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Members of the well-known family of bivariate Galambos copulas can be expressed in a closed form in
terms of the univariate Fréchet distribution. This formula extends to any dimension and can be used to define
a whole new class of tractable multivariate copulas that are generated by suitable univariate distributions.
This paper gives necessary and sufficient conditions on the underlying univariate distribution which ensure
that the resulting copula exists. It is also shown that these new copulas are in fact dependence structures of
certain max-id distributions with �1-norm symmetric exponent measure. The basic dependence properties
of this new class of multivariate exchangeable copulas is investigated, and an efficient algorithm is provided
for generating observations from distributions in this class.
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1. Introduction

Copula models are ubiquitous in multivariate data analysis and the topic has been the object of
several books and innumerable articles in the past 30 years; see, for example, [13] for a review.
The popularity of copula models stems from the flexibility they provide in capturing the behavior
of any random vector (X1, . . . ,Xd) ∈Rd by coupling parametric distributions F1, . . . ,Fd for its
marginals with a copula C, so that, for all x1, . . . , xd ∈R,

Pr(X1 ≤ x1, . . . ,Xd ≤ xd) = C{F1(x1), . . . ,Fd(xd)}.

Common choices of parametric families for C include Archimedean, Archimax, elliptical, and
extreme-value copulas, as described, for example, in [3,7,25]. Even greater flexibility can be
achieved by resorting to vine, hierarchical, and factor copula constructions; see, for example, [15,
16,20]. Nevertheless, there is still a need to expand the supply of multivariate copula structures,
particularly with models that are tractable, interpretable, and relatively easy to simulate.

The purpose of this paper is to propose, and explore the properties of, a new class of copulas
having these desirable features. Each member of this new class is generated by a continuous
univariate distribution function F with support [0, xF ] for some xF ∈ (0,∞]. In the bivariate
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case, the copula CF generated by F is defined, for all u1, u2 ∈ (0,1), by

CF (u1, u2) = u1u2

F {F−1(u1) + F−1(u2)} , (1)

where F−1 is the generalized inverse of F defined, at all u ∈ (0,1], by F−1(u) = inf{t ∈ R :
F(t) ≥ u}, and at u = 0 by F−1(0) = sup{t ∈ R : F(t) = 0}. We propose to call members of this
class reciprocal Archimedean copulas because in dimension d = 2, their form is reminiscent of
Archimedean copulas [6,24] defined, for all u1, u2 ∈ (0,1), by

Cψ(u1, u2) = ψ{ψ−1(u1) + ψ−1(u2)} (2)

for some suitable choice of generator ψ : [0,∞) → [0,1]. Bivariate reciprocal Archimedean
copulas were first explored briefly by Khoudraji [14] who observed, among other things, that the
Galambos and Clayton copulas with positive dependence are included in this class.

To define a reciprocal Archimedean copula with generator F in any dimension d ≥ 2, let

Pd,o = {
A ⊆ {1, . . . , d} : A �=∅ and |A| is odd

}
,

Pd,e = {
A ⊆ {1, . . . , d} : A �=∅ and |A| is even

}
,

and set, for all u1, . . . , ud ∈ (0,1),

CF (u1, . . . , ud) =
∏

A∈Pd,o

F

{∑
k∈A

F−1(uk)

}/ ∏
A∈Pd,e

F

{∑
k∈A

F−1(uk)

}
. (3)

As the numerator and denominator of (3) have 2d−1 and 2d−1 − 1 factors respectively, the ex-
pression for CF is more involved than that of a multivariate Archimedean copula with generator
ψ , viz.

Cψ(u1, . . . , ud) = ψ{ψ−1(u1) + · · · + ψ−1(ud)}. (4)

Nonetheless there turn out to be surprising parallels between these two classes of copulas.
First, it will be shown here that a continuous distribution function F with support [0, xF ]

generates a reciprocal Archimedean copula in dimension d if and only if � = − ln(F ) is d-
monotone. This resembles the result that Cψ given in (4) is a copula if and only if ψ is a d-
monotone Archimedean generator [21,24].

Second, and more importantly, it will be seen that reciprocal Archimedean copulas have a
stochastic representation that parallels that of Archimedean copulas. As shown in [24], the func-
tion given, for all x1, . . . , xd ∈ [0,∞), by

Cψ {ψ(x1), . . . ,ψ(xd)} = ψ(x1 + · · · + xd)

is the survival function of a d-variate �1-norm symmetric distribution, whose radial variable is in
one-to-one relationship with ψ . The surprising result established here is that the function defined,
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for all x1, . . . , xd ∈ [0,∞), by

HF (x1, . . . , xd) = CF {F(x1), . . . ,F (xd)}

=
∏

A∈Pd,o

F

(∑
i∈A

xi

)/ ∏
A∈Pd,e

F

(∑
i∈A

xi

)
(5)

is the cumulative distribution function of a max infinitely divisible (max-id) distribution whose
exponent measure μ has an �1-norm symmetric structure. The radial measure ν of μ, which
plays an analogous role to the radial variable of an �1-norm symmetric distribution, is in one-to-
one relationship with the reciprocal Archimedean generator F . Furthermore, in analogy with the
Archimedean case, ν can be computed explicitly using the inverse Williamson d-transform of �.

Third, just as ψ must be completely monotone for (4) to be an Archimedean copula in
every dimension, � = − ln(F ) must be completely monotone for F to generate a reciprocal
Archimedean copula for all d ≥ 2. In this special case, which was briefly investigated in [19],
additional parallels can be drawn between reciprocal Archimedean copulas and the dependence
structures of multiplicative hazard models [22].

The layout of this article is as follows. Preliminary observations are given in Section 2, con-
solidating the initial investigations in [14,19]. The new, key insight offered in Section 3 is that
reciprocal Archimedean copulas are precisely the dependence structures of max-id distributions
with �1-norm symmetric exponent measure. It follows that CF is a copula in a fixed dimension
d if and only if � = − ln(F ) is d-monotone on (0,∞). A geometric insight into the structure of
�1-norm symmetric exponent measures is provided in Section 4, which leads, in Section 5, to a
stochastic representation for reciprocal Archimedean copulas in terms of Poisson point processes,
and to an effective simulation algorithm. Section 6 presents a number of new examples and il-
lustrations. The case of completely monotone � is briefly discussed in Section 7, and Section 8
sketches a roadmap of the case where F−1(0) > 0, which includes, among others, Ali–Mikhail–
Haq copulas with positive dependence. Section 9 contains brief concluding remarks. Lengthy
proofs are relegated to a series of Appendices.

In what follows, x = (x1, . . . , xd) and y = (y1, . . . , yd) represent vectors in Rd ; furthermore,
0 stands for the origin in Rd and ∞ = (∞, . . . ,∞). Unless stated otherwise, all expressions
such as x + y, max(x,y) or x ≤ y are understood as component-wise operations. The set (x,y]
refers to (x1, y1] × · · · × (xd, yd ] and similarly for [−∞,x), [0,∞], etc. Furthermore, ‖x‖1 =
|x1| + · · · + |xd | denotes the �1-norm of x. Finally, N= {1,2, . . .} and Rd+ = [0,∞)d .

2. Elementary properties

This section surveys some of the basic properties of the class of reciprocal Archimedean copulas.
For any given integer d ≥ 2, let Fd be the set of continuous distribution functions F with support
[0, xF ] for some xF ∈ (0,∞] such that CF defined in (3) is a bona fide d-dimensional copula.
Let also Cd = {CF : F ∈ Fd} be the set of all reciprocal Archimedean copulas in dimension d .

First, note that it is immediate from (3) that any reciprocal Archimedean copula CF is ex-
changeable, that is, for any permutation π of the integers 1, . . . , d and any u1, . . . , ud ∈ [0,1],
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CF (u1, . . . , ud) = CF (uπ(1), . . . , uπ(d)). Furthermore, all lower-dimensional margins of CF ∈
Cd are again reciprocal Archimedean with the same generator F . Consequently, F2 ⊇F3 ⊇ · · · .

Observe that the generator of a reciprocal Archimedean copula is not unique. However, as
stated below and proved in Appendix A, all generators must be members of the same scale family.
Reciprocal Archimedean generators could thus be made unique by imposing an additional scaling
condition, such as F(1) = 1/2; this option is not considered here, however.

Lemma 1. Two distributions F,G ∈ Fd generate the same reciprocal Archimedean copula
CF = CG if and only if there exists κ ∈ (0,∞) such that, for all t ∈R, G(t) = F(κt).

Distributions F ∈ Fd are most easily characterized in terms of higher-order monotonicity of
the map � : (0,∞) → [0,∞) defined, for all t ∈ (0,∞), by

�(t) = − ln{F(t)}.
Clearly, � is non-negative and non-increasing; moreover, �(t) → ∞ as t → 0 and �(t) → 0
as t → ∞. It was further observed in [14] that if F ∈ F2 has derivative f on (0, xF ), then the
reverse hazard rate r = f/F must be non-increasing, which implies that � must be convex.
More generally, it can be shown from first principles that if F ∈ Fd , then � is d-monotone. This
is stated formally below and proved in Appendix A, where a formal definition of d-monotonicity
is also recalled.

Proposition 1. If F ∈Fd , then � = − ln(F ) is d-monotone. Furthermore, �(t) → ∞ as t → 0
and �(t) → 0 as t → ∞.

An easy but important consequence of this result is that in the bivariate case, the distribution
HF given by (5) is TP2, that is, totally positive of order 2, as proved in Appendix A.

Corollary 1. When d = 2, HF is TP2, that is, for all x1, x2, y1, y2 ∈ (0,∞),

x1 < y1 and x2 < y2 ⇒ HF (x1, x2)HF (y1, y2) ≥ HF (x1, y2)HF (y1, x2). (6)

Accordingly, all bivariate reciprocal Archimedean copulas are TP2.

The TP2 concept is a very strong notion of positive dependence originally introduced in [18].
In particular, it implies that any measure of concordance in the sense of [27] is non-negative. For
completeness, we record below simple formulas given in [19] for three such classical dependence
measures.

Lemma 2. Let F ∈ F2 with density f and reverse hazard rate r = f/F . If CF is defined by (1),
then Blomqvist’s beta and Spearman’s rho are respectively given by

β(CF ) = −1 + 1/F {2F−1(1/2)},

ρ(CF ) = 3
∫ ∞

0

∫ ∞

0
H 2(x1, x2){r(x1) + r(x2)}f (x1 + x2) dx2 dx1.
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Furthermore, if f is differentiable, then Kendall’s tau can be expressed as

τ(CF ) = −2
∫ ∞

0

∫ ∞

0
H 2(x1, x2)r

′(x1 + x2) dx2 dx1.

Next, the tail dependence coefficients [12] of bivariate reciprocal Archimedean copulas are
reported here for the first time. To this end, recall that a function g : (0,∞) → (0,∞) is regularly
varying at infinity of degree η ∈ R, denoted g ∈ RVη, if and only if

∀x∈(0,∞) lim
t→∞

1 − g(xt)

1 − g(t)
= xη.

Recall also that g : (0,∞) → (0,∞) is called rapidly varying at infinity if

lim
t→∞

1 − g(xt)

1 − g(t)
=

{
0 if x ∈ (1,∞),

∞ if x ∈ (0,1).

In what follows, F̄ = 1 − F denotes the survival function corresponding to F , and F ∗ refers to
the survival function defined, for all t ∈ (0,∞), by F ∗(t) = F(1/t).

Lemma 3. Let CF be a bivariate reciprocal Archimedean copula with generator F ∈F2.

(i) If F̄ ∈ RV−α for some α ∈ (0,∞), then the upper tail dependence coefficient of CF is

λU(CF ) = 2 − lim
u↑1

1 − CF (u,u)

1 − u
= 2−α

while λU(CF ) = 0 either when xF < ∞ or when xF = ∞ and F̄ is rapidly varying.
(ii) If F ∗ ∈ RV−β for some β ∈ (0,∞), then the lower tail dependence coefficient of CF is

λL(CF ) = lim
u↓0

CF (u,u)

u
= 2−β,

while λL(CF ) = 0 whenever F ∗ is rapidly varying.

