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Locally stationary Hawkes processes have been introduced in order to generalise classical Hawkes processes
away from stationarity by allowing for a time-varying second-order structure. This class of self-exciting
point processes has recently attracted a lot of interest in applications in the life sciences (seismology, ge-
nomics, neuro-science, . .. ), but also in the modeling of high-frequency financial data. In this contribution,
we provide a fully developed nonparametric estimation theory of both local mean density and local Bartlett
spectra of a locally stationary Hawkes process. In particular, we apply our kernel estimation of the spectrum
localised both in time and frequency to two data sets of transaction times revealing pertinent features in the
data that had not been made visible by classical non-localised approaches based on models with constant
fertility functions over time.
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1. Introduction

Many recent time series data modelling and analysis problems increasingly face the challenge of
occurring time-variations of the underlying probabilistic structure (mean, variance-covariance,
spectral structure, ... ). This is due to the availability of larger and larger data stretches which can
hardly any longer be described by stationary models. Mathematical statisticians (Dahlhaus [7],
Zhou and Wu [24], Birr et al. [4], among others) have contributed with time-localised estimation
approaches for many of these time series data based on rigorous models of locally stationary
approximations to the non-stationary data. Often it has been only via these theoretical studies
that well-motivated and fully understood time-dependent estimation methods could be devel-
oped which correctly adapt to the degree of deviation of the underlying data from a stationary
situation (e.g., via the modelling of either a slow — or in contrast a rather abrupt — change of the
probabilistic structure over time). For many of these situations, the development of an asymp-
totic theory of doubly-indexed stochastic processes has proven to be useful: the underlying data
stretch is considered to be part of a family of processes which asymptotically approaches a limit-
ing process which locally shows all the characteristics of a stationary process (hence “the locally
stationary approximation’). Accompanying estimators ought to adapt to this behavior, for exam-
ple, by introduction of local bandwidths in time. Many of these aforementioned approaches have
been achieved in the context of classical real-valued series in discrete time, for example, for (lin-
ear) time series via time-varying MA(oo) representations which apply for a large class of models
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(see, e.g., Dahlhaus [9]). Once those are available, the development of a rigorous asymptotic
estimation theory is achievable.

This approach, however, is not directly applicable to the model of locally stationary Hawkes
processes, a class of self-exciting point processes introduced in Roueff, von Sachs and Sansonnet
[21] with not only time-varying baseline intensity (such as in Chen and Hall [5]) but also time-
varying fertility function. The fertility function describes the iterative probabilistic mechanism
for Hawkes processes to generate offsprings from each occurrence governed by a conditional
Poisson point process, given all previous generations. Often, a fertility function p(z) with expo-
nential decay over time 7 is assumed. The condition | p < 1 ensures a non-explosive accumula-
tion of consecutive populations of the underlying process. When this fertility function is made
varying over time through a second argument, one can still rely on the point process mechanism
to derive locally stationary approximations.

In this paper, we treat estimation of the first and second order structure of locally stationary
Hawkes processes on the real line, with a (time-dependent) fertility function p(-; ¢) assumed to
be causal, that is, supported on R . Whereas for estimating the local mean density of the process
it is sufficient to introduce a localisation via a short window (kernel) in time, for estimating the
second-order structure, that is, the local Bartlett spectrum of the process, one needs to localise
both in time and frequency: this time-frequency analysis will be provided via a pair of kernels
which concentrate around a given point (¢, w) in the time-frequency plane. Using an appropri-
ate choice of bandwidths in time and in frequency which tend to zero with rates calibrated to
minimize the asymptotic mean-square error between the time-frequency estimator and the true
underlying local Bartlett spectrum, one can show consistency of our estimator of the latter one.
Note that the use of kernels for non-parametric estimation with counting process is not new. To
the best of our knowledge this was introduced first by Ramlau-Hansen [17] for estimating re-
gression point process models such as those introduced in Aalen [1], see also Andersen et al. [2]
for a general account on the estimation of such processes.

Self exciting point processes have been recently used for modelling point processes resulting
from high frequency financial data such as price jump instants (see, e.g., Bacry et al. [3]) or limit
order book events (see, e.g., Zheng, Roueff and Abergel [23]). In this paper, we will illustrate our
time frequency analysis approach for point processes on transaction times of two assets (which
are Essilor International SA and Total SA).

The rest of the paper is organised as follows. In Section 2, we introduce all necessary prepara-
tory material to develop our estimation theory, including the definition of the population quan-
tities, that is, local mean density and local Bartlett spectra that we wish to estimate. Section 3
defines our kernel estimators and treats asymptotic bias and variance developments of those un-
der regularity assumptions to be given beforehand. Although these developments are far from
being direct and straightforward, the resulting rates of convergence are completely intuitive from
a usual nonparametric time-frequency estimation point of view. In Section 4, we present, as a
result of independent interest in its own, the necessary new techniques of directly controlling
moments of non-stationary Hawkes processes. All proofs are deferred to the Appendix. A Sup-
plementary Material is available in Roueff and von Sachs [20]. In particular, Roueff and von
Sachs [20], Section 6, presents the analysis of our transaction data sets leading to interesting
observations that have not previously been revealed by a classical analysis with time-constant
fertility functions.
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2. Preparatory material

In this preparatory section, we prepare the ground for developing the presentation of our asymp-
totic estimation theory of local Bartlett spectra. We do this by introducing a list of useful con-
ventions and definitions, as well as recalling the main concepts and results of Roueff, von Sachs
and Sansonnet [21] in as much as they are necessary.

2.1. Conventions and notation

We here set some general conventions and notation adopted all along the paper. Additional ones
are introduced in relation with the main assumptions in Section 3.1.

A point process is identified with a random measure with discrete support, N =", §;, typ-
ically, where §; is the Dirac measure at point ¢ and {f;} the corresponding (locally finite) ran-
dom set of points. We use the notation 1 (g) for a measure p and a function g to express f gdu
when convenient. In particular, for a measurable set A, u(A) = u(14) and for a point process N,
N(g) = >, g(tx). The shift operator of lag ¢ is denoted by S’. Foraset A, S'(A) = {x —1, x € A}
and for a function g, S'(g) = g(- +1), so that S'(14) = Lt (a)- One can then compose a measure
w with S, yielding for a function g, u o S*(g) = u(g(- +1)).

We also need some notation for the functional norms which we deal with in this work. Usual

L?-norms are denoted by |4/,
1/p
|nl, = </ |h|p>

for p € [1,00) and ||y is the essential supremum on R, ||y, = esssup,cp [2(1)]. We also
use the following weighted L? norms which we define to be for any p > 1, 8 > 0, a > 0 and
h:R— C,

1/p
gy p:=|h x| |ﬁ|p= (/]h(t)tﬂ|pdt> , (1

1/p
|hla, p :=\h xe“"‘|p= (/ ’h(t)|pe“”"|dt) 2

with the above usual essential sup extensions to the case p = oo.
We denote the convolution product by =, that is, for any two functions 41 and 45,

hy *ha(s) =/h1(s —1t)ha(t)dr.
Finally we use for a random variable X the notation

1
1X1, = (BIX|P)"" for p= 1. 3)
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2.2. From stationary to non-stationary and locally stationary Hawkes
processes

To start with, we first recall the definition of a stationary (linear) Hawkes process N with im-
migrant intensity A, and fertility function p defined on the positive half-line. The conditional
intensity function A () of such a process is driven by the fertility function taken at the time dis-
tances to previous points of the process, that is, A(¢) is given by

-
M) = e +/ Pt —$)NW@s) =he + Y plt —11). @)

- ti<t

Here the first integral is to be read as the integral of the “fertility” function p with respect to the
counting process N, which is a sum of Dirac masses at (random) points (¢;);cz. The existence of
a stationary point processes with conditional intensity (4) holds under the condition [ p < 1 and
can be constructed as a cluster point process (see Daley and Vere-Jones [11], Example 6.3(c)).

We extend the stationary Hawkes model defined by the conditional intensity (4) to the non-
stationary case by authorizing the immigrant intensity A. to be a function A (¢) of time ¢ and also
the fertility function p to be time varying, replacing p(¢ — s) by the more general p(¢t — s; t). To
ensure a locally finite point process in this definition, we impose the two conditions

l1 = sup/ p(s;t)ds <1 and |Agls < 00. )
teR

They yield the existence of a non-stationary point process N with a mean density function which
is uniformly bounded by |A.|s /(1 — &1) (see Roueff, von Sachs and Sansonnet [21], Defini-
tion 1).

