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In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-
similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around
the spatial origin and over the temporal unit hypercube by Z, we show that there exists λ ∈ (0,1) such

that under some quite weak conditions, limn→+∞
n
√
E(Zn)

nλ and limx→+∞ − logP(Z>x)

x
1
λ

both exist and are

strictly positive (possibly +∞). Moreover, we show that if the underlying Gaussian field is ‘strongly locally
nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar
statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary
increments.

Keywords: fractional Brownian fields; Gaussian fields; local times; operator-self-similar random fields;
probability tail decay

1. Introduction

Let (�,F,P) be a probability space, and Xt := (X1
t , . . . ,X

d
t ), t ∈ RN be an N -parameter d-

dimensional centered Gaussian field on (�,F,P), that is, each component Xi
t is a real-valued

zero-mean Gaussian field indexed by RN . We call such a random field a centered Gaussian
(N,d)-field.

We denote by R+, N and Q respectively the sets of strictly positive real numbers (> 0), strictly
positive integers (≥ 1), and finally the rational numbers. Evidently R≥0 denotes the real numbers
that are positive or zero. We denote the space of matrices of size m×n with real entries by Rn×m.
For any two same-sized vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn, u ◦ v denotes their
Schur product, that is, the vector u ◦ v := (u1v1, . . . , unvn). For any square matrix Y, we denote
its trace (i.e., the sum of all its diagonal entries) by tr(Y). For any matrix Y, we denote its
transpose by Y†. For any matrices A1,A2, . . . ,An, we define diag(A1,A2, . . . ,An) as the block
diagonal matrix that has matrices A1,A2, . . . ,An on its diagonal (respecting the order) and is
zero elsewhere.

For any p ∈ RN and T ∈ RN+ , let C(p,T ) denote p + ∏N
i=1[0, Ti], i.e., the N -dimensional

cube of side lengths equal to {Ti}Ni=1 and based at point p. We also denote [0,1] by I .
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For any measurable subset B ⊂Rd , we denote its Lebesgue measure by Vol(B). For any subset
A of an arbitrary set X , we denote its indicator function by 1{A}, that is,

1{A}(x) :=
{

1 for x ∈ A,

0 for x /∈ A.

For any k-dimensional Gaussian random vector Y = (Y1, . . . , Yk), we denote the determinant
of its covariance matrix by detCov[Y ]; in other words

detCov[Y ] := det
[
E
(
YY †)−E(Y )E

(
Y †)],

where Y is regarded as a k × 1 matrix. For any finite family of vectors yi = (yi
1, . . . , y

i
k),

i = 1, . . . , n, we call the following vector as their adjoined vector:

[
y1

1 , . . . , y1
k , y2

1 , . . . , y2
k , . . . , yn

1 , . . . , yn
k

]
,

and we denote it by [y1, . . . ,yn].
Once a centered Gaussian (N,d)-field X is fixed, for any positive integer k and any

t1, . . . , tk ∈RN we define

KX
n (t1, . . . , tn) := (2π)−

nd
2
(
det Cov[Xt1, . . . ,Xtn ]

)− 1
2 . (1)

We use the following definition of local times which provides a pointwise characterisation.
The more common definition of local times as the Radon–Nikodym derivative of the occupation
measure of a random process (if it is absolutely continuous), only provides an almost-sure char-
acterisation of the occupation density. In Section 3, we will see more on this and the link between
the two definitions.

Definition 1.1. Let {Xt }t be a random field on RN with values in Rd . We define the local time
of X at x ∈ Rd and over the cube C(p,T ) as the following limit (if it exists)

Lx

(
X;C(p,T )

) := lim
ε→0

∫
C(p,T )

1

Vol(Bε(x))
1{‖Xt−x‖<ε}(t)dt,

where ‖ · ‖ is an arbitrary norm on Rd , and Bε(x) := {y ∈ Rd; ‖x − y‖ < ε}.

We are interested in the tail-decay behavior of the probability distribution of L0(X;IN). The
first work in this direction goes back to [6]. They consider a one-parameter one-dimensional
(N = d = 1) Gaussian process X(t) with stationary increments satisfying the local nondeter-
minism condition [11]. Moreover, defining σ 2(t) = E[(Xt − Xs)

2], they assume that σ(t) is
continuous and strictly increasing on the interval [0,1], that 1

σ(t)
is integrable over I = [0,1],

and finally σ(t) varies regularly at 0 with some exponent 0 < H < 1, i.e., limt→0
σ(ωt)
σ (t)

= ωH for
every ω > 0. In fact this latter condition is a gauge for asymptotic self-similarity near the origin.
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Under these conditions they show that the local times of X(·) exist, and moreover

0 < lim inf
x→+∞

− logP[L0(X,I) > x]
σ−1( 1

x
)

≤ lim sup
x→+∞

− logP[L0(X,I) > x]
σ−1( 1

x
)

< +∞.

When σ(t) = tH , which corresponds to the fractional Brownian motion of Hurst parameter H ,

the exponential decay rate σ−1( 1
x
) equals x

1
H .

More recently, [1] considers the one-parameter d-dimensional fractional Brownian motion
BH (t) = (BH

1 (t), . . . ,BH
d (t)) and also d-dimensional fractional Riemann–Liouville process

WH (t) = (WH
1 (t), . . . ,WH

d (t)) where {BH
i }di=1 ({WH

i }di=1) are d independent copies of a frac-
tional Brownian motion (fractional Riemann–Liouville process) with Hurst parameter H . They
show that the following limits exist

lim
x→+∞x− 1

dH logP
[
L0

(
BH ,I

)
> x

]
and lim

x→+∞x− 1
dH logP

[
L0

(
WH ,I

)
> x

]
.

We will prove the existence of this exponential tail-decay limit for the class of Gaussian fields
that have stationary increments (Property A2 below) and are ‘diagonally self-similar’ as defined
in Property A3 below.

Throughout the paper, we assume that the random field X has both of the following two
properties (A0 and A1).

Property A0. There exists a positive constant c0 > 0 such that var(Xi
t ) ≤ c0 for every t ∈ [0,1]N

and i = 1, . . . , d .

As we do not assume any kind of continuity of X or its covariance matrix, the boundedness of
its variance (Property A0), seems inevitable.

Property A1. The (N,d)-Gaussian field X has the property that for any positive integer n, the
expression KX

n (t1, . . . , tn) is integrable over (IN)n.

Property A1 guarantees the existence of the local times at every point, that is, Lx(X;IN), and
the finiteness of all their moments, see Proposition 4.2. In fact, A1 is the weakest-known sufficient
condition for the existence of local time at the origin and the finiteness of all its moments.

Next, we have the following two properties that form our main framework.

Property A2 (Stationary increments). The random field X is zero at the origin and has station-
ary increments, that is, for any p ∈ RN we have the following equality for every s, t ∈ RN and
i, j ∈ {1, . . . , d}

E
[
X(i)

s X
(j)
t

]= E
[(

X
(i)
s+p − X(i)

p

)(
X

(j)
t+p − X

(j)
p

)]
.

Property A3 (Diagonal self-similarity). There exist a vector α = (α1, . . . , αN) ∈ RN+ and a
matrix H ∈ Rd×d with positive trace (tr(H) > 0) such that for every ω > 0 we have

Xt◦ωα
d= ωHXt ; ∀ω ∈R+, (2)
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where ωα := (ωα1 , . . . ,ωα1), the values of Xt are considered as d ×1 matrices,
d= means equality

in finite dimensional distributions for the two random fields, and ωH denotes matrix exponential
with the usual definition, that is,

ωH := eln(ω)H =
∞∑
i=0

(ln(ω)H)n

n! ; ∀ω ∈R+.

Remark 1.1. This definition is a special case of the more general concept of what is called
operator-self-similar random fields, for example, studied in [7]. In the general case, the vectors α

and hence ωα are replaced by a matrix E and its matrix exponential ωE, respectively. Evidently
in this more general setting, the Shur product ωα ◦ t should be replaced by the usual matrix
multiplication ωEt . This justifies us calling Property A3 as ‘diagonal’ self-similarity.

Remark 1.2. For zero-mean Gaussian fields, Equation (2) in Property A3 is equivalent to the
following equation

E
(
Xs◦ωα X†

t◦ωα

)= ωHE
(
XsX†

t

)
ωH†

, ∀s, t ∈RN,

where Xt is considered as a d × 1 matrix as above, and H† denotes the transpose of matrix H.
For more on matrix exponential see, for example, [4], Chapter 2.

An important special case of Property A3 is the following condition.

Property A◦
3 (Two-sided diagonal self-similarity). There exist α = (α1, . . . , αN) ∈ RN+ and

(H1, . . . ,Hd) ∈Rd+ such that for every ω > 0 we have

E
[
X

(i)
s◦ωαX

(j)
t◦ωα

]= ωHi+HjE
[
X(i)

s X
(j)
t

]
, ∀i, j ∈ {1, . . . , d},∀s, t ∈ RN, (3)

where ωα := (ωα1, . . . ,ωα1).

Remark 1.3. For a zero-mean Gaussian field Xt , Property A◦
3 is satisfied if and only if Prop-

erty A3 is satisfied with H = diag(H1,H2, . . . ,Hd), that is, the diagonal matrix whose diagonal
entries are ωH1, . . . ,ωHd (respecting the order) and is zero elsewhere. This is true because we
have

ωdiag(H1,H2,...,Hd) = diag
(
ωH1, . . . ,ωHd

)
.