Remark 1. The results in Lemma 3 are reminiscent of the fact that the coefficients of lower and
upper tail dependence of a bivariate Archimedean copula are related to the regular variation of its
generator ψ and of the function ψ∗ defined, for all t ∈ (0,∞), by ψ∗(t) = 1 − ψ(1/t); see, for
example, [4,17]. It is further interesting to note that if Z is a random variable with distribution F ,
Lemma 3 and classical univariate extreme-value theory [26] imply that λU(CF ) = 2−α holds if Z

is in the maximum domain of attraction (MDA) of the Fréchet distribution �α with parameter α ∈
(0,∞), while if Z is in the Weibull or the Gumbel domain of attraction, λU(CF ) = 0. Similarly,
λL(CF ) = 2−β if 1/Z is in the maximum domain of attraction of the Fréchet distribution �β . If
1/Z is in the Gumbel domain, λL(CF ) = 0. Note that the conditions on the support of F imply
that the upper endpoint of the distribution of 1/Z is infinity, and hence 1/Z cannot be in the
Weibull domain.
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Using Lemma 3, one can easily recover the well-known expressions for the tail dependence
coefficients of the classical bivariate Galambos and Clayton copulas with positive dependence,
both of which belong to the class C2 [14].

Example 1. The reciprocal Archimedean generator of the bivariate Galambos copula with pa-
rameter θ ∈ (0,∞) is given, for all t ∈ (0,∞), by

FG(t) = �1/θ (t) = e−t−1/θ

,

that is, the Fréchet distribution �1/θ with parameter 1/θ . It is easily seen that F̄G ∈ RV−1/θ and
that F ∗

G is rapidly varying, implying that λL = 0 and λU = 2−1/θ .

Example 2. The reciprocal Archimedean generator of the bivariate Clayton copula with param-
eter θ ∈ (0,∞) is given, for all t ∈ (0,∞), by

FC(t) = (1 − e−t )1/θ ,

that is, a Lehmann alternative to the unit exponential distribution. Using L’Hospital’s rule, one
finds F ∗

C ∈ RV−1/θ and that F̄C is rapidly varying. Hence, λL = 2−1/θ and λU = 0.

As a final general comment, note that the independence (or product) copula defined, for all
u1, . . . , ud ∈ [0,1], by �(u1, . . . , ud) = u1 × · · · × ud , is not a member of the class Cd . It may
represent a limiting case, however, as when θ → 0 in the bivariate Galambos or Clayton families
discussed above. The proof that � /∈ CF is by contradiction. If CF = � held for some F ∈ Fd ,
it would follow from (5) that, for all x1, x2 ∈ (0,∞), F(x1)F (x2) = F(x1)F (x2)/F (x1 + x2)

and consequently F(x1 + x2) = 1. This is clearly impossible, given that F is nondegenerate.
If the endpoint xF of F is finite, however, then for all u1, . . . , ud ∈ [0,1] such that for some
j < k ∈ {1, . . . , d}, F−1(uj ) + F−1(uk) ≥ xF , one has

CF (u1, . . . , ud) = ujukCF (u1, . . . , uj−1, uj+1, . . . , uk−1, uk+1, . . . , ud).

This means that reciprocal Archimedean copulas can coincide with the independence copula on
a subset of [0,1]d . This is illustrated in Example 9; see Section 6.

Remark 2. Note that for any F ∈ Fd , it necessarily holds that F−1(0) = sup{t ∈ R : F(t) =
0} = 0. This constraint could be relaxed, in principle. The first observation, made in [14], is
that F−1(0) < 0 is not possible. To see this, it suffices to consider the case d = 2. If F−1(0)

were negative but finite, one could find x1, x2 ∈ (F−1(0),∞) with x1 + x2 < F−1(0), so that
F(x1 + x2) = 0 and HF (x1, x2) = F(x1)F (x2)/F (x1 + x2) is infinite, which is a contradiction.
If F−1(0) = −∞, fix x1 < 0 and note that F(x2)/F (x1 + x2) ≥ 1 for all x2 ∈ R because F is
non-decreasing. Thus, HF (x1, x2) = F(x1)F (x2)/F (x1 + x2) does not tend to 0 as x2 → −∞,
which is also a contradiction.

In contrast, F−1(0) > 0 can happen. For example, setting, for an arbitrary θ ∈ (0,1), F(t) =
1 − e−t /θ whenever t ≥ − ln(θ) and F(t) = 0 otherwise, gives F−1(0) = − ln(θ) > 0. It can be
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verified that this F indeed generates a bona fide copula in d = 2 through (1); in fact, CF coin-
cides with the Ali–Mikhail–Haq Archimedean copula with parameter θ . However, Proposition 1
does not hold when F−1(0) > 0 and a stochastic representation of the corresponding reciprocal
Archimedean copula seems rather cumbersome. For this reason, only generators with support of
the form [0, xF ] are considered in this paper; partial results for generators with F−1(0) > 0 are
provided in Section 8.

3. Connection with max-id distributions

There is more to the TP2 property of bivariate reciprocal Archimedean copulas established in
Corollary 1. As shown in [23], any bivariate distribution with this property is in fact max-id,
and vice versa. Consequently, when d = 2, the distribution function HF given by (5) is max-id.
As will be shown in this section, the concept of max infinite divisibility is central to reciprocal
Archimedean copulas in any dimension.

For any given integer d ≥ 2, a d-variate continuous distribution function G is said to be max-id
if and only if Gp is a distribution function for any p ∈ (0,∞); see [26]. This is equivalent to the
condition that the copula of G is max-id, in the sense defined below.

Definition 1. A copula C is said to be max-id if and only if for all p ∈ (0,∞), there exists a
copula Cp such that for all u1, . . . , ud ∈ (0,1), Cp(u

1/p

1 , . . . , u
1/p
d ) = Cp(u1, . . . , ud).

We will establish that a reciprocal Archimedean copula CF with F ∈Fd is max-id by showing
that the distribution function HF given in (5) has this property. This requires a deeper insight into
the structure of max-id distributions. The concepts needed for the study of HF are recalled next;
for a detailed treatment, see, for example, [26].

Let Ed = [0,∞] \ {0} ⊂ [0,∞]d and observe that relatively compact subsets of Ed are sets
that are bounded away from the origin. An exponent measure on Ed is defined as follows.

Definition 2. A measure μ on Ed is said to be an exponent measure if μ is Radon, that is,
μ(B) < ∞ for any relatively compact set B ⊆ Ed , and if μ is such that

μ

(
d⋃

k=1

{x ∈ Ed : xk = ∞}
)

= 0.

As explained in the discussion surrounding Example 5.7 in Section 5.3 of [26], an exponent
measure μ can be conveniently characterized as follows.

Lemma 4. A measure μ on Ed is an exponent measure if μ[−∞,x]� < ∞ for all x > 0 and if
μ[−∞,x]� → 0 as x → ∞, where � denotes set complement within the space Ed .

If μ is an exponent measure on Ed , it follows from Proposition 5.8 in [26] that the function
Hμ defined, for all x ≥ 0, by

Hμ(x) = e−μ[−∞,x]� (7)
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is a max-id distribution. In the present context, it suffices to focus on max-id distributions whose
exponent measure has the additional property that, for all k ∈ {1, . . . , d},

μ{x ∈ Ed : xk = 0} = 0, (8)

that is, μ places no mass on Ed \ (0,∞) = ⋃d
k=1{x ∈ Ed : xk = 0 or xk = ∞} because

μ
(
Ed \ (0,∞)

) ≤
d∑

k=1

μ{x ∈ Ed : xk = 0} + μ

(
d⋃

k=1

{x ∈ Ed : xk = ∞}
)

= 0.

Let Md denote the class of exponent measures on Ed with property (8). As stated in Lemma 5
below and proved in Appendix B, members of this class are conveniently characterized through
the following concept, which extends the notion of a survival function.

Definition 3. The generalized survival function Sμ : Ed → [0,∞) of an exponent measure μ ∈
Md is defined, for all x ∈ Ed , by Sμ(x) = μ(x,∞].

Note that Sμ is well defined as for all x ∈ Ed , the set (x,∞] is relatively compact and hence
μ(x,∞] < ∞. In what follows, let also Sd = {Sμ : μ ∈ Md}.

Lemma 5. If Sμ : Ed → [0,∞) for some μ ∈ Md , then Sμ has the following properties:

(i) Sμ(x) → 0 when xk → ∞ for at least one k ∈ {1, . . . , d}.
(ii) Sμ is right-continuous, that is, for all x ∈ Ed ,

∀ε∈(0,∞)∃δ∈(0,∞)∀y≥x ‖y − x‖1 < δ ⇒ ∣∣Sμ(y) − Sμ(x)
∣∣ < ε.

(iii) For all x,y ∈ Ed such that x ≤ y, the Sμ-volume of [x,y] is non-negative, that is,∑
c∈Sx,y

sign(c)Sμ(c) ≥ 0,

where Sx,y = {c ∈ Ed : ∀k∈{1,...,d}ck ∈ {xk, yk}} and

sign(c) =
{

1 if ck = yk for an even number of integers k ∈ {1, . . . , d},
−1 if ck = yk for an odd number of integers k ∈ {1, . . . , d}.

Conversely, if a function S : Ed → [0,∞) satisfies the above three conditions, it is the general-
ized survival function of a unique exponent measure μ ∈Md .

Finally, we introduce the notion of �1-norm symmetric exponent measure, which is key to the
study of distributions of the form (5) and which parallels the notion of an �1-norm symmetric
distribution [5,24].
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Definition 4. An exponent measure μ ∈ Md is called �1-norm symmetric if there exists a map
�μ : (0,∞) → [0,∞) such that �μ(t) → 0 ≡ �μ(∞) as t → ∞ and, for all x ∈ Ed ,

Sμ(x1, . . . , xd) = �μ(x1 + · · · + xd).

The map �μ, which is unique, is called the generator of μ.

To generate an �1-norm symmetric exponent measure μ, the map �μ must be such that Sμ sat-
isfies conditions (i)–(iii) of Lemma 5. The following result, proved in Appendix B, characterizes
the class Ld of generators of �1-norm symmetric exponent measures μ ∈Md .

Proposition 2. A map � : (0,∞) → [0,∞) belongs to Ld if and only if � is d-monotone and
�(t) → 0 as t → ∞.

Now suppose that μ is an �1-norm symmetric exponent measure with generator �μ. It then
emerges from (B.3) in the proof of Lemma 5 that, for any x > 0,

μ[−∞,x]� =
d∑

k=1

(−1)k+1
∑

A⊆{1,...,d},|A|=k

�μ

(∑
j∈A

xj

)
.

The max-id distribution Hμ with exponent measure μ defined in (7) is thus precisely of the form
(5) with F = Fμ, where

Fμ(t) =
{

e−�μ(t) if t ∈ (0,∞),

0 otherwise.

If in addition �μ(t) → ∞ as t → 0, then Fμ is continuous, and so is Hμ. The unique underlying
copula of Hμ is then reciprocal Archimedean with generator Fμ. Furthermore, the generator of
μ satisfies �μ = − ln(Fμ). This insight allows for the complete characterization of the class Fd

of reciprocal Archimedean generators in any given dimension d ≥ 2.

Theorem 1. A continuous distribution function F having support [0, xF ] for some 0 < xF ≤ ∞
belongs to Fd if and only if the map � = − ln(F ) on (0,∞) is d-monotone and satisfies �(t) →
0 as t → ∞, and �(t) → ∞ as t → 0, that is, � ∈ Ld and �(t) → ∞ as t → 0. The class of all
such functions � is denoted L0

d .

Proof. The necessity of the conditions on � was established in Proposition 1. Sufficiency fol-
lows from the discussion preceding Theorem 1 given that � ∈ Ld by Proposition 2, that is,
� = �μ is the generator of an �1-norm symmetric exponent measure μ ∈Md . �

Corollary 2. A distribution function HF of the form (5) for some F ∈ Fd is a continuous max-
id distribution with �1-norm symmetric exponent measure μF generated by � = − ln(F ) with
� ∈ L0

d , and vice versa.



3760 C. Genest, J. G. Nešlehová and L.-P. Rivest

Thus, for any F ∈ Fd , the reciprocal Archimedean copula CF is precisely the dependence
structure of a continuous max-id distribution whose exponent measure is �1-norm symmetric and
generated by � = − ln(F ). In particular, therefore, reciprocal Archimedean copulas are multi-
variate totally positive in the sense of [1]. As they are also associated, they are both positive lower
and upper orthant dependent; see, for example, Theorem 8.6 in [13].