As non-stationary Hawkes processes can evolve quite arbitrarily over time, the statistical anal-
ysis of them requires to introduce local stationary approximations in the same fashion as time
varying autoregressive processes in time series, for which locally stationary models have been
successfully introduced (see Dahlhaus [7]). Thus, a locally stationary Hawkes process with local
immigrant intensity AjLS>(-) and local fertility function p<%5>(-; .) is a collection (N7)7>1 of
non-stationary Hawkes processes with respective immigrant intensity and fertility function given
by Aer(t) = AELS>(I/T) and varying fertility function given by pr(-;1) = p<F5>(-;1/T), see
Roueff, von Sachs and Sansonnet [21], Definition 2, where this model is called a locally station-
ary Hawkes process. For a given real location t, the scaled location ¢/ T is typically called an
absolute location and denoted by u or v.

Note that the collection (N7)r>1 of non-stationary Hawkes processes are defined using the
same time varying parameters 2=-5> and p<I5> but with the time varying arguments scaled
by T. As aresult, the larger T is, the slower the parameters evolve along the time.

An assumption corresponding to (5) to guarantee that, for all 7 > 1, the non-stationary Hawkes
process Nt admits a uniformly bounded mean density function is the following:

§1<LS> = sup/p<LS>(r; u)dr <1 and |A§LS>|OO < 00. (6)
uelR
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Under this assumption, for each absolute location u € R, the function r p<LS> (r; u) satisfies
the required condition for the fertility function of a stationary Hawkes process. Hence, assum-
ing (6), for any absolute location u, we denote by N(-; u) a stationary Hawkes process with
constant immigrant intensity AC<L5> (u) and fertility function r — p<1>(r; u). In the following
subsection, we will include this assumption (6) into a stronger set of assumptions that we use for
derivation of the results on asymptotic estimation theory.

We also remark that, for any T > 1, the conditional intensity function A7 of the non-stationary
Hawkes process Nt takes the form

.
Ar(0) =255 (1T + / p<LS> (1 — 521/ TNy (ds)

=257/ + Y pTS -ty D,

i<t

where (f; 1);cz denote the points of Nr. This latter formula can also be used to simulate lo-
cally stationary Hawkes processes on the real line. The examples for locally stationary Hawkes
processes (with time varying Gamma shaped fertility functions) used in Roueff, von Sachs and
Sansonnet [21], Section 2.6, were simulated in this way.

First and second order statistics for point processes are of primary importance for statistical
inference. As for time series they are conveniently described in the stationary case by a mean
parameter for the first order statistics and a spectral representation, the so called Bartlett spec-
trum (see Daley and Vere-Jones [11], Proposition 8.2.1), for the covariance structure. The locally
stationary approach allows us to define such quantities as depending on the absolute time u as
introduced in the following section.

2.3. Local mean density and Bartlett spectrum
Consider a locally stationary Hawkes process (N7)r>1 with local immigrant intensity kjLS>
and local fertility function p<15>(.; .) satisfying condition (6). Although for a given T, the first
and second order statistics of N7 can be quite involved, some intuitive asymptotic approxima-
tions are available as 7' grows to infinity. Namely, for any absolute time u, the local statistical
behavior of N7 around real time T« has to be well approximated by that of a stationary Hawkes
process with (constant) immigrant intensity AC<L5>(u) and fertility function p<IS> (. u). This
stationary Hawkes process at absolute location u is denoted in the following by N (-; u). Precise
approximation results are provided in Roueff, von Sachs and Sansonnet [21] and recalled in Sec-
tion 3.4.1 below. Presently, we only need to introduce how to define this local first and second
order statistical structure.

We first introduce the local mean density function ml<LS> (u) defined at each absolute location
u, as the mean parameter of the stationary Hawkes process N(-; u). By Daley and Vere-Jones
[11], Eq. (6.3.26) in Example 6.3(c), it is given by

)"C<LS>(M)
L= [p=t5>Cru)’

LS
my 7 (u) =

@)
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A convenient way to describe the covariance structure of a second order stationary point process
N on R is to rely on a spectral representation, the Bartlett spectrum, which is defined as the
(unique) non-negative measure I on the Borel sets such that, for any bounded and compactly
supported function f on R (see Daley and Vere-Jones [11], Proposition 8.2.1)

Var(N(f)) = T(|FI?) =/|F(a))|2F(dw),

where F denotes the Fourier transform of f,

F(w) = / (e e dr.

For the stationary Hawkes processes N (-; u), the Bartlett spectrum admits a density given by (see
Daley and Vere-Jones [11], Example 8.2(e))

LS
my 7 (u)

y 5w 0) = 1= P> )| %, ®)

where

P<LS>((1); I/t) — / p<LS> (t, u)e—i[a) dt

Analogous to the first order structure, we call y <> (u; w) the local Bartlett spectrum density
at frequency o and absolute location u. This local Bartlett spectrum density plays a role similar
to that of the local spectral density f(u, A) introduced in Dahlhaus [7], page 142, for locally
stationary time series.

2.4. Estimators

As our approach is local in time and frequency, we rely on two kernels w and g which are
required to be compactly supported (see Remark 1 below). More precisely, we have the following
assumptions.

(K-1) Let w be a R — R bounded function with compact support such that [w = |w|; = 1.
(K-2) Let g be a R — C bounded function with compact support such that |g|, = +/27.

To localize in time let b1 > 0 be a given time bandwidth and define wy, and wryp, to be the
corresponding kernels in absolute time u and real time ¢, namely,

wp, (@) == by 'w/by) and  wrp, (1) =T wp, (t/T) = (Th) 'w(t/(Th1).  (9)

Let now ug be a fixed absolute time. For estimating the local mean density m 1<LS> (ug) given by
equation (7), approximating the mean density function ¢ — m 7 (¢) of N7 locally in the neigh-
borhood of Tug by ml<LS> (uo) we have, for b; small,

mS> (ug) ~ / wrp, (t — Tug)m (1) de,
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where we used f wrp, = 1 and that the support of  — wryp, (t — Tug) essentially lives in
the neighborhood of Tu( for Th; small. Since the right-hand side of this approximation is
I['E[NT(S_T”OwT;71 )], this suggests the following estimator of mes> (uo),

iy (40) 1= N1 (S~T0wry, ) = / wrp (t — Tug) N7 (do). (10)

For estimation of the second order structure, that is, the local Bartlett spectral density
y<LS> (uo; wp) for some given point (ug, wp) of the time-frequency plane, we need also to lo-
calise in frequency by a kernel which will be given by the (squared) Fourier transform |Q|? of
the kernel ¢q. Then for a given frequency bandwidth b, > 0, we are looking for an estimator of
the auxiliary quantity

1 w—ap\|?
)/b<2LS>(MO§0)0) ::/— 0 0 y<LS>(w; up) do, (11)
by by

which in turn, as b — 0, is an approximation of the density ¥ <> (uo; wp), since (K-2) im-
plies |Q|, = 1. The rate of approximation (i.e., the “bias in frequency direction” of the follow-
ing estimator) is established in Theorem 2, equation (27), below. Let us now set g5, () =

b;/ 2 gt q (bat) such that the squared modulus of its Fourier transform writes as

1 w — W
| Qg o (@)|* = b—z'Q< s 0)

2

Using that y<LS>(a); up) dw is the Bartlett spectrum of N (-; ug) as recalled in Section 2.3, we
can thus rewrite (11) as

Vo> (uo; o) = Var(N (qug.b,: 140))- (12)

Since this variance is an approximation of Var(N7 (S _T“(’qwoybz)), where g, 5, is shifted to be
localized around Tug, we finally estimate ybjLS> (uo; wo) by the following moment estimator:

2; wb]] - }E\[NT(Siruoqwo,bz); wbl] 27 (]3)

Pbaboy (0: @0) := E[| N7 (S7T"0 g 1, )

where for the test function f = § _T“quo’bz and taking p(x) =x and p(x) = |x|? successively,
we have built estimators of E[o (N7 (f))] based on the empirical observations of N7 and defined
by

E[p(Nr(1)): we] = / (N7 (£ = 1)) wr, (0t

1
= / p(; Fltr —t))wbl (t/T)dr.