Remark 1.4. A very important random field that satisfies both Properties A2 and A◦
3 is the

multi-parameter fractional Brownian motion, that is, the centered Gaussian field with stationary
increments characterised by E[(Xs − Xt )

2] = |s − t |2H for every s, t ∈ RN , where H ∈ (0,1]
is the Hurst parameter of the Gaussian field. Furthermore, the centered Gaussian (N,d)-field
consisting of d independent multi-parameter fractional Brownian motions each with its own
Hurst parameter Hi satisfies also A2 and A3, hence falls in the scope of this paper as well.
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Remark 1.5. Let c1, . . . , cN ∈ R+, p1, . . . , pN ∈ (0,2] and H ∈ (0,1]. Consider the (N,1)-
Gaussian field that we call ‘anisotropic fractional Brownian motion’, that is, the RN -indexed
centered Gaussian field Xs with stationary increments given by

E
[
(Xs − Xt )

2]= φ(s − t),

where

φ(s) =
(

N∑
i=1

ci |si |pi

)2H

.

This Gaussian field satisfies both Properties A2, and A◦
3 with α̃ := ( 1

p1
, . . . , 1

pN
) and H1 := H .

For other interesting examples of operator-self-similar random processes and fields with sta-
tionary increments, see e.g. [8].

In Section 2 we gather all the main results of this paper. In Section 3, we discuss the pointwise
versus functional definitions of local times which are relevant to our work. In Section 4, we
state the relation between the exponential decay rate of the probability tail of local times and the
exponential growth rate of their moments. Sections 5 and 6 contain the technical proofs.

2. Main results

In this section, we give some technical definitions and state our results. The proofs will come in
the subsequent sections.

For every α = (α1, α2, . . . , αN) ∈ RN+ , we define the α-length as follows

‖t‖α :=
N∑

i=1

|ti |1/αi : ∀t = (t1, . . . , tN ) ∈RN. (4)

It is evident that ‖t‖α defines a translation invariant topology on RN+ . Moreover, if ∀i =
1, . . . ,N : αi ≥ 1 then ‖t‖α defines a translation invariant metric on RN+ which we call the α-
distance. Nevertheless, it is not a norm except for the special case where all the exponents are
equal to 1.

We introduce the following definition which generalizes the idea of Strong Local Nondeter-
minism to vector-valued Gaussian fields.

Definition 2.1 (Strong Local Nondeterminism). We call a centered Gaussian (N,d)-field Xt

strongly locally nondeterministic over a cube J ⊆RN with scaling vector ξ := (ξ1, ξ2, . . . , ξN) ∈
RN+ if there exist constants H > 0 and C > 0 such that for any positive integer n, and any arbitrary
vectors u, t1, . . . , tn ∈ J , we have

detCov[Xu|Xt1,Xt2, . . . ,Xtn ] ≥ C min
0≤i≤n

‖u − t i‖2H
α ,
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where t0 := 0, the expression detCov[Xu|Xt1 ,Xt2, . . . ,Xtn] denotes the determinant of the
conditional covariance matrix of the random vector Xu conditioned on all the random vectors
Xt1 ,Xt2, . . . ,Xtn , and finally, α = (α1, α2, . . . , αN) := H ξ .

Remark 2.1. The reason why only the normalized vector ξ = 1
H

α is relevant, is due to the fact
that for any p > 0 there exist positive constants c1, c2 > 0 such that for every x = (x1, . . . , xN) ∈
RN

c1

(
N∑

i=1

|xi |1/αi

)2H

≤
(

N∑
i=1

|xi |p/αi

) 2H
p

≤ c2

(
N∑

i=1

|xi |1/αi

)2H

.

In fact we have the following proposition.

Proposition 2.1. Let f : RN → R≥0 be a continuous function such that f (x) = 0 if and only
if x = 0, and for some vector α = (α1, α2, . . . , αN) ∈ RN+ and H > 0, we have f (x ◦ ωα) =
ωH f (x) for every x ∈ RN and ω > 0. Then there exist constants c1, c2 > 0 such that for every
x = (x1, . . . , xN) ∈ RN

c1

(
N∑

i=1

|xi |1/αi

)H

≤ f (x) ≤ c2

(
N∑

i=1

|xi |1/αi

)H

.

Proof. In Section 5. �

Remark 2.2. Let Xt be a diagonally self-similar centered Gaussian (N,d)-field that satisfies
Property A3 with matrix H ∈ Rd×d and vector α = (α1, . . . , αN) ∈ RN+ . If Xt is strongly locally
nondeterministic with the scaling vector ξ := (ξ1, ξ2, . . . , ξN), then it is easy to verify that ξ =

1
tr(H )

α. In other words, for diagonally self-similar centered Gaussian (N,d)-fields, the strong
local nondeterminism can be satisfied only with a unique scaling vector.

Proposition 2.2. Let Xt be a diagonally self-similar centered Gaussian (N,d)-field with sta-
tionary increments, i.e. it satisfies Properties A0, A2, and A3 with some matrix H ∈ Rd×d and
vector (α1, . . . , αN) ∈ RN+ . Let β be a positive real number. If the kernel (KX

n )β is integrable over
the cube (IN)n for some integer n, then the following inequality has to hold true

N∑
i=1

αi > β tr(H).

Proof. In Section 5. �

Lemma 2.3. Let Xt be a centered Gaussian (N,d)-field which is strongly locally nondetermin-
istic over IN with scaling vector ξ = (ξ1, ξ2, . . . , ξN) and constant C0. Then for any positive real
number β such that β <

∑N
i=1 ξi , and any positive integer n, the kernel (KX

n )β is integrable over
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the cube (IN)n, and

∫
(IN )n

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn ≤ cn(n!)

β∑N
i=1 ξi ,

where c is a constant that depends only on C0, N , α, β , H and d .

Proof. In Section 5. �

Theorem 2.4. Let Xt be a centered Gaussian (N,d)-field that is strongly locally nondeterminis-
tic over IN with scaling vector ξ = (ξ1, ξ2, . . . , ξN ) ∈ RN+ such that 1 <

∑N
i=1 ξi . Then the local

times Zx := Lx(X,IN) of the random field Xt exist at every point x ∈Rd , and

E
(
Zn

x

)≤ cn(n!)
1∑N

i=1 ξi

for some constant c which does not depend on n.

Proof. It is immediate from Lemma 2.3. �

Definition 2.2. Let {Xk(tk) : tk ∈ RNk }mk=1 be a family of m independent Gaussian fields such
that for every k = 1, . . . ,m, the random field Xk(t) is a centered Gaussian (Nk, d)-field. We
define their (m-fold) intersection local time around the origin and over I as the local time of the
following (

∑m
k=1 Nk, (m − 1)d)-field at 0 and over the cube I

∑m
k=1 Nk (if it exists)(

X1(t1) − X2(t2),X2(t2) − X3(t3), . . . ,Xm−1(tm−1) − Xm(tm)
)
.

Theorem 2.5. Let m be a positive integer, and {Xk(tk) : tk ∈ RNk }mk=1 be a family of m in-
dependent Gaussian fields such that for every k = 1, . . . ,m, the random field Xk(tk) is a
centered Gaussian (Nk, d)-field that is strongly locally nondeterministic with scaling vector
ξ k = (ξk,1, ξk,2, . . . , ξk,Nk

) ∈ R
Nk+ . If

∑m
k=1

∑Nk

i=1 ξk,i > m − 1, then the m-fold intersection lo-
cal time of the family {Xk(·)}mk=1 over the interval I exists. Moreover, denoting this intersection

local time by IX , and defining ξ̃k := ∑Nk

i=1 ξk,i , for any arbitrary sequence of positive numbers
q1, q2, . . . , qm such that

∑m
k=1 qk = m − 1, and such that 0 ≤ qk ≤ 1 and qk < ξ̃k (for every

k = 1, . . . ,m), we have

E
(
(IX)n

)≤ cn(n!)
∑m

k=1
qk
ξ̃k ,

where c is a positive constant that does not depend on n.

Proof. In Section 5. �

Theorem 2.6. Suppose Xt is a centered Gaussian (N,d)-field satisfying Properties A0, A1, A2,
and A3 with some matrix H ∈ Rd×d and vector (α1, . . . , αN) ∈ RN+ such that αi ’s are mutually
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rational, that is, αi

αj
∈ Q for every i and j . Then the following limits exist in R+ ∪ {+∞} , and

are strictly positive

lim
x→+∞

− logP(Z > x)

x
1
λ

and lim
n→+∞

n
√
E(Zn)

nλ
,

where Z := L0(X, [0,1]N) and λ := tr(H)∑N
k=1 αk

. Moreover, if Xt is also strongly locally nondeter-

ministic over IN , then the above limits will be finite.

