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In this paper, we are interested in the time derivative of the Wasserstein distance between the marginals of
two Markov processes. As recalled in the introduction, the Kantorovich duality leads to a natural candidate
for this derivative. Up to the sign, it is the sum of the integrals with respect to each of the two marginals of the
corresponding generator applied to the corresponding Kantorovich potential. For pure jump processes with
bounded intensity of jumps, we prove that the evolution of the Wasserstein distance is actually given by this
candidate. In dimension one, we show that this remains true for Piecewise Deterministic Markov Processes.
We apply the formula to estimate the exponential decrease rate of the Wasserstein distance between the
marginals of two birth and death processes with the same generator in terms of the Wasserstein curvature.

Keywords: birth and death processes; optimal transport; piecewise deterministic Markov processes; pure
jump Markov processes; Wasserstein distance

1. Introduction

The goal of this paper is to compute the time derivative of the �-Wasserstein distance between the
marginals of two Markov processes {Xt }t≥0 and {X̃t }t≥0. For � ≥ 1, the �-Wasserstein distance
between two probability measures P, P̃ on R

d is defined as

W�(P, P̃ ) =
(

inf
π∈�(P,P̃ )

∫
Rd×Rd

|x − y|�π(dx,dy)

)1/�

, (1.1)

where �(P, P̃ ) is the set of probability measures on R
d ×R

d with respective marginals P and P̃ .
It is well known that there exists π ∈ �(P, P̃ ) such that W

�
� (P, P̃ ) = ∫

Rd×Rd |x − y|�π(dx,dy)

(see, for instance, Theorem 3.3.11 of Rachev and Rüschendorf [16]).
It is possible to prove (see, for instance, Theorem 5.10 of Villani [18]) that:

W�
� (P, P̃ ) = sup

{
−

∫
Rd

φ(x)P (dx) −
∫
Rd

φ̃(y)P̃ (dy)

}
, (1.2)

where the supremum runs along all pairs (φ, φ̃) ∈ L1(P ) × L1(P̃ ) such that ∀(x, y) ∈ R
d ×

R
d , −φ(x) − φ̃(y) ≤ |x − y|� . Moreover, according to Theorem 5.10 of Villani [18], if∫
Rd |x|�P (dx) + ∫

Rd |y|�P̃ (dy) < +∞, there exists a couple (ψ, ψ̃) ∈ L1(P ) × L1(P̃ ) of �-
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convex functions such that W
�
� (P, P̃ ) = − ∫

Rd ψ(x)P (dx) − ∫
Rd ψ̃(y)P̃ (dy) and one is the �-

transform of the other, that is,

ψ(x) = − inf
y∈Rd

{|x − y|� + ψ̃(y)
}

and ψ̃(y) = − inf
x∈Rd

{|x − y|� + ψ(x)
}
. (1.3)

These functions ψ and ψ̃ are called Kantorovich potentials. For an optimal coupling π (which
is unique when � > 1 according to Theorem 6.2.4 of Ambrosio, Gigli and Savaré [3]), since∫
Rd×Rd −(ψ(x) + ψ̃(y))π(dx,dy) = W

�
� (P, P̃ ) = ∫

Rd×Rd |x − y|�π(dx,dy) and −(ψ(x) +
ψ̃(y)) ≤ |x − y|� , we necessarily have

π(dx,dy) a.e., −ψ(x) − ψ̃(y) = |x − y|�. (1.4)

In dimension d = 1, an optimal coupling π is the probability law of (F−1(U), F̃−1(U)) where
F(x) = P((−∞, x]) and F̃ = P̃ ((−∞, x]) are respectively, the cumulative distribution func-
tions of P and P̃ , F−1(u) = inf{x ∈ R,F (x) > u} and F̃−1(u) = inf{x ∈ R, F̃ (x) > u} their
right-continuous pseudo-inverse, and U is a uniform random variable on [0,1] (see Theo-
rem 3.1.2 of Rachev and Rüschendorf [16]). When F is continuous and � > 1, we explicit a
pair of Kantorovich potentials. Let us define

ψ(x) = �

∫ x

0

∣∣T (
x′) − x′∣∣�−2(

T
(
x′) − x′)dx′, T (x) = F̃−1(F(x)

)
, (1.5)

and ψ̃(y) = − inf{|x − y|� + ψ(x)}. Since r �→ �|r|�−2r and x �→ T (x) are nondecreasing, we
have for x, z ∈R,

ψ(x) − ψ(z) = �

∫ x

z

∣∣T (
x′) − x′∣∣�−2(

T
(
x′) − x′)dx′

≤ �

∫ x

z

∣∣T (x) − x′∣∣�−2(
T (x) − x′)dx′ = ∣∣T (x) − z

∣∣� − ∣∣T (x) − x
∣∣�.

Then, we have

ψ(x) + ∣∣T (x) − x
∣∣� = inf

z∈R
{
ψ(z) + ∣∣T (x) − z

∣∣�} = −ψ̃
(
T (x)

)
. (1.6)

Thus, π(dx,dy) = P(dx)δT (x)(dy) is the optimal coupling and T is called the optimal transport
map.

Let us now consider two R
d -valued Markov processes {Xt }t≥0 and {X̃t }t≥0 with respective

infinitesimal generators L and L̃ such that ∀t ≥ 0, E[|Xt |� + |X̃t |�] < ∞. For t ≥ 0, the �-
Wasserstein distance between the law Pt of Xt and the law P̃t of X̃t is given by

W�
� (Pt , P̃t ) = −

∫
Rd

ψt (x)Pt (dx) −
∫
Rd

ψ̃t (y)P̃t (dy),

where ψt, ψ̃t are Kantorovich potentials associated with (Pt , P̃t ).
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The above duality gives a very natural candidate for the time derivative of t �→ W
�
� (Pt , P̃t ).

Indeed, for t > 0, let us assume that (ψt , ψ̃t ) ∈ L1(Ps) × L1(P̃s) for s ∈ (t − ε, t + ε) for some
ε > 0. Then, we have

W�
� (Ps, P̃s) ≥ −

∫
Rd

ψt (x)Ps(dx) −
∫
Rd

ψ̃t (x)P̃s(dx).

For h > 0, choosing s = t + h then (when t ≥ h) s = t − h leads to

1

h

(
W�

� (Pt+h, P̃t+h) − W�
� (Pt , P̃t )

) ≥ − 1

h

∫
Rd

ψt (x)
(
Pt+h(dx) − Pt (dx)

)
− 1

h

∫
Rd

ψ̃t (x)
(
P̃t+h(dx) − P̃t (dx)

)
,

1

h

(
W�

� (Pt , P̃t ) − W�
� (Pt−h, P̃t−h)

) ≤ − 1

h

∫
Rd

ψt (x)
(
Pt(dx) − Pt−h(dx)

)
− 1

h

∫
Rd

ψ̃t (x)
(
P̃t (dx) − P̃t−h(dx)

)
.

If ψt and ψ̃t are respectively, in the domains of the generators L and L̃, one has∫
Rd

ψt (x)
(
Pt (dx) − Ps(dx)

) =
∫ t

s

∫
Rd

Lψt (x)Pr(dx)dr,∫
Rd

ψ̃t (x)
(
P̃t (dx) − P̃s(dx)

) =
∫ t

s

∫
Rd

L̃ψ̃t (x)P̃r (dx)dr.

Plugging these equalities for s = t + h and s = t − h in the previous inequalities and letting
h → 0, leads, under continuity (resp. differentiability) at time t of r �→ ∫

Rd Lψt (x)Pr(dx) +∫
Rd L̃ψ̃t (x)P̃r (dx) (resp. r �→ W

�
� (Pr , P̃r )), to

d

dt
W�

� (Pt , P̃t ) = −
∫
Rd

Lψt (x)Pt (dx) −
∫
Rd

L̃ψ̃t (x)P̃t (dx). (1.7)

In the present paper, we are interested in the slightly weaker integral formula : ∀0 ≤ s ≤ t ,

W�
� (Pt , P̃t ) − W�

� (Ps, P̃s) = −
∫ t

s

(∫
Rd

Lψr(x)Pr(dx) +
∫
Rd

L̃ψ̃r (x)P̃r (dx)

)
dr. (1.8)

We will prove that it holds when {Xt }t≥0 and {X̃t }t≥0 are pure jump Markov processes with
bounded intensity of jumps and such that t �→ E[|Xt |�(1+ε) + |X̃t |�(1+ε)] is locally bounded
for some ε > 0. The interest of this result is reinforced by the fact that (like in the proof of the
Hille–Yoshida theorem) one can approximate any Markov process using a sequence of pure jump
Markov processes with increasing jump intensity. Using this approximation procedure, we check
that (1.8) still holds for one-dimensional Piecewise Deterministic Markov Processes evolving
according to an ordinary differential equation between jumps with finite intensity. Even if the
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case of deterministic processes evolving according to time-dependent ordinary differential equa-
tions is covered by Ambrosio, Gigli and Savaré [3] (see in particular Theorem 8.4.7), it is not
so easy to mix jumps and ODEs. That is why our derivation of (1.6) for PDMPs is restricted
to the one-dimensional setting where we can take advantage of the explicit knowledge of the
optimal transport map. For diffusion processes, the Euler–Maruyama discretization scheme pro-
vides another approximation procedure considered in Alfonsi, Jourdain and Kohatsu-Higa [2].
The interest of an exact formula for the time derivative goes beyond the issue of controlling the
Wasserstein stability of a single Markov process, a topic that has been the object of intensive
research in the recent years, especially in the diffusion case. Such a formula can also be used
to analyze approximation procedures like the Euler–Maruyama discretization scheme studied in
Alfonsi, Jourdain and Kohatsu-Higa [1], Alfonsi, Jourdain and Kohatsu-Higa [2]. Concerning
the Wasserstein stability of Markov semi-groups, many authors have studied the Wasserstein
contraction property, namely the existence of constants κ,C > 0 such that

∀P0, P̃0 s.t.
∫
Rd

|x|�(P0 + P̃0)(dx) < ∞,

∀t ≥ 0, W�(Pt , P̃t ) ≤ Ce−κtW�(P0, P̃0).

(1.9)

For the heat semi-group on a smooth Riemannian manifold, von Renesse and Sturm [19] proved
that the fact the Ricci curvature of the manifold is bounded from below by κ is equivalent to (1.9)
with C = 1 for all � ≥ 1 or even a single � ≥ 1. Concerning stochastic differential equations with
additive Brownian noise

dXt = dWt + b(Xt )dt, (1.10)

the Wasserstein contraction with C = 1 for one or all � ≥ 1 is equivalent to the monotonicity
property ∀x, y ∈ R

d, (x − y) · (b(x)− b(y)) ≤ −κ|x − y|2. To check the sufficiency, it is enough
to compute |Xt − X̃t |� by the Itô formula where (Xt )t≥0 and (X̃t )t≥0 are two solutions driven
by the same Brownian motion (synchronous coupling) and with respective initial marginals P0
and P̃0. Recently, considering Wf (P, P̃ ) = infπ∈�(P,P̃ )

∫
Rd×Rd f (|x − y|)π(dx,dy) for a well

chosen increasing concave function f and using the reflection coupling, Eberle [8] was able to
prove the exponential decay of Wf (Pt , P̃t ) and deduce (1.9) with � = 1 and C > 1 for drift func-
tions b satisfying the monotonicity property only outside some ball. In this setting, the restriction
of the Wassertein contraction property with C = 1 and � = 2 to the case when P̃0 is the invariant
probability measure of the SDE had been proved by Bolley, Gentil and Guillin [5] by some esti-
mation closely related to (1.7) (see also Bolley, Gentil and Guillin [6] for an extension to a class
of SDEs nonlinear in the sense of McKean). The W1 contraction by Eberle [8] was extended to

∀� ≥ 1,∀t ≥ 0,∀x, y ∈R
d,

W�(Pt , P̃t ) ≤ Ce−λt/�
(|x − y|1/�1{|x−y|<1} + |x − y|1{|x−y|≥1}

) (1.11)

when (P0, P̃0) = (δx, δy) by Luo and Wang [14] for SDEs with additive Brownian noise and by
Wang [21] when dWt is replaced by the infinitesimal increment of a Lévy process with Lévy
measure larger than the one of a symmetric stable process. In the case of a pure jump Lévy noise,
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Luo and Wang [15] proved the Wassertein contraction with � = 1 under some Doeblin condi-
tion on the translations of the Lévy measure local in the translation parameter. The Wassertein
distance Wf with f (x) = √

x had already been used by Bardet et al. [4] to prove Wasserstein
contraction for the piecewise deterministic TCP Markov process. Recently, Wang [20] obtained
Wasserstein contraction with C > 1 for a class of diffusion semi-groups generated by weighted
Laplacians on Riemannian manifolds with negative curvature and for related stochastic differen-
tial equations with multiplicative noise.