Remark 3. Theorem 1 and its corollary resemble the characterization of d-variate Archimedean
copulas. As shown in [21,24], a function ψ : [0,∞) → [0,∞) generates an Archimedean copula
in dimension d if and only if ψ is d-monotone and such that ψ(0) = 1 and ψ(t) → 0 as t → ∞.
Furthermore, it was established in [24] that Archimedean copulas are precisely the dependence
structures of continuous �1-norm symmetric distributions, that is, distributions whose survival
function is of the form S(x) = ψ(x1 + · · · + xd) for all x ∈ Rd+.

For later use, illustrations of the above notions are presented below. They pertain to the bivari-
ate Galambos and Clayton copulas with positive dependence.

Example 3. For the generator FG with parameter θ ∈ (0,∞) given in Example 1, one has
�G(t) = − ln{FG(t)} = t−1/θ for all t ∈ (0,∞). Clearly, �G satisfies the limit conditions at
0 and ∞. For any k ∈ N, the kth derivative of �G is given, for all t ∈ (0,∞), by

�
(k)
G (t) = (−1)kt−k−1/θ

k−1∏
�=0

(� + 1/θ).

In particular, therefore, �G is d-monotone for any d ≥ 2 and FG can generate a reciprocal
Archimedean copula in any dimension. This d-variate copula is the so-called multivariate Galam-
bos extreme-value copula [11].

Example 4. For the generator FC with parameter θ ∈ (0,∞) given in Example 2, one has
�C(t) = − ln{FC(t)} = − ln(1 − e−t )/θ for all t ∈ (0,∞). Obviously, �C satisfies the limit
conditions at 0 and ∞. For all t ∈ (0,∞), one has �

(1)
C (t) = −e−t /{θ(1 − e−t )} and it can

further be shown by induction that, for any integer k ≥ 2,

�
(k)
C (t) = (−1)k

e−t

θ(1 − e−t )k

k−2∑
�=0

Ak−1,�e
−�t ,

where, for each k ∈N and � ∈ {0, . . . , k − 1}, Ak,� is the Eulerian number, that is, the number of
permutations of {1, . . . , k} having � permutation ascents [10], Section 6.2. These coefficients are
such that Ak,0 = Ak,k−1 = 1 and for all � ∈ {1, . . . , k − 2},

Ak,� = (� + 1)Ak−1,� + (k − �)Ak−1,�−1.

Writing Ak(t) = Ak,0 + Ak,1t + · · · + Ak,k−1t
k−1 for the kth Eulerian polynomial with the con-

vention that A0(t) = 1, one also has, for all k ∈ N,

�
(k)
C (t) = (−1)k

e−t

θ(1 − e−t )k
Ak−1

(
e−t

)
.
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Because the Eulerian numbers are all strictly positive, �C is d-monotone for any d ≥ 2 and
hence FC can generate a reciprocal Archimedean copula in any dimension. As mentioned in
Example 1 and first observed in [14], FC is a Clayton copula in dimension d = 2. Interestingly,
however, CF , called here the reciprocal Clayton copula, is not Clayton when d ≥ 3. A numerical
verification of this fact is given in [19].

4. Geometric structure of �1-norm exponent measures

We next show that �1-norm symmetric exponent measures have a geometric structure that par-
allels the stochastic representation of �1-norm symmetric distributions. From [24], the latter are
known to be the distributions of random vectors R × S, where R is a strictly positive random
variable, independent of the d-variate random vector S uniformly distributed on the simplex

Sd = {s ∈ [0,1]d : ‖s‖1 = 1}.
The following result provides an analogous representation of �1-norm symmetric exponent mea-
sures. Its proof can be found in Appendix C, along with the characterization of d-monotone
functions due to Williamson [29] on which it relies.

Theorem 2. A measure μ on Ed is an �1-norm symmetric exponent measure if and only if the
image measure of μ by the polar coordinate transformation

T : Ed → (0,∞] × Sd : (x1, . . . , xd) �→
(

‖x‖1,
x1

‖x‖1
, . . . ,

xd

‖x‖1

)

is of the form νμ × σd , where σd is the uniform probability distribution on Sd and νμ is a Radon
measure on (0,∞] such that νμ{∞} = 0, termed the radial measure. Furthermore, the generator
�μ of μ is the Williamson d-transform of νμ, that is, for any t ∈ (0,∞),

�μ(t) =Wd(νμ)(t) ≡
∫ ∞

t

(1 − t/r)d−1 dνμ(r), (9)

and conversely νμ is determined through the inverse Williamson d-transform of �μ, that is, for
any r ∈ (0,∞), the generalized survival function Sνμ(r) = νμ(r,∞] of νμ satisfies

Sνμ(r) =W
−1
d (�μ)(r) ≡

d−2∑
k=0

(−1)k�
(k)
μ (r)

k! rk + (−1)d−1�μ
(d−1)
+ (r)

(d − 1)! rd−1, (10)

where �μ
(d−1)
+ denotes the right-hand derivative of �

(d−2)
μ .

The above result is an analogue of Theorem 3.1 in [24] and justifies the term “�1-norm sym-
metric exponent measure.” The radial measure νμ parallels the notion of the radial distribution of
an �1-norm symmetric distribution. Before proceeding, we compute the latter for the Galambos
and the reciprocal Clayton copulas.
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Example 5. Consider the generator FG of the Galambos copula given in Example 1 and let μG

denote the �1-norm symmetric exponent measure generated by �G = − ln(FG). The generalized
survival function SνG

of the radial measure νG of μG is easily computed using the derivatives of
�G given in Example 3. For all r ∈ (0,∞),

SνG
(r) = r−1/θ

d−1∑
k=0

1

k!
k−1∏
�=0

(� + 1/θ) = θ

B(d,1/θ)
r−1/θ ,

where B(α,β) = �(α)�(β)/�(α + β) denotes the Beta function at any α,β ∈ (0,∞).

Example 6. Consider the generator FC of the reciprocal Clayton copula given in Example 2 and
let μC denote the �1-norm symmetric exponent measure generated by �C = − ln(FC). Calcula-
tions in Example 4 imply that the generalized survival function SνC

of the radial measure νC of
μC satisfies, for all r ∈ (0,∞),

SνC
(r) = 1

θ

{
− ln

(
1 − e−r

)+
d−1∑
k=1

e−r rk

k!(1 − e−r )k
Ak−1

(
e−r

)}
,

where Ak is the Eulerian polynomial defined in Example 4.

The geometric structure of �1-norm symmetric exponent measures resembles that of exponent
measures corresponding to multivariate extreme-value distributions with unit Fréchet margins.
Indeed, as detailed, for example, in Section 5.4.1 in [26], a distribution function G is multivariate
extreme-value with �1 margins if and only if it is a max-id distribution of the form (7), whose
exponent measure μ ≡ μG is such that for any Borel set B ⊂ Ed and t ∈ (0,∞), μG(B) =
tμG(tB). Thus, the image measure of μG by T is νG ×ςd , where for any r ∈ (0,∞), νG(r,∞] =
d/r and ςd is a probability distribution on Sd with mean 1/d .

While, for max-id distributions with �1-norm symmetric exponent measure, the measure on
Sd is fixed and the radial measure can vary, for multivariate extreme-value distributions with �1

margins we have the exact opposite, that is, the radial measure is fixed while the measure on Sd

can vary. Because the mean of the uniform distribution σd is 1/d , the only distribution which
belongs to both classes is the max-id distribution HF with F = �1. Indeed, as can be deduced
from Example 5, νF (r,∞] = d/r .

This observation is not in contradiction with the fact that all Galambos copulas are both re-
ciprocal Archimedean and extreme-value as seen in Example 3. This is because the above dis-
cussion was limited to extreme-value distributions with unit Fréchet margins. However, it begs
the question of whether any other extreme-value copula can be expressed in the form (3) for an
appropriate choice of F ∈Fd . The answer is negative, as stated below and proved in Appendix C.

Proposition 3. A copula CF ∈ Cd for some F ∈ Fd is extreme-value if and only if F is a Fréchet
distribution, that is, there exists θ ∈ (0,∞) such that, for all t ∈ (0,∞), F(t) = �1/θ (t) =
e−t−1/θ

. The Galambos copulas are thus the only extreme-value copulas in the class Cd .
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The result in Proposition 3 is thus parallel to the characterization of Gumbel copulas as the
only Archimedean copulas that are extreme-value [8].

5. Stochastic representation and simulation

It will now be shown that any max-id distribution HF with F ∈ Fd has a convenient stochas-
tic representation that leads to an algorithm for generating observations from a reciprocal
Archimedean copula. Recall that HF has an �1-norm symmetric exponent measure μF gen-
erated by � = − ln(F ), as established in Corollary 2. The stochastic representation of HF can
then be obtained by combining Theorem 2 with results from [2,9] described, for example, in
Example 5.7 in [26]. In what follows, ε denotes the Dirac measure and a ∨ b = max(a, b).

Proposition 4. Given any F ∈ Fd , let HF be of the form (5) and let νF be the radial measure
corresponding to � = − ln(F ) through (10). Further, let ζ = ∑

k ε(rk,sk) be a Poisson random
measure (PRM) on (0,∞]×Sd with mean measure νF ×σd . Then HF is the distribution function
of the vector

Y = (Y1, . . . , Yd) = max
k

(rk × sk) ∨ 0, (11)

where the maximum is understood as a component-wise operation.

Proof. By Theorem 2, the image measure of νF ×σd by T −1 is the �1-norm symmetric exponent
measure μF generated by �. Thus, for any y ∈ Ed ,

Pr(Y ≤ y) = Pr
[
ζ
{
T
([−∞,y]�)} = 0

] = exp
{−μF [−∞,y]�} = HF (y),

while Pr(Y ≤ 0) = Pr[ζ {T (Ed)} = 0] = 0 because μF (Ed) = ∞. �

Now suppose that CF is a d-variate reciprocal Archimedean copula generated by F ∈ Fd .
From Sklar’s representation and Corollary 2, we know that CF is the copula of the max-id dis-
tribution HF whose exponent measure μF is �1-norm symmetric with radial measure νF . This
also means that CF is the copula of the random vector Y in (11). In principle, a random sample
from CF can thus be obtained by generating observations from Y .

The difficulty with this approach is that νF × σd{(0,∞] × Sd} = μF (Ed) = ∞, which means
that realizations of the PRM ζ cannot be generated explicitly. To circumvent this problem, con-
sider a decreasing sequence of constants ∞ = �0 > �1 > · · · > 0 such that �k → 0 as k → ∞
and for every integer k ∈N, set Dk = (�k,�k−1] × Sd so that ζ = ∑∞

k=1 ζk , where ζk is a PRM
on Dk with mean measure νF ×σd restricted to Dk . Because νF ×σd(Dk) = νF (�k,�k−1] < ∞,
one has that, for every integer k ∈ N,

ζk =
Nk∑
i=1

ε(Rki ,Ski ),
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where Nk is a Poisson random variable with parameter λk = νF (�k,�k−1] which is independent
of two independent and i.i.d. sequences Rk1,Rk2, . . . and Sk1,Sk2, . . . . Furthermore, for every
i ∈ N, Ski is uniformly distributed on the unit simplex Sd and Rki is a positive random variable
with

Pr(Rki > r) =
⎧⎨
⎩

SνF
(r ∨ �k) − SνF

(�k−1)

SνF
(�k) − SνF

(�k−1)
if r < �k−1,

0 if r ≥ �k−1,

(12)

where SνF
is the generalized survival function of νF . As a consequence, one can write Y =

max(Y 1,Y 2, . . .), where

Y k = (Yk1, . . . , Ykd) = max(Rk1 × Sk1, . . . ,RkNk
× SkNk

) ∨ 0.

Note that by construction, the vectors Y k are mutually independent. Now consider the sequence
of cumulative maxima W k where, for every k ∈ N,

W k = (Wk1, . . . ,Wkd) = max(Y 1, . . . ,Y k)

and fix an arbitrary element ω of the underlying probability space �. Clearly, the sequence
W 1(ω),W 2(ω), . . . is increasing. By construction, one also has Y�j (ω) ≤ ��−1 for all j ∈
{1, . . . , d} and � ∈ N. Thus for any k ∈ N, the realizations Yj (ω) and Wkj (ω) are equal as soon as
Wkj (ω) > �k . If Wkj (ω) ≤ �k , then Yj (ω) ≤ �k , so that |Yj (ω) − Wkj (ω)| ≤ �k . This implies
that for every ω ∈ �, W k(ω) ↑ Y (ω) as k → ∞.