Proof. In Section 6. �

Remark 2.3. One should note that although Properties A0, A1, A2, and A3 guarantee the con-

vergence of the sequence { (E(Zn))
1
n

nλ }n, they do not imply the finiteness of the limit. Probably the
simplest example would be the centered Gaussian (2,1)-field X(s, t) (s, t ∈ R) characterized
by X(0,0) = 0 and E(X(s1, t1) − X(s2, t2))

2 = (t1 − s1)
2H + (t2 − s2)

2H , where H ∈ (0,1). It
clearly satisfies all Properties A0, A1, A2, and A3 with the self-similarity scaling (α,H), where

α := (1,1). So by Theorem 2.6, we know that { n
√

E(Ln
0)

nH/2 }n converges, where L0 is the local time

of X around the origin on the square I2. On the other hand, one can easily verify that X is equiv-
alent to {B1(s) − B2(t) : (s, t) ∈R2}, where B1 and B2 are two independent fractional Brownian
motions of Hurst parameter H . So L0, that is, the local time of X around the origin, is the same
as IB , i.e., the intersection local time of two independent fractional Brownian motions with the

same Hurst parameter. By [1], Theorem 2.4, we know that { n
√

E(In
B)

nH }n converges to a strictly

positive finite constant. This shows that the right growth exponent of n
√
E(Ln

0) is nH .

Corollary 2.1. Let m be a positive integer, and {Xk(tk) : tk ∈ RNk }mk=1 be a family of m inde-
pendent Gaussian fields such that for every k = 1, . . . ,m, the random field Xk(t) is a centered
Gaussian (Nk, d)-field satisfying Properties A0, A2, and A3 with the self-similarity scaling ma-
trix H ∈ Rd×d and scaling vector αk = (αk,1, . . . , αk,Nk

) ∈ R
Nk+ . If for every positive integer n

and every k = 1, . . . ,m, the kernel (KXk
n (t1, . . . , tn))

m−1
m is integrable over (INk )n, then the m-

fold intersection local time of {Xk}mk=1 on the interval [0,1] exists, and if moreover, every pair of
αk,i and αl,j are mutually rational, that is, αk,i

αl,j
∈ Q, then denoting the m-fold intersection local

time of {Xk}k by Im, the following limits exists

lim
y→+∞

− logP(Im > y)

y
1
γ

and lim
n→+∞

n
√
E((Im)n)

nγ
,

where γ := (m−1) tr(H)∑m
k=1

∑Nk
i=1 αk,i

.

Proof. In Section 6. �
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Remark 2.4. Although this theorem affirms the convergence of { n
√
E((Im)n)

nγ }n, it does not guar-

antee that γ = (m−1) tr(H)∑m
i=1

∑Ni
k=1 αi,k

is the right exponent for the growth of n
√
E((Im)n). For that, we

would also need the finiteness of the above limit. In Corollary 2.3, we saw some examples where
the right growth exponent is larger than the exponent given by this theorem (H instead of H/2).

3. Definition of local times: Pointwise versus functional

Let X be an (N,d)-random field over a cube C(p,T ) in RN . Let μ be the occupation measure
of X, i.e. for every Borelian subset B ⊆Rd we have

μX(B) = λN

({
t ∈ C(p,T );Xt ∈ B

})
,

where λN denotes the Lebesgue measure on RN .

Definition 3.1 (Functional definition of local time). If the occupation measure of X is almost-
surely absolutely continuous with respect to the Lebegue measure on Rd , i.e. when μX � λd , its
Radon–Nikodym derivative is called the local time (or occupation density) of X over C(p,T ),
and we denote it by we denote this function by L̄X .

Clearly, this definition does not provide a unique pointwise definition for the local time but a
set of functions that are equal to each other almost surely. It is also clear that for any positive (or
bounded) measurable function f :Rd →R, we have∫

C(p,T )

f (Xt )dt =
∫
Rd

f (x)L̄X(x)dx.

A sufficient condition for the existence of the local time as defined above, is the following∫
C(p,T )

∫
C(p,T )

1√
detCov(Xt − Xs)

dt ds < +∞; (5)

see, for example, [9] or [3]. By Corollary A.7, we have

detCov[XtXs] ≤ detCov(Xt )detCov(Xt − Xs).

So it is clear that conditions A1 and A0 imply Equation (5). So assuming these two conditions, we
have the existence of the local times, both in the pointwise and functional definitions. Moreover,
for every x ∈Rd we have∫

Bε(x)

L̄X(y)dy =
∫
C(p,T )

1‖Xt−x‖<ε(t)dt,

hence

lim
ε→0

1

Vol(Bε(x))

∫
Bε(x)

L̄X(y)dy = Lx

(
X;C(p,T )

)
,
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which means that irrespective of the chosen version of L̄X , its pointwise local mean equals the
local time defined in the pointwise manner.

4. Formulation in moments growth rate

The following theorem is a special case of Kasahara’s Tauberian theorem [5], which relates the
probability tail behavior to the moments asymptotic behavior.

Theorem 4.1 (Kasahara [5]). For any positive random variable Y , any positive number λ, and
any A ∈ (0,+∞], the limit

lim
n→+∞

n
√
E(Y n)

nλ

exists and equals A if and only if the limit

lim
x→+∞

− logP(Y > x)

x
1
λ

exists and equals λ

eA
1
λ

.

We aim to prove that for any centered Gaussian (N,d)-field X satisfying conditions A1, A0,
A2, and A3, the following limit exists

lim
n→+∞

n
√
E(Zn)

nλ
,

where Z := L0(X,IN) and λ := tr(H)∑N
k=1 αk

. Clearly this along with the above theorem proves the

existence of the following limit with λ := tr(H)∑N
k=1 αk

.

lim
x→+∞x− 1

λ logP
[
L0

(
X,IN

)
> x

]
.

We have the following proposition on the existence of the local time of zero-mean Gaussian
fields at the origin and its moments. In the proof we use some arguments of [9].

Proposition 4.2. For any Gaussian field X satisfying condition A1, the local times Zx :=
Lx(X,IN) exist for every x ∈Rd , and we have

E
(
Zn

x

)≤
∫
∏n

i=1 IN

KX
n (t1, . . . , tn)dt1 · · ·dtn: ∀x ∈ Rd,

and

E
(
Zn

0

)=
∫
∏n

i=1 IN

KX
n (t1, . . . , tn)dt1 · · ·dtn,
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where
∏n

i=1 IN denotes the n-times Cartesian product IN × · · · × IN , and KX
n (t1, . . . , tn) is as

defined in Equation (1).

Proof. We prove the proposition for x = 0. The proof for the general x is similar. For the rest
of the proof, we denote Z0 simply by Z. Let ‖ · ‖ be some arbitrary norm on Rd and define
Zε := ∫

IN
1
Vε

1{‖Xt‖<ε}(t)dt , where Vε denotes the volume of the d-dimensional ball {x ∈ Rd;
‖x‖ < ε}, and 1{·} denotes the indicator function. First, we show that {Zε} is cauchy in Ln(�,P).
Indeed, let S be the set of all possible functions from {1, . . . , n} into {0,1}. For any function
σ ∈ S, we define ξσ

i to be equal to ε if σ(i) = 0 and be equal to δ if σ(i) = 1. It is then easy to
verify the following equality

E
[
(Zε − Zδ)

n
]=

∫
∏k

i=1 IN

∑
σ∈S

(−1)
∑n

i=1 σ(i)∏n
i=1 Vξσ

i

P

(
n⋂

i=1

{‖Xt i ‖ < ξσ
i

})
dt1 · · ·dtn.

As the variables {Xt }t are jointly normal with mean zero, for every σ ∈ S and each fixed
t1, . . . , tn, we have

1∏n
i=1 Vξσ

i

P
(‖Xt1‖ < ξσ

1 , . . . ,‖Xtn‖ < ξσ
n

)≤ KX
n (t1, . . . , tn)

and
1∏n

i=1 Vξσ
i

P
(‖Xt1‖ < ξσ

1 , . . . ,‖Xtn‖ < ξσ
n

) ε,δ↓0−→ KX
n (t1, . . . , tn).

Noting that
∑

σ∈S(−1)
∑n

i=1 σ(i) = (1 − 1)n = 0, by dominated convergence and Property A1 we
have

E
[
(Zε − Zδ)

n
] ε,δ↓0−→ 0,

which proves that Zε is Ln(�,P)-Cauchy whose limit is noting but Z. Similarly one can also
show that

E
(
Zn

)= lim
ε→0

E
(
Zn

ε

)=
∫
∏n

i=1 IN

KX
n (t1, . . . , tn)dt1 · · ·dtn. �

5. Upper bound

In this section, we prove Propositions 2.1, 2.2, Lemma 2.3, and finally Proposition 2.5.

Proof of Proposition 2.1. First, we normalize the vector α = (α1, α2, . . . , αN) and H so that for
every i we have αi ≥ 1. This is possible because f (x ◦ ωα/p) = ωH/pf (x) for every p > 0 as
well. This turns the α-distance d(x,y) := ‖x − y‖α into a translation-invariant metric on RN .

(i) We denote the �2-norm on RN by ‖ · ‖2, and take the standard definition for the α and �2-
balls centered at the origin of radius r > 0 as Bα(0, r) := {x ∈ RN : ‖x‖α < r} and B2(0, r) :=
{x ∈RN : ‖x‖2 < r}. It is easy to verify that every α-ball centered at the origin contains a �2-ball
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centered at the origin, and vice versa. This shows that the α-metric induces the same topology
on RN as the standard topology induced by the �2-norm. In particular it means that the function
f is also continuous under the α-metric. So there exists ε > 0 such that for every x we have
|f (x)| < 1 if ‖x‖α < ε. Now for any x ∈RN , choose ω > 0 such that ‖x◦ωα‖α = ω‖x‖α = ε/2.