Note that in (13) the dependence of the estimator on ug, wo appears in the choice of f =
S=T40g,,, 5, By an obvious change of variable, this would be equivalent to let the kernel g, 5,

(14)
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unshifted in time, hence take f = gu,.5,, and instead shift wrp, (¢) into wrp, (t — Tup), or, in
absolute time, shift wy,, (1) into wp, (4 — uo).

Remark 1. In practice N7 is observed over a finite interval. In order to have estimators 71, (1)
and ¥, b, (10; wp) in (10) and (13) that only use observations within this interval, the sup-
ports of w and g must be bounded and some restriction imposed on by, b, and T. Suppose
for instance that N7 is observed on [0, 7] (mimicking the usual convention for locally sta-
tionary time series of Dahlhaus [8]). The local mean density and Bartlett spectrum can then
be estimated at corresponding absolute times ug € (0, 1) and the restrictions on by, b and T
read as follows. In (10), we must have ug + b1 Supp(w) < [0, 1], and in (13), we must have
uo + by Supp(w) + (Thy)~! Supp(g) C [0, 1]. These two support conditions are always satis-
fied, eventually as 7 — oo, provided that the kernels w and ¢ are compactly supported and that
by — 0and Thy, — o0.

In the sequel, we will show that this is a sensible estimator of yh<2L5>(u0; o) sharing the
usual properties of a nonparametric estimator constructed via kernel-smoothing over time and
frequency: for sufficiently small bandwidths b; in time and b in frequency this estimator be-
comes well localised around (uq; wg).

The main results stated hereafter provide asymptotic expansions of its bias and variance be-
haviour, leading to consistency of this estimator under some asymptotic condition for b and b»
as T — oo.

3. Bias and variance bounds

3.1. Main assumptions

The first assumption is akin but stronger than condition (6) above, being in fact equal to assump-
tion (LS-1) of Roueff, von Sachs and Sansonnet [21]. It guarantees that, for all T > 1, the locally
stationary Hawkes process N7 admits a (causal) local fertility function s — p<"5>(s; u) which
is not only uniformly bounded, but has an exponentially decaying memory (as a function in the
first argument, uniformly with respect to its second argument).

(LS-1) Assume that
A5 < oo (15)
Assume moreover that for all u € R, p<LS> (-; u) is supported on R, and that there

exists a d > 0 such that §]<LS>(d) < 1and ;;LS>(d) < 00 where

§1<LS>(d) := sup |p<LS>(.; u)|d 1 — Sup/ p<LS>(S; M)edlsl ds (16)
uelR ’ uelR

and

(377 @) = sup [pT (s o = supesssup{ | e a7)
ueR ’ ueR seR
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All the examples considered in Roueff, von Sachs and Sansonnet [21] satisfy this condition. It
is also satisfied if the local fertility functions have a (uniformly) bounded compact support (cf.
Hansen, Reynaud-Bouret and Rivoirard [14] in the stationary case).

(LS-1) Assume that, for some g € (0, 1],

£B) — gy W) = AT W)
¢ u#v |v - ulﬂ

(LS-2) Assume that, for some g € (0, 1], |E(ﬁ)|1 < 00, where

£B)(r) = sup p="57 (s v) — p5= (i w))|
usv lv—ulf

Assumptions (LS-1) and (LS-2) can be interpreted as smoothness conditions respectively on
XfLS> and on p<15>(.;.) with respect to its second argument. Note also that Assumptions (16)
and (17) imply in particular Assumption (LS-4) of Roueff, von Sachs and Sansonnet [21] which
we recall here to be

§o<oLS> — §o<oLS>(O) = sup |p<LS>(.; u)‘oo < 00, (18)
ueR
LS> .__ LS .
5o ’_igﬁ‘lf ") gy < 00 1)

This can be seen simply by noting that §1<LS> = §1<LS> 0 < §1<LS> (d) and §O<OLS> < §O<OLS> (d)
for all d > 0, with equality for d = 0. Similarly, §1<LS> (d) < oo for some d > 0 implies §(/<3])“S> <
oo forall g > 0.

Hereafter all the given bounds are uniform upper bounds in the sense that they hold uniformly
over parameters AjLs> and p=<LS> satisfying the set of conditions (6), (LS-1), (LS-2), and (18)
and (19), as in Theorems 1, or the more restrictive set of conditions (LS-1), (LS-1) and (LS-2), as

in Theorem 2 and 3. More specifically, we use the following conventions all along the paper.

Convention 1 (Symbol <). For two nonnegative sequences ar and br indexed by T > 1, pos-
sibly depending on parameters AC<L5>, p<LS>, b1 and by, we use the notation ar < br to
denote that there exists a constant C such that, for all by, b, and T satisfying certain condi-
tions C(by, by, T), we have ay < Cby with C only depending on non-asymptotic quantities and

constants such as d, 8, §1<LS>(d), §(731)‘5>, ;OELS>(d), Siﬂ), lEB,, |AC<LS> |so and the two kernel
functions w and q.

The conditions C(b1, b2, T') will be intersections of the following ones:
T>1 and b; €(0,1], (20)
b1,by e (0,11 and Tbiby>1, 201
byIn(T) =< 1. (22)
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Convention 2 (Constants A1, Ay). We use Ay, A> to denote positive constants that can change
from one expression to another but always satisfy Al_1 <1 and A; <1, using Convention 1. In
other words A and A» are positive constants which can be bounded from below and from above,
respectively, using the constants appearing in the assumptions and the chosen kernels w and ¢.

Convention 2 will be useful to treat exponential terms in a simplified way, that is, without
considering unnecessary constants; for instance, we can write (e~417)2 <e~417T replacing 24,
by A1 in the second expression without affecting the property Afl < 1 required on Aj.

3.2. Main results

We can now state the main results of this contribution, whose proofs can be found in Appendix B.
For the bias and variance of the local mean density estimator 71, (1), we establish the following
result.

Theorem 1. Let the kernel w satisfy (K-1). Assume conditions (6), (LS-1), (LS-2), and (18)
and (19) to hold. Then, for by and T satisfying (20), the bias of the local density estimator
satisfies, for all ug € R,

B[, (10)] — m7™S™ (uo)| S b +TF. (23)
If moreover (LS-1) holds, its variance satisfies

Var(iiip, (u0)) S (Thy) ™. (24)

Hence, mip, (uo) is shown to be a (mean-square) consistent estimator of meS>(uo), and,
_.2B
optimizing the bias and variance bounds, we get the “usual” mean-square error rate 7 2A+!

for nonparametric curve estimation with an additive noise structure, achieved for a bandwidth
by ~T zﬁlﬁ .

We now treat the bias of the estimator ¥, 5, (o; wp) which can be decomposed as the sum
of 1) a bias in the time direction, namely, Eyj, 5, (it0; wo) — yb<2LS> (uo; wp) and 2) a bias in the

frequency direction, namely, yh<2L5> (uo; wp) — y<LS> (uo; wp).

Theorem 2. Let the kernels w and q satisfy (K-1) and (K-2). Assume conditions (LS-1), (LS-1),
and (LS-2) to hold. Then, for all by, by and T satisfying (21) and (22) and for all ug, wp € R, we
have

|E[Tby.5, (03 00)] — ¥4 (uos w0)| S 0 + b7 b3 " + (Thibo) ™" (25)

If moreover the squared modulus |Q(w)|? of the Fourier transform of the kernel q satisfies

/a)2|Q(a))|2da)<oo and /a)|Q(a))|2da)=0, (26)
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the “bias in frequency direction” fulfills for by € (0, 1],
¥~ (o o) — ¥ =57 (uo; wo)| < b3 @7

Remark 2. Condition (26) is automatically satisfied if ¢ is compactly supported, real valued and
even, and admits an L? derivative, such as the triangle shape kernel.

We already observe here that for the estimator ¥, 5, (i0; wo) to be asymptotically unbiased,
equations (25) and (27) require the following conditions on the choice of the two bandwidths b
and b to be fulfilled:

Thiby— o0, by—0 and b;'b} —0.

Note in particular that these conditions for an asymptotically unbiased estimator imply those
required for the feasibility of the estimator in Remark 1 (b; — 0 and Thy, — 00).

We shall discuss possible compatible bandwidth choices below, following the treatment of the
variance of this estimator.