The paper is organized as follows. In Section 2, we give some results on the integrability prop-
erties of the Kantorovich potentials and in the one-dimensional case (d = 1) of the translated
optimal transport map. In Section 3, we state the main result, namely formula (1.8) for the evo-
lution of the Wasserstein distance between the marginals of two pure jump Markov processes.
In Section 4, we apply this formula to estimate the Wasserstein distance between the marginals
of two birth and death processes with the same generator and obtain (1.11) with λ equal to the
Wasserstein curvature introduced in Joulin [11] (see also Joulin [12] and Chafaï and Joulin [7])
to deal with the case � = 1. The proof of the main result relies on integrability properties with
respect to the marginal laws of pure jump processes derived in Section 5. Finally, in Section 6,
we extend the previous results to one-dimensional Piecewise Deterministic Markov Processes
using an approximation method.

2. Integrability properties of the Kantorovich potentials and the
translated optimal transport map

We first check that when the probability measures P and P̃ on R
d have finite moments of order

higher than � then these integrability properties are transmitted to any pair (ψ, ψ̃) of Kantorovich
potentials associated with W�(P, P̃ ). To get rid of the undetermined additive constant in the
definition of ψ and ψ̃ , we introduce an appropriate generalization of the variance:

Definition 2.1. For q ≥ 1, P a probability measure on R
d and ϕ ∈ L1(P ), let

Vq
P (ϕ) =

∫
Rd

∣∣ϕ(x) − P(ϕ)
∣∣qP (dx) where P(ϕ) =

∫
Rd

ϕ(x)P (dx).

Notice that
∫
Rd |ϕ(x)|qP (dx) ≤ 2q−1(|P(ϕ)|q + Vq

P (ϕ)) and V2
P (ϕ) is simply the variance of

ϕ under the probability measure P .

Proposition 2.2. Let P, P̃ be two probability measures on R
d such that

∫
Rd |x|�(1+ε)P (dx) +∫

Rd |y|�(1+ε)P̃ (dy) < ∞ for some ε ≥ 0 and let (ψ, ψ̃) be a pair of Kantorovich potentials
associated with W�(P, P̃ ). Then (ψ, ψ̃) ∈ L1+ε(P ) × L1+ε(P̃ ) and

max
(
V1+ε

P (ψ),V1+ε

P̃
(ψ̃)

) ≤ 2�(1+ε)

(∫
Rd

|x|�(1+ε)P (dx) +
∫
Rd

|y|�(1+ε)P̃ (dy)

)
.
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Proof. Let π ∈ �(P, P̃ ) be such that W
�
� (P, P̃ ) = ∫

Rd×Rd |x − y|�π(dx,dy). Using (1.4)
for the first and third inequalities and (1.3) for the second and fourth ones, we obtain that
π(dx,dy)π(dz,dw) a.e.,

ψ(x) − ψ(z) ≤ ψ(x) − ψ(z) − ψ(x) − ψ̃(y) = −ψ(z) − ψ̃(y) ≤ |z − y|�,

ψ(z) − ψ(x) ≤ ψ(z) − ψ(x) − ψ(z) − ψ̃(w) = −ψ(x) − ψ̃(w) ≤ |x − w|�.

Therefore, we get

π(dx,dy)π(dz,dw) a.e.,
∣∣ψ(x) − ψ(z)

∣∣1+ε ≤ max
(|z − y|�(1+ε), |x − w|�(1+ε)

)
. (2.1)

Integrating this inequality with respect to π(dx,dy)π(dz,dw), one obtains∫
Rd×Rd

∣∣ψ(x) − ψ(z)
∣∣1+ε

P (dx)P (dz)

≤
∫
Rd×Rd×Rd×Rd

(|z − y|�(1+ε) + |x − w|�(1+ε)
)
π(dx,dy)π(dz,dw)

≤ 2�(1+ε)−1
∫
Rd×Rd×Rd×Rd

(|z|�(1+ε) + |y|�(1+ε) + |x|�(1+ε) + |w|�(1+ε)
)

× π(dx,dy)π(dz,dw)

= 2�(1+ε)

(∫
Rd

|x|�(1+ε)P (dx) +
∫
Rd

|y|�(1+ε)P̃ (dy)

)
.

The moment V1+ε
P (ψ) is smaller than the left-hand side and therefore than the right-hand side,

since, by Jensen’s inequality, |ψ(x) − P(ψ)|1+ε ≤ ∫
Rd |ψ(x) − ψ(z)|1+εP (dz). By symmetry,

the same upper-bound holds for V1+ε

P̃
(ψ̃). �

Now, we focus on the integrability of the translated transport map. This is an impor-
tant technical point to give a sense to (1.8) when the Markov process has jumps. Precisely,
if k(x,dz) denotes the jump kernel, we have to check the integrability of

∫
Rd

∫
Rd |ψ(z) −

ψ(x)|�P (dx)k(x,dz), where P is any time marginal of the process. For pure jump pro-
cesses, we will be able to do this directly by taking advantage of the specific decomposition
(5.1) of the time marginals. For PDMP, this is no longer possible and we typically would
like to upper bound

∫
Rd |ψ(x − y) − ψ(x)|�P (dx) for different values of y ∈ R

d . In di-
mension 1, this problem boils down from (1.5) and the monotonicity of z �→ T (z) to bound
�|y| ∫

R
max(|T (x − y)|�−1, |T (x)|�−1)P (dx) from above. In view of the expression of the opti-

mal transport map T , the finiteness of
∫
R

|T (x − y)|�−1P(dx) is a condition intricately mixing
the tails of P and P̃ . In the next proposition, we obtain a less intricate upper bound for this
integral.

Proposition 2.3. Let X and X̃ be two real random variables distributed according to P and P̃ .
We note F and F̃ the corresponding cumulative distribution functions, F−1 and F̃−1 their right-
continuous pseudo-inverse. We assume that F is continuous and consider T (x) = F̃−1(F (x))
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the optimal transport map given by (1.5). We assume that for a given y > 0, there is a function
ϕy ∈ L1([0,1],R+) such that

∀u ∈ (0,1), F
(
F−1(u) + y

) − u ≤
∫ u

0
ϕy(v)dv. (2.2)

Then, for any q > 0, δ ∈ [0,+∞], we have∫
R

∣∣T (x − y)
∣∣qP (dx) ≤ E

(|X̃|q) + ∥∥|X̃|q∥∥
1+ 1

δ

∥∥ϕy(U)
∥∥

1+δ
, (2.3)

where U is a uniform random variable on [0,1], and the convention 1/0 = +∞, 1/ + ∞ = 0.

In (2.3), we use the standard definition ‖Y‖α = E[|Y |α]1/α for α > 0 and ‖Y‖∞ = inf{m >

0,P(|Y | ≤ m) = 1} for a real valued random variable Y . Let us stress here that each side of
(2.3) may be equal to +∞, but the inequality always holds. The key assumption (2.2) implies
in particular that F−1(0+) := limu→0+ F−1(u) = −∞. If this was not the case, we would have
F(F−1(0+) + y) = 0 and thus F−1(0+) ≥ F−1(0+) + y which is contradictory. Last, let us
mention that assuming ϕy ≥ 0 is not restrictive: if (2.2) is satisfied by ϕy ∈ L1([0,1],R), it
is then also satisfied by max(0, ϕy) ∈ L1([0,1],R+). If X has a positive density p(x) (i.e.,
P(dx) = p(x)dx), a natural choice is ϕy(u) = max(

p(F−1(u)+y)

p(F−1(u))
− 1,0). Heuristically, con-

dition (2.2) is satisfied when p(x) has an heavy left-tail. For the exponential density on R−
p(x) = 1{x<0}λeλx with λ > 0, max(

p(F−1(u)+y)

p(F−1(u))
− 1,0) = (eλy − 1)1{ 1

λ
log(u)+y<0} is bounded.

For p(x) = 1{x<−1} α−1
|x|α with α > 1, ϕy(u) = 1

{1−yu
1

α−1 >u
1

α−1 }
(1−yu

1
α−1 )−α −1 ≤ (1+y)α −1

is again bounded.

Proof. Since T is a nondecreasing and y > 0, we have∣∣T (x − y)
∣∣q ≤ ∣∣T (x − y)

∣∣q1{T (x−y)<0} + ∣∣T (x)
∣∣q1{T (x−y)≥0}

= (∣∣T (x − y)
∣∣q − ∣∣T (x)

∣∣q)
1{T (x−y)<0} + ∣∣T (x)

∣∣q
≤ (∣∣T (x − y)

∣∣q − ∣∣min
(
T (x),0

)∣∣q)
1{T (x−y)<0} + ∣∣T (x)

∣∣q .

(2.4)

Let x0 = sup{x ∈ R, T (x) < 0} with convention sup∅ = −∞. We note Hq(z) = −(−min(T (z),

0))q . This is a nondecreasing right-continuous function that induces a measure denoted by
dHq(z). We have(∣∣T (x − y)

∣∣q − ∣∣min
(
T (x),0

)∣∣q)
1{T (x−y)<0} = (

Hq(x) − Hq(x − y)
)
1{T (x−y)<0}

= 1{T (x−y)<0}
∫
R

1{x−y<z≤x} dHq(z).

We note that {x − y < x0} ⊂ {T (x − y) < 0} ⊂ {x − y ≤ x0}. Since F is continuous, and using
the Fubini–Tonelli theorem, we obtain∫

R

(∣∣T (x − y)
∣∣q − ∣∣min

(
T (x),0

)∣∣q)
1{T (x−y)<0}P(dx)
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=
∫
R

∫
R

1{x−y<x0}1{x−y<z≤x}P(dx)dHq(z)

=
∫
R

F
(
min(x0, z) + y

) − F(z)dHq(z)

=
∫
R

1{z≤x0}
(
F(z + y) − F(z)

)
dHq(z),

since dHq((x0,+∞)) = 0. We define H̄q(u) = −(−min(F̃−1(u),0))q for u ∈ (0,1) and dH̄q(u)

the corresponding measure on (0,1). By applying a change of variables in the Lebesgue–
Stieltjes integral (see, e.g., Proposition 4.10, page 9 of Revuz and Yor [17]), we obtain since
z ≤ F−1(F (z)) and {z ≤ x0} ⊂ {F(z) ≤ F(x0)}∫

R

1{z≤x0}
(
F(z + y) − F(z)

)
dHq(z)

≤
∫
R

1{F(z)≤F(x0)}
(
F

(
F−1(F(z)

) + y
) − F(z)

)
dHq(z)

=
∫ 1

0
1{u≤F(x0)}

(
F

(
F−1(u) + y

) − u
)

dH̄q(u)

≤
∫ 1

0
1{u≤F(x0)}

∫ u

0
ϕy(v)dv dH̄q(u).

Since ϕy ≥ 0, we have by Fubini–Tonelli theorem that∫ 1

0

∫ 1

0
1{u≤F(x0)}1{0<v<u<1}ϕy(v)dv dH̄q(u)

=
∫ 1

0

∫ 1

0
1{v<u≤F(x0)} dH̄q(u)ϕy(v)dv

=
∫ 1

0

(
H̄q

(
F(x0)

) − H̄q(v)
)+

ϕy(v)dv

=
∫ F(x0)

0

∣∣F̃−1(v)
∣∣qϕy(v)dv ≤ ∥∥|X̃|q∥∥

1+ 1
δ

∥∥ϕy(U)
∥∥

1+δ
,

by using H̄q(F (x0)) = 0 and Hölder’s inequality. �

Remark 2.4. Let us assume F to be continuous. In the particular case where X̃ is bounded
from below (i.e., F̃−1(0+) > −∞), we get from the first inequality in (2.4) that |T (x − y)|q ≤
|F̃−1(0+)|q + |T (x)|q , and therefore∫

R

∣∣T (x − y)
∣∣qP (dx) ≤ ∣∣F̃−1(0+)∣∣q +E

(|X̃|q)
.
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3. Evolution of the Wasserstein distance between two pure jump
Markov processes

Let {Xt }t≥0 and {X̃t }t≥0 be pure jump R
d -valued Markov processes with respective marginal

laws {Pt }t≥0 and {P̃t }t≥0 and infinitesimal generators given by

Lf (x) = λ(x)

(∫
Rd

k(x,dy)
(
f (y) − f (x)

))
, (3.1)

L̃f (x) = λ̃(x)

(∫
Rd

k̃(x,dy)
(
f (y) − f (x)

))
. (3.2)

The jump intensities λ and λ̃ : Rd → R+ are measurable functions and k and k̃ are Markov
kernels (for all Borel subset B of Rd , Rd 
 x �→ k(x,B) is measurable and for all x ∈R

d , k(x, ·)
is a probability measure on R

d endowed with its Borel sigma-field). To ease the trajectorial
interpretation of (λ, k) and avoid fake jumps, we suppose that ∀x ∈ R

d , λ(x)k(x, {x}) = 0. This
is not restrictive since this condition may be achieved without modifying the generator L by
replacing λ(x) by λ(x)(1 − k(x, {x})) and k(x, ·) by k(x, · ∩ {x}c)/(1 − k(x, {x})).