It follows that |f (x ◦ ωα)| < 1 which means |f (x)| < 2H

εH ‖x‖H
α .

(ii) As the set Sα := {x ∈ RN : ‖x‖α = 1} is compact, the image of the continuous function f

achieves a minimum over Sα which is strictly positive. In other words, there exists δ > 0 such
that for every x ∈ Sα we have f (x) ≥ δ. Now for a general x ∈ RN , we can choose ω > 0 such
that ‖x ◦ ωα‖α = 1. So we have |f (x ◦ ωα)| ≥ δ, hence |f (x)| ≥ δ‖x‖H

α . �

Proof of Proposition 2.2. We prove it for the case of n = 1. The proof for larger n’s is similar.
Let the surface S+

α ⊂RN be defined as follows

S+
α :=

{
(x1, x2, . . . , xN) ∈RN+ :

N∑
i=1

αi
√

xi = 1

}
.

By diagonal self-similarity (Property A3) and noting Remark 1.2, for any t ∈RN and any ω > 0
we have

detCov(Xωα◦t ) = det
(
ωH)detCov(Xt )det

(
ωH†)= ω2 tr(H) detCov(Xt ),

where we used the fact that the determinant of the exponential of a matrix equals the exponential
of its trace, that is, det(eH) = etr(H) (see, e.g., [4], Chapter 2). Suppose s �→ σ s is an arbitrary
parametrization of the surface S+

α , where σ s = (σ1(s), . . . , σN(s)) and s = (s1, . . . , sN−1). Then
using the change of variables (ω, s) with t = ωα ◦ σ s , we have∫

[0,1]N
(
K1(t)

)β dt ≥
∫ 1

0

∫
σ−1(S+

α )

ω
∑N

i=1 αi−1(K1
(
ωα ◦ σ s

))β
Jσ (s)ds dω

=
∫ 1

0

ω
∑N

i=1 αi−1

ωβ tr(H)
dω

∫
σ−1(S+

α )

(
K1(σ s)

)β
Jσ (s)ds,

where Jσ (s) is the absolute value of the following determinant∣∣∣∣∣∣∣∣∣∣

α1σ1
∂σ1

∂s1

∂σ1

∂s2
. . .

∂σ1

∂sN−1
...

...
... . . .

...

αNσN

∂σN

∂s1

∂σN

∂s2
. . .

∂σN

∂sN−1

∣∣∣∣∣∣∣∣∣∣
. (6)

This implies that if (K1(t))
β is integrable over the cube [0,1]N , then the following inequality

has to hold true
N∑

i=1

αi > β tr(H). �
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Now we turn to the proof of Lemma 2.3. First, we need a definition.

Definition 5.1. Consider n ∈ N, and a sequence of vectors t1, . . . , tn ∈ RN , and let d be a metric
on RN . We say that the sequence is ‘narrowing’ with respect to the metric d , if for any k =
1, . . . , n − 1 we have

d(tk+1, tk) = min
i=1,...,k

d(tk+1, t i ).

Remark 5.1. For any fixed metric d , every finite subset F ⊂ RN of n points can be arranged in
such a way that the ordered sequence is narrowing with respect to the metric d . Indeed, the proce-
dure is simple: start with an arbitrary point in F and label it tn. Having chosen tn, tn−1, . . . , tk ,
choose among the remaining points, that is, from F \ {tn, tn−1, . . . , tk}, the one which is the
closest to tk and label it tk−1.

We will need a theorem from [10] which relates our problem to the nearest neighbor strategy
for solving the travelling salesman problem. We proceed with some preliminary definitions from
[10].

For a given metric d on RN , the diameter of a subset C ⊆RN is defined as

Dd(C) := sup
x,y∈C

d(x,y).

A family P = {Cl}Pl=1 of subsets of RN is called a covering of subset A ⊂ RN if A ⊆ ⋃P
l=1 Cl .

The diameter of a covering P , denoted by Dd(P) is defined as the maximum diameter of its
elements, that is,

Dd(P) = max
l=1,...,P

Dd(Cl ).

For any n distinct points in RN , an arrangement (ordering) t1, t2, . . . , tn of the points is a ‘nearest
neighbor tour’ if it satisfies the following property

d(tk+1, tk) = min
i=k+1,...,n

d(tk, t i ): ∀k = 1, . . . , n − 1.

For every nearest neighbor tour T of n points, one defines its (loop) length as

Ld(T) :=
n∑

k=1

d(tk+1, tk),

where tn+1 := 0. We are interested in finding a general upper bound on this length when all the
points of the tour are required to lie inside the unit cube IN . Indeed, the ‘worst case length’ of
n-point nearest neighbor (NN) tours over a subset A ⊂RN is defined as follows

Ld(n;A) := sup
F⊂A|F |=n

max
T∈NN(F)

Ld(T),



Probability distribution tail of Gaussian local times 1517

where |F | denotes the cardinality of the set F , and NN(F) is the set of all possible nearest
neighbor tours of the points of F . Then we have the following theorem from [10].

Theorem 5.1. Let d be a metric on RN , and A ⊂ RN . Then for any sequence of cov-
erings {Pm}Mm=1 of A with decreasing diameters, that is, Dd(Pm) ≥ Dd(Pm+1) for every
m = 1, . . . ,M − 1. Then the worst case length of n-point nearest neighbor tours is bounded
as follows

Ld(n;A) ≤ nDd(PM) +
M∑

m=2

|Pm|(Dd(Pm−1) − Dd(Pm)
)+ |P1|

(
Dd(A) − Dd(P1)

)
,

where |Pm| denotes the cardinality of Pm.

We should mention that this theorem has been stated in [10] only for the case where the metric
d comes from a norm on RN . Nevertheless, with a careful examination of their proof one can
verify that their arguments work even when d is a general metric on RN .

Now we are ready to prove the following theorem.

Theorem 5.2. Let N ∈ N≥2 and α = (α1, α2, . . . , αN) ∈ [1,∞)N . Then the worst case length of
nearest neighbor tours of n-point subsets of [0,1]N with respect to the metric ‖ · ‖α defined in
(4), is bounded as follows

Lα

(
n, [0,1]N )≤ cαn

1− 1∑N
i=1 αi ,

where cα is a constant that depends only on α.

Proof. For every m ∈N, we define the set of points Gm ⊂ [0,1]N as

Gm :=
{(

�1

mα1
,

�2

mα2
, . . . ,

�N

mαN

)∣∣∣�i ∈ {
0,1, . . . ,

⌈
mαi

⌉− 1
} : ∀i = 1,2, . . . ,N

}
,

where �·� denotes the ceiling function that is, �x� is the smallest integer that is larger than or
equal to x. For every p ∈ Gm, we define the sub-cube C(p,m−α) as usual, that is,

C
(
p,m−α

) := p +
N∏

i=1

[
0,

1

mαi

]
.

So for any positive integer m we define the following covering of the set [0,1]N

Pm := {
C
(
p,m−α

) : p ∈ Gm

}
.

We note that for every m we have

D(Pm) = N

m
and |Pm| =

N∏
i=1

⌈
mαi

⌉
.
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So by Theorem 5.1, for every M ∈ N we have

Lα

(
n, [0,1]N )≤ nN

M
+ N

M∑
m=2

(
1

m − 1
− 1

m

) N∏
i=1

⌈
mαi

⌉≤ nN

M
+ N2N+1

M∑
m=2

m
∑N

i=1 αi−2.

Due to the assumption, we have
∑N

i=1 αi ≥ 2, and hence

Lα

(
n, [0,1]N )≤ nN

M
+ N2N+1

∫ M

1
m
∑N

i=1 αi−2 ≤ nN

M
+ N2N+1∑N

i=1 αi − 1
M

∑N
i=1 αi−1.

If we choose M := n

1∑N
i=1 αi we get the desired bound. �

So we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Choose α = (α1, α2, . . . , αN) ∈ RN+ and H > 0 such that for every i =
1, . . . ,N we have αi ≥ 1 and αi = Hξi . First, we prove the theorem for the case of N ≥ 2. We
define Nn,α as the set of all nN -tuples (t1, t2, . . . , tn) ∈ IN × · · · × IN such that the sequence
t1, t2, . . . , tn is narrowing with respect to the α-distance defined by ‖ · ‖α in Equation (4). Then
by Remark 5.1, and the fact that KX

n (t1, t2, . . . , tn) is symmetric with respect to its arguments,
that is, it is permutation-invariant, we have∫

(IN)n

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn ≤ n!

∫
Nn,α

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn. (7)

By strong local nondeterminism, for any narrowing sequence t1, t2, . . . , tn we have

detCov[Xtk |Xt1,Xt2, . . . ,Xtk−1 ] ≥ C min
{‖tk − tk−1‖2H

α ,‖tk‖2H
α

}: ∀k = 2, . . . , n.

So by Proposition A.6 we have

KX
n (t1, . . . , tn) ≤ cn

1

n∏
k=1

1

min{‖tk − tk−1‖H
α ,‖tk‖H

α } , (8)

where c1 := 1√
C(2π)d

.