Theorem 3. Let the kernels w and g satisfy (K-1) and (K-2). Assume conditions (LS-1), (LS-1)
and (LS-2) to hold. Then, for all by, by, T satisfying (21), and for all ugy, wg € R, we have

Var(hy o, (10; @0)) S (Thib) ™" + b7 (Pb51)2. (28)

3.3. Immediate consequences and related works

In order to optimize bandwidth choices in time and in frequency to derive an optimal rate of
MSE-consistency of the estimator ¥, p, (o; wo) for a given time-frequency point (uo; wp) we
observe, by equations (25), (27) and (28), that the MSE satisfies

MSE (Ph,.1, (u0; 0)) S b3 +b;" + (Thibo) ™" + (67765 "),

_ 4B
The MSE-rate T 5/+2 is achieved by optimizing this upper bound, that is, by imposing bg ~
2
b%ﬂ ~ (Th1by)~! (leading to (bfﬁbz_l)2 ~ bg), and hence by setting by ~ T 2¥5F and by ~
b
T 256 . The fact that this rate bound is obtained by balancing the two squared bias terms bfﬁ
and b‘z‘ with the variance term (Th;bhy)~! indicates that all the other terms appearing in the
upper bounds (25) and (28) are negligible. Thus, since the bias terms bf and b% and the variance
term (Th1by)~! correspond to the usual bias and variance rates of a kernel estimator of a local

spectral density estimator (see Dahlhaus [10], Example 4.2, for locally stationary linear time
series), it is clear that the obtained rate is sharp for this moment estimator under our assumptions.

_ 4B .. .
Note also that the MSE-rate T 3#+2 corresponds to the minimax lower bound for evolutionary
spectrum estimation established in Neumann and von Sachs [16], Theorem 2.1, in the Sobolev

space Wf;’,zoo. Although insightful, the comparison is not completely rigorous as their model for
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establishing this lower bound is a benchmark for a class of non-stationary time series and the
MSE they consider is integrated. Therefore, a particularly interesting problem for future work
would be to derive (hopefully large) classes of locally stationary point processes on which our
estimator achieves the minimax rate.

In the same line of thoughts about the performance of our kernel estimator, the question nat-
urally arises about the data-driven choice of the bandwidths b; and b,. This question of band-
width selection in the context of locally stationary time series has been addressed only recently,
see Giraud, Roueff and Sanchez-Perez [13], Richter and Dahlhaus [19] for adaptive prediction
and parameter curve estimation, respectively. The problem of adaptive kernel estimation of the
local spectral density for locally stationary time series has been more specifically addressed in
van Delft and Eichler [22], where a practical approach is derived and studied. It is mainly based
on the central limit theorem established in Dahlhaus [10], Example 4.2, for this estimator. This
methodology could be adapted to the case of locally stationary point processes. A first step in
this direction would be to establish a central limit theorem for our estimator ¥, 5, (1o, wo) at a
given time-frequency point, which is also left for future work. Note also that, in practical time
frequency analysis, the bandwidths b1 and b; are often chosen having in mind a physical inter-
pretation. For instance, in our real data example of Roueff and von Sachs [20], Section 6, on
each day, transaction data is collected between 9:00 AM and 5:30 PM, hence over 8.5 hours. Our
choice by = 0.15 and by = 0.005 corresponds to saying that we consider finance transactions
data as roughly stationary over 8.5 x 0.15 & 1 hour and 16 minutes of time, and that the spec-
trum obtained from such data has maximal frequency resolution 0.005 Hz (we may distinguish
between two periodic behaviors present in the data only if their frequencies differ by at least this
value).

To conclude this section, let us discuss whether our approach could be used for the parameter
estimation of locally stationary Hawkes processes. In a fully non-parametric approach, one would
be interested in estimating the two (possibly smooth or sparse) unknown functions that are the
baseline intensity function u AC<L3> (1) and the local fertility function (s, u) — p<15>(s; u).
In a parametric approach, one would assume these functions to depend on an unknown finite
dimensional parameter 6 in a (known) form u — AELS>(u|9) and (s, u) — p<F5>(s; u|0), and
try to estimate 6. An intermediate approach, proposed in Roueff, von Sachs and Sansonnet [21],
Section 5.1, to derive simple examples of locally stationary Hawkes processes, is to consider a
parametric stationary model for the fertility function, say s — p=<5>(s|0) for & € ©® c R?, and
to deduce a local one of the form (s, u) — p=<5>(s; u) = p=5> (5|0 (1)), where now 0 is a -
valued function of the absolute time. In all these cases, the estimators 7ip, and ¥, 5, could be
used as empirical moments to estimate AC<L5>, p<LS>, 6, or the curve 6. Since our estimators
are consistent, this method would in principle work whenever the unknown quantities to estimate
can be deduced from the local mean density m1<LS> and local Bartlett spectrum y <S> through
Relations (7) and (8), respectively. More direct methods to estimate the parameters of interest
for non-stationary Hawkes processes have been proposed in Chen and Hall [5], Chen and Hall
[6], Mammen [15]. In the first two references, only the baseline intensity is time varying, and a
different asymptotic setting is considered, where this baseline intensity tends to infinity through
a multiplicative constant. In the fully non-parametric case, an identifiability problem is pointed
out in Chen and Hall [6], Section 2.2. We do not have this problem in our asymptotic scheme,
since (7) and (8) show that the base line intensity AC<LS>(u) can be completely identified from



Time-frequency analysis 1367

the local mean density meS>(u) and the local Bartlett spectrum y <S> (u; -) alone using the
formula

<LS> 12
AC<LS>(M)=m1<LS>(u)< my () > .

27T)/<LS>(M; 0)

The model considered in Mammen [15] is a multivariate version of the locally stationary Hawkes
process with the same asymptotic setting as ours, and additional assumptions on the (multivari-
ate) fertility function. Both the baseline intensity and the (time varying) fertility function are
estimated in a non-parametric fashion using a direct method based on localized mean square
regression and a decomposition of the local fertility function on a B-spline base. Such methods
should be more efficient than using the local mean density and Bartlett spectrum to build mo-
ment estimators of these parameters, since they rely on the intrinsic auto-regression structure of
the underlying process. In contrast, as far as the time-frequency analysis is concerned, which is
the main focus of our contribution, the estimator that we propose should be relevant to estimate
the local Bartlett spectrum beyond the case of locally stationary Hawkes processes, namely, for
any locally stationary point process for which the general formula (11) and (12) make sense.

3.4. Main ideas of the proofs

3.4.1. Local approximations of moments

An essential step for treating the bias terms is to be able to approximate, as 7 — oo, in the
neighborhood of uT, the first and second moments of N7 by that of the local stationary ap-
proximation N (-; u) defined as in Section 2.3. We first state the two approximations that directly
follow Roueff, von Sachs and Sansonnet [21], Theorem 4, withm =1, 2.

Theorem 4. Let 8 € (0, 1] and let (N7)r>1 be a locally stationary Hawkes process satisfying
conditions (6), (LS-1), (LS-2), (18) and (19). Let (N (-; u))yer be the collection of stationary
Hawkes process defined as in Section 2.3. Then, for all T > 1, u € R and all bounded integrable
functions g, we have

[E[Nr(S~"g)] —E[N(g;w)]| < (Igly + 181¢p).1)TF, (29)

|Var(N7(S77g)) — Var(N(g:w)| < (Igl; +18le0) (1811 + 18l (s).1) T 7. (30)

The control of the bias in Theorem 1 directly follows from (29). However it turns out that (30)
is not sharp enough to control the bias of the local Bartlett spectrum and thus to obtain the
expected convergence rate. The basic reason is that it involves L' (weighted) norms of g in the
upper bound instead of L? norms. In order to recover the correct rates of convergence, we rely on
the following new result where the L! (weighted) norms are indeed replaced by L? (weighted)
norms, or, to be more precise, where the remaining weighted L!-norms are compensated by an
exponentially decreasing term in 7', and will thus turn out to be negligible.