Thus we propose to approximate Y by WK for some suitable K ∈N. This leads to the follow-
ing algorithm for generating samples from the reciprocal Archimedean copula CF .

Algorithm 1. Let CF be a d-variate reciprocal Archimedean copula with generator F ∈Fd . Let
� = − ln(F ) and νF be the radial measure of the �1-norm symmetric exponent measure μF of
HF , as given in (10). Let also ∞ = �0 > �1 > · · · be a decreasing sequence such that �k → 0
as k → ∞ and let K ∈ N be a fixed integer. To generate an observation U from CF , proceed as
follows.

Step 1. (Initialization) Set k = 0 and W 0 = 0.
Step 2. (Iteration)

2a. Set k = k + 1 and compute λk = νF (�k,�k−1] = SνF
(�k) − SνF

(�k−1).
2b. Generate Nk from the Poisson distribution with parameter λk .
2c. Draw Nk independent observations Rk1, . . . ,RkNk

from the distribution with
survival function (12).

2d. Draw Nk independent d-variate random vectors Ek1, . . . ,EkNk
whose compo-

nents are independent unit exponential variables and for each � ∈ {1, . . . ,Nk},
set Sk� = Ek�/(Ek�,1 + · · · + Ek�,d).

2e. For each � ∈ {1, . . . ,Nk}, set Xk� = Rk� × Sk�.
2f. Set Y k = max(Xk1, . . . ,XkNk

) if Nk > 0 and Y k = 0 otherwise.
2g. Set W k = max(Y k,W k−1).
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Step 3. (Stopping criterion). If k = K or Wkj > �k for each j ∈ {1, . . . , d}, then set Y = W k

and go to Step 4. Otherwise, go to Step 2.
Step 4. (Output) Set U = (F (Y1), . . . ,F (Yd)).

The performance of Algorithm 1 clearly depends on the choice of the sequence (�k) and the
integer K that bounds the number of iterations. From our experiments and the simulations used
in this paper, it suffices to set K = 2 provided that �1 and �2 are well chosen. When selecting
�1, a trade-off between speed and accuracy arises. When �1 is small, chances are high that all
components of W 1 will be above �1, in which case W 1 is a realization of the vector Y and
there is no need for further iterations. However, a small value of �1 also means that the Poisson
parameter λ1 is large. High values of N1 are then likely, which in turn may result in unnecessarily
large samples in Steps 2c–d. This is wasteful and can slow down the algorithm considerably.

The choice of �1 is further complicated by the fact that the meaning of “small” depends on
the generator F and the dimension d . To see how to proceed, we first derive a lower bound on
the probability that Algorithm 1 with K > 1 requires only one iteration.

Lemma 6. For arbitrary F ∈ Fd and � ∈ (0,∞), let ζ ∗ = ∑
k ε(rk,sk) be a PRM on (�,∞]×Sd

with mean measure νF × σd . Let also Y ∗ = maxk(rk × sk) ∨ 0. Then

Pr
(
Y ∗

1 > �, . . . , Y ∗
d > �

) = H̄F (�, . . . ,�) ≥ {
1 − F(�)

}d
,

where H̄F denotes the survival function of HF .

This result suggests the following procedure for selecting �1 in order to generate a random
sample of size n from a reciprocal Archimedean copula CF .

Rule of Thumb 1. Choose p ∈ (0,1) and let �1 be the largest � for which the probability of n

consecutive runs of Algorithm 1 with K > 1 requiring one iteration each is at least p.

Because H̄F (�, . . . ,�) as a function of � may be cumbersome to invert, especially in high
dimension d , we suggest to use the inequality in Lemma 6, viz.

p = {Pr(Y11 > �, . . . , Y1d > �)}
¯
n ≥ {1 − F(�)}nd (13)

so that �1 is given by

�1 = F−1{1 − p1/(nd)}. (14)

In what follows, Eq. (14) is used with p = 0.99 and it seemed enough to take �2 = �1 ×10−4

to catch the cases where Algorithm 1 requires more than one iteration.
As an illustration of Algorithm 1 and the implementation of Rule of Thumb 1, its performance

is explored below for the Galambos and the reciprocal Clayton family.

Example 7. To generate a random sample of size n from the d-variate Galambos copula with
parameter θ ∈ (0,∞), Algorithm 1 must be implemented with the measure νG defined in Ex-
ample 5. In the first iteration, one must draw N1 ∼ P(λ1) with λ1 = θ�

−1/θ

1 /B(d,1/θ) and
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R1 from a Pareto distribution with shape parameter 1/θ and scale parameter �1, that is, for all
r > �1, Pr(R1 > r) = (�1/r)1/θ . Based on Eq. (14), �1 = [− ln{1 −p1/(nd)}]−θ . The left panel
of Figure 1 shows how �1 varies as a function of Kendall’s τ (which is the same for all pairs
of components) when p = 0.99, n = 1000 and d ∈ {2,5,10}. The top panel of Figure 2 displays
samples of this size when τ = 0.5.

Example 8. To generate a random sample from the d-variate reciprocal Clayton copula with
parameter θ ∈ (0,∞), Algorithm 1 must be implemented with the measure νC defined in
Example 6. This requires numerical inversion for the generation of R1. Based on Eq. (14),
�1 = − ln[1 − {1 − p1/(nd)}θ ]. The right panel of Figure 1 shows how �1 varies as a func-
tion of Kendall’s τ (which is the same for all pairs of components) when p = 0.99, n = 1000 and
d ∈ {2,5,10}. The bottom panel of Figure 2 displays samples resulting from Algorithm 1 when
τ = 0.5 and d ∈ {2,3}, and compares the trivariate sample to a sample of the same size from the
trivariate Clayton Archimedean copula with τ = 0.5.

Additional examples of reciprocal Archimedean copulas are discussed in Section 5. In our
experience, the values of �1 given by Rule of Thumb 1 tend to be too conservative. As evidenced
by Figure 1, the value of �1 decreases as the dimension of the vector and the dependence between
its components increase. This suggests that to improve the performance of Algorithm 1, the lower
bound given in (13) would need to be refined by taking into account this dependence. We leave
this issue aside for the time being.

Figure 1. Variation, as a function of bivariate Kendall’s τ , of �1 based on Eq. (14) when p = 0.99 and
n = 1000 for the d-variate Galambos copula (left) and reciprocal Clayton copula (right) in dimension d = 2
(red), 5 (blue), and 10 (black).
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Figure 2. Upper panel: Random samples of size 1000 from the bivariate (upper left) and trivariate (upper
right) Galambos copula with dependence τ = 0.5 between all pairs. Lower panel: Random samples of size
1000 from the bivariate Clayton (lower left) and trivariate (upper right) Clayton copula (red) and reciprocal
Clayton (blue) copula with dependence τ = 0.5 between all pairs.

6. Illustrations

This section explores mechanisms by which new classes of multivariate reciprocal Archimedean
copulas can be constructed. Two approaches are considered, depending on whether it is pre-
ferred to specify a parametric class of reciprocal Archimedean generators directly or through the
corresponding radial measure. Before proceeding, recall that:
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(i) By construction, all reciprocal Archimedean copulas are exchangeable and max-id. There-
fore, these copulas are multivariate totally positive and associated [1,13] and capable of
modeling positive association only.

(ii) As already mentioned at the end of Section 2, the independence copula � does not belong
to the class Cd in any dimension d ≥ 2. This is also easily seen from Condition (8), which
prevents the �1-norm symmetric exponent measure μ of a reciprocal Archimedean copula
from placing any mass on the axes going through 0. In contrast, the exponent measure of
the max-id distribution with independent, identical margins F places all its mass on the
axes going through the origin.

6.1. Specifying the radial measure

The easiest way to construct the reciprocal Archimedean generator F ∈ Fd is through the radial
measure ν. To accomplish this, one must first choose S ∈ S1, that is, a non-increasing, right-
continuous function S : (0,∞) → [0,∞) such that S(t) → 0 as t → ∞ and S(t) → ∞ as t → 0.
Then one sets ν(t,∞] = S(t) for all t ∈ (0,∞). By Theorem 2, the generator of the correspond-
ing �1-norm symmetric exponent measure μ ∈ Md is given by the Williamson d-transform of ν,
that is, for any t ∈ (0,∞),

�(t) =
∫ ∞

t

(1 − t/r)d−1 dν(r).

By construction, we then have that � ∈ Ld , as well as �(t) → 0 as t → ∞ and �(t) → ∞ as
t → 0, so that, by Theorem 1, the distribution function given by

F(t) =
{

e−�(t) if t ∈ (0,∞),

0 otherwise

is a valid reciprocal Archimedean generator in dimension d , that is, F ∈ Fd .
This approach is not only advantageous because the conditions on S are easily met but also

because S is explicit, which is useful in Step 2c of Algorithm 1. However, this often comes at the
cost of an intractable formula for � and F , because the Williamson d-transform of ν may not be
explicit. Nonetheless, the integral it involves is one-dimensional, so Step 4 of Algorithm 1 can in
principle be carried out using numerical integration.

Perhaps the most natural (though already known) example of such a construction is the Galam-
bos copula, for which S(t) ∝ t−1/θ for all t ∈ (0,∞), as computed in Example 5. Below, we
expand on it and explore what happens when S vanishes beyond some point κ ∈ (0,∞).

Example 9. Consider the “truncated” version of the generalized survival function corresponding
to the d-variate Galambos copula, given, for θ ∈ (0,∞) and κ ∈ (0,∞), by

Sθ,κ (r) =
⎧⎨
⎩

θ

B(d,1/θ)
r−1/θ if r ∈ (0, κ],

0 otherwise.
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Note that Sθ,κ is discontinuous at t = κ . For any t ∈ (0, κ), we have

�θ,κ(t) = 1

B(d,1/θ)

{
θ(1 − t/κ)d−1κ−1/θ +

∫ κ

t

(1 − t/r)d−1r−1/θ−1 dr

}

while �θ,κ(t) ≡ 0 for all t ∈ [κ,∞). Elementary calculations lead to the alternative expression

�θ,κ(t) = t−1/θ + κ−1/θ

B(d,1/θ)

d−1∑
�=1

θ

� + 1/θ

1

B(�, d − �)

(
− t

κ

)�

,

valid for all t ∈ (0, κ). An explicit expression for the reciprocal Archimedean generator Fθ,κ then
follows from the fact that, for all t ∈ (0,∞), Fθ,κ(t) = e−�θ,κ (t).

When d = 2, one has, for all t ∈ (0, κ), �θ,κ(t) = t−1/θ − tκ−1/θ−1 and hence

Fθ,κ(t) =
{

exp
(−t−1/θ + tκ−1/θ−1) if t ∈ (0, κ],

1 otherwise.

The fact that Fθ,κ has a finite upper endpoint xF = κ implies that when x1 +x2 ≥ κ , the bivariate
distribution HF reduces to independence, viz. HF (x1, x2) = F(x1)F (x2). Consequently, at any
u1, u2 ∈ [0,1] such that F−1(u1) + F−1(u2) ≥ κ , the reciprocal Archimedean copula CF gen-
erated by F reduces to the independence copula, that is, CF (u1, u2) = u1u2. This is illustrated
in Figure 3, which shows samples of size n = 1000 for θ = 1 and various values of κ . The plots
also suggest that there is a singularity along the curve F−1(u1) + F−1(u2) = κ , drawn in red.
This is indeed the case and due to the fact that Sθ,κ is discontinuous at κ , as explained in Re-
mark 4 below. Finally, note that CF converges to the independence copula when κ → 0 while
CF converges to the Galambos copula with parameter θ when κ → ∞.

Remark 4. Given F ∈ Fd , let HF be of the form (5) and νF be the radial measure correspond-
ing to � = − ln(F ) through (10). Let also U = (U1, . . . ,Ud) be distributed as the reciprocal

Figure 3. Random samples of size 1000 from the bivariate truncated Galambos copula from Example 9
with θ = 1.28 and κ = 1 (left), κ = 2 (middle) and κ = 10 (right). The curve F−1(u1) + F−1(u2) = κ is
indicated in red.
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Archimedean copula CF . If νF has an atom at κ ∈ (0,∞), then

Pr{F−1(U1) + · · · + F−1(Ud) = κ} > 0,

implying that CF has a singular component. To see why this holds, let Y be the random vector
distributed as HF and ζ be the PRM with mean measure νF × σd , as in Proposition 4. Now fix
some arbitrary 0 < ε < 1/{d(d − 1)} and set

Bε = {
s ∈ Sd : ∀i∈{1,...,d−1}si ∈ [1/d − ε,1/d + ε]}

Clearly, if s ∈ Bε , then sd ∈ [1/d − (d − 1)ε,1/d + (d − 1)ε] ⊂ [0,1] by the choice of ε. As a
consequence, σd(Bε) > 0. Now set δ = κ{1/d − (d − 1)ε}, so that 0 < δ < κ , and introduce the
following partition of (0,∞] × Sd :

A1 = (κ,∞]×Sd , A2 = {κ}×Bε, A3 = {κ}×B�
ε , A4 = (δ, κ]×Sd , A5 = (0, δ]×Sd .

