b�) sin(c�) sin(d�)

]
.

Then we have that (a) Ij (a, b, c, d) = 0, j = 2,4, for all integers {a, b, c, d}. (b) Ij (a, b, c, d) =
0, j = 1,5, unless any of the integers {a, b, c, d} is equal to the sum of the other three (e.g,
a = b + c + d), or if any two pairs of {a, b, c, d} have equal sum (e.g, a + b = c + d).
(c) I3(a, b, c, d) = 0, unless unless any of the integers {a, b, c, d} is equal to the sum of the
other three, or if any two pairs of {a, b, c, d} have equal sum, except for the cases {a = d, b = c}
and {a = c, b = d} for which I3(a, b, c, d) = 0.



2246 S.R. Jammalamadaka, S. Meintanis and T. Verdebout

Proof of Lemma A.3. We show it for I1(a, b, c, d); the other cases are treated similarly. By
simple trigonometric identities, we have that∫ 2π

0
cos(aϑ) cos(bϑ) cos(cϑ) cos(dϑ)dϑ

= sin[2π(a − b − c − d)]
2π(a − b − c − d)

+ sin[2π(a + b − c − d)]
2π(a + b − c − d)

+ sin[2π(a − b + c − d)]
2π(a − b + c − d)

+ sin[2π(a + b + c − d)]
2π(a + b + c − d)

+ sin[2π(a − b − c + d)]
2π(a − b − c + d)

+ sin[2π(a + b − c + d)]
2π(a + b − c + d)

+ sin[2π(a − b + c + d)]
2π(a − b + c + d)

+ sin[2π(a + b + c + d)]
2π(a + b + c + d)

,

and the result follows immediately. �

Proof of Lemma A.2. Applying first the Cauchy–Schwarz inequality, then the Chebyshev in-
equality (note that SR

n
 has zero mean), yields

n∑

=1

E
[
(S1
)

2
I
[|S1
| > ε

]] ≤
n∑


=1

√
E
[
(S1
)4

]√
P
[|S1
| > ε

] ≤ 1

ε

n∑

=1

√
E
[
(S1
)4

]√
Var[S1
].

From the proof of Lemma A.1, we readily obtain that Var[S1
] = 2(
 − 1)/n2, which provides

n∑

=1

E
[
(S1
)

2
I
[|S1
| > ε

]] ≤
√

2

εn

n∑

=1

√
(
 − 1)E

[
(S1
)4

]
. (20)

Now since

2
Mn∑
m=1

ρi
,m = 〈
t
(1)
(Mn)

(�i), t
(1)
(Mn)

(�
)
〉
,

we have using the properties of the ρi
,s ’s that

E
[
(S1
)

4] = 16

n4M2
n

Mn∑
s,t,u,v=1


−1∑
i=1

E[ρi
,sρi
,tρi
,uρi
,v]

+ 1

n4M2
n


−1∑
i,j=1

E
[〈
t
(1)
(Mn)(�i), t

(1)
(Mn)(�
)

〉2〈
t
(1)
(Mn)(�j ), t

(1)
(Mn)(�
)

〉2]

= 16

n4M2
n

Mn∑
s,t,u,v=1


−1∑
i=1

E[ρi
,sρi
,tρi
,uρi
,v] + 4(
 − 1)2

n4
. (21)
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In the sequel denote by M(n)
3 the set of integers (a, b, c, d) ∈ (1, . . . ,Mn)

4 such that any of

the integers {a, b, c, d} is equal to the sum of the other three and by M(n)
2 the set of integers

(a, b, c, d) ∈ (1, . . . ,Mn)
4 such there exists two pairs in {a, b, c, d} that have equal sum. Since

from Section 3 in [27], it follows that #(M(n)
2 �M(n)

3 ) = O(M3
n) (� denotes the difference of

two sets) as Mn → ∞, the boundedness of the ρi
,s ’s and Lemma A.3 entail that from (21) we
have that

E
[
(S1
)

4] = 64

n4M2
n

Mn∑
s,t,u,v=1


−1∑
i=1

E[ρi
,sρi
,tρi
,uρi
,v] + 4(
 − 1)2

n4

= 64

n4M2
n

∑
(s,t,u,v)∈M(n)

2 �M(n)
3


−1∑
i=1

E[ρi
,sρi
,tρi
,uρi
,v] + 4(
 − 1)2

n4

≤ (
 − 1)Cn

n4M2
n

+ +4(
 − 1)2

n4
,

where Cn = O(M3
n). Therefore, we obtain that for some constant C that

n∑

=1

E
[
(S1
)

2
I
[|S1
| > ε

]] ≤
√

2

εn

n∑

=1

√
(
 − 1)E

[
(S1
)4

]

≤
√

2

εn3

n∑

=1

√
Cn(
 − 1)2

M2
n

+ 4(
 − 1)3

≤
√

2

εn3

n∑

=1

(
C

1/2
n (
 − 1)

Mn

+ 4(
 − 1)3/2
)

= O
(
M

1/2
n n−1),

which is o(1) provided that Mn = o(n2). �
�

We now move to the proof of Proposition 7.1.