Theorem 5. Let 8 € (0, 1] and let (N7)1>1 be a locally stationary Hawkes process satisfying
conditions (LS-1), (LS-1) and (LS-2). Let (N (-; u))yer be the collection of stationary Hawkes
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process defined as in Section 2.3. Then, for all bounded and compactly supported functions g,
forallT > 1 andu € R,

[Var(N7 ()| S lgl3 +e 7 Igl3; - 31)

Var(N7 (S~ T*g)) — Var(N (g; u)
[Var(N (5776) = Var(V g: )| -

hS {|g|% +e 4T |g|3,1 +1glp).2 (gl R |g|d,1)}T_ﬂ‘

The proof of this theorem can be found in Roueff and von Sachs [20], Section 4. To obtain this
new result, we crucially rely on the assumption (LS-1) where controls in exponentially weighted
norms (based on sup,, | p<L5> (. u)) | dg for ¢ = 1, oo and some d > 0) are assumed to strengthen
the assumptions (6), (18) and (19). ’

3.4.2. Bias and approximate centering

To control all the error terms, we found useful to introduce a centered version of Ny with a
centering term corresponding to its asymptotic deterministic version. Recalling that N7 behaves
in a neighborhood of Tug as N (-; ug) and that this process admits the mean intensity denoted by
mes> (up), we define, for any test function f,

Nr(f;uo):=Nr(f) —E[N(f;u0)] = / F[Nrds) —m7™> (uo) ds]. (33)

It is important to note that this “approximate” centering depends on an absolute location ug as
it is a good approximation of E[N7(f)] only for f localized in a neighborhood of Tu. Let
us apply this definition. By (10), since wr;, integrates to 1, the error of the local mean density
estimator can directly be expressed as

ip, (o) — m5> (uo) = Nr (S~ 0wy, ;s ug). (34)

Hence controlling the bias of this estimator directly amounts to evaluating the quality of the
above centering.

The treatment of the bias of the local Bartlett spectrum is a bit more involved since, as often for
spectral estimators, the empirical centering term requires a specific attention. This term appears
inside the negated square modulus of the right-hand side of (13). To see why it is indeed a
centering term, observe that, using f wrp, = 1, we can write

Pon.br (03 @0) = E[p(NT (577G 1,) ) wiy, ]

with now p defined, for any test function f, as the “centered” squared modulus

p(N7(f)) = |Nr(f) = E[N2(f); wi ]|

Using that f wp, = 1, the centering in (33) can be introduced within this definition of p, leading
to

p(NT () = |N7(f; uo) — E[N7(f; uo); wy, ]|
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By comparison with the previous expression of ¥, 5, (it0; wp), we easily get an expression of the
local Bartlett spectrum estimator based on this centered version of N7, namely,

~ =il 2 o 2
Vooby (U0 @0) = E[|[N7(f;u0)|"s wp, | — |E[N1(f; uo); wp, ]| (35)
where analogously to (14), we denote, for the test function f = § _T”(’qwo,bz,
= 2 = 2
E([Nr(f:u0) s wp,) = f|NT(f(- — 1y: o) Pwrp, (1) dr, (36)

E(r(f: u0): wp,) = / N (= 0 uo)wrp, (1) dr.

In fact, using [‘w =1, f integrable and interchanging the order of integration, we immediately
get the simplification

E(N7(f;u0); wp,) = N7 (f % wrp,; uo), (37)

where we used the convolution product *. The advantage of the new expression (35) in contrast
to the original (13) is that now we expect the negated square modulus to be of negligible order.
To see why, consider for instance the bias in (25), for the control of which we need to bound, as
the second term of (35),

E[|E(N7(f:uo): wb1)|2] = Var(N7 (f % wrp,)) + |[E[N7(f % wrp,; uo)] 68

(Here and in the following we repeatedly use the fact that N7 and N7 (-;uo) have the same
variance). Finally, the control of the bias term in (25) now requires to evaluate

E[EHNT (S_Tuoqwo,hz; ”0) 2

swp, ] = v (wos wo),
which is again decomposed as a main term
f (Var(N7 (ST quy b (- = 1)) = V5255 (a0: @0))wr, (), (39)

added to a negligible (because involving a squared bias) term
N C— 2
/|]E[NT(S Tuo‘]wo,bz(' —1); uo)]| wryp, () dt. (40)

3.4.3. Variance terms and exact centering

The variance of the local mean density estimator directly requires to control the variance of
Nt (f) for given test functions f. This requires new deviation bounds for non-stationary Hawkes
processes. By deviation bounds, we here mean that we bound the moments of

Nr(h) := Nr(h) — E[Nr(h)], (41)
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where A is an appropriate test function. New results in this direction are gathered in Section 4,
where the dependence structure of non-stationary Hawkes processes is investigated, leading to
the appropriate control of such moments in Proposition 9. For instance, the moment of order 2
directly provides the adequate bound for the variance of the local mean density estimator

Var(iip, (u0)) = Var(N7 (S~ T0wry, )) = [Nr () |3, (42)

where we use the notation introduced in (3).
Now we turn our attention to the estimator of the local Bartlett spectrum. The control of the

moments of N7 will essentially be used to approximate ¥, p, (t0; wp) by
>, . . ~ —Tug 2
ybz,bl(uOva)O) _/|NT(S qa)(),bz(' _t))| wal(t) dr. (43)

In contrast to the centering used in N7 (-; u) for controlling the bias (a centering with respect
to E[N (h; u)]) for some absolute location u, here the term E[N7 (k)] is no longer invariant as
h is shifted. This is why this centering cannot be used as a direct decomposition of estimator
Vby by (U0; w0) as in (35). Instead, we use a bound on the error of approximating ¥, 5, (it0; wo)
by Yb,.5, (U0; wo), see Lemma 15.

Finally the variance of the local Bartlett estimator is obtained by controlling the variance of
Vby.b, (0; wo) (Lemma 14), which in turn relies on a bound of

2

)

Cov([Nr |, [Nrh2)|?)

for test functions /1 and A, which is derived in Corollary 10.

4. Deviation bounds for non-stationary Hawkes processes

We now derive new results required for treating the variance of the studied estimators. In contrast
to Poisson processes, we can not rely on the independence of the process on disjoint sets. To the
best of our knowledge, the most advanced results on deviation bounds of Hawkes processes are
to be found in Reynaud-Bouret and Roy [18] and only apply to stationary Hawkes processes with
compactly supported fertility functions. Here we consider non-stationary Hawkes processes with
exponentially decreasing local fertility functions. The generalization to non-stationary processes
requires a specific approach rather than a mere adaption of Reynaud-Bouret and Roy [18].

Although we are here motivated by the study of the variance of the local mean density and
Bartlett estimators, we believe that the results contained in this section are of broader interest, as
they can serve more generally to understand the dependence structure of non-stationary Hawkes
processes.

4.1. Setting

Recall that (5) is our minimal condition for defining the non-stationary Hawkes process N with
immigrant intensity function A.(-) and varying fertility function p(-; -). The cluster construction
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of a Hawkes process relies on conditioning on the realization of a so-called center process, N, a
Poisson point process (PPP) with intensity A. on R, which describes spontaneous appearing of
the immigrants. At each center point t¢ of N, a point process N (-|t€) is generated as a branching
process whose conditional distribution given N, only depends on #¢ and is entirely determined
by the time varying fertility function p(-; -). This distribution is described through its conditional
Laplace functional in Roueff, von Sachs and Sansonnet [21], Section 6.1, under the additional
assumption

Loo < 00 with ¢, = sup |p(-; t)|q for all g € [1, o0]. (44)
teR

The following result directly follows from these derivations. A detailed proof is available in
Roueff and von Sachs [20], Section 3, for sake of completeness.

Proposition 6. Suppose that (5) and (44) hold and set

—1
= o (45)
2(1 - ;l + ;ooé‘l )
Then, for all h : R — R satisfying |h|; <1 and |h|5 <1,
12 -
E[e(l_§1 )’I‘N(h)‘] < exp(|)\c|m§‘1 1/2;"1). (46)

Consequently, for all g > 0, there exists a positive constant By only depending on |A¢|o, 1 and
Loo Such that, for all h : R — R satisfying |h|; <1 and |h|s <1,

v, < By 47

The moment bound (47) will be useful but far from sufficient to bound the variance of our
estimators efficiently. To see why, let us suppose temporarily that N is a homogeneous Poisson
process with unit rate and consider 7 = n~ 19 ,) — 1 for some positive integer n. Then the above
bound with p = 2 gives Var(N (h)) < B% although we know that in this very special case we have
Var(N (h)) = n~!, hence the bound is not sharp at all as n — oo. In the following we provide
new deviation bounds applying to non-stationary Hawkes processes which allows one to recover
the expected order of magnitude for the variance. To this end, we rely on stronger conditions than
the ones used in Roueff, von Sachs and Sansonnet [21].