On the other hand, it is easy to verify that if a sequence t1, t2, . . . , tn is narrowing, then its
reversal, that is, tn, tn−1, . . . , t1 satisfies the nearest neighbor property. Hence,by Theorem 5.2,
for any (t1, t2, . . . , tn) ∈ Nn,α , we have

n∑
k=2

‖tk − tk−1‖α ≤ Lα

(
n;IN

)≤ cαn
1− 1∑N

i=1 αi ,

so
n∑

k=1

k

1∑N
i=1 αi ‖tk − tk−1‖α ≤ c2n, (9)
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where c2 is a constant that only depends on N , α and d . So (9) and (8) imply

∫
Nn,α

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn

≤ ec2n

∫
Nn,α

c
nβ

1

n∏
k=1

exp(−k

1∑N
i=1 αi min{‖tk − tk−1‖α,‖tk‖α})

min{‖tk − tk−1‖βH
α ,‖tk‖βH

α }
dt1 · · ·dtn

≤ cn
3

∫
RnN

n∏
k=1

exp(−k

1∑N
i=1 αi min{‖tk − tk−1‖α,‖tk‖α})

min{‖tk − tk−1‖βH
α ,‖tk‖βH

α }
dt1 · · ·dtn

≤ cn
3

∫
RnN

n∏
k=1

(
exp(−k

1∑N
i=1 αi ‖tk − tk−1‖α)

‖tk − tk−1‖βH
α

+ exp(−k

1∑N
i=1 αi ‖tk‖α)

‖tk‖βH
α

)
dt1 · · ·dtn,

where c3 := ec2c
β

1 . Let S be the set of all possible functions from {1, . . . , n} into {0,1}, and for
any function ϑ ∈ S and any k ∈ {1, . . . , n}, define

yϑ
k =

{
tk, if ϑ(k) = 0,

tk − tk−1, if ϑ(k) = 1.

Then the last inequality can be written as follows

∫
Nn,α

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn

≤ cn
3

∑
ϑ∈S

∫
RnN

n∏
k=1

exp(−k

1∑N
i=1 αi ‖yϑ

k ‖α)

‖yϑ
k ‖βH

α

dt1 · · ·dtn

= cn
3

∑
ϑ∈S

∫
RnN

n∏
k=1

exp(−k

1∑N
i=1 αi ‖yϑ

k ‖α)

‖yϑ
k ‖βH

α

dyϑ
1 · · ·dyϑ

n

= cn
3

∑
ϑ∈S

n∏
k=1

∫
RN

exp(−k

1∑N
i=1 αi ‖y‖α)

‖y‖βH
α

dy. (10)

Define the surface Sα ⊂RN as follows

Sα :=
{

(x1, x2, . . . , xN) ∈RN :
N∑

i=1

αi
√|xi | = 1

}
,
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and take an arbitrary parametrization s �→ σ s of Sα , where σ s = (σ1(s), . . . , σN(s)) and s =
(s1, . . . , sN−1). Then using the change of variables (ω, s) with y = rα ◦ σ s , we have

∫
RN

exp(−k

1∑N
i=1 αi ‖y‖α)

‖y‖βH
α

dy = ∣∣S◦
α

∣∣ ∫ +∞

0

exp(−rk

1∑N
i=1 αi )r

∑N
i=1 αi

rβH+1
dr

= ∣∣S◦
α

∣∣k
βH∑N
i=1 αi

k

∫ +∞

0

e−r

r
r
∑N

i=1 αi−βH dr, (11)

where ∣∣S◦
α

∣∣ := ∫
σ−1(Sα)

Jσ (s)ds,

and Jσ is the absolute value of the determinant given in Equation (6). It is important to note that
the right-hand side of (11) is finite only if

∑N
i=1 αi > βH . So by Equations (10) and (11) we get

∫
Nn,α

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn ≤ cn

4
(n!)

βH∑N
i=1 αi

n! , (12)

where

c4 := 2c3
∣∣S◦

α

∣∣ ∫ +∞

0

e−r

r
r
∑N

i=1 αi−βH .

So finally, plugging Equation (12) into Equation (7) we get∫
(IN)n

(
KX

n (t1, . . . , tn)
)β dt1 · · ·dtn ≤ cn

4(n!)
βH∑N
i=1 αi .

The proof for the case of N = 1 is similar to the above proof, except for the fact that instead of
arranging t i ’s based on the narrowing property, we order them by the natural ordering on R. The
rest of the proof remains basically the same. �

Proof of Theorem 2.5. Let us define d̃ := (m − 1)d , Ñ :=∑m
i=1 Ni , and the following vector

�t̃ := (
X1(t1) − X2(t2),X2(t2) − X3(t3), . . . ,Xm−1(tm−1) − Xm(tm)

) ∈Rd̃ .

Evidently, �t̃ is a centered Gaussian (Ñ, d̃)-field.
Take an arbitrary positive integer n, and consider any family of points {t i

k}i,k where k =
1, . . . ,m, i = 1, . . . , n, such that for every i and k we have t i

k ∈ INk . Note that the superscript i

in t i
k is simply an index and should not be confused with exponent. For any such family of points,

and for any i = 1, . . . , n, we define the vector t̃ i := (t i
1, . . . , t

i
m) ∈ RÑ . So we are interested in

detCov[�t̃1
,�t̃2

, . . . ,�t̃n
],

where t̃1, . . . , t̃n ∈ IÑ .
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We first note that the determinant of the covariance matrix of a random vector is invariant
under permutations of the entries of the random vector. In other words, for any d dimensional
random vector (Y1, . . . , Yd), and σ an arbitrary permutation of the set {1,2, . . . , d}, we have

detCov[Yσ(1), Yσ(2), . . . , Yσ(d)] = detCov[Y1, Y2, . . . , Yd ].
This is true because any permutation of a vector is equivalent to multiplying it with a permutation
matrix, and the determinant of any permutation matrix is ±1. Using this fact, it is easy to verify
the following equality

detCov[�t̃1
,�t̃2

, . . . ,�t̃n
] = detCov[A1 − A2,A2 − A3, . . . ,Am−1 − Am],

where the random vectors A1, . . . ,Am are defined as follows

Ak := (
Xk

(
t1
k

)
,Xk

(
t2
k

)
, . . . ,Xk

(
tn
k

)) ∈Rnd ; ∀k = 1, . . . ,m.

Note that for any positive integer m, any sequence of Gaussian random vectors of the same
size A1,A2, . . . ,Am, and for any k = 1, . . . ,m, we have

detCov[A1, . . . ,Am] = detCov

[
A1, . . . ,Ak−1,Ak +

∑
j �=k

cjAj ,Ak+1, . . . ,Am

]
,

where
∑

j �=k cjAj is any arbitrary linear combination of all the involved vectors excluding Ak .
Using this simple fact we have

detCov[A1 − Ak, . . . ,Ak−1 − Ak,Ak+1 − Ak, . . . ,Am − Ak]
= detCov[A1 − A2,A2 − A3, . . . ,Am−1 − Am]: ∀k = 1, . . . ,m.

So using Proposition A.7, for every k we have

detCov[A1 − A2,A2 − A3, . . . ,Am−1 − Am] ≥ detCov[A1,A2, . . . ,Am]
detCov[Ak] . (13)

Let pk := 1 − qk for every k = 1, . . . ,m. By (13), and noting that
∑m

k=1 pk = 1, we have

detCov[A1 − A2,A2 − A3, . . . ,Am−1 − Am] ≥
m∏

k=1

(
detCov[A1,A2, . . . ,Am]

detCov[Ak]
)pk

.

Using the independence of Ai ’s, we get

detCov[A1 − A2,A2 − A3, . . . ,Am−1 − Am] ≥
m∏

k=1

(
detCov[Ak]

)∑
j �=k pj .

As
∑

j �=k pj = qk , we come to

K�
n (t̃1, . . . , t̃n) ≤

m∏
i=1

(
KXk

n

(
t1
k, . . . , t

n
k

))qk . (14)
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Applying Lemma 2.3, it is clear that K�
n (t̃1, . . . , t̃n) is integrable over InÑ and its integral is

bounded from above by cn(n!)
∑m

k=1
qk
ξ̃k , where c is a positive constant that does not depend on n. �

6. Existence of the limit

In this section, we will prove that for any centered Gaussian (N,d)-field Xt satisfying conditions
A0, A1, A2, and A3 (with mutually rational αi ’s), the following limit exists

lim
n→+∞

n
√
E(Zn)

nλ
,

where Z := L0(X,IN) and λ := tr(H)∑N
k=1 αk

, as in the last section. In the sequel, we prove Theo-

rem 2.6 and Corollary 2.1.
We use the standard notation �·� for the floor function, i.e., for every x ∈ R, the expression

�x� is the largest integer that is smaller than or equal to x.

Lemma 6.1. For any ω ∈ R+, there exist strictly positive constants r1 and κ that only depend on
N , αi ’s and H, such that for every r > r1 we have

E
(
ZM(r+1)

)≥ κM

rM(N+1)

(
M

ω
∑N

k=1 αk

)rM

ωrM tr(H)
(
E
(
Zr

))M
,

where M :=∏N
i=1�ωαi �.

Proof. Step 1: Let μ := M(r + 1). Using Proposition 4.2, we have the following probabilistic
representation

E
(
ZM(r+1)

)= Eτ
(
Kμ(τ 1, . . . ,τμ)

)
, (15)

where {τ i}μi=1 is a family independent identically distributed (i.i.d.) random variables, each τ i

being uniformly distributed over [0,1]N , and Eτ denotes expectation with respect to the family
of random variables {τ i}μi=1.