The event {Y1 + · · · + Yd = κ} occurs in particular if ζ(Aj ) = 0 for j ∈ {1,3,4} and ζ(A2) = 1.
Given that νF × σd(Aj ) ∈ (0,∞) for j ∈ {1,2,3,4}, one has

Pr(Y1 + · · · + Yd = κ) ≥ νF

({κ})× σd(Bε) ×
4∏

j=1

e−νF ×σd(Aj ) > 0,

as claimed. The exact computation of Pr(Y1 + · · · + Yd = κ) seems cumbersome, however.

Next, note the following fact, whose proof is straightforward and therefore omitted.

Lemma 7. Let S ∈ S1 be a generalized survival function of a radial measure ν with Williamson
d-transform �. Then for any θ ∈ (0,∞), θS ∈ S1 is the generalized survival function of νθ = θν.
Furthermore, the Williamson d-transform of νθ is θ�.

In view of Lemma 7, parametric families of reciprocal Archimedean copulas can be created
by first choosing a baseline reciprocal Archimedean generator F through a generalized survival
function S as outlined above, and then considering the class of reciprocal Archimedean copulas
generated by the Lehmann alternatives of F , viz. {Fθ : θ ∈ (0,∞)}.
Example 10. For any t ∈ (0,∞) and θ ∈ (0,∞), set Sθ (t) = θ(e1/t − 1). Straightforward cal-
culations lead to the following expression for the generator of the corresponding �1-norm sym-
metric exponent measure, valid for all t ∈ (0,∞):

�θ(t) = θ

∫ ∞

t

(1 − t/r)d−1e1/r (1/r)2 dr = θe1/t tdγ (d,1/t),

where for any x ∈ (0,∞), γ (d, x) = ∫ x

0 zd−1e−z dz denotes the lower incomplete Gamma func-
tion. Consequently, the reciprocal Archimedean generator of this “reciprocal Gamma” family is
given, for all t ∈ (0,∞), by

Fθ(t) = exp{−θe1/t tdγ (d,1/t)}.
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Figure 4. Random samples of size 1000 from the bivariate reciprocal Gamma family from Example 10
with θ = 0.1 (left), θ = 1 (middle) and θ = 100 (right).

Figure 4 shows samples of size n = 1000 from this copula for various values of θ when d = 2.
As the plots suggest, this family can only capture low degrees of dependence.

6.2. Specifying the exponent measure generator �

An alternative strategy for the construction of reciprocal Archimedean copulas consists of speci-
fying the generator directly through a choice of � ∈ L0

d , that is, a d-monotone function on (0,∞)

such that �(t) → 0 as t → ∞ and �(t) → ∞ as t → 0. By Theorem 2, the generalized survival
function Sν of the corresponding radial measure ν is then given, for all t ∈ (0,∞), by the inverse
Williamson d-transform of �, viz.

Sν(t) =
d−2∑
k=0

(−1)k�(k)(t)

k! tk + (−1)d−1�
(d−1)
+ (t)

(d − 1)! td−1.

The main advantage of this strategy is the explicit form of the reciprocal Archimedean generator
F = e−� and consequently of the reciprocal Archimedean copula itself. This makes Step 4 of Al-
gorithm 1 easy to carry out. However, there are two major disadvantages. First, choosing a valid
� is not straightforward, especially in higher dimensions, because the d-monotonicity condition
is not easily met or verified. More importantly, the formula for Sν is likely to be cumbersome,
because it involves a number of higher order derivatives of � that may be tedious to compute
explicitly. This in turn complicates matters in Step 2c of Algorithm 1, as the random generation
therein requires the inverse of Sν .

A prototype of this construction strategy is the reciprocal Clayton copula, already detailed in
Examples 2, 4 and 6. The following example shows how it could be generalized.

Example 11. Let ϕ : [0,1] → [0,∞) be a completely monotone function such that ϕ(1) = 0 and
ϕ(t) → ∞ as t → 0. Consider the function defined, for all t ∈ (0,∞), by

�(t) = ϕ(1 − e−t ).
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Then � is clearly decreasing and such that �(t) → 0 as t → ∞ while �(t) → ∞ as t → 0.
Through an application of Faà di Bruno’s formula, one can also see that the kth derivative of �

is given, for all t ∈ (0,∞), by

�(k)(t) =
∗∑ k!

m1! · · ·mk!ϕ
(m)

(
1 − e−t

) k∏
j=1

{
(−1)j+1

j ! e−t

}mj

,

where m = m1 + · · · + mk and �∗ denotes a sum over all k-tuples of non-negative integers
(m1, . . . ,mk) such that m1 + 2m2 + · · · + kmk = k. In this expression, (−1)j+1e−t is the j th
derivative of 1 − e−t . Elementary manipulations lead to the simplified form

�(k)(t) = (−1)k
∗∑ k!∏k

j=1 mj !(j !)mj
(−1)mϕ(m)

(
1 − e−t

)
e−mt ,

which shows that (−1)k�(k) is non-negative, owing to the fact that ϕ is completely monotone and
hence (−1)mϕ(m) ≥ 0 for any integer m ≥ 0. Consequently, � ∈ L0

d for any d ≥ 2 and F = e−�

can generate a reciprocal Archimedean copula in any dimension.
A trivial example of completely monotone function ϕ is given, for fixed θ ∈ (0,∞) and all

t ∈ R, by ϕ(t) = −θ ln(t). The corresponding generator � is that of the reciprocal Clayton copula
already considered in Examples 2, 4 and 6. Another example is provided by defining, for fixed
θ ∈ (0,∞) and all t ∈ (0,∞), ϕ(t) = t−θ − 1. One then has, for all t ∈ (0,∞), �(t) = (1 −
e−x)−θ − 1 and F(t) = exp{1 − (1 − e−x)−θ }.

Next, observe that the class L0
d of valid generators � is closed under sums and products.

Lemma 8. Let �1, �2 be arbitrary elements in L0
d . Then �1�2 ∈ L0

d and �1 + �2 ∈ L0
d .

Proof. To verify that �1�2 and �1 + �2 satisfy the limit conditions at 0 and ∞ and that �1 +
�2 is d-monotone is straightforward. The fact that �1�2 is d-monotone follows directly from
Theorem 5 in [29]. �

The final example of this section shows how Lemma 8 can be used to create new families of
reciprocal Archimedean copulas.

Example 12. For t ∈ (0,∞) and θ1, θ2 ∈ (0,∞), let �θ1(t) = t−1/θ1 and �θ2(t) = − ln(1 −
e−t )/θ2 be the exponent measure generators corresponding to the Galambos and reciprocal
Clayton copulas, respectively (see Examples 1–2). Consider the exponent measure generator
�θ1,θ2 = �θ1 + �θ2 whose corresponding reciprocal Archimedean generator is Fθ1,θ2 = Fθ1Fθ2 ,
where Fθi

= e−�j for j ∈ {1,2}.
To draw a random sample from the family generated by Fθ1,θ2 one can use the fact that

HFθ1,θ2
= HFθ1

HFθ2
is the distribution of Y θ1 ∨ Y θ2 , where for j ∈ {1,2}, Y θj

is a random vector
distributed as HFθj

. Alternatively, Algorithm 1 can be used directly. To this end, it is particularly
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Figure 5. Random samples of size 1000 from the bivariate reciprocal mixture copula from Example 12
with (θ1, θ2) = (1.28,0.1) (left), (5,1) (middle) and (8,2) (right).

convenient that by Theorem 2, the generalized survival function of the radial measure corre-
sponding to �θ1,θ2 is of the form Sθ1,θ2 = Sθ1 + Sθ2 , where for j ∈ {1,2} Sθj

is the generalized
survival function of the radial measure corresponding to �θj

. Eq. (12) then implies that the sur-
vival function of the radial variable Rk,i that needs to be sampled from in Step 2c is a mixture,
that is, for all r ∈ (0,∞),

Pr(Rk,i > r) = αk Pr(R1
k,i > r) + (1 − αk)Pr(R2

k,i > r),

where the mixing probability is given by αk = {Sθ1(�k) − Sθ1(�k−1)}/{Sθ1(�k) + Sθ2(�k) −
Sθ1(�k−1) − Sθ2(�k−1)} and for j ∈ {1,2}, Pr(Rj

k,i > r) is the survival function of the radial
variable corresponding to Sθj

, that is, as in Eq. (12) with SνF
replaced by Sθj

.
Figure 5 shows samples of size 1000 for various values of θ1 and θ2 when d = 2. Although the

right-hand picture suggests that there is both upper- and lower-tail dependence, it can be checked
using Lemma 3 that λU > 0 but λL = 0.

7. The completely monotone case

As mentioned, for example, in [20] in a financial context, extendible dependence structures are
often useful in high-dimensional problems. Reciprocal Archimedean copulas can be used in this
context provided that the corresponding generator F belongs to Fd for all d ≥ 2. The Galam-
bos and reciprocal Clayton copulas satisfy this requirement, as do the families considered in
Examples 11 and 12.

Theorem 1 implies that if F ∈ Fd for every d ≥ 2, F must be logarithmically completely
monotone on (0,∞), that is, � = − ln(F ) must be completely monotone on (0,∞). By the
well-known Hausdorff–Bernstein–Widder theorem [28], Theorem 12b, page 161, � is then the
Laplace transform of a non-negative measure ωF on [0,∞), that is, for all t ∈ (0,∞),

�(t) =
∫ ∞

0
e−st dωF (s). (15)
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Because �(t) → 0 when t → ∞ and �(t) → ∞ when t → 0, the measure ωF satisfies ωF {0} =
0 and ωF [0,∞) = ∞.

Example 13. For the Galambos copula with parameter θ ∈ (0,∞), �G(t) = t−1/θ for all t ∈
(0,∞); see Example 1. Setting, for all s ∈R+, ωFG

[0, s] = s1/θ /�(1 + 1/θ), one finds∫ ∞

0
e−stωFG

(s) = 1/θ

�(1 + 1/θ)

∫ ∞

0
e−st s1/θ−1 ds = t−1/θ = �G(t).

Example 14. For the reciprocal Clayton copula with parameter θ ∈ (0,∞), FC(t) = (1−e−t )1/θ

for all t ∈ (0,∞); see Example 2. Expanding �C = − ln(FC) in Taylor series, one can see that
the non-negative measure ωFC

whose Laplace transform is �FC
satisfies, for all t ∈ (0,∞),

�C(t) = −1

θ
ln(1 − e−t ) = 1

θ

∞∑
k=1

e−kt

k
=

∫ ∞

0
e−ts dωFC

(s).

Therefore, ωFC
is a discrete measure assigning mass 1/(θk) to every k ∈N.

Because of Eq. (15), reciprocal Archimedean copulas having a logarithmically completely
monotone generator have an alternative form, as stated next and proved in Appendix E.

Proposition 5. Suppose that F ∈ Fd is such that � = − ln(F ) is completely monotone on
(0,∞). Then, for all u1, . . . , ud ∈ (0,1),

CF (u1, . . . , ud) = exp

[∫ ∞

0

[
d∏

k=1

{
1 − e−sF−1(uk)

}− 1

]
dωF (s)

]
.

The following result shows how the measure ωF is related to the radial measure νF . It also
gives an alternative stochastic representation of reciprocal Archimedean copulas with logarith-
mically completely monotone generators.

Proposition 6. Suppose that F ∈ Fd is such that � = − ln(F ) is completely monotone on
(0,∞). Let νF be the radial measure corresponding to � through Eq. (10) and ωF be such
that Eq. (15) holds for all t ∈ (0,∞). Then the following statements hold.

(i) Let g : (0,∞)×[0,∞) → (0,∞] be the mapping defined, for all x ∈ (0,∞) and w ∈R+,
by g(x,w) = x/w. Let also εd denote the Erlang distribution with parameter d ∈ N. Then
the image measure of εd × ωF by g is νF .