Theorem 3.1. Assume that λ̄ := supx∈Rd max(λ(x), λ̃(x)) < ∞ and that t �→ E[|Xt |�(1+ε) +
|X̃t |�(1+ε)] is locally bounded for some ε > 0. Let for each t ≥ 0, (ψt , ψ̃t ) be a pair of Kan-
torovich potentials associated with W�(Pt , P̃t ). Then t �→ ∫

Rd |Lψt(x)|Pt (dx)+ ∫
Rd |L̃ψ̃t (x)| ×

P̃t (dx) is locally bounded on (0,+∞), t �→ W
�
� (Pt , P̃t ) is locally Lipschitz on (0,+∞) and for

almost any t ∈ (0,∞)

d

dt
W�

� (Pt , P̃t ) = −
∫
Rd

Lψt (x)Pt (dx) −
∫
Rd

L̃ψ̃t (x)P̃t (dx). (3.3)

Moreover, t �→ ∫
Rd |Lψt(x)|Pt (dx)+∫

Rd |Lψ̃t (x)|P̃t (dx) is locally integrable on [0,∞) and for
every t ≥ 0 the following integral formula holds true

W�
� (Pt , P̃t ) = W�

� (P0, P̃0) −
∫ t

0

[∫
Rd

Lψr(x)Pr(dx) +
∫
Rd

L̃ψ̃r (x)P̃r (dx)

]
dr. (3.4)

Remark 3.2. According to Lemma 5.5 below the finiteness of∫
Rd

|x|�(1+ε)
(
P0(dx) + P̃0(dx)

) + sup
x∈Rd

∫
Rd

(
k(x,dy) + k̃(x,dy)

)|y − x|�(1+ε)

is sufficient to ensure that t �→ E[|Xt |�(1+ε) + |X̃t |�(1+ε)] is locally bounded.

The next proposition, the proof of which is postponed to Section 5, and the next lemma
respectively state the integrability properties and the integral formula for

∫
Rd f (x)Pt (dx) −∫

Rd f (x)Ps(dx) needed to establish Theorem 3.1.
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Proposition 3.3. Under the assumptions of Theorem 3.1, for δ ∈ [0, ε),

(t, r) �→
∫
Rd

∣∣ψt(x) − Pt (ψt )
∣∣1+δ

Pr(dx)

is locally bounded on (0,+∞) × [0,+∞),

(t, r) �→
∫
Rd

(∫
Rd

λ(x)k(x,dy)
∣∣ψt(y) − ψt(x)

∣∣)1+δ

Pr(dx)

is locally bounded on (0,+∞)2,

t �→
∫
Rd×Rd

λ(x)k(x,dy)
∣∣ψt(y) − ψt(x)

∣∣Pt(dx)

is locally integrable on [0,+∞).

Remark 3.4. For r > 0, P0 is absolutely continuous with respect to Pr (see (5.1) below) but, in
general, Pr is not absolutely continuous with respect to P0 so that the finiteness of

∫
Rd |ψ0(x) −

P0(ψ0)|1+δPr(dx) is not guaranteed.

Lemma 3.5. Let f :Rd → R̄ be a measurable function. If for 0 ≤ s ≤ t∫ t

s

∫
Rd×Rd

λ(x)
∣∣f (y) − f (x)

∣∣k(x,dy)Pr(dx)dr < +∞ (3.5)

then f (Xt ) − f (Xs) is integrable and

E
[
f (Xt ) − f (Xs)

] =
∫ t

s

∫
Rd

Lf (x)Pr(dx)dr (3.6)

Proof of Lemma 3.5. We can represent the process {Xt }t≥0 as

Xt = X0 +
∫

(0,t]×[0,1]×[0,1]
1{λ(Xr−)≥λ̄u}

(
ϕ(Xr−, v) − Xr−

)
N(dr,du,dv), (3.7)

where N is a Poisson measure of intensity λ̄dr dudv on R+ ×[0,1]×[0,1] and for each x ∈ R
d ,

the image of the uniform law on [0,1] by v �→ ϕ(x, v) is k(x, ·).
In particular, we have for every measurable function f

f (Xw) = f (Xs)+
∫

(s,w]×[0,1]×[0,1]
1{λ(Xr−)≥λ̄u}

(
f

(
ϕ(Xr−, v)

)− f (Xr−)
)
N(dr,du,dv) (3.8)

and it is a well-known fact (see Ikeda and Watanabe [9], page 62) that if

E

[∫
(s,t]×[0,1]×[0,1]

1{λ(Xr−)≥λ̄u}
∣∣f (

ϕ(Xr−, v)
) − f (Xr−)

∣∣λ̄dr dudv

]
< ∞ (3.9)
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then the process

Mw =
∫

(s,w]×[0,1]×[0,1]
1{λ(Xr−)≥λ̄u}

(
f

(
ϕ(Xr−, v)

) − f (Xr−)
)

× (
N(dr,du,dv) − λ̄(dr,du,dv)

) (3.10)

is a centered martingale on (s, t] and in particular,

E
[
f (Xt ) − f (Xs)

] = E[Mt ] +
∫ t

s

E

[
λ̄

∫ 1

0

∫ 1

0
1{λ(Xr )≥λ̄u}

(
f

(
ϕ(Xr, v)

) − f (Xr)
)

dudv

]
dr

= 0 +
∫ t

s

E

[
λ(Xr)

∫
Rd

k(Xr,dy)
(
f (y) − f (Xr)

)]
dr

=
∫ t

s

∫
Rd

Lf (x)Pr(dx)dr.

We conclude the proof by remarking that, by a similar computation, the left-hand side of (3.9) is
equal to

∫ t

s

∫
Rd×Rd λ(x)|f (y) − f (x)|k(x,dy)Pr(dx)dr . �

We are now ready to prove the theorem by making the formal proof given in the introduction
rigorous.

Proof of Theorem 3.1. Let t > 0 and h > 0. Since, by Proposition 3.3, (ψt , ψ̃t ) ∈ L1(Pt+h) ×
L1(P̃t+h), one has

1

h

(
W�

� (Pt+h, P̃t+h) − W�
� (Pt , P̃t )

) ≥ − 1

h

∫
Rd

ψt (x)
(
Pt+h(dx) − Pt(dx)

)
− 1

h

∫
Rd

ψ̃t (x)
(
P̃t+h(dx) − P̃t (dx)

)
.

In the same way, for h < t , (ψt , ψ̃t ) ∈ L1(Pt−h) × L1(P̃t−h) and

1

h

(
W�

� (Pt , P̃t ) − W�
� (Pt−h, P̃t−h)

) ≤ − 1

h

∫
Rd

ψt (x)
(
Pt (dx) − Pt−h(dx)

)
− 1

h

∫
Rd

ψ̃t (x)
(
P̃t (dx) − P̃t−h(dx)

)
.

Since by Proposition 3.3, r �→ ∫
Rd λ(x)|ψt(y)−ψt(x)|k(x,dy)Pt (dx) is locally bounded on (0,

+∞), Lemma 3.5 permits to transform the right-hand sides of the previous inequalities to obtain:

1

h

(
W�

� (Pt+h, P̃t+h) − W�
� (Pt , P̃t )

) ≥ − 1

h

∫ t+h

t

(∫
Rd

Lψt (x)Pr(dx) +
∫
Rd

L̃ψ̃t (x)P̃r (dx)

)
dr,

1

h

(
W�

� (Pt , P̃t ) − W�
� (Pt−h, P̃t−h)

) ≤ − 1

h

∫ t

t−h

(∫
Rd

Lψt (x)Pr(dx) +
∫
Rd

L̃ψ̃t (x)P̃r (dx)

)
dr.

Since, again by Proposition 3.3, (t, r) �→ ∫
Rd |Lψt(x)|1+δPr(dx) + ∫

Rd |L̃ψ̃t (x)|1+δP̃r (dx) is
locally bounded on (0,+∞) × (0,+∞), one deduces that s �→ W

�
� (Ps, P̃s) is locally Lipschitz
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and therefore ds a.e. differentiable on (0,+∞). If it is differentiable at t , the equality

d

dt
W�

� (Pt , P̃t ) = −
∫
Rd

Lψt (x)Pt (dx) −
∫
Rd

L̃ψ̃t (x)P̃t (dx)

is obtained by taking the limit h → 0 in the above inequalities once we have checked that r �→∫
Rd Lψt (x)Pr(dx) and r �→ ∫

Rd L̃ψ̃t (x)P̃r (dx) are continuous at t . It is enough to check con-
tinuity of the first function since the same arguments apply to the second one and we first deal
with the right continuity.

For r ≥ t and f : Rd →R+ measurable,

E
[
f (Xr)1{∀s∈[t,r],Xs=Xt }

] =
∫
Rd

f (x)e−λ(x)(r−t)Pt (dx).

Hence, the measure Q(t,r)(dx) = Pr(dx) − e−λ(x)(r−t)Pt (dx) is non-negative. Writing∫
Rd

Lψt (x)Pr(dx) =
∫
Rd

Lψt (x)e−λ(x)(r−t)Pt (dx) +
∫
Rd

Lψt (x)Q(t,r)(dx)

we observe that, by dominated convergence, the first integral in the right-hand side converges to∫
Rd Lψt (x)Pt (dx) as r → t . By Hölder’s inequality and since

Q(t,r)

(
R

d
) = 1 −

∫
Rd

e−λ(x)(r−t)Pt (dx) ≤ 1 − e−λ̄(r−t),∫
Rd

∣∣Lψt(x)
∣∣Q(t,r)(dx) ≤

(∫
Rd

∣∣Lψt(x)
∣∣1+δ

Q(t,r)(dx)

) 1
1+δ

(∫
Rd

Q(t,r)(dx)

) δ
1+δ

≤
(∫

Rd

∣∣Lψt(x)
∣∣1+δ

Pr(dx)

) 1
1+δ (

1 − e−λ̄(r−t)
) δ

1+δ .

As r → t , the first term is bounded, while the second tends to 0. Therefore,

lim
r→t+

∫
Rd

Lψt (x)Pr(dx) =
∫
Rd

Lψt (x)Pt (dx).

To check the left continuity, we now let r ≤ t and write∫
Rd

Lψt (x)Pr(dx) =
∫
Rd

Lψt (x)eλ(x)(t−r)Pt (dx) −
∫
Rd

Lψt (x)eλ(x)(t−r)Q(r,t)(dx),

where the first term in right-hand side converges to
∫
Rd Lψt (x)Pt (dx) as r → t by dominated

convergence. Moreover,∫
Rd

∣∣Lψt(x)
∣∣eλ(x)(t−r)Q(r,t)(dx)

≤
(∫

Rd

∣∣Lψt(x)
∣∣1+δ

eλ(x)(t−r)Pt (dx)

) 1
1+δ

(∫
Rd

eλ̄(t−r)Q(r,t)(dx)

) δ
1+δ

≤
(

eλ̄(t−r)

∫
Rd

∣∣Lψt(x)
∣∣1+δ

Pt (dx)

) 1
1+δ (

eλ̄(t−r) − 1
) δ

1+δ
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so that the left-hand side goes to 0 as r → t , which implies the desired left continuity property.
Since r �→ W

�
� (Pr, P̃r ) is locally Lipschitz on (0,+∞) with dr a.e., d

dr
W

�
� (Pr, P̃r ) =

− ∫
Rd Lψr(x)Pr(dx) − ∫

Rd L̃ψ̃r (x)P̃r (dx),

∀0 < s ≤ t, W�
� (Pt , P̃t ) = W�

� (Ps, P̃s)

−
∫ t

s

[∫
Rd

Lψr(x)Pr(dx) +
∫
Rd

L̃ψ̃r (x)P̃r (dx)

]
dr.