We define the set of points P ⊂ [0,1]N as

P :=
{(

i1

ωα1
,

i2

ωα2
, . . . ,

iN

ωαN

)∣∣∣ik ∈ {
0,1, . . . ,

⌊
ωαk

⌋− 1
} : ∀k = 1,2, . . . ,N

}
,

where �·� denotes the floor function, as usual. For every p ∈ P , we define the sub-cube
C◦(p,ω−α) as

C◦(p,ω−α
) := p +

N∏
k=1

(
0,

1

ωαk

)
.
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We define the event � as the event on the family {τ i}M(r+1)
i=1 such that every sub-cube C◦(p,ω−α),

p ∈ P , contains exactly r + 1 points of the set {τ i}M(r+1)
i=1 . We also define �

μ
M as the set of all

functions θ : {1,2, . . . ,M(r + 1)} → P such that at every point p ∈ P , the cardinality of the
inverse image of θ equals r + 1, that is, |θ−1(p)| = r + 1; in other words, every member θ ∈ �

μ
M

is a partitioning of the set {1,2, . . . ,M(r + 1)} into M distinct boxes indexed by P such that
every box contains exactly r + 1 elements of {1,2, . . . ,M(r + 1)}. For every θ ∈ �

μ
M , let �θ

be the event that the points of {τ i}M(r+1)
i=1 are distributed among the sub-cubes {C◦(p,ω−α)}p∈P

according to θ . It is clear that � =⋃
θ∈�

μ
M

�θ . So by Equation (15), we have

E
(
ZM(r+1)

)≥ Eτ
[
Kμ(τ 1, . . . ,τμ)1�

]=
∑

θ∈�
μ
M

Eτ
[
Kμ(τ 1, . . . ,τμ)1�θ

]
.

For any θ ∈ �
μ
M and p ∈P , we use the following notation

Kr+1(τ, θ,p) := Kr+1(τ i1, . . . ,τ ir+1),

where i1, . . . , ir+1 denote all the distinct elements of θ−1(p). Using Proposition A.5, for every
θ ∈ �

μ
M we have the following inequality

KM(r+1)(τ 1, . . . ,τM(r+1)) ≥
∏
p∈P

Kr+1(τ, θ,p).

Hence, we obtain

E
(
ZM(r+1)

)≥
∑

θ∈�
μ
M

Eτ

[∏
p∈P

Kr+1(τ, θ,p)1�θ

]
.

For any θ ∈ �
μ
M and p ∈ P , let �

p
θ denote the event that the points τ i1, . . . ,τ ir+1 lie in the

sub-cube C◦(p,ω−α), where {i1, . . . , ir+1} := θ−1(p). It is evident that

1�θ =
∏
p∈P

1�
p
θ
.

So we get

E
(
ZM(r+1)

)≥
∑

θ∈�
μ
M

∏
p∈P

Eτ
[
Kr+1(τ, θ,p)1�

p
θ

]
. (16)

Step 2: For any θ and p fixed, let {i1, . . . , ir+1} := θ−1(p), that is, {i1, . . . , ir+1} is the set of
indices such that τ i1, . . . ,τ ir+1 ∈ C◦(p,ω−α). Using Proposition A.7, we have

detCov(Xτ i1
, . . . ,Xτ ir+1

)

≤ detCov(Xτ ir+1
)detCov(Xτ i1

− Xτ ir+1
, . . . ,Xτ ir

− Xτ ir+1
).
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By Property A0 and using Corollaries A.2 and A.5, we have

detCov(Xτ ir+1
) ≤ cd

0 .

Using the fact that X has stationary increments, that is, Property A2, we have

detCov(Xτ i1
− Xτ ir+1

, . . . ,Xτ ir
− Xτ ir+1

) = detCov(Xτ i1−τ ir+1
, . . . ,Xτ ir −τ ir+1

).

So we have

Kr+1(τ, θ,p) = Kr+1(τ i1, . . . ,τ ir+1)

≥ (2π)−
d(r+1)

2 c
− d

2
0

(
detCov(Xτ i1−τ ir+1

, . . . ,Xτ ir −τ ir+1
)
)− 1

2

= c1Kr (τ i1 − τ ir+1, . . . ,τ ir − τ ir+1),

where c2 := (2πc0)
− d

2 . Therefore, we have

Eτ
[
Kr+1(τ, θ,p)1�

p
θ

]
≥ c1

∫
t1,...,tr+1∈C◦(p,ω−α)

Kr (t1 − t r+1, . . . , t r − t r+1)dt1 · · ·dt r+1

= c1

∫
z∈C◦(0,ω−α)

∫
t1,...,tr∈C◦(0,ω−α)

Kr (t1 − z, . . . , t r − z)dt1 · · ·dt r dz, (17)

where we used change of variables in the last line.
For every z = (z1, . . . , zN) ∈ C◦(0,ω−α), we define

ζz := min
k

{(
ω−αk − zk

) 1
αk

}
and

ζ̃ z := ζα
z = (

ζ α1
z , . . . , ζ αN

z

)
.

For every such z, we introduce the new variables {sk}k=1,...,r in the following way

ζ̃ z ◦ sk := tk − z: ∀k = 1, . . . , r,

where ◦ as usual, denotes the Schur product of two vectors, that is, the vector formed by entry-
wise multiplication of the two vectors. It can be easily verified that for every such z we have∫

t1,...,tr∈C◦(0,ω−α)

Kr (t1 − z, . . . , t r − z)dt1 · · ·dtr

≥ ζ r(α1+···+αN )
z

∫
s1,...,sr∈(0,1)N

Kr (ζ̃ z ◦ s1, . . . , ζ̃ z ◦ sr )ds1 · · ·dsr . (18)
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On the other hand, by diagonal self-similarity (Property A3) and noting Remark 1.2, we have

Cov(Xζ̃z◦s1
, . . . ,Xζ̃z◦sr

) = �r Cov(Xs1 , . . . ,Xsr )�
†
r ,

where �r ∈ RrN×rN is the block diagonal matrix consisting of r copies of the matrix ζH
z on its

main diagonal, and filled with zero elsewhere, in other words �r = diag[ζH
z , . . . , ζH

z ]. Now we
notice the fact that the determinant of the exponential of a matrix equals the exponential of its
trace, i.e., det(eA) = etr(A); see, for example, [4], Chapter 2. So we get

det Cov(Xζ̃z◦s1
, . . . ,Xζ̃z◦sr

) = ζ 2r tr(H)
z ,

which implies that

Kr (ζ̃ z ◦ s1, . . . , ζ̃ z ◦ sr ) = ζ−r tr(H)
z Kr (s1, . . . , sr ). (19)

So, by Equations (17), (18), and (19) we have

Eτ
[
Kr+1(τ, θ,p)1�

p
θ

]≥ c1E
(
Zr

)∫
z∈C◦(0,ω−α)

ζ
r(
∑N

k=1 αk−tr(H))
z dz, (20)

where we used the following equality which is a result of Proposition 4.2

E
(
Zr

)=
∫

s1,...,sr∈(0,1)N
Kr (s1, . . . , sr )ds1 · · ·dsr .

Now we define {xk}Ni=1 as xk := 1 − ωαkzk . By this change of variables, we have

ζz = 1

ω
min

k

{
(xk)

1
αk

}
.

So we have∫
z∈C◦(0,ω−α)

ζ
−r(

∑N
k=1 αk−tr(H))

z dz = ω−∑N
k=1 αkω−r(

∑N
k=1 αk−tr(H))J (α,H, r), (21)

where

J (α,H, r) :=
∫ 1

0
· · ·

∫ 1

0

(
min

k

{
(xk)

1
αk

})r(
∑N

k=1 αk−tr(H))

dx1 · · ·dxN .

This shows that if
∑N

k=1 αk is smaller than tr(H), then Property A1 can not hold. So we assume∑N
k=1 αk ≥ tr(H).
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Denote η := r(
∑N

k=1 αk − tr(H)) and α0 := min{α1, . . . , αN }. One can easily verify that for r

larger than r1 := 2α0∑N
k=1 αk−tr(H)

(so that η > 2α0), we have

∫ 1

0
· · ·

∫ 1

0

(
min

k

{
(xk)

1
αk

})η

dx1 · · ·dxN ≥
∫ 1

0
· · ·

∫ 1

0

(
min

k
{xk}

) η
α0 dx1 · · ·dxN

≥
∫ 1

1− α0
η

· · ·
∫ 1

1− α0
η

(
min

k
{xk}

) η
α0 dx1 · · ·dxN

≥
(

α0

η

)N(
1 − α0

η

) η
α0 ≥ C

(
α0

η

)N

,

where C > 0 is global contact. So for r large enough (r ≥ r1), we have

J (α,H, r) ≥ c2

rN
, (22)

where c2 > 0 is a constant that only depends on αi ’s and N . When
∑N

k=1 αk = tr(H), Equa-
tion (22) remains valid for every r ∈ N. So in this case we define r1 equal to 1.