(ii) Let h : (0,∞)d × [0,∞) → Ed be the mapping defined, for all s ∈ (0,∞)d and t ∈ R+,
by h(x, t) = x/t . Let also ε1 denote the unit exponential distribution and ξ = ∑

k ε(xk,wk)

be a PRM on (0,∞)d × [0,∞) with mean measure ε1 × · · · × ε1 × ωF . Then HF is the
distribution function of the random vector

Z = max
k

(xk/wk) ∨ 0.
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Again, there is a clear parallel between this representation and that of Archimedean copulas
with completely monotone generators in terms of multiplicative hazard models. In the present
context, the measure ωF plays the same role as the frailty distribution.

Finally, it is worth pointing out the relation between the Laplace transform (15) and the
Williamson d-transform appearing in Theorem 2. To this end, suppose that ν is an arbitrary
measure on (0,∞] such that ν(0,∞] = ∞, ν(r,∞] < ∞ for any r ∈ (0,∞), and ν{∞} = 0.
Furthermore, for any d ≥ 2, let νd denote the image measure of ν by the mapping x �→ dx. Then
the following holds, for any t ∈ (0,∞), by Lebesgue’s Dominated Convergence theorem:

lim
d→∞Wd(νd)(t) = lim

d→∞

∫ ∞

t

(
1 − t

r

)d−1

dνd(r)

= lim
d→∞

∫ ∞

t/d

(
1 − t

dr

)d−1

dν(r)

=
∫ ∞

0
e−t/r dν(r).

In other words, the Williamson d-transform of νd , as d → ∞, becomes the Laplace transform of
the image measure of ν by the mapping x �→ 1/x.

8. The case F−1(0) > 0

In this section, we briefly comment on the condition F−1(0) = sup{x ∈ R : F(x) = 0} = 0 that
was imposed throughout this article. First recall from Remark 2 that while F−1(0) < 0 cannot
occur, F−1(0) > 0 is indeed possible. For arbitrary a ∈ (0,∞), let Fa

d denote the set of all
continuous distribution functions F such that F−1(0) = a and such that CF given by (3) is a
bona fide d-dimensional copula. Let also Ca

d = {CF : F ∈Fa
d }.

As a first observation, note that for any integer d ≥ 2 and a ∈ (0,∞), the independence copula
� is included in Ca

d . Indeed, let F be an arbitrary continuous distribution function with support
[a, b], where b ≤ 2a. Then for arbitrary u ∈ [0,1]d and j ∈ {1, . . . , d}, F−1(uj ) ≥ a. Conse-
quently, for any set A ⊆ {1, . . . , d} with |A| ≥ 2, F {∑j∈A F−1(uj )} = 1 and hence CF given by
(3) reduces to the independence copula.

Because CF = � for any continuous F whose support is [a, b] with a ∈ (0,∞) and b ≤ 2a,
Lemma 1 concerning the uniqueness of a reciprocal Archimedean generator no longer holds.
It is also clear from this example that � = − ln(F ) does not need to be d-monotone when
F ∈ Fa

d , and hence Proposition 1 does not extend to this case. Nevertheless, as stated below,
d-monotonicity of � is sufficient and implies the max-id property. From the proof given in Ap-
pendix F, however, the exponent measure of HF is no longer �1-norm symmetric.

Proposition 7. Let � be a d-monotone map on (a,∞) for some a ∈ (0,∞) such that �(t) → 0
as t → ∞ and �(t) → ∞ as t → a. Then F = e−� ∈Fa

d and CF given by (3) is max-id.
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For any F ∈ Fd and any a ∈ (0,∞), Proposition 7 implies that Fa ∈ Fa
d , where Fa is given,

for all t ∈ R, by Fa(t) = F(t − a). When d = 2, CFa is given, for all u1, . . . , ud ∈ [0,1], by

CFa (u1, . . . , ud)

=
∏

A∈Pd,o

F

{∑
k∈A

F−1(uk) + a
(|A| − 1

)}/ ∏
A∈Pd,e

F

{∑
k∈A

F−1(uk) + a
(|A| − 1

)}
.

This shows that reciprocal Archimedean copulas in Cd can be extended using a “shift” parame-
ter a. This is of interest in particular because if xF < ∞ and a ≥ xF , then CFa = �.

9. Discussion

The main purpose of this article was to introduce a new class of multivariate copulas that are
tractable, interpretable, and relatively easy to simulate. In dimension d ≥ 2, these copulas are of
the form (3) for some distribution function F having support [0, xF ] with 0 < xF ≤ ∞ whose
logarithm � = − ln(F ) is d-monotone. We propose to call them reciprocal Archimedean copulas
because of their affinity with classical Archimedean copulas in the bivariate case; cf. (1) and (2).
As was seen, however, the parallel between these two classes of copulas extends much further.

Given the popularity of the Archimedean class, one can easily imagine that reciprocal
Archimedean copulas will gradually find applications in situations where it makes sense to
use a positive, symmetric (exchangeable) dependence structure. Algorithm 1 ensures that ran-
dom samples from members of this broad class of copulas can be generated with relative ease.
In subsequent work, we hope to explore inferential issues associated with the use of recipro-
cal Archimedean copulas in multivariate data analysis. Reciprocal Archimedean copulas whose
generators are such that F−1(0) > 0 may also merit further research. However, given the uniden-
tifiability issue mentioned in Section 8, inference within that class will require particular care.

Appendix A: Proofs of the results in Section 2

Proof of Lemma 1. Sufficiency is obvious. To show necessity, suppose that F,G ∈ Fd generate
the same copula C = CF = CG ∈ Cd . As any bivariate margin of C is of the form (1), one then
has, for all u1, u2 ∈ (0,1),

F {F−1(u1) + F−1(u2)} = G{G−1(u1) + G−1(u2)}.
Equivalently, if s, t are arbitrary elements in the support of F , then G−1 ◦ F(s) + G−1 ◦ F(t) =
G−1 ◦F(s + t), which shows that G−1 ◦F satisfies Cauchy’s functional equation on the support
of F . Given that G−1 ◦ F is non-decreasing, the only possible solution is of the form G−1 ◦
F(t) = κt for some κ ∈ (0,∞). This concludes the argument. �

The proof of Proposition 1 uses several basic properties of d-monotone functions, which are
summarized below for convenience, along with a definition of the concept. For additional details,
see, for example, [24,28,29].
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Definition. Let a, b ∈ R̄ and f = f (0) be a real-valued function defined on (a, b). For each
k ∈N, let f (k) denote the kth derivative of f when it exists.

(i) f is called 1-monotone if it is non-negative and non-increasing on (a, b).
(ii) f is called d-monotone if it is differentiable up to the order d − 2 on (a, b) and if,

for all k ∈ {0, . . . , d − 2} and x ∈ (a, b), one has (−1)kf (k)(x) ≥ 0, and further if
(−1)d−2f (d−2) is non-increasing and convex in (a, b).

(iii) If f has derivatives of all orders in (a, b) and if (−1)kf (k)(x) ≥ 0 for all k ∈ N and x in
(a, b), then f is said to be completely monotone.

Lemma A.1. Let a, b ∈ R̄ and f be a real-valued function defined on (a, b). Let f̃ be a function
defined at each x ∈ (−b,−a) by f̃ (x) = f (−x). Further let d ∈ N be an integer. Then the
following statements are equivalent:

(i) f is d-monotone on (a, b);
(ii) f is non-negative and for all k ∈ {1, . . . , d}, x ∈ (−b,−a) and h1, . . . , hk ∈ (0,∞) such

that −b < x + h1 + · · · + hk < −a, one has

�hk
· · ·�h1 f̃ (x) =

∑
B⊆{1,...,k}

(−1)k−|B|f̃
(

x +
∑
i∈B

hi

)
≥ 0,

where �hk
· · ·�h1 denotes a sequential application of the first-order difference operator

�h given by �hf̃ (x) ≡ f̃ (x + h) − f̃ (x) whenever x and x + h are in (−b,−a).

Proof. This result is excerpted from Proposition A.1 in [24]. What remains to be shown is that
for any k ∈ {1, . . . , d}, any x ∈ (−b,−a) and any h1, . . . , hk ∈ (0,∞) such that −b < x + h1 +
· · · + hk < −a, one has

�hk
· · ·�h1 f̃ (x) =

∑
B⊆{1,...,k}

(−1)k−|B|f̃
(

x +
∑
i∈B

hi

)
.

This follows easily by induction on k. Indeed, for k = 1, the right-hand side reduces to f̃ (x +
h1) − f̃ (x), which is precisely �h1 f̃ (x). Now suppose that the statement is true for all integers
up to k ∈ {1, . . . , d − 1}. Then for arbitrary x ∈ (−b,−a) and h1, . . . , hk+1 ∈ (0,∞) such that
−b < x + h1 + · · · + hk+1 < −a, one has

�hk+1 · · ·�h1 f̃ (x)

= �hk+1

∑
B⊆{1,...,k}

(−1)k−|B|f̃
(

x +
∑
i∈B

hi

)

=
∑

B⊆{1,...,k}
(−1)k−|B|f̃

(
x +

∑
i∈B

hi + hk+1

)
−

∑
B⊆{1,...,k}

(−1)k−|B|f̃
(

x +
∑
i∈B

hi

)

=
∑

B⊆{1,...,k+1}
(−1)k+1−|B|f̃

(
x +

∑
i∈B

hi

)
,
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as claimed. �

Proof of Proposition 1. First, note that the limits of � at 0 and infinity follow directly from the
fact that � = − ln(F ) and that F(0) = 0. Furthermore, if CF given by (3) is a copula, Sklar’s
representation theorem guarantees that HF given by (5) is a d-variate cumulative distribution
function. Consequently, all lower-dimensional margins of HF are distribution functions as well.
Note that for every k ∈ {1, . . . , d}, the k-dimensional margin of HF is of the same form as HF

itself, that is, for all x1, . . . , xk ∈ [0,∞), one has

HFk(x1, . . . , xk) = lim
min(yk+1,...,yd )→∞HF (x1, . . . , xk, yk+1, . . . , yd)

=
∏

A∈Pk,o

F

(∑
i∈A

xi

)/ ∏
A∈Pk,e

F

(∑
i∈A

xi

)
.

Next, fix k ∈ {1, . . . , d} and h1, . . . , hk, t ∈ (0,∞) such that t − (h1 + · · · + hk) > 0. Because
HFk is non-decreasing in its last argument, one has

HF

(
h1, . . . , hk−1, t −

k∑
i=1

hi

)
≤ HFk

(
h1, . . . , hk−1, t −

k−1∑
i=1

hi

)
. (A.1)

From the form of HFk , it follows directly that

HFk

(
h1, . . . , hk−1, t −

k∑
i=1

hi

)
=

∏
A∈Pk,o

k /∈A

F(
∑

i∈A hi)
∏

A∈Pk,o

k∈A

F(t − ∑
i /∈A hi − hk)∏

A∈Pk,e

k /∈A

F(
∑

i∈A hi)
∏

A∈Pk,e

k∈A

F(t −∑
i /∈A hi − hk)

and similarly that

HFk

(
h1, . . . , hk−1, t −

k−1∑
i=1

hi

)
=

∏
A∈Pk,o

k /∈A

F(
∑

i∈A hi)
∏

A∈Pk,o

k∈A

F(t −∑
i /∈A hi)∏

A∈Pk,e

k /∈A

F(
∑

i∈A hi)
∏

A∈Pk,e

k∈A

F(t −∑
i /∈A hi)

.

Upon substitution into (A.1) and cancellation of common terms, the inequality reduces to∏
A∈Pk,o

k∈A

F(t − ∑
i /∈A hi)

∏
A∈Pk,e

k∈A

F(t −∑
i /∈A hi − hk)∏

A∈Pk,e

k∈A

F(t − ∑
i /∈A hi)

∏
A∈Pk,o

k∈A

F(t −∑
i /∈A hi − hk)

≥ 1.