(3.11)

By Proposition 3.3, r �→ ∫
Rd |Lψr(x)|Pr(dx) + ∫

Rd |Lψ̃r(x)|P̃r (dx) is locally integrable on
[0,∞). Therefore, as s → 0, the integral in the right-hand side of (3.11) converges to the in-
tegral from 0 to t by dominated convergence. Since, by the triangle inequality for the Wasser-
stein distance, |W�(Ps, P̃s) − W�(P0, P̃0)| ≤ W�(Ps,P0) + W�(P̃s, P̃0), it is enough to check
that lims→0+ W�(Ps,P0) = 0 to conclude that (3.3) holds. This follows from the inequalities

W�
� (Ps,P0) ≤ E

[|Xs − X0|�
] ≤ (

2�(1+ε)−1
E

[|Xs |�(1+ε) + |X0|�(1+ε)
]) 1

1+ε
(
P(Xs �= X0)

) ε
1+ε

≤ 2�
(

sup
r∈[0,s]

E
[|Xr |�(1+ε)

]) 1
1+ε (

1 − e−λ̄s
) ε

1+ε .
�

4. Application to birth and death processes

Let P0 and P̃0 be two probability measures on N. In this section, we consider two pure jump
Markov processes {Xt }t≥0 and {X̃}t≥0 with respective initial marginal laws P0 and P̃0 and with
the same generator

Lf (x) = η(x)
(
f (x + 1) − f (x)

) + ν(x)
(
f (x − 1) − f (x)

)
, x ∈N.

The functions η, ν : N → R+ with ν(0) = 0 are respectively the birth and death rates. Note
that we are precisely in the framework of Section 3 by setting λ(x) = η(x) + ν(x) and, when
λ(x) > 0, k(x,dy) = η

λ
(x)δx+1(dy) + ν

λ
(x)δx−1(dy), and we still denote by {Pt }t≥0 and {P̃t }t≥0

the marginal laws of the processes {Xt }t≥0 and {X̃}t≥0. We will assume in the whole section that

∃C > 0,∀x ∈N, η(x) ≤ C(1 + x), (4.1)

which ensures that the processes are well-defined for any t ≥ 0 by preventing accumulation of
jumps. Of course this sufficient condition is not necessary and existence also holds under suitable
balance conditions between the birth and death rates. But to obtain estimations of W�(Pt , P̃t )

for any � ≥ 1 below, we will assume that η is Lipschitz continuous so that the affine growth
assumption (4.1) is no longer restrictive. For � ≥ 1, we have formally

d

dt
E

[
X

�
t

] = E
[
η(Xt )

(
(Xt + 1)� − X

�
t

) + ν(Xt )
(|Xt − 1|� − X

�
t

)]
≤ CE

[
(1 + Xt)

(
(Xt + 1)� − X

�
t

)]
≤ Cc�

(
E

[
X

�
t

] + 1
)
,
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using (4.1) and introducing the finite constant c� = supx∈N
(1+x)[(1+x)�−x�]

1+x� . By a standard local-
ization procedure, we deduce that

E
[
X

�
t

] ≤ (
E

[
X

�

0

] + 1
)
ec�Ct − 1. (4.2)

We now define

Lip(η) = sup
x∈N

∣∣η(x + 1) − η(x)
∣∣, Lip(ν) = sup

x∈N

∣∣ν(x + 1) − ν(x)
∣∣,

and κ := infx∈N(η(x) + ν(x + 1) − η(x + 1) − ν(x)) the Wasserstein curvature introduced by
Joulin [11].

Proposition 4.1. Let us assume that η and ν are bounded functions. Let � ≥ 1, P0 and P̃0 such
that E[X�

0 + X̃
�

0 ] < ∞. Then, there exists a constant C� ∈ [0,+∞) such that for any t ≥ 0,

W�
� (Pt , P̃t ) ≤ W�

� (P0, P̃0)e
−κ�t

(4.3)

+ C�

(
Lip(η) + Lip(ν)

) ∫ t

0
eκ�(r−t)

(
W1(Pr , P̃r ) + 1{�>2}W�−1

�−1 (Pr , P̃r )
)

dr.

Besides, in the particular cases � = 1 and � ∈ (1,2], we can take C1 = 0 and C� = 1.

Proof. The initial marginals P0 and P̃0 are two probability measures on N. For U uniformly
distributed on [0,1] and r ≥ 0, let Fr(x) = Pr((−∞, x]), F̃r (x) = P̃r ((−∞, x]) and πr denote
the law of (F−1

r (U), F̃−1
r (U)) which is an optimal coupling between Pr and P̃r . By a slight

abuse of notation, for x, y ∈ N, we will denote πr(x, y) in place of πr({(x, y)}). Let � ≥ 1. Since
the jump rates are bounded, we can apply Theorem 3.1, and get for t ≥ 0,

W�
� (Pt , P̃t ) = W�

� (P0, P̃0)

+
∫ t

0

∑
x,y∈N

πr(x, y)
(
η(x)

(
ψr(x) − ψr(x + 1)

) + ν(x)
(
ψr(x) − ψr(x − 1)

)
+ η(y)

(
ψ̃r (y) − ψ̃r (y + 1)

) + ν(y)
(
ψ̃r (y) − ψ̃r (y − 1)

))
dr.

Setting αr(x, y) = ψr(x) − ψr(x + 1) + �(y − x)|x − y|�−2, α̃r (x, y) = ψ̃r (y) − ψ̃r (y + 1) +
�(x −y)|x −y|�−2, βr(x, y) = ψr(x)−ψr(x −1)+�(x −y)|x −y|�−2 and β̃r (x, y) = ψ̃r (y)−
ψ̃r (y − 1) + �(y − x)|x − y|�−2 (where by convention z|z|�−2 = 0 when z = 0), one deduces
that

W�
� (Pt , P̃t ) = W�

� (P0, P̃0)

+
∫ t

0

∑
x,y∈N

πr(x, y)
(
�
(
η(x) + ν(y) − ν(x) − η(y)

)
(x − y)|x − y|�−2

+ η(x)αr(x, y) + η(y)̃αr (x, y) + ν(x)βr(x, y) + ν(y)β̃r (x, y)
)

dr.

(4.4)
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From the definition of the Wasserstein curvature, one has

∀x, y ∈N,
(
η(x) + ν(y) − ν(x) − η(y)

)
(x − y) ≤ −κ(x − y)2.

Since πr is a coupling between Pr and P̃r , one deduces that∑
x,y∈N

πr(x, y)�
(
η(x) + ν(y) − ν(x) − η(y)

)
(x − y)|x − y|�−2 ≤ −κ�W�

� (Pr , P̃r ). (4.5)

Let (x, y) ∈ N
2 be such that πr(x, y) > 0. By the optimality of the coupling πr and (1.4),

−ψr(x) − ψ̃r (y) = |x − y|� . Moreover, for all (z,w) ∈ N
2, −ψr(z) − ψ̃r (w) ≤ |z − w|� . This

yields

αr(x, y) + �(x − y)|x − y|�−2 = ψr(x) + ψ̃r (y) − (
ψr(x + 1) + ψ̃r (y)

)
≤ |x + 1 − y|� − |x − y|�,

α̃r (x, y) + �(y − x)|x − y|�−2 = ψr(x) + ψ̃r (y) − (
ψr(x) + ψ̃r (y + 1)

)
≤ |y + 1 − x|� − |x − y|�,

αr(x, y) + α̃r (x, y) = ψr(x) + ψ̃r (y) − (
ψr(x + 1) + ψ̃r (y + 1)

)
≤ |x − y|� − |x − y|� = 0.

For � > 1, ∃C� < ∞,∀z ∈ Z, |z + 1|� − |z|� − �z|z|�−2 ≤ C�(1 + 1{�>2}|z|�−2) (notice that C�

can be chosen equal to 1 when � ∈ (1,2]), so that

αr(x, y) ∨ α̃r (x, y) ≤ C�

(
1 + 1{�>2}|x − y|�−2) and αr(x, y) + α̃r (x, y) ≤ 0.

As a consequence, we obtain

η(x)αr(x, y) + η(y)̃αr(x, y) = (
η(x) − η(y)

)
αr(x, y) + η(y)

(
αr(x, y) + α̃r (x, y)

)
≤ ∣∣η(x) − η(y)

∣∣ × C�

(
1 + 1{�>2}|x − y|�−2) + 0

≤ C� Lip(η)
(|x − y| + 1{�>2}|x − y|�−1).

(4.6)

For � = 1, |z + 1| − |z| − �z|z|−1 = 1{z=0} so that

αr(x, y)∨ α̃r (x, y) ≤ 1{x=y}, αr(x, y)+ α̃r (x, y) ≤ 0, η(x)αr(x, y)+η(y)̃αr (x, y) ≤ 0

and (4.6) holds with C1 = 0.
One checks by a symmetric reasoning that, for � ≥ 1,

ν(x)βr(x, y) + ν(y)β̃r (x, y) ≤ C� Lip(ν)
(|x − y| + 1{�>2}|x − y|�−1). (4.7)
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Plugging (4.5), (4.6) and (4.7) into (4.4), one obtains

W�
� (Pt , P̃t ) ≤ W�

� (P0, P̃0) +
∫ t

0
C�

(
Lip(η) + Lip(ν)

)(
W1(Pr , P̃r ) + 1{�>2}W�−1

�−1 (Pr , P̃r )
)

− κ�W�
� (Pr , P̃r )dr,

and then (4.3) by Gronwall’s lemma. �

Theorem 4.2. We assume that (4.1) holds, κ > −∞ and E[X�

0 + X̃
�

0 ] < ∞ for some � ≥ 1.
Then, we have W1(Pt , P̃t ) ≤ W1(P0, P̃0)e

−κt and, if Lip(η)+ Lip(ν) < ∞, then (4.3) still holds.
In particular, when � ∈ (1,2],

∀t ≥ 0, W�
� (Pt , P̃t ) ≤ W�

� (P0, P̃0)e
−κ�t

+ (
Lip(η) + Lip(ν)

)
W1(P0, P̃0)

e−κt − e−κ�t

κ(� − 1)
.

(4.8)

Notice that for t ≥ 0, since Pt and P̃t are supported in N, � �→ W
�
� (Pt , P̃t ) is non-decreasing.

Proof. For N ∈ N
∗, we consider the following approximation of the process {Xt }t≥0 (resp.

{X̃t }t≥0). We set XN
0 = min(X0,N) and XN

t = Xt for t ≤ τN = inf{s ≥ 0 : Xs ≥ N} (resp.
X̃N

0 = min(X̃0,N) and X̃N
t = X̃t for t ≤ τ̃ N = inf{s ≥ 0 : X̃s ≥ N}). Then, we sample {XN

t }t≥τN

(resp. {X̃N
t }t≥τ̃N ) independently from X (resp. X̃) with the birth rate 1{x<N}η(x) and death rate

ν(x). By construction, {XN
t }t≥0 and {X̃N

t }t≥0 are Markov processes on {0, . . . ,N} with the same
generator 1{x<N}η(x)(f (x +1)−f (x))− ν(x)(f (x −1)−f (x)). From Proposition 4.1, we get

W�
�

(
P N

t , P̃ N
t

) ≤ W�
�

(
P N

0 , P̃ N
0

)
e−κN�t

+ C�

(
Lip(η) + Lip(ν)

)
×

∫ t

0
eκN�(r−t)

(
W1

(
P N

r , P̃ N
r

) + 1{�>2}W�−1
�−1

(
P N

r , P̃ N
r

))
dr,

(4.9)

with κN = infx∈{0,...,N−1} η(x) + ν(x + 1) − η(x + 1)1{x+1�=N} − ν(x). We have for N ≥ 2,

inf
x∈{0,...,N−1}η(x) + ν(x + 1) − η(x + 1) − ν(x)

≤ κN ≤ inf
x∈{0,...,N−2}η(x) + ν(x + 1) − η(x + 1) − ν(x)

and thus κN → κ as N → +∞. It remains to show the convergence W�′(P N
t , P̃ N

t ) →N→+∞
W�′(Pt , P̃t ) for �′ ∈ [1, �] and the convergence of the integral in the right-hand side of (4.9).
Using Assumption (4.1) like in the derivation of (4.2), we obtain bounds on the �-moments that
are uniform in N locally uniformly in time, so that by Theorem 6.9 of Villani [18] and Lebesgue’s
theorem, it is enough to show the weak convergence of P N

t to Pt as N → ∞. Since XN
t = Xt
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when t ≤ τN and τN → +∞ a.s., we even have the stronger almost sure convergence of XN
t to

Xt . �

For � = 1, Theorem 4.2 recovers the estimation W1(Pt , P̃t ) ≤ W1(P0, P̃0)e
−κt obtained in

Joulin [11] by any trajectorial coupling between the processes with common jumps on the diag-
onal. The estimation (4.8) when � ∈ (1,2] is new to our knowledge. By iterating the inductive
inequality (4.3), we can also get new upper bounds on W

�
� (Pt , P̃t ) for any � > 2. For example, in

the case κ > 0, we have e−κ�t ≤ e−κt , and we get that W
�
� (Pt , P̃t ) ≤ A(�)e−kt , where, for � > 2,

A(�) satisfies from (4.3) the induction formula A(�) ≤ W
�
� (P0, P̃0) + C�L

κ(�−1)
(W1(P0, P̃0) +

A(� − 1)) with L = Lip(η) + Lip(ν). From (4.8), we eventually obtain that for � > 2, when
E[X�

0 + X̃
�

0 ] < ∞,

∀t ≥ 0, W�
� (Pt , P̃t ) ≤

(��−2�∑
j=0

π
�

j−1W
�−j

�−j (P0, P̃0) +
(��−1�∑

j=1

π
�

j−1

)
W1(P0, P̃0)

)
e−κt ,

where π
�

j = ∏j

i=0
C�−iL

κ(�−i−1)
, π

�

−1 = 1 and for x ∈R, �x� denotes the integer such that x ≤ �x� <

x + 1. In the particular case P0 = δx and P̃0 = δy with x, y ∈ N such that x �= y, we deduce that

W
�
� (Pt , P̃t ) ≤ (1 + 2

∑��−2�
j=1 π

�

j−1 + π
�

��−2�)|x − y|�e−κt , which is similar to (1.11).