So by applying Equations (22) and (21) into Equation (20) we get

Eτ
[
Kr+1(τ, θ,p)1�

p
θ

]≥ c1c2

rNω
∑N

k=1 αk

ω−r(
∑N

k=1 αk−tr(H))E
(
Zr

)
. (23)

Step 3: Applying Equation (23) to (16), we get

E
(
ZM(r+1)

)≥ cM
1 cM

2 N
M(r+1)
M

rMNωM
∑N

k=1 αk

ω−rM(
∑N

k=1 αk−tr(H))
(
E
(
Zr

))M
, (24)

where N
M(r+1)
M := |�M(r+1)

M |, that is, the cardinality of �
M(r+1)
M . Using Lemma A.8, we have

N
M(r+1)
M ≥ κ1

√
M

κM
2

√
(r + 1)M

MM(r+1),

where κ1 and κ2 are global constants. So we have

E
(
ZM(r+1)

)≥ κ1c
M
1 cM

2

√
M

κM
2 rMN

√
(r + 1)M

(
M

ω
∑N

k=1 αk

)M(r+1)

ωrM tr(H)
(
E
(
Zr

))M
,

which clearly implies the statement of the lemma. �

Lemma 6.2. There exists a positive number r1 that only depends on N , αi ’s and H, such that for
every r > r1 and any ω ∈ R+ with the property that ωαi ’s are all integer numbers, and for any
positive integer q , we have

(E(ZrMq(1+or )))
1

rMq (1+or )

(rMq(1 + or))λ
≥ Bω(r)

(
r
√
E(Zr)

rλ

) 1
1+or

, (25)
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where M := ∏N
i=1�ωαi �, or := 1

r

∑q−1
k=0

1
Mk , and Bω(r) is a strictly-positive-valued function

(Bω(r) > 0) that depends only on ω, r , N and H such that limr→+∞ Bω(r) = 1.

Proof. By Lemma 6.1, we have

E
(
ZM(r+1)

)≥ κM

rM(N+1)

(
ρωtr(H)

)rM(
E
(
Zr

))M
,

where M = ∏N
i=1�ωαi �, and ρ := M

ω
∑N

k=1 αk
. Reiterating this inequality q times, and using the

inequality Mkr +∑k
i=1 Mi ≤ Mk(r + 2), we get

E
(
ZrMq+∑q

i=1 Mi )≥ Aω,r,q

(
ρωtr(H)

)(qrMq+∑q−1
i=1 iMi+1)(

E
(
Zr

))Mq

,

where

Aω,r,q := κ
∑q

i=1 Mi

M(N+1)
∑q−1

i=1 iMq−i
(r + 2)(N+1)

∑q
i=1 Mi

.

For λ := tr(H)∑N
i=1 αi

, and using the notation or := 1
r

∑q−1
i=0

1
Mi , we have

(E(ZrMq+∑q
i=1 Mi

))

1
rMq+∑q

i=1 Mi

(rMq +∑q

i=1 Mi)λ
≥ Bω,r,q

(
r
√
E(Zr)

rλ

) 1
1+or

, (26)

where

B ′
ω,r,q := (Aω,r,q)

1
rMq (1+or )

(
ρωtr(H)

) qrMq+∑q−1
i=1 iMi+1

rMq+∑q
i=1 Mi

M−qλr
−λ or

1+or (1 + or)
−λ.

Using the inequalities
∑+∞

i=0 xi = 1
(1−x)

and
∑+∞

i=1 ixi−1 = 1
(1−x)2 , and noting that M ≥ 2, we

can easily verify that as r goes to +∞, the function or converges to zero uniformly in q and ω,
and

Mq−1 ≤
q−1∑
i=1

iMq−i ≤ 4Mq−1 and Mq ≤
q∑

i=1

iMi ≤ 2Mq. (27)

Using these inequalities, we can easily show that

(Aω,r,q)
1

rMq (1+or ) ≥ Ar, (28)

where Ar > 0 is only a function of r and N such that limr→+∞ Ar = 1. It is also easy to verify
that

q

q∑
i=1

Mi −
q−1∑
i=1

iMi+1 = Mq

q∑
i=1

i

Mi−1
,
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and hence

q − qrMq +∑q−1
i=1 iMi+1

rMq +∑q

i=1 Mi
=

∑q

i=1
i

Mi−1

r(1 + or)
≤ 1

r(1 + or)(1 − 1
M

)2
. (29)

Noting that under the assumptions of the lemma, ρ is equal to 1, and using Equations (28)
and (29), we obtain

B ′
ω,r,q ≥ Bω(r),

where Bω(r) is a strictly-positive-valued function that only depends on N , r , ω, and H such that
limr→+∞ Bω(r) = 1. This completes the proof. �

Lemma 6.3. Let Xt be an (N,d)-Gaussian random field satisfying Properties A1, A0, A2,
and A3 with self-similarity vector α := (α1, . . . , αN) such that for every i and j , the quotient
αi/αj is a rational number. Then the following limit exists

lim
n→+∞

n
√
E(Zn)

nλ
, (30)

where Z := L0(X, [0,1]N) and λ := tr(H)∑N
k=1 αk

.

Proof. Define

� := lim sup
n→+∞

n
√
E(Zn)

nλ
and � := lim inf

n→+∞
n
√
E(Zn)

nλ
.

Consider any positive real number � that is strictly less than �. Let �1 and �2 be real numbers
satisfying � < �1 < �2 < �.

Step 1: As for every i and j , the quotient αi/αj is a rational number, we can find a real number
α > 0 such that for every i, the quotient αi

α
is an integer. Now choose ω1 and ω2 such that ωα

1 = 2
and ωα

2 = 3. Clearly, in this case all ω
αi

j ’s are integer-valued for every j = 1,2 and i = 1, . . . ,N ,
hence we may apply Lemma 6.2. Also note that in this case, there exists a positive integer m0

such that M1 := ∏N
i=1�ωαi

1 � = 2m0 and M2 := ∏N
i=1�ωαi

2 � = 3m0 . Let r be any integer larger
than r1, and p and q be two arbitrary positive integers. Applying Equation (25) first with ω1 and
p, and then repeating it with ω2 and q , we get

(E(Z�r,p,q ))
1

�r,p,q

(�r,p,q)λ
≥ Bω2(R)

(
Bω1(r)

) 1
1+oR

(
r
√
E(Zr)

rλ

) 1
(1+or )(1+ōR)

, (31)

where R := rM
p

1 +∑p

k=1 Mk
1 , or := 1

r

∑p−1
k=0

1
Mk

1
, ōR := 1

R

∑q−1
k=0

1
Mk

2
, and

�r,p,q := RM
q

2 +
q∑

k=1

Mk
2 = r2m0p3m0q(1 + oR)(1 + or).
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We note that Bω1 and Bω2 converge to one uniformly in p and q , and or and oR converge to zero
uniformly in p and q .

Step 2: Choose ε > 0 such that (1 + ε) < �1
�

. Clearly, there exists r2 > 0 such that for every
R, r ≥ r2 we have

(1 + or)(1 + ōR) < 1 + ε and Bω2(R)
(
Bω1(r)

) 1
1+oR �

1
(1+or )(1+oR)

2 > �1.

By the definition of lim sup, there exists an integer r > max{r1, r2} such that
r
√
E(Zr )

rλ > �2. Now
we apply this r to Equation (31), along with any arbitrary integers p and q . Noting that R =
rM

p

1 +∑p

k=1 Mk
2 > r > r2, we have

(E(Z�r,p,q ))
1

�r,p,q

(�r,p,q)λ
≥ �1; ∀p,q ∈N. (32)

We also have

r2m0p3m0q ≤ �r,p,q = r2m0p3m0q(1 + oR)(1 + or) ≤ r2m0p3m0q(1 + ε). (33)

As log2 3 is not a rational number, by Dirichlet’s approximation theorem (Theorem A.9) there
exist p0, q0 ∈N such that

0 < |p0 − q0 log2 3| < 1

m0
log2

(
�1

�(1 + ε)

)
. (34)

We proceed with the assumption that p0 > q0 log2 3; when p0 < q0 log2 3, the proof is similar.
So by Equation (34) we have

1 < ν := 2m0p0

3m0q0
<

�1

�(1 + ε)
. (35)

We choose k0 ∈N such that νk0 > 3, and define n1 := r(1 + ε)3m0q0k0 . Take any arbitrary integer
n ≥ n1, and define the following

q1 := max
{
k;n ≥ r(1 + ε)3m0k

}
and k1 := max

{
k;n ≥ r(1 + ε)3m0q1νk

}
.

As we have

3m0q1νk1 = 3m0(q1−k1q0)2m0k1q0 ,

hence

r(1 + ε)3m0(q1−k1q0)2m0k1q0 ≤ n < νr(1 + ε)3m0(q1−k1q0)2m0k1q0 . (36)

We note that q = q1 − k1q0 ≥ 0, because

(I) as n > n1, by definition q1 ≥ q0k0, and
(II) k1 ≤ k0, otherwise if k0 < k1, then νk1 > 3, and hence n > r(1 + ε)3m0(q1+1) which is in

contradiction with the definition of q1.
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So we can apply Equation (32) to q = q1 − k1q0 and p = k1q0. By Equations (33) and (36), we
get

�r,p,q ≤ n ≤ ν(1 + ε)�r,p,q . (37)

Step 3: As �r,p,q ≤ n, by Hölder’s inequality we have

(
E
(
Z�r,p,q

)) 1
�r,p,q ≤ (

E
(
Zn

)) 1
n .