Now observe that {B ⊆ {1, . . . , k} : k − |B| is odd} is the same as{
B ⊆ {1, . . . , k} : k /∈ B and k − |B| is odd

}
∪ {

B ∪ {k},B ⊆ {1, . . . , k} : k /∈ B and k − |B| is even
}
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and that a similar identity holds for {B ⊆ {1, . . . , k} : k − |B| is even}. Then (A.1) becomes

∏
B⊆{1,...,k},k−|B| is odd

F

(
t −

∑
i∈B

hi

)/ ∏
B⊆{1,...,k},k−|B| is even

F

(
t −

∑
i∈B

hi

)
≥ 1,

which is equivalent to

∑
B⊆{1,...,k}

(−1)k−|B|�
(

t −
∑
i∈B

hi

)
=

∑
B⊆{1,...,k}

(−1)k−|B|�̃
(

−t +
∑
i∈B

hi

)
≥ 0,

where the map �̃ : (−∞,0) → [0,∞) is defined, for all x ∈ (−∞,0), by �̃(x) = �(−x). Given
that this inequality holds for all k ∈ {1, . . . , d} and arbitrary t, h1, . . . , hk ∈ (0,∞) with t − (h1 +
· · · + hk) > 0, the d-monotonicity of � follows directly from Lemma A.1. �

Proof of Corollary 1. Given arbitrary x1 < y1 and x2 < y2, Lemma A.1 implies that

�(x1 + y2) + �(x2 + y1) ≤ �(x1 + x2) + �(y1 + y2).

This is equivalent to F(x1 + y2)F (x2 + y1) ≥ F(x1 + x2)F (y1 + y2) and to

F(x1)F (x2)F (y1)F (y2)

F (x1 + x2)F (y1 + y2)
≥ F(x1)F (x2)F (y1)F (y2)

F (x1 + y2)F (y1 + x2)
.

In view of the definition of HF , this is equivalent to (6). �

Proof of Lemma 2. The formula for Blomqvist’s beta is immediate from the definition, that is,
β(CF ) = −1 + 4CF (1/2,1/2). To derive the expression for Spearman’s rho, first use integration
by parts to check that∫ ∞

0

F(x2)

F (x1 + x2)
dF (x2) = 1

2
+ 1

2

∫ ∞

0

F 2(x2)

F 2(x1 + x2)
f (x1 + x2) dx2.

Upon substitution into the definition of ρ(CF ), one then gets

ρ(CF ) = −3 + 12
∫ ∞

0

∫ ∞

0
H(x1, x2) dF (x2) dF (x1)

= −3 + 6
∫ ∞

0
F(x1) dF (x1) + 6

∫ ∞

0

∫ ∞

0
F(x1)

F 2(x2)

F 2(x1 + x2)
f (x1)f (x1 + x2) dx2 dx1

= 6
∫ ∞

0
H 2(x1, x2)r(x1)f (x1 + x2) dx2 dx1.

Similarly,

ρ(CF ) = 6
∫ ∞

0
H 2(x1, x2)r(x2)f (x1 + x2) dx2 dx1.
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The formula reported in the statement of the lemma is simply the average of these two expres-
sions. Finally, to obtain the formula for Kendall’s tau, first write

τ(CF ) = −1 + 4
∫ ∞

0

∫ ∞

0
H(x1, x2) dH(x1, x2)

= −1 + 4
∫ ∞

0

∫ ∞

0
H(x1, x2)h(x1, x2) dx2 dx1,

where, for all x1, x2 ∈ (0,∞),

h(x1, x2) = H(x1, x2)r
′(x1 + x2) + H(x1, x2){r(x1 + x2) − r(x1)}{r(x1 + x2) − r(x2)}.

Upon substitution into the definition of τ(CF ), one can check that the result holds if

2H 2(x1, x2)r
′(x1 + x2) + 4H 2(x1, x2){r(x1 + x2) − r(x1)}{r(x1 + x2) − r(x2)}

integrates to 1 over (0,∞)2, which is obvious as it is the density of H 2. �

Proof of Lemma 3. (i) If F̄ ∈ RV−α , then xF = ∞. Consequently,

λU(CF ) = 2 − lim
t→∞

1 − F 2(t)/F (2t)

1 − F(t)
= 2 − lim

t→∞
F(2t) − F 2(t)

F (2t){1 − F(t)} .

Writing the numerator of the latter fraction as F(2t) − 1 + {1 − F(t)}{1 + F(t)} and noting that
{1 + F(t)}/F (2t) → 2 as t → ∞, one finds

λU(CF ) = lim
t→∞

1 − F(2t)

F (2t){1 − F(t)} = 2−α.

By the same argument, it also follows that λU(CF ) = 0 if xF = ∞ and F̄ is rapidly varying.
Finally, if xF < ∞, one has

λU(CF ) = 2 − lim
t↑xF

1 + F(t)

F (2t)
+ lim

t↑xF

1 − F(2t)

F (2t){1 − F(t)} = 0.

(ii) First note that F ∗ is a survival function whose upper endpoint is ∞, from the assumption
that the support of F is of the form [0, xF ]. By definition of λL(CF ), one has

λL(CF ) = lim
t↓0

F(t)

F (2t)
= lim

t→∞
F ∗(t)

F ∗(t/2)
.

This limit is either 2−β if F ∗ ∈ RV−β , or 0 if F ∗ is rapidly varying, as claimed. �
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Appendix B: Proofs of the results in Section 3

Proof of Lemma 5. Let Sμ be the generalized survival function of an exponent measure μ ∈
Md . The proof that Sμ satisfies (i)–(iii) is analogous to establishing the well-known properties
of a survival function of a multivariate probability distribution. To show (i) it suffices, without
loss of generality, to consider the case x1 → ∞. Then for all x2, . . . , xd ∈R+,

lim
x1→∞Sμ(x1, . . . , xd) = μ

({∞} × (x2,∞] × · · · × (xd,∞]) = 0

from the fact that μ is an exponent measure; see Definition 2. Further, the property (ii) follows
directly from the fact that σ -finite measures are continuous from above. Finally, to see that (iii)
holds, note that for any x ≤ y ∈ Ed ,∑

c∈Sx,y

sign(c)Sμ(c1, . . . , cd) = μ
(
(x1, y1] × · · · × (xd, yd ]) ≥ 0. (B.1)

Conversely, suppose that S : Ed → [0,∞) satisfies (i)–(iii). Let E be the collection of all finite
unions of sets of the type (x,y] or {z ∈ Ed : zk = 0,∀i �=kxi < zi ≤ yi} for all x ≤ y ∈ Ed and
k ∈ {1, . . . , d}. Observe that E is a ring that generates the Borel σ -field on Ed and that Eqs. (B.1)
and (8) define μ on E . Given that μ is a pre-measure on E by property (ii), it can be uniquely
extended by the Carathéodory process to a measure on the entire σ -field of Ed . To show that μ

is an exponent measure, take any x > 0 and call on Poincaré’s identity to write

μ[−∞,x]� = μ

(
d⋃

k=1

{z ∈ Ed : zk > xk}
)

=
d∑

k=1

(−1)k+1
∑

A⊆{1,...,d},|A|=k

μ{z ∈ Ed : ∀j∈Azj > xj }.
(B.2)

In view of Condition (8), this may be rewritten as

μ[−∞,x]� =
d∑

k=1

(−1)k+1
∑

A⊆{1,...,d},|A|=k

μ{z ∈ Ed : ∀j∈Azj > xj ,∀j /∈Azj > 0}

=
d∑

k=1

(−1)k+1
∑

A⊆{1,...,d},|A|=k

S(xA) < ∞,

(B.3)

where xA ∈ Rd+ is a point whose j th coordinate equals xj if j ∈ A and zero otherwise. As S

satisfies (i), the right-hand side tends to 0 as x → ∞. Thus μ ∈Md by Lemma 4. �

Proof of Proposition 2. First, suppose that � is d-monotone and that �(t) → 0 as t → ∞. Set
�(∞) = 0 and define S(x) = �(x1 + · · · + xd) for all x ∈ Ed . To show that S is the generalized
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survival function of a measure μ ∈ Md , first note that S satisfies properties (i)–(ii) because
�(t) → 0 as t → ∞ and because � is continuous on (0,∞); see Lemma 2 in [24]. To establish
property (iii), note that for any x > 0 and h1, . . . , hd ∈ (0,∞) such that xk − hk > 0 for all
k ∈ {1, . . . , d}, Eq. (B.1) implies that

μ
(
(x1 − h1, x1] × · · · × (xd − hd, xd ]) =

∑
B⊆{1,...,d}

(−1)d−|B|�
(

d∑
k=1

xk −
∑
k∈B

hk

)
.

Next, introduce the map �̃ : (−∞,0) → [0,∞) defined, for all t ∈ (−∞,0), by �̃(t) = �(−t).
In view of Lemma A.1, one may conclude from the above calculation that

μ
(
(x1 − h1, x1] × · · · × (xd − hd, xd ]) = �h1 · · ·�hd

�̃

(
−

d∑
k=1

xk

)
≥ 0.

Thus S defines a unique exponent measure μ ∈ Md by Lemma 5.
Conversely, suppose that μ ∈Md is �1-norm symmetric with generator �μ. Then

lim
t→∞�μ(t) = lim

t→∞Sμ(t/d, . . . , t/d) = lim
t→∞μ

(
(t/d,∞] × · · · × (t/d,∞]) = 0

because μ is an exponent measure. Next, define the map �̃μ : (−∞,0) → [0,∞) at every t ∈
(−∞,0) by �̃μ(t) = �μ(−t). For any k ∈ {1, . . . , d}, x ∈ (−∞,0) and h1, . . . , hk ∈ (0,∞)

such that x + h1 + · · · + hk < 0, one has

�h1 · · ·�hk
�̃μ(x) =

∑
B⊆{1,...,k}

(−1)k−|B|�̃μ

(
x +

∑
i∈B

hi

)

=
k∑

j=0

(−1)k−j
∑

B⊆{1,...,k},|B|=j

�μ

{
−(k − j)x/k −

∑
i∈B

(x/k + hi)

}
.

Observing that the right-hand side is equal to

k∑
j=0

(−1)k−j
∑

B⊆{1,...,k},|B|=j

μ

{
x ∈ Ed : ∀i /∈Bxi > −x

k
and ∀i∈Bxi > −x

k
− hi

}
,

one may then conclude that

�h1 · · ·�hk
�̃μ(x) = μ

{
x ∈ Ed : ∀i∈{1,...,k}xi ∈ (−hi − x/k,−x/k]}.

As the last expression is clearly non-negative, �μ is d-monotone by Lemma A.1. �
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Appendix C: Proofs of the results in Section 4

The proof of Theorem 2 relies on Lemma 9 below, which characterizes d-monotone functions
using the results of [29]. Its proof is given for completeness; it proceeds along the same lines as
the proof of Proposition 3.1 in [24].

Lemma 9. A function f is d-monotone on (0,∞) if and only if there exists a unique Radon
measure ν on (0,∞] such that, for all t ∈ (0,∞),

f (t) =
∫ ∞

t

(1 − t/r)d−1 dν(r).

Letting f
(d−1)
+ denote the right-hand derivative of f (d−2), one also has, for any s ∈ (0,∞),

ν(r,∞] =
d−2∑
k=0

(−1)kf (k)(r)

k! rk + (−1)d−1f
(d−1)
+ (r)

(d − 1)! rd−1,

with ν(0,∞] = limt↓0 f (t) and ν{∞} = limt→∞ f (t).

Proof of Lemma 9. Theorems 1 and 2 of [29] yield that f is d-monotone on (0,∞) if and only
if there exists a unique measure ν∗ on [0,∞) such that

f (t) =
∫ 1/t

0
(1 − rt)d−1 dν∗(r).

Its generalized distribution function γ is defined, for all r ∈ R+, by γ (r) = ν∗[0, r]. Theorem 3
in [29] implies γ (0−) = 0, γ (0) = f (∞) and for all r ∈ (0,∞),

γ (r) =
d−2∑
k=0

(−1)kf (k)(1/r)

k! r−k + (−1)d−1f
(d−1)
− (1/r)

(d − 1)! r−(d−1),

where f
(d−1)
− denotes the left-hand derivative of f (d−2). The term generalized distribution func-

tion is used because although γ is non-decreasing and right-continuous, it may not be that
γ (r) → 1 as r → ∞; in fact, it may happen that γ is not bounded from above.

The statement of Lemma 9 then follows upon letting ν be the image measure of ν∗ by the map
φ : [0,∞) → (0,∞] defined, for all r ≥ 0, by φ(r) = 1/r . Observe that ν is a Radon measure
on (0,∞] if and only if for all r ∈ (0,∞), ν(r,∞] < ∞. In particular, the function f given in
(9) is well defined and, for all r ∈ (0,∞), ν(r,∞] = ν∗[0,1/r) = γ (1/r−).