Remark 4.3. By integrating explicitly (4.3), we could get sharper bounds for W
�
� (Pt , P̃t )

with tedious and cumbersome calculations. Besides, in the case � ∈ N
∗ with � ≥ 3, we can

get a better upper bound than (4.3) by bounding |z + 1|� − |z|� − �z|z|�−2 from above by∑�−2
k=0

(
�
k

)|z|k instead of C�(1 + 1{�>2}|z|�−2). This would involve in the induction all the func-
tions r �→ Wk

k (Pr, P̃r ) for k = 1, . . . , � − 1. Note that for � ∈ [1,2], we have used the sharpest
bound for |z + 1|� − |z|� − �z|z|�−2.

Analogy with one dimensional diffusions with multiplicative noise

At least at a formal level, one can obtain very similar estimations for one dimensional diffusions
processes with generator Lf (x) = 1

2a(x)f ′′(x)+b(x)f ′(x) where a : R→R+ is supposed to be
Lipchitz continuous and such that ∀x, y ∈ R, |√a(x)−√

a(y)| ≤ �(|x −y|) for some function �

such that
∫

0+ dz
�(z)

= ∞ and b : R→R is locally bounded and satisfies the monotonicity condition

∀x, y ∈ R, sgn(x − y)
(
b(x) − b(y)

) ≤ −κ|x − y|
where sgn(z) = 1{z≥0} − 1{z<0}.

(4.10)

Under the conditions on a, if dXt = √
a(Xt )dWt + b(Xt )dt and dX̃t = √

a(X̃t )dWt + b(X̃t )dt

with (Wt)t≥0 a Brownian motion independent from (X0, X̃0) distributed according to the opti-
mal coupling π0, it is well known that the local time at 0 of Xt − X̃t vanishes (see, for instance,
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Corollary 3.4, page 390, Revuz and Yor [17]) so that, by the Itô-Tanaka formula (see Theo-
rem 1.2, page 222, Revuz and Yor [17]) and (4.10),

d|Xt − X̃t | = sgn(Xt − X̃t )d(Xt − X̃t )

≤ sgn(Xt − X̃t )
(√

a(Xt ) − √
a(X̃t )

)
dWt − κ|Xt − X̃t |dt.

When the expectation of the stochastic integral vanishes and t �→ E[|Xt − X̃t |] is locally inte-
grable (both properties implied by E[|X0| + |X̃0|] < ∞ which ensures t �→ E[|Xt | + |X̃t |] is
locally bounded), one deduces that ∀t ≥ 0, W1(Pt , P̃t ) ≤ e−κtW1(P0, P̃0). Notice that for the
stochastic differential equation where

√
a(x) and b(x) have been replaced by the continuous and

bounded coefficients
√

a(−m ∨ x ∧ m) and b(−m ∨ x ∧ m), weak existence holds whereas tra-
jectorial uniqueness is deduced from the Itô-Tanaka formula so that existence of a unique strong
solution follows by the Yamada–Watanabe theorem. With standard uniform in m estimation of
moments, this ensures existence and trajectorial uniqueness for the original stochastic differential
equation.

For � > 0, let us suppose that for all r ≥ 0, the Kantorovich potential functions ψr and ψ̃r are
C2 and that (1.8) holds. Then, this equation writes

W�
� (Pt , P̃t ) = W�

� (P0, P̃0)

−
∫ t

0

(∫
R

1

2
a(x)ψ ′′

r (x) + b(x)ψ ′
r (x)Pr(dx)

+
∫
R

1

2
a(x)ψ̃ ′′

r (x) + b(x)ψ̃ ′
r (x)P̃r (dx)

)
dr.

When Fr and F̃r are continuous and increasing, one can consider the optimal transport map
Tr(x) = F̃−1

r (Fr(x)) mentioned in the introduction and its inverse T̃r (x) = F−1
r (F̃r (x)). The

first and second order Euler optimality conditions in (1.6) write

ψ ′
r (x) = �

(
Tr(x) − x

)∣∣Tr(x) − x
∣∣�−2 and ψ ′′

r (x) ≥ �(� − 1)
∣∣Tr(x) − x

∣∣�−2(
T ′

r (x) − 1
)
.

By symmetry and since T̃r (Tr (x)) = x which implies T̃ ′
r (Tr (x)) = 1

T ′
r (x)

,

ψ̃ ′
r

(
Tr(x)

) = �
(
x − Tr(x)

)∣∣Tr(x) − x
∣∣�−2 and

ψ̃ ′′
r

(
Tr(x)

) ≥ �(� − 1)
∣∣Tr(x) − x

∣∣�−2
(

1

T ′
r (x)

− 1

)
.

Now, using that P̃r is the image of Pr by Tr , then the first order optimality conditions and last
(4.10), one obtains

−
∫
R

b(x)ψ ′
r (x)Pr(dx) −

∫
R

b(x)ψ̃ ′
r (x)P̃r (dx)

= −
∫
R

b(x)ψ ′
r (x) + b

(
Tr(x)

)
ψ̃ ′

r

(
Tr(x)

)
Pr(dx)
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= �

∫
R

(
b
(
Tr(x)

) − b(x)
)(

Tr(x) − x
)∣∣Tr(x) − x

∣∣�−2
Pr(dx)

≤ −κ�

∫
R

∣∣Tr(x) − x
∣∣�Pr(dx) = −κ�W�

� (Pr, P̃r ).

On the other hand, we observe that when T ′
r (x) ≥ 1,

a(x)
(
1 − T ′

r (x)
) + a

(
Tr(x)

)(
1 − 1

T ′
r (x)

)
= a(x)

(
2 − T ′

r (x) − 1

T ′
r (x)

)
+ (

a
(
Tr(x)

) − a(x)
)(

1 − 1

T ′
r (x)

)

≤ −a(x)

(√
T ′

r (x) − 1√
T ′

r (x)

)2

+ ∣∣a(
Tr(x)

) − a(x)
∣∣ ×

∣∣∣∣1 − 1

T ′
r (x)

∣∣∣∣
≤ 0 + Lip(a)

∣∣Tr(x) − x
∣∣ × 1

and the same estimation holds when T ′
r (x) ≤ 1 by a symmetric reasoning. Therefore, we have

−
∫
R

a(x)ψ ′′
r (x)Pr(dx) −

∫
R

a(x)ψ̃ ′′
r (x)P̃r (dx)

≤ �(� − 1)

∫
R

∣∣Tr(x) − x
∣∣�−2

(
a(x)

(
1 − T ′

r (x)
) + a

(
Tr(x)

)(
1 − 1

T ′
r (x)

))
Pr(dx)

≤ �(� − 1)Lip(a)

∫
R

∣∣Tr(x) − x
∣∣�−1

Pr(dx).

We conclude that, for � ≥ 2,

∀t ≥ 0, W�
� (Pt , P̃t ) ≤ W�

� (P0, P̃0)

−
∫ t

0

�(� − 1)

2
Lip(a)W

�−1
�−1 (Pr , P̃r ) − κ�W�

� (Pr , P̃r )dr.

In a future work, we plan to investigate whether the approximation by Euler–Maruyama schemes
considered in Alfonsi, Jourdain and Kohatsu-Higa [2] permits to justify rigorously this estima-
tion.

5. Integrability with respect to the marginals of a pure jump
process with bounded intensity of jumps

In the present section, we deal with the pure jump Markov process {Xt }t≥0 with marginals
{Pt }t≥0 and infinitesimal generator L given by (3.1) with supx∈Rd λ(x) ≤ λ̄ < ∞. Our final goal
is to prove Proposition 3.3.
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For every t ≥ 0, the law of Xt is given by

Pt(dx) =
∑
n≥0

Pn,t (dx), (5.1)

where P0,t (dx0) = e−λ(x0)tP0(dx0) and for n ≥ 1, under the convention t0 = 0,

Pn,t (dxn) =
∫

0≤t1≤t2≤···≤tn≤t

∫
(Rd )n

P0(dx0)

n−1∏
j=0

(
λ(xj )e

−λ(xj )(tj+1−tj )k(xj ,dxj+1)
)

× e−λ(xn)(t−tn) dt1 · · ·dtn.

(5.2)

The measure Pn,t has the following trajectorial interpretation: for any f : Rd → R+ measurable,

E
[
f (Xt )1{{Xs}s≥0undergoes n jumps on [0,t]}

] =
∫
Rd

f (x)Pn,t (dx).

The key reason why we can relate integrability with respect to Ps and to Pt for s �= t is that all
the marginals {Pr}r>0 are equivalent probability measures.

Lemma 5.1. Let t > 0 and s ≥ 0.

∀n ∈ N, Pn,s(dx) ≤ eλ̄(t−s)+
(

s

t

)n

Pn,t (dx). (5.3)

Moreover, for f : Rd → R̄ measurable and η > 0 we have,∫
Rd

∣∣f (x)
∣∣Ps(dx) ≤ 1{s≤t}eλ̄(t−s)

∫
Rd

∣∣f (x)
∣∣Pt (dx)

+ 1{s>t}e
ηλ̄s
1+η

( s
t
)

1
η

(∫
Rd

∣∣f (x)
∣∣1+η

Pt (dx)

) 1
1+η

.

(5.4)

Remark 5.2. This lemma ensures that if s ≤ t then Lα(Pt ) ⊂ Lα(Ps) for every α ≥ 1. Such an
inclusion may be strict. If, for example, {Xr}r≥0 is a Poisson process with positive parameter and
f (x) = �(x+1)

tx
for some fixed t > 0, then f ∈ L1(Ps) for s < t but f /∈ L1(Ps) for s ≥ t . On the

other hand, for η > 0, we have the inclusion Lα(1+η)(Pt ) ⊂ Lα(Ps) for all s, t > 0.

Proof. Equation (5.3) clearly holds for s = 0. For s > 0, the change of variables (s1, s2, . . . ,

sn) = s
t
(t1, t2, . . . , tn) leads to

Pn,t (dxn) =
(

t

s

)n ∫
0≤s1≤s2≤···≤sn≤s

∫
(Rd )n

P0(dx0)

n−1∏
j=0

(
λ(xj )e

− t
s
λ(xj )(sj+1−sj )k(xj ,dxj+1)

)
× e− t

s
λ(xn)(s−sn) ds1 · · ·dsn,

where, by convention, s0 = 0.
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Since for 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ s,

n−1∏
j=0

e−( t
s
−1)λ(xj )(sj+1−sj )e−( t

s
−1)λ(xn)(s−sn) ≥ e

− (t−s)+
s

λ̄(
∑n−1

j=0(sj+1−sj )+(s−sn)) = e−λ̄(t−s)+ ,

we deduce (5.3). As a consequence,∫
Rd

∣∣f (x)
∣∣Ps(dx) =

∑
n≥0

∫
Rd

∣∣f (x)
∣∣Pn,s(dx) ≤ eλ̄(t−s)+ ∑

n≥0

(
s

t

)n ∫
Rd

∣∣f (x)
∣∣Pn,t (dx)

and (5.4) follows easily when s ≤ t . For s ≥ t , applying Hölder’s inequality in the right-hand
side, we deduce that

∫
Rd

∣∣f (x)
∣∣Ps(dx) ≤

(∑
n≥0

(
s

t

)n
1+η
η

∫
Rd

Pn,t (dx)

) η
1+η

(∑
n≥0

∫
Rd

∣∣f (x)
∣∣1+η

Pn,t (dx)

) 1
1+η

.