Define moreover, using the exponentially weighted norm notation in (2), for all d > 0, and
q €1, 00],

Lq(d) =sup [p(:1)],.
teR

We strengthen the basic conditions (6) and (44) into the following one.

(NS-1) We have |1;|o, < 0o. Moreover, for all + € R, p(:; t) is supported on R and there
exists d > 0 such that {1(d) < 1 and ¢ (d) < 00.
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The version of (NS-1) in the locally stationary case is (LS-1) in the sense that the locally sta-
tionary Hawkes process (Nt)r>1 satisfies (LS-1) if and only if, for all 7 > 1, the non-stationary
Hawkes process Nt satisfied (NS-1). Therefore all the results below relying on (NS-1) apply to
the locally stationary Hawkes processes satisfying (LS-1). We recall that this assumption means
that the local fertility functions satisfy some uniform exponential decreasing.

4.2. New deviation bounds

The deviations bounds are based on the following exponential bound control on component point
processes N (-|t€) defined above.

Proposition 7. Suppose that (NS-1) holds for some d > 0. Then we have, for all a € (0, d), for
all t¢ e R,

foo(d)
d—a)(1 =)

EU e“(s_’)N(dsltC):|§Ca with Cq := 1+ (48)
[t,00)

Proof. Let g: R — R, and define, forall 2 : R — R,

[£0](5) = 2 + [ G0 pu = sia) du.

Following Roueff, von Sachs and Sansonnet [21], Proposition 7 and Eq. (34), we have that, for
allr e R,

E[N(s1)] = lim [£5()] (). (49)

where Eg denotes the nth self-composition of &£. In the following, we take some a € (0, d) and
set

8(9) =e"C 71y, o) (5) = gols — 1),
Observe that, using that p(; u) is supported on [0, co) under (NS-1), forall 2 : R — R,

(€0 W] (0) < 2(0) + [ " b pla — 1) du
<1+ ftooh(u)ed(’_”)ed(”_[)p(u —t;u)du
<1+ /tooh(u)ed(’_”)goo(d) du
=1+ Coo(@)|h( +9)|_y ;-

Applying this to h = Egt_l (gr) we get, foralln > 1,

(€2 (e0](0) < 1+ Co@|[E27 g0 ] + )] _y - (50)
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Similarly, we also get that, forall 1 : R — R,
[Ee ] +)|_y | <lgolg1 + O @]hG+)|_, |-

Observing that |go|_; | = (d — a)~! and iterating the last inequality, we finally obtain that, for
alln > 1,

< ! .
T d-a)(1-25(d)

Inserting this bound in (50) and letting n go to oo as in (49) with g = g;, we get the claimed
result. (]

1
(€5 @]t +9_yy = 7—(I+ 0D+ +0(@)")

Define the past and future o -fields at time 7 respectively, as
Fr=0(Nc(A), N(B|t€) : A € B((—00,1]), BEB®R),t° <t)
Do (N(A): AeB((—o0,1]))
and
Gi=0(N(A): A eB((t, —00))).

The following result provides a uniform exponential control on the time-dependence of N.

Proposition 8. Suppose that (NS-1) holds for some d > 0 and that A, is bounded. Let p €
[1,00),t <u and Y be a centered L! Gy -measurable random variable. Then, for all a € (0, d),
forall g € (p,o0l,if Y is L9,

IEYIZ], < 17 llg (1heloo Caa™eme@=0) /P71,
where C, is defined in (48).

Proof. In the following, we denote by #; the points of the Poisson process N, that is,
Ne=Y 8¢
k

Define
Age =inf{8 > 0: N([t° + 8, 00)]r¢) = 0}.

In other words, A is the size of the cluster N (-|z¢), that is the distance between the most left
point (which is 7¢) and most right point. Since A is a point among the points of N (-]z€)), we
have

eaAlc S'/ ea(57t)N(ds|tc),
[t,00)
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and a direct consequence of Proposition 7 is that, for all a € (0, d),
E[e* ] < Cq. (1)

Now let us define the position of the last point generated by all clusters started before time ¢,
namely,

A = sup{t,g + A,}g i < t}.

We observe that A, is F;-measurable. Moreover, 1_f t <uandY isa centered L! G,-measurable
random variable, then we have E[Y|F;] =0 on {A; < u}. The Holder inequality then yields for
1<p<g<o©

[E170], = [BYV 175,20 |, < [BVIF], (B 2 w) 77
Since || E[Y |F]llg < IYl4, it only remains to prove that
P(A; > u) < Coe 20D, (52)

Observe that M =), 816 A e is a marked Poisson point process such that, given N,, the marks
k

A are independent and for each k the conditional distribution of Aqe only depends on 7. Hence,
M is a Poisson point process with points valued in R x Ry and

(A, =uy={M({(°,5) € (—00,1] x Ry 1t +8 > u}) > 0}.

We thus get that

'
P(A, >u)=1-— exp(—/ P(t. + Ase > u)kc(tc) dtc)
o

t
< IACIOO/ P(Ase > u —1.)de€,

—00

where we used that 1 —e™ < x for all x > 0. Using (51) and the exponential Markov inequality,
it follows that

t 3
P(A; = u) < |reloo Ca / e 41 = Al Coa™ e 7M.

—0o0

We can now derive a Burkholder-type inequality.

Proposition 9. Suppose that (NS-1) holds for some d > 0. Let p € [2, 00). Then there exists a
positive constant By, such that, for all bounded functions h with support included in [j, j + n]
for some j € Z and n € N,

[N G ~E[N ]|, < Alhl i
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where A is a positive constant only depending on d, | ¢|sos {15 Coo» $oo(d) and &1(d), for example,
foranya € (0,d) and q > p,

e—a(l/p=1/q)

—1\1/p—1
A= (Bi+ By)(Bi + By)(Iheloo Caa™) "™ s

where B, is defined in Proposition 6 and C, in (48).

Proof. We can assume |/|,, = 1 without loss of generality. We write
n
hZZh,’ with h; = hlji—1 j4i)-
i=1

Then |h;|o < 1and |h;|; <1 foralli and, defining X; = N (h;) — E[N (h;)], from Proposition 6,

we have, forall g > 1,
1Xillg < Bg + Bi. (53)

Then N (h) —E[N (k)] = >_;_, X; and, applying Dedecker et al. [12], Proposition 5.4, page 123,
we have

n 1/2
|Nh) —E[NW]|, < (Zp Zb,-,n> : (54)
i=1
where, denoting M; = F 4,
¢
bin = max |X; ZE[XkIMi]
k=i p/2

Observing that Xy is centered and G 1-measurable, Proposition 8, gives that, for any ¢ > p,
IELXIMiT], < 11Xkl (1Aeloo Caa™ e @1 #D) P71,

The Holder inequality, the last two displays and (53) yield, for all ¢ > p,

C\/p=1/q e—a(l/p=1/q)

bin < (B1+ Bp)(Bi +Bq)(|)‘-c|oocaa ) 1= e—a(/p—1/a)"

Applying this in (54), we get the claimed bound. (]
Another consequence of Proposition 8 is the following useful covariance bound.

Corollary 10. Suppose that (NS-1) holds for some d > 0 and that A is bounded. Let h| and h;
be two bounded integrable functions. Let y satisfy one of the following assertions.

(1) There exist t € R such that Supp(h1) C (=00, t] and Supp(hy) C [t + y, 00).
(ii) There exist t € R such that Supp(h;) C (—o0, t] and Supp(hy) C [t + y, 00).
(iii) y =0.
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Then for all g > 4, there exists C; > 0 and oy > 0 both only depending on q, |Ac|, and a and
C, in Proposition 8 such that

2

’

|Cov(|N (1)

Nm)*)| = €[N [N G e (55)

where N(h) = N (h) — E[N (h)].