Finally, the fact that f (t) → ν(0,∞] as t → 0 follows from the integral representation of f

by Levi’s Monotone Convergence theorem and limt→∞ f (t) = ν{∞} follows from the proof of
Theorem 1 in [29]. �

Proof of Theorem 2. First, suppose that μ is a measure on Ed whose image measure by T is
νμ ×σd , where νμ is a Radon measure on (0,∞] such that νμ{∞} = 0. Because T is one-to-one,
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μ is the image measure of νμ × σd by T −1. To see that μ satisfies Condition (8), note that for
any k ∈ {1, . . . , d},

μ{x ∈ Ed : xk = 0} = μ

( ∞⋃
j=1

{x ∈ Ed : ∀i �=kxj > zjn and xk = 0}
)

= lim
n→∞μ{x ∈ Ed : ∀j �=kxj > zjn and xk = 0},

where (zn) is an arbitrary sequence such that zn > 0 and zn → 0 as n → ∞. The fact that
μ{x ∈ Ed : xk = 0} = 0 now follows because

μ{x ∈ Ed : ∀j �=kxj > zjn, xk = 0} = νμ

(∑
j �=k

zjn,∞
]

× σd{s ∈ Sd : sk = 0} = 0.

Furthermore, for any x ∈ Ed ,

μ(x,∞] = νμ × σd

{
(r, s) : r >

d∑
k=1

xk, s > x/r

}

=
∫ ∞

x1+···+xd

(
1 −

d∑
k=1

xk/r

)d−1

dνμ(r)

≡ �μ(x1 + · · · + xd).

(C.1)

Given that νμ{∞} = 0, it follows from Lemma 9 that �μ(t) → 0 as t → ∞. Put together, μ is
an �1-norm symmetric exponent measure with generator �μ =Wd(νμ).

Conversely, suppose that μ is an �1-norm symmetric exponent measure with generator �μ.
Proposition 2 implies that �μ is d-monotone on (0,∞) and such that �μ(t) → 0 as t → ∞.
By Lemma 9, �μ is the Williamson d-transform of a unique Radon measure νμ on (0,∞] such
that νμ{∞} = 0 and, for all r ∈ (0,∞), νμ(r,∞] = W

−1
d (�μ)(r). From (C.1), it follows that the

generalized survival function of μ is the same as the generalized survival function of the image
measure of νF ×σd by T −1. Lemma 5 and the fact that T is one-to-one thus imply that the image
measure of μ by T is νμ × σd , as claimed. �

Proof of Proposition 3. The result follows from the fact that if C ∈ Cd is extreme-value, F must
be a univariate extreme-value distribution. Because all bivariate margins of C are identical and
of the form (1) one can assume, without loss of generality, that d = 2. For arbitrary t ∈ (0,∞)

and u,v ∈ (0,1), one then has Ct(u1/t , v1/t ) = C(u, v). Thus, for arbitrary x, y ∈ (0,∞), HF

given by (5) satisfies

Ht
F (x, y) = [C{F(x),F (y)}]t = Ct [{F t(x)}1/t , {F t(y)}1/t ] = C{F t (x),F t (y)}.
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Given the specific form of C, however, this means that, for arbitrary t, x, y ∈ (0,∞), one has

F t (x)F t (y)

F t (x + y)
= F t (x)F t (y)

F {F−1 ◦ F t (x) + F−1 ◦ F t (y)}
or equivalently, F−1 ◦ F t (x + y) = F−1 ◦ F t (x) + F−1 ◦ F t (y). Accordingly, the map Gt =
F−1 ◦F t satisfies Cauchy’s functional equation on (0,∞), and hence it is linear. Given that Gt is
non-decreasing and that Gt(0) = 0, one can conclude that there exists a constant αt ∈ (0,∞) such
that, for all x ∈ (0,∞), Gt(x) = αtx or, equivalently, F t (x) = F(αtx). As this relationship holds
for all t ∈ (0,∞), it follows that F is max-stable [26], and hence an extreme-value distribution
whose support is (0,∞). One can further conclude from the Fisher–Tippett theorem that F is
a Fréchet distribution �θ for some θ ∈ (0,∞), that is, F(t) = �θ(t) = exp(−t−1/θ ) for all t ∈
(0,∞). From Example 1, the copula generated by F is the Galambos copula with parameter θ . �

Appendix D: Proof of Lemma 6

Denote by ν∗
F the restriction of the radial measure νF to (�,∞] and let μ∗

F be the image measure
of ν∗

F × σd through the transformation T −1. If then follows from Theorem 2 that μ∗
F is an �1-

norm symmetric exponent measure with generator given, for all t ∈ (0,∞), by �∗(t) = �(t ∨�).
Proceeding as in the proof of Proposition 4, one can see that Y ∗ has a max-id distribution with

joint distribution function given, for all x > 0, by H ∗(x) = e−μ∗
F [−∞,x]� . From the discussion

just preceding Theorem 1, one can conclude that H ∗ is of the form (5) with F replaced by
F ∗ = e−�∗

. As a result, one has, for all x ≥ (�, . . . ,�), H ∗(x) = HF (x). In particular, Pr(Y ∗
1 >

�, . . . , Y ∗
d > �) = H̄F (�, . . . ,�), as claimed. Finally, the inequality follows from the fact that

HF is positively upper orthant dependent (PUOD); see, for example, Theorem 8.6 in [13].

Appendix E: Proofs of the results in Section 7

Proof of Proposition 5. From the Hausdorff–Bernstein–Widder theorem, one can write � =
− ln(F ) in the form (15) for some non-negative measure ωF on [0,∞). Expression (3) then
simplifies, for all u1, . . . , ud ∈ (0,1), to

CF (u1, . . . , ud) = exp

{ ∑
A∈Pd,o∪Pd,e

(−1)|A|
∫ ∞

0
e−s

∑
k∈A F−1(uk) dωF (s)

}
,

which yields the stated result because Pd,o ∪Pd,e = {A ⊆ {1, . . . , d} : A �=∅} and

d∏
k=1

{
1 − e−sF−1(uk)

} =
∑

A⊆{1,...,d}

∏
k∈A

{−e−sF−1(uk)
}

by the multinomial formula. �
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Proof of Proposition 6. We prove part (i) by showing that the Williamson d-transform of the
image measure of εd × ωF by g, ν∗, say, is �. Indeed, for any t ∈ (0,∞),∫ ∞

t

(
1 − t

r

)d−1

dν∗(r) =
∫ ∞

0

∫ ∞

tw

(
1 − tw

x

)d−1
e−xxd−1

�(d)
dx dωF (w)

=
∫ ∞

0

e−tw

�(d)

∫ ∞

tw

(x − tw)d−1e−x+tw dx dωF (w)

=
∫ ∞

0
e−tw dωF (w)

= �(t).

The conclusion then follows from the fact, established in Lemma 9, that a Radon measure on
(0,∞] is uniquely specified by its Williamson d-transform.

Part (ii) follows from the fact that by Proposition 3.7 in [26], ξ̃ = ∑
k εxk/wk

is a PRM on Ed

with mean measure μ∗, which is the image measure of ε1 × · · · × ε1 × ωF by h. Now μ∗ clearly
satisfies Eq. (8). Moreover, the generalized survival function of μ∗ is given, for any y ∈ Ed , by

Sμ∗(y) = (ε1 × · · · × ε1 × ωF )
{
x ∈ (0,∞)d ,w ≥ 0 : ∀j∈{1,...,d}xj > wyj

}
=

∫ ∞

0

d∏
j=1

e−wyj dωF (w)

= �(y1 + · · · + yd).

In particular, therefore, μ∗ coincides with the �1-norm symmetric exponent measure μF gener-
ated by �. The rest of the argument is analogous to the proof of Proposition 4. �

Appendix F: Proof of Proposition 7

Fix a ∈ (0,∞), let a = (a, . . . , a) ∈ Rd and define Ea
d = [a,∞] \ {a}. For any I � {1, . . . , d},

define the function SI at any x ∈ (a,∞] by

SI (x) =
∑
B⊆I

(−1)|I |−|B|�
{∑

j /∈I

xj + a
(|I | − |B|)}.

Now let �̃ : (−∞,−a) → [0,∞) be given, for all t < −a, by �̃(t) = �(−t). It then follows
from Lemma A.1 that

SI (x) = �a · · ·�a︸ ︷︷ ︸
I times

�̃

(
−

∑
j /∈I

xj − a|I |
)

≥ 0.

In order to construct a measure μ on Ea
d , consider the ring Ea of all finite unions of sets of the

type {z ∈ Ea
d : ∀j∈I zj = a,∀j /∈I xj < zj ≤ yj } for all I � {1, . . . , d} and all x,y ∈ (a,∞] with
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x ≤ y. Then Ea generates the Borel σ -field on Ea
d . For any I � {1, . . . , d} and any x,y ∈ (a,∞]

with x ≤ y, set

μ{z ∈ Ea
d : ∀j∈I zj = a,∀j /∈I xj < zj ≤ yj } =

∑
c∈SI

x,y

sign(c)SI (c),

where SI
x,y = {z ∈ Ea

d : ∀j∈I zj = a,∀j /∈I zj ∈ {xj , yj }} and sign(c) is as in Lemma 5. The
right-hand side can be easily rewritten as

∑
c∈SI

x,y

sign(c)
∑
B⊆I

(−1)|I |−|B|�
{∑

j /∈I

xj + a
(|I | − |B|)}

=
∑

A⊆{1,...,d}
(−1)d−|A|�

{ ∑
j∈A∩I�

xj +
∑

j∈A�∩I�
yj + a

(|I | − |A ∩ I |)}.

(F.1)

Thus if one sets t = ∑
j /∈I yj + a|I |, hj = a if j ∈ I , and hj = yj − xj if j ∈ I�, then

∑
j∈A∩I�

xj +
∑

j∈A�∩I�
yj + a

(|I | − |A ∩ I |) = t −
∑
j∈A

hj > a.

By Lemma A.1(ii) and the d-monotonicity of �, the right-hand side of (F.1) equals

∑
A⊆{1,...,d}

(−1)d−|A|�
(

t −
∑
j∈A

hj

)
= �h1 · · ·�hd

�̃(−t) ≥ 0.

Therefore, μ is a pre-measure on Ea which can be extended to a measure on the entire σ -field of
Ea

d by the Carathéodory process. Furthermore, for any x > a and A ⊆ {1, . . . , d} with |A| = k ≥
1, one has

μ
{
z ∈ Ea

d : ∀j∈Azj > xj

}
=

∑
I⊆A�

μ
{
z ∈ Ea

d : ∀j∈Azj > xj ,∀j∈I zj = a,∀
j∈A�∩I�zj > a

}

=
∑

I⊆A�

∑
B⊆I

(−1)|I |−|B|�
{∑

j∈A

xj + a
(∣∣A�∣∣− |B|)}.

Because the summand only depends on the cardinality of the sets I and B , the last expression
simplifies to

d−k∑
�=0

�∑
m=0

(
d − k

�

)(
�

m

)
(−1)�−m�

{∑
j∈A

xj + a(d − k − m)

}
.
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By interchanging the order of summation and setting �∗ = � − m, one gets

d−k∑
m=0

(
d − k

m

)
�

{∑
j∈A

xj + a(d − k − m)

} d−k−m∑
�∗=0

(
d − k − m

�∗

)
(−1)�

∗
.

Clearly, the second summand vanishes unless d − k − m = 0. Hence,

μ{z ∈ Ea
d : ∀j∈Azj > xj } = �

(∑
j∈A

xj

)
.

From (B.2), it then follows that for any x > a,

μ[−∞,x]� =
d∑

k=1

(−1)k+1
∑

A⊂{1,...,d},|A|=k

�

(∑
j∈A

xj

)
, (F.2)

where � refers to the complement within Ea
d . Because �(t) → 0 as t → ∞, μ is an exponent

measure by a straightforward extension of Lemma 4 to Ea
d stated in Section 5.3 of [26]. Note in

passing that in contrast to the exponent measure constructed in the proof of Proposition 2 for a
similar purpose,

μ(Ea
d \ (a,∞]) = ∞, μ(a,∞] = �(da) < ∞.

As μ is an exponent measure on Ea
d , the distribution function defined, for all x ≥ a, by

Hμ(x) = e−μ[−∞,x]�

is max-id. Because �(t) → ∞ as t → a, the margins of Hμ are continuous. From (F.2), Hμ is
of the form (5) and its copula is reciprocal Archimedean with generator F , which concludes the
argument.
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