We can conclude since Pn,t (R
d) ≤ λ̄n tn

n! and
∑

n≥0(
s
t
)
n

1+η
η λ̄n tn

n! ≤ exp(λ̄s( s
t
)

1
η ). �

In order to prove Proposition 3.3, we have to deal with integrability with respect to the measure∫
Rd λ(x)k(x,dy)Pt (dx). To this aim, we introduce Q0(dx0) = P0(dx0) and for n ≥ 1,

Qn(dxn) =
∫
Rd

Qn−1(dxn−1)λ(xn−1)k(xn−1,dxn)

=
∫

(Rd )n
P0(dx0)

n−1∏
j=0

λ(xj )k(xj ,dxj+1).

(5.5)

Notice that one easily checks by induction on n that for all n ∈ N, Qn(R
d) ≤ λ̄n. For all t > 0,

Pt is equivalent to the measure
∑

n∈N
Qn

n! . Indeed, since in the definition (5.2) of Pn,t ,

e−λ̄t ≤ e−λ(xn)(t−tn)

n−1∏
j=0

e−λ(xj )(tj+1−tj ) ≤ 1

and
∫

0≤t1≤t2≤···≤tn≤t
dt1 · · ·dtn = tn

n! , the first statement in the following lemma holds. The lemma
also relates integrability with respect to Pt and to

∫
Rd λ(x)k(x,dy)Pt (dx).

Lemma 5.3. For every n ≥ 0, for every t ≥ 0 one has

e−λ̄t t
n

n!Qn(dx) ≤ Pn,t (dx) ≤ tn

n!Qn(dx). (5.6)
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Moreover, for f : Rd → R̄ measurable, t > 0 and any η > 0,

∫
Rd×Rd

λ(x)
∣∣f (y)

∣∣k(x,dy)Pt (dx) ≤ Cη(t)

(∑
n≥1

∫
Rd |f (x)|1+ηPn,t (dx)

t

) 1
1+η

(5.7)

where Cη(t) = eλ̄t

(
eλ̄t (e

1+η
eη −1) − e−λ̄t

t

) η
1+η

. (5.8)

Remark 5.4. Notice that limt→0 Cη(t) = (λ̄e
1+η
eη )

η
1+η . Moreover, if 0 < t ≤ s, by (5.3), Pn,t ≤

eλ̄s( t
s
)nPn,s so that 1

t

∑
n≥1 Pn,t ≤ eλ̄s

s

∑
n≥1(

t
s
)n−1Pn,s ≤ eλ̄s

s
Ps . With (5.7) for t > 0 and using∫

Rd k(x,dy)P0(dx) = Q1(dy) ≤ eλ̄s

s
P1,s(dy) for t = 0, we deduce that if f ∈ L1+η(Ps) with

s, η > 0, then t �→ ∫
Rd×Rd λ(x)|f (y)|k(x,dy)Pt (dx) is bounded on [0, s].

Proof. From (5.5) and (5.6), we have

∫
Rd

λ(xn)k(xn,dxn+1)Pn,t (dxn) ≤ tn

n!Qn+1(dxn+1) = n + 1

t

tn+1

(n + 1)!Qn+1(dxn+1).

Therefore,∫
(Rd )2

λ(x)
∣∣f (y)

∣∣k(x,dy)Pt (dx)

=
∑
n≥0

∫
(Rd )2

λ(xn)
∣∣f (xn+1)

∣∣k(xn,dxn+1)Pn,t (dxn)

≤
∑
n≥0

n + 1

t

tn+1

(n + 1)!
∫
Rd

∣∣f (xn+1)
∣∣Qn+1(dxn+1)

(5.9)

= eλ̄t

t

∑
n≥1

ntn

n! e−λ̄t

∫
Rd

∣∣f (xn)
∣∣Qn(dxn)

= eλ̄t

t

∑
n≥1

λ̄
nη

1+η n

(
tn

n!e
−λ̄t

) η
1+η

λ̄
− nη

1+η

(
tn

n!e
−λ̄t

) 1
1+η

∫
Rd

∣∣f (xn)
∣∣Qn(dxn)

≤ eλ̄t

t

(∑
n≥1

λ̄nn
1+η
η

tn

n!e
−λ̄t

) η
1+η

(∑
n≥1

λ̄−nη tn

n!e
−λ̄t

(∫
Rd

∣∣f (xn)
∣∣Qn(dxn)

)1+η) 1
1+η

,

where we used Hölder’s inequality for the second inequality.



Wasserstein distance between the marginals of two Markov processes 2483

We deduce from Hölder’s inequality and the bound Qn(R
d) ≤ λ̄n that each term in the last

sum can be bounded from above by tn

n! e
−λ̄t

∫
Rd |f (xn)|1+ηQn(dxn) so that, by (5.6),

∑
n≥1

λ̄−nη tn

n!e
−λ̄t

(∫
Rd

∣∣f (xn)
∣∣Qn(dxn)

)1+η

≤
∑
n≥1

∫
Rd

∣∣f (x)
∣∣1+η

Pn,t (dx). (5.10)

Moreover, since for α ≥ 0 and x > 0, xα ≤ e
αx
e , we have, for every n ≥ 1

n
1+η
η ≤ C(η)n, with C(η) = e

1+η
eη . (5.11)

We obtain, consequently, that∑
n≥1

λ̄nn
1+η
η

tn

n!e
−λ̄t ≤

∑
n≥1

(λ̄tC(η))n

n! e−λ̄t = eλ̄t (C(η)−1) − e−λ̄t . (5.12)

We obtain the statement by plugging (5.10) and (5.12) into (5.9). �

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. By Proposition 2.2, for t ≥ 0, ψt ∈ L1+ε(Pt ) and∫
Rd

∣∣ψt(x) − Pt (ψt )
∣∣1+ε

Pt (dx) ≤ 2�(1+ε)
E

[|Xt |�(1+ε) + |X̃t |�(1+ε)
]
, (5.13)

where the right-hand side is assumed to be locally bounded for t ∈ [0,+∞). Applying (5.4) with
f (x) = |ψt(x) − Pt (ψt )|1+δ and η = ε−δ

1+δ
, we deduce the first statement.

For r, t > 0, using Hölder’s inequality, then a convexity inequality, we obtain∫
Rd

(∫
Rd

λ(x)k(x,dy)
∣∣ψt(y) − ψt(x)

∣∣)1+δ

Pr(dx)

≤ λ̄δ

∫
Rd×Rd

λ(x)k(x,dy)
∣∣ψt(y) − Pt (ψt ) + Pt (ψt ) − ψt(x)

∣∣1+δ
Pr(dx)

≤ (2λ̄)δ
(∫

Rd×Rd

λ(x)k(x,dy)
∣∣ψt(y) − Pt(ψt )

∣∣1+δ
Pr(dx)

+ λ̄

∫
Rd

∣∣ψt(x) − Pt (ψt )
∣∣1+δ

Pr(dx)

)
.

(5.14)

By (5.7) with η = ε−δ
2(1+δ)

and (5.1),∫
Rd×Rd

λ(x)k(x,dy)
∣∣ψt(y) − Pt (ψt )

∣∣1+δ
Pr(dx)

≤ C ε−δ
2(1+δ)

(r)

(
1

r

∫
Rd

∣∣ψt(x) − Pt(ψt )
∣∣1+ δ+ε

2 Pr(dx)

) 2(1+δ)
2+δ+ε

,
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where the right-hand side is smaller than a function of (r, t) locally bounded on (0,+∞)2 mul-

tiplied by (
∫
Rd |ψt(x) − Pt(ψt )|1+εPt (dx))

1+δ
1+ε according to (5.4) with η = ε−δ

2+ε+δ
(and Jensen’s

inequality for r ≤ t ). By (5.4) with η = ε−δ
1+δ

,
∫
Rd |ψt(x) − Pt (ψt )|1+δPr(dx) is also smaller

than (
∫
Rd |ψt(x) − Pt (ψt )|1+εPt (dx))

1+δ
1+ε multiplied by a function of (r, t) locally bounded on

(0,+∞)2. Plugging these bounds in (5.14) and using (5.13), we conclude that

(r, t) �→
∫
Rd

(∫
Rd

λ(x)k(x,dy)
∣∣ψt(y) − ψt(x)

∣∣)1+δ

Pr(dx)

is locally bounded on (0,+∞)2.
Starting from (5.14) with δ = 0 and r = t , using (5.7) with η = ε and (5.13), we obtain that∫

Rd×Rd

λ(x)k(x,dy)
∣∣ψt(y) − ψt(x)

∣∣Pt (dx)

≤ 2�
(
Cε(t)t

− 1
1+ε + λ̄

)
E

1
1+ε

[|Xt |�(1+ε) + |X̃t |�(1+ε)
]
.

Since t �→ Cε(t) and t �→ E[|Xt |�(1+ε) + |X̃t |�(1+ε)] are locally bounded on [0,+∞) and t �→
t−

1
1+ε is locally integrable, we conclude that t �→ ∫

Rd×Rd λ(x)k(x,dy)|ψt(y) − ψt(x)|Pt (dx) is
locally integrable on [0,+∞). �

We now give a sufficient condition for t �→ E[|Xt |α] to be locally bounded.

Lemma 5.5. Assume that supx∈Rd λ(x) ≤ λ̄ < ∞ and let α ≥ 1. If

k̄X
α = max

(
E

[|X0|α
]
, sup

x

∫
Rd

k(x,dy)|y − x|α
)

< +∞, (5.15)

then for every t ≥ 0

∫
Rd

|x|αPt (dx) ≤ k̄X
α

(�α�−1∑
n=0

(n + 1)α

n! (λ̄t)n + (�α� + 1)α

�α�! (λ̄t)�α�eλ̄t

)
, (5.16)

where �α� denotes the integer such that α ≤ �α� < α + 1.

Proof. We observe that, for every n ≥ 0∫
Rd

|xn|αPn,t (dxn)

≤
∫

0=t0<t1<···<tn<t

∫
Rd

(n + 1)α−1(|x0|α + |x1 − x0|α + · · · + |xn − xn−1|α
)

(5.17)
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× P0(dx0)

n−1∏
j=0

(
λ(xj )e

−λ(xj )(tj+1−tj )k(xj ,dxj+1)
)
e−λ(xn)(t−tn) dt0 · · ·dtn

≤ (n + 1)α−1 (λ̄t)n

n! (n + 1)k̄X
α = (λ̄t)n

(n + 1)α

n! k̄X
α .

We now observe that, for α ≥ 1, if n ≥ �α�
(n + 1)α

n! ≤ (n + 1)�α�

n(n − 1) · · · (n − �α� + 1)
× 1

(n − �α�)! ≤ (�α� + 1)�α�

�α�! × 1

(n − �α�)! .

Hence,

E
[|Xt |α

] =
∑
n∈N

∫
Rd

|xn|αPn,t (dxn)

≤ k̄X
α

(�α�−1∑
n=0

(n + 1)α

n! (λ̄t)n + (�α� + 1)�α�

�α�! (λ̄t)�α� ∑
n≥�α�

(λ̄t)n−�α�

(n − �α�)!

)

= k̄X
α

(�α�−1∑
n=0

(n + 1)α

n! (λ̄t)n + (�α� + 1)�α�

�α�! (λ̄t)�α�eλ̄t

)
.

�

6. Evolution of the Wasserstein distance between two
one-dimensional Piecewise Deterministic Markov Processes
(PDMP)

In this section, we are interested in proving the identity (1.8) when {Pt }t≥0 and {P̃t }t≥0 are the
marginal laws of two PDMP {Xt }t≥0 and {X̃t }t≥0. Let us recall that the infinitesimal generator
of a PDMP is given by

Lf (x) = V (x)∇f (x) + λ(x)

(∫
Rd

k(x,dy)
(
f (y) − f (x)

))
,

where V : Rd → R
d is a vector field, while λ(x) and k(x,dy), respectively denote as before

the jump intensity and the jump law. To give a sense to (1.8), we need at least to show that∫
Rd |Lψt(x)|Pt (dx) < ∞. By the triangular inequality, it is sufficient to upper bound∫

Rd

∣∣V (x)∇ψt(x)
∣∣Pt (dx) +

∫
Rd

∣∣λ(x)ψt (x)
∣∣Pt(dx) +

∫
Rd

λ(x)

∣∣∣∣∫
Rd

k(x,dy)ψt (y)

∣∣∣∣Pt (dx).