Proof. In the case (iii), the bound (55) actually holds with ¢ = 4 by the Cauchy—Schwarz in-
equality and thus also holds with g > 4 by Jensen’s inequality.
‘We now consider the case_(i) (the last one (ii) being obtained by inverting /1 and /,). We have

in this case, denoting ¥ = |N (h2)|> — E[|N (h2)|*],

[Cov([N D[ [Nh)[*)| = E[[N () [*ELY 171)]

< | N5 Y171

The Jensen Inequality and g > 4 give that ||ﬁ(h1)||4 < ||ﬁ(h1)|| 4 and the proof is concluded by
using Proposition 8 to bound ||E[Y|F:]||4. O

Appendix A: Useful lemmas

In the following lemmas, we have gathered some simple bounds that we will repeatedly use in
the sequel.

Lemma 11. Leta, B > 0 and p € [1, 0o]. For any function g and any t € R, we have
8¢ =05, <257 (18l s + 1117 11 ,), (56)
lg¢ =0, ; <egla; - (57)

Let quy,p, = b;/zei“’(”q(bzt) and wrp, = (Thy )_lw(u/(Tbl )), where the kernels w and q satisfy
|lw|; = |ql, = 1. Then, we have, for all b1, by € (0, 1]and T > 0,

ool 811 = b3 P lal g1 (58)
\qwo.bol1 = by 1l (59)
|Gewo,bp12 =1, (60)

(e b2 loo = b3’ 1o - (61)

\Gwn.bal8r2 = 55" 1142 (62)

lwrp [1 =1, (63)



Time-frequency analysis 1377

[wTby loo = 01 T) ™ wls (64)
lwrp, g1 = B1T)P [wl ()1, (65)
|Qw0,b2 * WTh, |l =< b2—1/2 |Q|1 P (66)
—1/2 -1/2
|qw0,b2 *wa1|2 = |wa1|2|qwo,b2| sz (blT) |w|ZIQ|1 (67)
—1,—1/2
Gao.bs * Wby oo < (01 T)'b3 * [wloolgl, (68)

(oo bs * Wb g1 < 287D+ (b3 21T g1y lwlgy s +b; > P lal 1) (69)
If ¢ and w have compact supports both included in [—a, a) for some a > 0, we have
wrbilan = [Wlare,1 < T wly, (70)
onbalat = b5 1qlaspy1 < by e gl (71)
1/2aa(Th+b; ") 91, - (72)

|Gwo.by * WThy la,1 < 1WTby la,1Gw.byla1 < by

Proof. All these bounds are straightforward. We use the usual L” bounds for convolution
[h*gly <|hli|gly and |h % g|, < |h|, |g|;. When necessary, the weights are handled by using

IsP <27 D+(js — 2/ +1¢/F) and el < elfleals (73)
|
Lemma 12. Let T, by, by satisfy (21) and (22). Then for all a1, ay > 0, we have
exp(az(Thr + b;l) —aiT) < max(l,exp(2a2e1/a‘)).
In particular, under Convention 2, we have exp(A2(T by + bz_l) —AT)< 1.
Proof. First note that, by (21), b, ' < Th; and thus

exp(ag(Tbl + bz_l) — alT) < exp(ZazT(bl — al)).
If b1 < a; this upper bound is at most 1 and otherwise, using that ; < 1 and then (22), we have

that T(b] —Cll)STSel/bl Sel/“l. -

Appendix B: Proof of main results

B.1. Proof of Theorem 1 (local mean density estimation)

For treating the bias, expressed as (34), we apply (29) in Theorem 4 with g = wry,. Using the
norm estimates of equations (63) and (65), we immediately get

E[7ip, (u0)] — m1(uo) ST P (1 + |lwrp, g).1) S b/ls +717P.
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For treating the variance, expressed as (42), we use Proposition 9 with h(-) = wrp, (- — Tuop)

along with |h|,, = |wTh] |Oo = (Th)™! by (64) and the obvious bound on the support of the
kernel, Supp(wrp,) S Thi. We immediately get (24), which concludes the proof.

B.2. Proof of Theorem 2 (bias of spectral estimator)
The proof of this theorem requires to show two bounds, namely, the bound of the bias in time
direction, (25), and the bound of the bias in frequency direction, (27). These two bounds are

proved quite independently.

Proof of (25). The derivations of Section 3.4.2, namely (35), (36) and (37), show that we can
decompose E[7, 5, (uo; wo) — yb<2Ls>(u0; wo)] as (I) + (II) — (III), where

(I = / (Var(N7 (S~ gy b, (- = 1)) = ¥ =57 (0: @0))wr, (1) dt

an = f IE[N7(S™""quy.b, (- — 1) uo)]|2wrb. (r)dr

) = Var(NT (S_T“(’qa,oJ72 * WTh, )) + ’E[NT (S_T“‘)qa,o,b2 * WTh,; uo)] ’2

(IMIa) (I11b)

correspond to (39), (40) and (38), respectively. We will show now that

(i) the term (I) is of order P ;
(ii) the terms (IT) and (IIIb) are of order b]z’3 by L,
(iii) the term (Illa) is of order (Th1b2)~L;

which will conclude the proof of (25).
Term (1): By (32) in Theorem 5 with g = g5, (- — 1), and recalling from equations (60), (62),

(71), (56) and (57) that [gl, = 1, 18l gy S by " + I1IF and

—1/2 —1 —1
|g|d’1 Sed‘tllqwo,bﬁd,l Sed"'bz / eA2b; SedltleAzbz ’

we have for all r € R,
[Var (N7 (S0 (- = 1)) = Var(N (qa. by 40))| S TP (by? + 11]f 4 e2lileobs ' —A1T),

where we have used that 1 < bz_ﬁ < eb>' and that 1] <ell.
By (12), we can use this to bound the integrand in the definition of (I) and thus get, using (63),
(65) and (70),

O ST (by" + (Thy)f e MTHAThio )

By (21) and applying Lemma 12, we have that the main term between the parentheses is the
second one, hence we get (i).
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Term (I1): Applying (29) in Theorem 4 with g = g, (- —t) and using (58), (59) and (56),
we get

‘E[NT(S—Tuoqu’bz(_ —1); uo):” 5 T—/S (b;l/z(l + Itlﬂ) _I_b2*1/2*13)

1/2 1/2 (74)
ST P by P1elP + by 7F).

(Since by < 1.) Taking the square and integrating this with respect to wrp, (¢) dt, and us-
ing (65), (63) and T > 1, we get (I) < b7 by ! as claimed in ().

Term (I1Ib): This term is treated similarly as (I) but using directly the bounds (66) and (69)
inserted into (29) and taking the square. The same order is obtained and (ii) follows.

Term (Illa): Applying the bound (31) of Theorem 5, we get that, setting here g = quy, b, * Wrp,

Var(N7(9)) S lgl3 +e T Igl3 ;.

Now, from (67) and (72), this bound reads
Var(N7(8)) < by (Th) ™' + e~ AT +A2(Thi+by ")

By Lemma 12 and since Th1by > 1, the first term dominates and we get (iii), which concludes
the proof. O

We now provide a proof for the second part of the theorem controlling the bias.

Proof of (27). This bound requires the usual control of the kernel-regularization of a smooth
function as can be seen from (11). Namely, the function to consider is w +— y <55 (w; ug) and
the kernel is w +— b2_1|Q((a) — w0)/b2)|* which integrates to 1 since |Q|, = |q|2/\/§ =1
by (K-2) and the Parseval theorem. Using the formula (8) to express w — y<LS> (w; up) and the
usual conditions on the kernel (26), it is thus sufficient to prove that, for all w € R,

<LS>
”HTWW — P57 (@ u0)| 2 = |1 = P (s )| 7+ Cl — )| S (@ — w0)?,

where C is any constant (possibly depending on wp and up but not on depending on w). As
already seen, we have

LS LS LS
S o) < 27| (- 67) S 1
so that, we can consider the ratio m ] LS> (uo)/(2m) as a constant. For the remaining term involv-
ing the function w > |1 — P<L8>(w; ug)| 2, we first observe that

P<LS> P<LS>

(w3 ug) — (wo; 1o)

— / p<LS> (t: uo)(e—iwt _ e—ia)ot) dr

= p(wo; uo)(w — wp) + / P (tug)e 7 (e 7@ — 1 —i(w — wo)t) dt
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with p(wo; ug) := [itp= LS> (1, ug)e 0" dr. In the latter display, the first term is of the form
C(w — wp) with |C| <1 and the second term is of order (w — wp)?. This comes respectively
from

|5 (@0: uo)| < / 1P =55 (15 wg) dr < £ 4 £S5~
and
} / P87t ug)e T (e 7T — 1 —i(w — wo)t) df | < 15157 (@ — wp).
To conclude the proof, we argue that the form C(w — wp) + R(w) with C < 1 and R(w) <

(w — wp)? satisfied by P<15> (w; ug) — P=<15> (wp; uo) is inherited by |1 — P<5> (w; ug)| 2 —
[1 — P=<Y5>(wy; up)| 2. This follows from

1= P> iug)| ™' < (1-¢71%) e 1, oo)
(using (6)) and from the identity valid for all complex numbers z, 7’ inside the unit disk

L S £ e St St (L Bt il Lt A 0
1=z =2 =z =211 =z

The numerator of the first term of this sum can be expressed as a sum of terms depending on the
difference |z — 7’|, and this applies to the numerator of the second term, too (as it is the square
of the first numerator):

11 —z]*—|1- z/|2 =20(z—2)N(1 —2)+23(z—2)3(1 = 2) + |z — z’}z. O

B.3. Additional lemmas

As explained in Section 3.4.3, the treatment of the variance is done via the introduction of the

“truly” centered process N . Here we provide three lemmas, two concerned with useful bounds
for this centered process and the third one which controls the quality of the approximation of the
estimator based on the centered process.