Proof of Proposition 7.1. In this proof, we use the same techniques as in the proof of Proposi-
tion 4.1. We have that Sstand

2,Mn
in (18) may be rewritten as

Sstand
2,Mn

=
√

2

n
√

Mn(Mn + 2)

n∑

=1


−1∑
i=1

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(U
)

〉
=:

n∑

=1

S2
, (22)
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where S2
 is a martingale difference process. To obtain the asymptotic normality result, we there-
fore need to obtain the following lemma.

Lemma A.4. Letting σ 2
n
 = En,
−1[(S2
)

2], ∑n

=1 σ 2

n
 converges to one in probability as n → ∞.

Together with the Lindeberg condition, we have the following.

Lemma A.5. For any ε > 0,
∑n


=1 E[(S2
)
2
I[|S2
| > ε]] → 0 as n → ∞.

The proof of Lemma A.4 follows along the same lines as the proof of Lemma A.1 using the
fact that

σ 2
n
 =: En,
−1

[
(S2
)

2]
= 2

n2Mn(Mn + 2)
En,
−1

[

−1∑

i,j=1

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(U
)

〉〈
t
(2)
(Mn)(Uj ), t

(2)
(Mn)(U
)

〉]

= 2

n2Mn(Mn + 2)


−1∑
i,j=1

〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(Uj )

〉
(23)

has expectation 2(
 − 1)/n2 as in Lemma A.1. We directly turn to the proof of Lemma A.5.

Proof of Lemma A.5. Following the same lines as in the proof of Lemma A.2, we need to show
that

n∑

=1

√
E
[
(S2
)4

]√
Var[S2
]

is o(1) as n → ∞. First, note that from (23), we easily obtain that

Var[S2
] = E
[
S2

2


] = E
[
σ 2

n


] = 2(
 − 1)

n2
.

Now letting ρij := 〈t (2)
(Mn)(Ui ), t

(2)
(Mn)(Uj )〉 and using the properties of the inner products U′

iUj

summarized in Lemma A1 of [39] we have that

E
[
(S2
)

4] = 4

n4M2
n(Mn + 2)2


−1∑
i,j,k,m=1

E[ρi
ρj
ρk
ρm
]

= 4

n4M2
n(Mn + 2)2

(

−1∑
i=1

E
[
ρ4

i


] +

−1∑

i,j=1

E
[
ρ2

i
ρ
2
j


])

= 4

n4M2
n(Mn + 2)2


−1∑
i=1

E
[
ρ4

i


] + 4(
 − 1)2

n4
. (24)
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Now we have that

E
[
ρ4

i


] = E
[〈
t
(2)
(Mn)(Ui ), t

(2)
(Mn)(U
)

〉4]
=

Mn∑
s,t,u,v=1

(2s + 1)(2t + 1)(2u + 1)(2v + 1)E
[
Ps

(
U′

iU


)
Pt

(
U′

iU


)
Pu

(
U′

iU


)
Pv

(
U′

iU


)]
.

It follows from Lemma A1 in [39] that on S
2, U′

iUj is uniformly distributed on [−1,1]. Using

Theorem 2 in [34], we have for s ≥ 1 that |Ps(x)| ≤ �(1/4)

πs1/4(1−x2)1/8 for x ∈ (−1,1). We therefore
have from (25) that for some constant C

E
[
ρ4

i


] ≤ C

(
Mn∑
s=1

(2s + 1)s−1/4

)4

=: Cn,

where Cn = O(M7
n). It follows from (24) that

E
[
(S2
)

4] ≤ 4Cn(
 − 1)

n4M2
n(Mn + 2)2

+ 4(
 − 1)2

n4

and, therefore, that for some constant C,

n∑

=1

√
E
[
(S2
)4

]√
Var[S2
] ≤ C

n3

n∑

=1

√
Cn(
 − 1)2

M2
n(Mn + 2)2

+ (
 − 1)3

≤ C

n3

n∑

=1

(
C

1/2
n (
 − 1)

Mn(Mn + 2)
+ (
 − 1)3/2

)
= O

(
M

3/2
n n−1),

which is o(1) as n → ∞ provided that Mn = o(n2/3). �
�
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provide some further simulations related to the proposed test on S
2 and the proofs of Propositions

3.1, 3.2 and 4.2.
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