By using Proposition 2.2, and under suitable conditions on V , λ and k that ensure in par-
ticular the moment boundedness of the PDMP, we see that we can upper bound the second
term. We can also upper bound the first one by using Theorem 6.2.4 of Ambrosio, Gigli and
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Savaré [3] that gives |∇ψt(x)| = �|Tt (x) − x|�−1 ≤ �2�−1(|Tt (x)|�−1 + |x|�−1), Pt (dx)-a.e.,
where Tt is the optimal transport map from Pt to P̃t . Thus, the main difficulty is to upper
bound

∫
Rd λ(x)| ∫

Rd k(x,dy)ψt (y)|Pt (dx). In the case of pure jump Markov processes, we
are able to handle this term thanks to Lemma 5.3 and the remarkable property (5.6) on the
marginal probability measures. For general PDMP, we no longer have this property, and our
strategy here will be to estimate the difference between ψt(y) and ψt(x). To do so, we will
work in dimension one (d = 1) and use the explicit formulas (1.5) for the Kantorovich poten-
tials.

6.1. Main result

We consider {Xt }t≥0 and {X̃t }t≥0 two R-valued PDMP with respective marginal laws {Pt }t≥0

and {P̃t }t≥0 and infinitesimal generators given by

Lf (x) = V (x)f ′(x) + λ(x)

(∫
Rd

k(x,dy)
(
f (y) − f (x)

))
, (6.1)

L̃f (x) = Ṽ (x)f ′(x) + λ̃(x)

(∫
Rd

k̃(x,dy)
(
f (y) − f (x)

))
. (6.2)

We will work under the following assumptions for both processes.

Assumption 6.1 (Assumption on V , λ).

(i) The vector field V is locally Lipschitz and bounded.
(ii) The intensity of the jumps λ(x) is a continuous function of x, bounded from above, and

we denote λ̄ = supx λ(x) < ∞.

Assumption 6.2 (Assumption on the jump kernel k(x,dy)).

(iii) Jumps are bounded: ∃M > 0,∀x ∈ R,
∫
R

1{|x−y|>M}k(x,dy) = 0.

(iv)
∫
R

λ(x)e− x2
2 k(x,dy)dx admits a density with respect to the Lebesgue measure dy.

(v) x ∈ R �→ k(x,dy) is continuous for the weak convergence topology.

Assumption ̂6.2. Assumptions 6.2(iii), (v) and

(̂iv) If P({x}) = 0 for all x ∈ R, then for any y ∈ R,
∫
R

λ(x)k(x, {y})P (dx) = 0.

Let us note that Assumption (̂iv) is satisfied if for any y ∈ R, {x ∈ R, λ(x)k(x, {y}) > 0} is
countable.

Last, we will need in our analysis to work with marginal distributions that have some specific
properties. For a probability measure P(dx) on R, we denote by F(x) = P((−∞, x]) its cumu-
lative distribution function and F̄ (x) = 1 − F(x). For � ≥ 1, we define the following subset of
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probability measures on R

P̂� =
{
P(dx), s.t. F is continuous increasing,

∫
R

|x|�P (dx) < ∞,

(6.3)

∃c,C > 0,∀y > 0, sup
x

F (x + y)

F (x)
≤ ceCy, sup

x

F̄ (x − y)

F̄ (x)
≤ ceCy

}
,

P� = {
P(dx) = p(x)dx, s.t. P ∈ P̂�

}
. (6.4)

In particular, a probability measure of P� has a density that is almost everywhere positive. The
next lemma ensures some nice properties of the optimal transport map between two probability
measures in P̂� .

Lemma 6.3. Let P and P̃ denote two probability measures on R with respective cumulative
distribution functions F and F̃ . We assume that F is continuous and denote T (x) = F̃−1(F (x))

the associated optimal transport map.

(i) If F̃ is increasing, then T is continuous and the Kantorovich potential ψ given by (1.5) is
C1.

(ii) If ∀y > 0, supx
F(x+y)

F (x)
≤ ceCy, supx

F̄ (x−y)

F̄ (x)
≤ ceCy , then we have

∀q > 0,∀y > 0,

∫
R

∣∣T (x ± y)
∣∣qP (dx) ≤ ceCy

∫
R

|x|q P̃ (dx).

Notice that the existence of a positive density for P̃ is sufficient to ensure that F̃ is increasing.

Proof. Point (i) is obvious since the hypothesis ensures that F̃−1 is continuous. For Point (ii),
note that we necessarily have c ≥ 1. The result for

∫
R

|T (x − y)|qP (dx) is a corollary of Propo-
sition 2.3 with ϕy(u) = ceCy − 1 and δ = +∞. The result for

∫
R

|T (x + y)|qP (dx) is obtained
by symmetry, looking at the optimal transport between the images of P and P̃ by x �→ −x. �

We now state the main result of this section.

Theorem 6.4. Let � > 1. Suppose that both the processes {Xt }t≥0 and {X̃}t≥0 are real valued
PDMP satisfying Assumptions 6.1, 6.2 with initial marginals P0, P̃0 ∈ P�(1+ε) for some ε > 0.
Then for every t ≥ 0

W�
� (Pt , P̃t ) − W�

� (P0, P̃0) = −
∫ t

0

(∫
R

Lψr(x)Pr(dx) +
∫
R

L̃ψ̃r (x)P̃r (dx)

)
dr. (6.5)

This result remains valid if P0 or P̃0 belong to the larger set P̂�(1+ε) and the corresponding
processes satisfy Assumption 6̂.2 instead of 6.2.

The assumption on the initial laws may at first sight seem rather restrictive. However, it is
always possible to approximate them by using the following lemma.



2488 A. Alfonsi, J. Corbetta and B. Jourdain

Lemma 6.5. Let � ≥ 1. Let X0,Z be independent real random variables such that E[|X0|�] <

∞ and Z follows the density pZ(x) = 1
2e−|x|. Then, for any η > 0, X0 + ηZ ∈P� .

Proof. We first observe that pZ(x)dx ∈ P� , since FZ(x) = 1{x<0} 1
2ex + 1{x≥0}(1 − 1

2e−x) sat-
isfies FZ(x + y) ≤ FZ(x)ey for any x ∈R, y > 0. This is clear when x + y ≤ 0. When x ≤ 0 and
x + y ≥ 0, this is true since 1 − 1

2e−(x+y) ≤ 1
2eye−x ⇐⇒ ex ≤ cosh(y). When 0 ≤ x, we have

1 − 1
2e−(x+y) ≤ ey(1 − 1

2e−x) ⇐⇒ 1 + e−x sinh(y) ≤ ey which holds since 1 + sinh(y) ≤ ey .
Clearly, E[|X0 + ηZ|�] < ∞. Since P(X0 + ηZ ≤ x) = E[FZ((x − X0)/η)], this law satisfies

again the estimates in (6.3) with c = 1 and C = 1/η. Besides, the density of X0 + ηZ is equal to
E[pZ((x − X0)/η)]/η > 0. �

Corollary 6.6. Let P0 and P̃0 be two probability laws on R with finite moments of order �(1+ε)

for some ε > 0. For η > 0, we define P
η
0 ∈ P�(1+ε) and (resp. P̃

η
0 ∈ P�(1+ε)) as the law of

X0 +ηZ (resp. X̃0 +ηZ) where X0 (resp. X̃0) and Z are independent and respectively distributed
according to P0, P̃0 and the density pZ(x) = 1

2e−|x|. We denote P
η
t (resp. P̃

η
t ) the marginal law

at time t of the PDMP with generator L (resp. L̃). Then, under Assumptions 6.1 and 6.2, we have

W�
� (Pt , P̃t ) − W�

� (P0, P̃0) = − lim
η→0

∫ t

0

(∫
R

Lψη
r (x)P η

r (dx) +
∫
R

L̃ψ̃η
r (x)P̃ η

r (dx)

)
dr, (6.6)

where (ψ
η
r , ψ̃

η
r ) are Kantorovich potentials for P

η
r and P̃

η
r .

Proof. Let t ≥ 0. On the one hand, we have from Proposition 6.8 below uniform in η ∈ [0,1]
bounds on the moments of order �(1 + ε) of the probability measures P

η
t and P̃

η
t . On the other

hand, we have the weak convergence of P
η
t (resp. P̃

η
t ) to Pt (resp. P̃t ) when η → 0. This can

be obtained by looking at the corresponding martingale problems and using standard tightness
arguments, exactly as in the proof of Proposition A.1. Theorem 6.9 of Villani [18] then gives
W

�
� (P

η
t , P̃

η
t ) →η→0 W

�
� (Pt , P̃t ). We finally get (6.6) by Theorem 6.4. �

6.2. Proof of Theorem 6.4

To prove Theorem 6.4 for the processes {Xt }t≥0 and {X̃t }t≥0, we will approximate them by pure
jump processes in order to use Theorem 3.1. To do so, we define, for μ ≥ 1 the following jump
kernel

kμ(x,dy) = 1

μ + λ(x)

(
μδ{�(x; 1

μ
)}(dy) + λ(x)k(x,dy)

)
, (6.7)

where �(x, s) is the flow of the differential equation driven by V , that is, the solution of

∂

∂t
�(x, t) = V

(
�(x, t)

)
, �(x,0) = x,∀x ∈R. (6.8)
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We define the process {Xμ
t }t≥0 as a pure jump Markov process with jump intensity μ + λ(x),

transition kernel kμ(x,dy) and initial distribution P0. It has the following infinitesimal generator

Lμf (x) = μ

[
f

(
�

(
x,

1

μ

))
− f (x)

]
+ λ(x)

∫
R

(
f (y) − f (x)

)
k(x,dy). (6.9)

We note P
μ
t the probability law of X

μ
t . From Proposition A.1, the process {Xμ

t }t≥0 weakly
converges to the process {Xt }t≥0 when μ → +∞. By a slight abuse of notation, we will set
X+∞ = X, L+∞ = L and P +∞

t = Pt . The following remark recalls a usual way to sample the
processes X and Xμ.

Remark 6.7. At some point, it will be convenient to work with a pathwise representation of
the processes Xμ and X. To do so, let us consider N a Poisson process of parameter λ̄, Nμ

a Poisson process of parameter μ and (U1
i )i≥1,(U2

i )i≥1 two sequences of independent uniform
random variables on [0,1], that are independent and independent from the initial value X0 ∼ P0.
Let us set for x ∈ R, u ∈ (0,1)

H(x,u) = inf
{
z : k(

x, (−∞, z]) > u
}
.

Then, the infinitesimal generators of the following processes

Xt = X0 +
∫ t

0
V (Xs)ds +

∫ t

0
1{U2

Ns
≤λ(Xs− )/λ̄}H

(
Xs− ,U1

Ns

)
dNs, (6.10)

X
μ
t = X0 +

∫ t

0
�

(
X

μ

s−,
1

μ

)
dNμ

s +
∫ t

0
1{U2

Ns
≤λ(X

μ

s− )/λ̄}H
(
X

μ

s− ,U1
Ns

)
dNs, (6.11)

are respectively L and Lμ.

To prove Theorem 6.4, we start by a technical result stating that the marginal laws of the
PDMP and its approximations stay in the set P� of probability measures. It also gives uniform
constants in μ that will be useful to handle limits when μ → +∞. Then, we prove two technical
lemmas. The first one brings on the integrability of Kantorovich potentials for probability laws
in P� . The last lemma shows the local uniform convergence of the Kantorovich potential given
by (1.5) between P

μ
t and P̃

μ
t toward the same Kantorovich potential between Pt and P̃t . From

now on, we denote by Ft , F̃t , F
μ
t and F̃

μ
t the respective cumulative distribution functions of Pt ,

P̃t , P
μ
t and P̃

μ
t .

Proposition 6.8.

• Let us assume that Assumptions 6.1 and 6.2(iii) hold. Then, we have for any t > 0, q > 0,

sup
μ∈[1/t,+∞]

E
[∣∣Xμ

t − X0
∣∣q]

≤ 2(q−1)+(‖V ‖q∞tq(q/e)qee + Mq(q/e)q exp
(
λ̄t (e − 1)

))
.