Hence, by Equation (37) we have

(
ν(1 + ε)

)−λ (E(Z�r,p,q ))
1

�r,p,q

(�r,p,q)λ
≤ (E(Zn))

1
n

nλ
. (38)

But by (35), we have

�

�1
≤ (

ν(1 + ε)
)−1 ≤ (

ν(1 + ε)
)−λ

.

So by Equations (38) and (32) we finally get

(E(Zn))
1
n

nλ
≥ �.

This means that � is larger than or equal to �. As this is true for any positive number � that is
strictly less than �, this implies � = �; in other words the limit in (30) exists. �

Proof of Theorem 2.6. Lemma 6.3 guarantees the convergence of { n
√
E(Zn)

nλ }n, so Theorem 4.1
can be applied if we show that the limit is strictly positive. This can indeed be easily verified
applying Lemma 6.2 with some arbitrary r > r1 and ω ∈ R+ such that ωαi ’s are all integers,
and then letting q converge to +∞. Clearly the left-hand side of Equation (25) converges to

limn→+∞
n
√
E(Zn)

nλ whereas the right-hand side is strictly positive and independent of q . �

Now we can easily prove Corollary 2.1.

Proof of Corollary 2.1. We define the Gaussian field �t̃

�t̃ := (
X1(t1) − X2(t2),X2(t2) − X3(t3), . . . ,Xm−1(tm−1) − Xm(tm)

)
,

where t̃ := (t̃1, . . . , t̃n) and t̃1 ∈ IÑk for every k = 1, . . . ,m.
It is evident that �t̃ is a a centered Gaussian (Ñ, d̃)-field, where d̃ := (m − 1)d and Ñ :=∑m
k=1 Nk .

The proof of the existence of the local time of �t̃ around 0 over the cube IÑ and the finiteness
of all its moments, is similar to the proof of Theorem 2.5. Indeed, using Equation (14) with
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qi = m−1
m

(pi = 1
m

) for every i = 1, . . . ,m, we obtain

K�
n (t̃1, . . . , t̃n) ≤

m∏
k=1

(
KXk

n

(
t1
k, . . . , t

n
k

))m−1
m .

So the Gaussian field �t̃ satisfies Property A1.
As all the random fields Xk , k = 1, . . . ,m, satisfy Properties A0 and A2, so does the Gaus-

sian field �t̃ . As every Xk is diagonally self-similar (i.e., it satisfies Property A3) with scal-

ing vector αk := (αk,1, . . . , αk,Nk
) ∈ R

Nk+ and scaling matrix H ∈ Rd×d , it can be easily veri-

fied that �t̃ is also diagonally self-similar with the scaling vector α̃ ∈ RÑ+ constructed by ad-
joining all the vectors αk together, that is, α̃ := (α1,α2, . . . ,αm) and with the scaling matrix
H̃ ∈R(m−1)d×(m−1)d which is a block diagonal matrix containing m − 1 copies of H on its main
diagonal and zero elsewhere; in other words, H̃ := diag(H,H, . . . ,H). Clearly in this case we
have tr(H̃) = (m − 1) tr H. Now the desired conclusion is evident applying Theorem 2.6. �

Appendix

Lemma A.4. Let H be a Gaussian Hilbert space, that is, for any n ∈ Z+, and any elements
X1, . . . ,Xn ∈ H, the set {Xi}ni=1 is a family of jointly Gaussian zero-mean random variables,
and H forms a Hilbert space with respect to the inner product 〈X,Y 〉 := E(XY). Let G be a
subspace of H, and X be an element of H. Then we have

var(X|G) = ∥∥QG(X)
∥∥2

,

where QG(X) := X−PG(X), and PG(X) is the orthogonal projection of X over the subspace G.

Proof. By definition, we have

var(X|G) = E
[(

X −E(X|G)
)2∣∣G].

Replacing X by PG(X) + QG(X) on the right-hand side of the above equation, and noting that
QG(X) is independent of G, we can easily derive the desired result. �

Corollary A.1. An immediate implication of the previous lemma is the following inequality

var(X|G) ≤ var(X).

Lemma A.5. Let Y be an arbitrary inner-product space. Then for any y1, . . . ,yn ∈ Y , n ∈ N,
we have

det

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦[

y1 · · · yn

]= ‖y1‖2
n∏

k=2

∥∥Q〈y1,...,yk−1〉(yk)
∥∥2

,

where 〈y1, . . . ,yk−1〉 is the subspace generated by {y1, . . . ,yk−1}.
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Proof. We assume that {yi}ni=1 are linearly independent, because otherwise, the equality is
trivially true. By orthogonal decomposition of each yk over the subspace 〈y1, . . . ,yk−1〉, we
can obtain the sequences {f i}ni=1, {ηi}ni=1, and {pi}ni=1 such that for ∀k = 1, . . . , n, we have
yk = ηkf k + pk where ηk ∈ R+, pk ∈ 〈y1, . . . ,yk−1〉, f k ⊥ 〈y1, . . . ,yk−1〉, and ‖f i‖ = 1. In
fact for each k = 2, . . . , n, pk = P〈y1,...,yk−1〉(yk) and ηkf k = Q〈y1,...,yk−1〉(yk). Let f : Rn → Y
be the linear isometry such that f (ei ) = f i for every i = 1, . . . , n, where {ei}ni=1 is the standard
basis for the Euclidean space Rn, that is, ei is the column vector that is 1 in the i-th entry and 0
elsewhere. For each i = 1, . . . , n, define xi ∈ Rn as the inverse image of yi , that is, f (xi ) = yi .
As f is an isometry, we have

det

⎡
⎢⎣

y1
...

yn

⎤
⎥⎦[

y1 · · · yn

]= det

⎡
⎢⎣

xT
1
...

xT
n

⎤
⎥⎦[

x1 · · · xn

]= (
det

[
x1 · · · xn

])2
.

Again due to the fact that f is an isometry, for every k we have xk ∈ 〈e1, . . . , ek〉, i.e., the matrix
[x1 · · · xn] is upper triangular with ηi ’s on its diagonal. So we have

det
[
x1 · · · xn

]=
n∏

i=1

ηi.

But η1 = ‖y1‖, and ηi = ‖Q〈y1,...,yi−1〉(yi )‖ for every i = 2, . . . , n. So the proof is complete. �

Corollary A.2. Suppose {Xi}ni=1 is a family of jointly Gaussian random variables. Using
Lemma A.4, we obtain the following formula

det Cov(X1, . . . ,Xn) = var(X1)

n∏
k=2

var(Xk|X1, . . . ,Xk−1).

Using Lemma A.5, we can easily verify the following two propositions.

Proposition A.6. Suppose that {Y j
i ; i = 1, . . . , n, j = 1, . . . ,mi} is family of jointly Gaussian

random variables, where mi ∈ N for every i = 1, . . . , n. Also, for each i = 1, . . . , n, let Y i :=
(Y 1

i , . . . , Y
mi

i ). Then we have

detCov(Y 1, . . . ,Y n) = detCov(Y 1)

n∏
k=2

detCov(Y k|Y 1, . . . ,Y k−1) ≤
n∏

i=1

detCov(Y i ),

where detCov(Y k|Y 1, . . . ,Y k−1) is the determinant of the conditional covariance matrix of Y k

conditioned on the random vectors Y 1, . . . ,Y k−1.
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Proposition A.7. Let m ∈ N, and consider any family of n jointly Gaussian random vectors of
size m, that is, Yi := (Y 1

i , . . . , Ym
i ) for every i. Then we have

detCov(Y1, . . . ,Yn)

≤ detCov(Yk)detCov(Y1 − Yk, . . . ,Yk−1 − Yk,Yk+1 − Yk, . . . ,Yn − Yk).

We have the following lemma which can be proved by elementary probability and then Stir-
ling’s approximation, that is, the fact that κ1 ≤ n!

( n
e
)n

√
n

≤ κ2, where κ1 and κ2 are strictly positive

global constants.

Lemma A.8. Let n,m ∈ N, and suppose that we have nm distinct balls and n distinct baskets.
Let Nnm

n be the number of different ways one can distribute the balls among the baskets such that
each basket contains exactly m balls. In other words, Nnm

n is the cardinality of �mn
n where �mn

n

is the set of all functions σ : {1,2, . . . ,mn} → {1,2, . . . , n} such that for every p ∈ {1,2, . . . , n},
the cardinality of the inverse image of σ equals m + 1, that is, |σ−1(p)| = m. We have

Nnm
n = (nm)!

(m!)n ≥ κ1
√

n

κn
2

√
mn

nnm,

where κ1 and κ2 are strictly positive global constants.

The following theorem, also known as Dirichlet’s theorem on Diophantine approximation,
is a direct application of Pigeonhole Principle which itself was first used by Dirichlet [2]. For
completeness, we provide the proof.

Theorem A.9 (Dirichlet’s approximation theorem). For any real number α and any positive
integer n, there exist integers p and q such that 1 ≤ q ≤ n and |p − qα| ≤ 1

n
.

Proof. Consider the numbers α − �α�,2α − �2α�, . . . , nα − �nα�, and the intervals [ i
n
, i+1

n
),

for i = 0, . . . , n − 1. Either one of the numbers falls into the first interval [0, 1
n
), or otherwise

there will an interval that contains more than one point. In either case, we can find the desired p

and q . �
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