Lemma 13. Let p > 1. Under the conditions of Theorem 3, we have, for all ug € R, wg € R, and
b1,br, T asin (21),

|N7(ST"0gur, by 5 w7y ) |, S (Th1b2) ™12, (75)

where ﬁr is defined in (41). Let moreover h : R — C be such that, for all t € R, we have

|h(@®)| < (a7 + brt1P)wrs, (1)



Time-frequency analysis 1381

for two positive constants ar and bt (possibly depending on T, by and by). Then we have, for
allug e R, wg € R, and by, by, T as in (21),

IN7 (57140 G, b, % h) ||p < (ar +br (i TYP)(Thiby) V2. (76)
Proof. We apply Proposition 9, and get
”NT (S_Tuoqwo,bz * WTh, ) ||P = A|6]w0,b2 * WTh |OO\/%
for some generic constant A and with a positive integer upper bound n on the length of
the support of LS‘_T“Oqa,O,;,2 * wrp,, denoted by Supp(S‘T”quo,h2 * wrp,). Observing that
Supp(S~T#0g,0 by * wrp,) C Supp(S~T#0g, 5,) + Supp(wrp, ), that the length of Supp(guwy.s,)
is of order 192_1 and that the length of Supp(wrp, ) is of order T'h;, we have n < b2_1 +Tb; SThy.

We thus obtain the bound (75) with (68).
The bound (76) is obtained similarly but this time we rely on the bound

Geo.br * Moo < AT | Gup.by * WTb, oo + BT |Guwg.by 1107 B, loon?.

(Recall that n is length of the support of wrp,.) With (68), n < Thy, (61) and (65) we get
\Gonbn * 1| S by /201 T) " (ar + by (b1 T)P), which yields (76). O

Lemma 14. Under the conditions of Theorem 3, we have, for all uy € R, wg € R, and by, by, T
as in (21),

Var(/ WT(S*TMquO,bQ(- — t))}zwn,l (1) dt) <(Tbyby)~". (77)

Proof. We can write the left-hand side of (77) as

//Cov(Wf(f(. —1)

Let £ denote the length of the support of g, »,, Which clearly satisfies for by € (0, 1],

2 N2 (f (=) P)wre, Owrp, () de de'.

Z§b;l. (78)

Then with { = ey, (- — 1) and hy = ey 5, (- — 1), setting y := (|t —t'| — £)4, we have one of
the assertions (i), (ii) or (iii) which is satisfied. Hence Corollary 10 gives that, for some g > 4,

2

’

|Cov(|N7(hy)

N1 )| < Cg [Nt ) [2[ N7 (ho) e ="1=0+ (79)
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Further we apply Proposition 9 with (61) and (78) and get, for i = 1,2, ||ﬁr(h,-)||2 <
(190,55 loo)>€ < 1. Hence, we finally get

— B 5 . -
Var(/ |NT(S TuOQwo,bz(- — l))| WTp, (1) dl‘) 5 // e ag (1=t e)+wa1 (t)wal (t/) drdr’
= |wa1 * WTh, |OO/e*Olq(|u|7£)+ du.

Now, by (78) we have [ e~ (#I=0+dy < l72_1 and by (63) and (64), we have |wa1 * WTh, |oo <
(b1 T)~'. Hence, we get (77) and the proof is concluded. O

Lemma 15. Under the conditions of Theorem 3, we have, for all uy € R, wg € R, and by, by, T
as in (21),

[7b.61 (w0: @0) = Py, (0 @0) ||, S b%ﬂbz_l + (Thiby) ™", (80)

where Vi, b, (10; wo) and Vi, b, (1o; wo) are respectively defined by (13) and (43).

Eroof. By deﬁlitions (33) and (41), we have, for any integrable test function f, ﬁT (f) =
Nt (f;u0)—E[NT(f;uo)l. Thus, (35) and (37) yield the following expression for ¥, 5, (it0; wo)

2
)

/ (N7 (f =) +E[Nr(f (- —1); u0) ]| wrp, (1) dt = | N7 (f xwrp) +E[N 1 (f % wrp, s u)]

where we used the test function f = §~7%0 Gy, by - Developing the first square modulus and using
for the second that |a + b|> < 2|a|?> + 2|b|?, and since f wrp, = 1, we obtain

Vs, 1 (03 @0) — Vi, b, (0; w0) — 2R(Br)| < Ap +2Cr +2Dr, (81)

where we set, denoting by f* the complex conjugate of f,
~ 2
Ar = / B[N 7 (£ — 002 u0) ] Pwrs, () dr,

Bri= [ Wr(£C = 0)E[N (£ = 0 0)Jwrs 0)dr,
= 2 — 2
Cr:=|Nr(f*wrp)|” and Dy :=|E[N7(f * wre; uo)]|’.
Note that A7 and D7 have been treated in the proof of Theorem 2 as the (deterministic) terms
(II) and (IIIb). The assumptions in Theorem 2 are weaker than that of this lemma. Hence, we

can directly use (ii) of the proof of Theorem 2 and obtain that

Ar,Dr < b%ﬂbz_l.
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The bound (75) in Lemma 13 immediately gives
= - 2 -
ICT 2 = [ N7 (577" Gug.by * wrp, ) || S (Th1b2) ™!

and we are left with treating BT._Note that we can rewrite By as By = ﬁT (f xh), where h is the
(deterministic) function t = E[N7 (f*(- —t); uo)Jwrp, (t). Now, by (74), we have, forall t € R,
[h@)] S 65 2T (by” + 111 Ywrs, (o),

1/2

Applying (76) with a7 = (bT)™P and by = by Y27-8 in Lemma 13, it follows that

||BT||z<b*‘/2T B(b3” + (01 T)P) (Thiby) ™2 < b3 b0 (T by) /2

for Th1by > 1.
Inserting the previous bounds on A7, By, Cr and D7 in (81) yields

—1/2

~ 2
| P,y 05 @0) — Ty by 0 00) ||, S b3 208 (T162) ™2 + b7 b3 4 (Thyby) ™.

Using that 2, /b (Tb1b2) ™2 < b7 b3 + (Thiba) ™", we get (80). 0

B.4. Proof of Theorem 3 (variance of spectral estimator)

Lemmas 14 and 15, together with the definition of 4, 5, (0; wo) in (43), directly give that

N 1 2
Var (P, b, (0; 00)) S =——— + (b7 b5 ' + (Thiby)~')*.
Tbb>
Since Th1by > 1 in (21), the second term within the squared parentheses is at most of the same
order as the term outside the squared parentheses and can thus be discarded. Hence, we obtain
Theorem 3.
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Supplementary Material

Supplement to “Time-frequency analysis of locally stationary Hawkes processes” (DOI:
10.3150/18-BEJ1023SUPP; .pdf). We provide some numerical experiments on transaction data


https://doi.org/10.3150/18-BEJ1023SUPP
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illustrating our time frequency analysis for point processes. Moreover, we give detailed proofs of
the uniform exponential moment bound for stable non-stationary Hawkes processes as stated in
Proposition 6 and of the uniform approximation of the variance of a locally stationary Hawkes
process as stated in Theorem 5.
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