(6.12)
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• Let us assume that P0(dx) = p0(x)dx with p0(x) > 0 dx-a.e. (resp. F0 is continuous in-
creasing) and Assumption 6.2(iv) (resp. (̂iv)) hold. Then, for any t ≥ 0, Pt(dx) = pt(x)dx

and P
μ
t (dx) = p

μ
t (x)dx with pt(x)p

μ
t (x) > 0 dx-a.e. (resp. Ft and F

μ
t are continuous

increasing).
• Let us assume that Assumptions 6.1 and 6.2(iii) hold. If C0, c0 > 0 denote constants such

that

∀y > 0, sup
x

F0(x + y)

F0(x)
≤ c0e

C0y, sup
x

F̄0(x − y)

F̄0(x)
≤ c0e

C0y,

we have for any μ ∈ [1,+∞],

∀y > 0, sup
x

F
μ
t (x + y)

F
μ
t (x)

≤ ct e
C0y, sup

x

F̄
μ
t (x − y)

F̄
μ
t (x)

≤ ct e
C0y, (6.13)

with ct = c2
0 exp(t (eC0‖V ‖∞ − e−C0‖V ‖∞) + λ̄t (eC0M − e−C0M)).

Since E[|Xμ
t − X0|�] ≤ 2�−1(E[|Xμ

t |�] +E[|X0|�]), we easily get the following corollary.

Corollary 6.9. Let Assumptions 6.1, 6.2(iii) and (iv) (resp. (̂iv)) hold. Then, if P0 ∈ P� (resp.
P0 ∈ P̂�) we have that

∀t ≥ 0,μ ∈ [1,+∞], P
μ
t ∈P�

(
resp. P

μ
t ∈ P̂�

)
.

Proof of Proposition 6.8. Moments. From (6.11), we have |Xμ
t − X0| ≤ ‖V ‖∞

μ
N

μ
t + MNt and

thus E[|Xμ
t −X0|q ] ≤ 2(q−1)+((

‖V ‖∞
μ

)qE[(Nμ
t )q ]+Mq

E[Nq
t ]). Since xq ≤ (q/e)qex for x ≥ 0,

we get E[(Nμ
t /(μt))q ] ≤ (q/e)q exp(μt (e1/(μt) − 1)) and E[Nq

t ] ≤ (q/e)q exp(λ̄t (e − 1)). We
thus obtain (6.12) since s(e1/s − 1) ≤ e for s ≥ 1. From (6.10), we have similarly |Xt − X0| ≤
‖V ‖∞t + MNt and we deduce (6.12) for μ = +∞.

Density (under Assumption 6.2(iv)). Let k̃μ(x,dy) = λ(x)

μ+λ̄
k(x,dy) + μ

μ+λ̄
δ�(x,1/μ)(dy) +

λ̄−λ(x)

μ+λ̄
δx(dy) and p0 denotes the density of P0. Then, similarly to (5.1) and (5.2), we have

P
μ
t (dx) = ∑

n≥0 P
μ
n,t (dx) with P

μ
0,t (dx0) = e−(μ+λ̄)tp0(x0)dx0 and for n ≥ 1,

P
μ
n,t (dxn) = e−(μ+λ̄)t (μ + λ̄)ntn

n!
∫
Rn

p0(x0)dx0

n−1∏
j=0

k̃μ(xj ,dxj+1).

By induction, it is sufficient to check that for a probability density p on R,∫
R

p(x0)dx0k̃
μ(x0,dx1) = 1

μ + λ̄

∫
R

λ(x0)p(x0)dx0k(x0,dx1)

+ μ

μ + λ̄

∫
R

p(x0)dx0δ�(x0,1/μ)(dx1) + p(x1)
λ̄ − λ(x1)

μ + λ̄
dx1
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is absolutely continuous with respect to dx1. On the one hand, p(x0)λ(x0)k(x0,dx1)dx0 is ab-

solutely continuous with respect to e− x2
0
2 λ(x0)k(x0,dx1)dx0. From Assumption 6.2(iv), we get

that for every Lebesgue negligible set A ⊂R,
∫
R

p(x0)λ(x0)
∫
A

k(x0,dx1)dx0 = 0 and therefore∫
R

p(x0)λ(x0)dx0k(x0,dx1) is absolutely continuous with respect to dx1. On the other hand, for
a bounded measurable function f :R →R, we have∫

R

f (x1)

∫
R

p(x0)δ�(x0,1/μ)(dx1)dx0 =
∫
R

f
(
�(x0,1/μ)

)
p(x0)dx0.

For any t > 0, the flow x �→ �(x, t) is bijective continuous and increasing, and its inverse func-
tion is x �→ �(x,−t). We get (see for example Proposition 4.10, page 9 of Revuz and Yor [17])∫

R

f
(
�(x0,1/μ)

)
p(x0)dx0 =

∫
R

f
(
x′)p(

�
(
x′,−1/μ

))
d�

(
x′,−1/μ

)
.

Since V is bounded and locally Lipschitz, x �→ �(x,−t) is locally Lipschitz, which gives that
it is almost everywhere differentiable and d�(x′,−1/μ) = ∂x�(x′,−t)dx′. Last, the inequality
P

μ
t (dx) ≥ P

μ
0,t (dx) gives the almost everywhere positivity of the density.

For Xt (which corresponds to μ = ∞), we have similarly Pt (dx) = ∑
n≥0 Pn,t (dx) with

P0,t (dx0) = e−λ̄tp0(�(x0,−t))∂x�(x0,−t)dx0 and for n ≥ 1,

Pn,t (dxn) = e−λ̄t λ̄n

∫
0≤t1≤t2≤···≤tn≤t

pt1,...,tn

(
�(xn, tn − t)

)
∂x�(xn, tn − t)dt1 · · ·dtn dxn,

pt1,...,tn (xn)dxn :=
∫
Rn

p0(x0)dx0

n−1∏
j=0

k̃(tj+1 − tj , xj ,dxj+1)

with t0 = 0 and k̃(t, x,dy) = λ(�(x,t))

λ̄
k(�(x, t),dy) + (1 − λ(�(x,t))

λ̄
)δ�(x,t)(dy). This represen-

tation can be obtained from (6.10) by observing that
∫
Rn p0(x0)dx0

∏n−1
j=0 k̃(tj+1 − tj , xj ,dxj+1)

is the law of XTn knowing that {Nt = n,T1 = t1, . . . , Tn = tn} where Ti = inf{t ≥ 0,Nt = i}. By
induction on n, we check that this law is absolutely continuous with respect to dxn, which makes
the definition of pt1,...,tn valid. It is sufficient to check this for n = 1, and we have∫
R

p0(x0)dx0λ
(
�(x0, t)

)
k
(
�(x0, t),dx1

) =
∫
R

p0
(
�

(
x′,−t

))
λ
(
x′)∂x�

(
x′,−t

)
k
(
x′,dx1

)
dx′,

which is absolutely continuous with respect to dx1 by Assumption 6.2(iv). By using the flow, we
get that

∫
R

p0(x0)dx0(1 − λ(�(x0,t))

λ̄
)δ�(x0,t)(dx1) is also absolutely continuous with respect to

dx1. Therefore, the density pt1,...,tn (xn) exists. It is then clear that Pn,t (dxn) = P(Xt ∈ dxn,Nt =
n) admits the above density. Last, Pt (dx) ≥ P0,t (dx) gives the positivity of the density since
∂x�(x,−t) is almost everywhere positive.

Continuous increasing cumulative distribution functions (under Assumption (̂iv)). We follow
the same steps. We use that P

μ
t (dx) = ∑

n≥0 P
μ
n,t (dx) with P

μ
0,t (dx0) = e−(μ+λ̄)tP0(dx0) and for
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n ≥ 1,

P
μ
n,t (dxn) = e−(μ+λ̄)t (μ + λ̄)ntn

n!
∫
Rn

P0(dx0)

n−1∏
j=0

k̃μ(xj ,dxj+1).

Let P be a probability measure on R such that P({x}) = 0 for any x ∈ R. We have for any y ∈ R∫
R

P(dx)̃kμ
(
x, {y}) = 1

μ + λ̄

∫
R

λ(x)P (dx)k
(
x, {y})

+ μ

μ + λ̄
P

({
�(y,−1/μ)

}) + λ̄ − λ(x1)

μ + λ̄
P

({y}) = 0,

by Assumption (̂iv). By induction, for any n ∈ N, P
μ
n,t does not weigh points. Therefore, F

μ
t is

continuous. It is also increasing since x �→ P
μ
0,t ((−∞, x]) is increasing.

We can do similar calculations for {X}t≥0, and show that for any n ∈ N
∗, 0 ≤ t1 ≤ · · · ≤ tn ≤ t ,

Pt1,...,tn (dxn) = ∫
Rn P0(dx0)

∏n−1
j=0 k̃(tj+1 − tj , xj ,dxj+1) does not weigh points. Therefore,

xn �→ Pn,t ((−∞, xn]) = e−λ̄t λ̄n
∫

0≤t1≤t2≤···≤tn≤t
Pt1,...,tn ((−∞,�(xn, tn − t)])dt1 · · ·dtn is con-

tinuous. Since x �→ P0,t ((−∞, x]) = e−λ̄tP0((−∞,�(x,−t)]) is continuous increasing and
Pt (dx) = ∑

n≥0 Pn,t (dx), we get that Ft is continuous increasing.
Tails. From (6.11), we have X

μ
t ≥ X0 − ‖V ‖∞N

μ
t /μ − MNt . Since P0 ∈ P� and using the

independence, we get

F
μ
t (x + y) ≤ E

[
F0

(
x + y + ‖V ‖∞N

μ
t /μ + MNt

)]
≤ c0F0(x)eC0y exp

(
μt

(
e
C0

‖V ‖∞
μ − 1

) + λ̄t
(
eC0M − 1

))
.

Looking at the right tail, we also get

F̄
μ
t (x) ≥ E

[
F̄0

(
x + ‖V ‖∞N

μ
t /μ + MNt

)]
≥ 1

c0
F̄0(x) exp

(
μt

(
e
−C0

‖V ‖∞
μ − 1

) + λ̄t
(
e−C0M − 1

))
.

Similarly, the other inequality X
μ
t ≤ X0 + ‖V ‖∞N

μ
t /μ + MNt obtained from (6.11) leads to

F
μ
t (x) ≥ E

[
F0

(
x − ‖V ‖∞N

μ
t /μ − MNt

)]
≥ 1

c0
F0(x) exp

(
μt

(
e
−C0

‖V ‖∞
μ − 1

) + λ̄t
(
e−C0M − 1

))
,

F̄
μ
t (x − y) ≤ E

[
F̄0

(
x − y − ‖V ‖∞N

μ
t /μ − MNt

)]
≤ c0F̄0(x)eC0y exp

(
μt

(
e
C0

‖V ‖∞
μ − 1

) + λ̄t
(
eC0M − 1

))
.
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Therefore, we obtain that both F
μ
t (x+y)

F
μ
t (x)

and F̄
μ
t (x−y)

F̄
μ
t (x)

are upper bounded by

c2
0 exp

(
μt

(
e
C0

‖V ‖∞
μ − e

−C0
‖V ‖∞

μ
) + λ̄t

(
eC0M − e−C0M

))
eC0y.

From (6.10), we check by similar calculations that the upper bound is also true for μ = +∞
with μt(e

C0
‖V ‖∞

μ − e
−C0

‖V ‖∞
μ ) = 2C0‖V ‖∞t . Since [1,+∞] 
 μ �→ μt(e

C0
‖V ‖∞

μ − e
−C0

‖V ‖∞
μ )

is nonincreasing, we get (6.13). �

Lemma 6.10. Let � > 1. We assume that Assumption 6.1 holds and that P, P̃ ∈ P̂�α for some
α ≥ 1. Let ψ ∈ C1 be such that ψ ′(x) = �|x −T (x)|�−2(T (x)−x) with T (x) = F̃−1(F (x)) (i.e.
this is a Kantorovich potential associated to the �-Wasserstein distance from (1.5)). Let c,C > 0
denote constants such that (6.3) holds for P . Then, for any μ ∈ [1,+∞], we have∫

R

∣∣Lμψ(x)
∣∣αP (dx) ≤ 2α−1‖V ‖α∞�α2(α(�−1)−1)+

(
2ceC‖V ‖∞

∫
R

|x|α(�−1)P̃ (dx)

+ 2(α(�−1)−1)+
(∫

R

|x|α(�−1)P (dx) + ‖V ‖α(�−1)∞
))

(6.14)

+ 2α−1λ̄α2α�−1
((

1 + 2α�−1)∫
R

|x|α�P (dx) + 2α�−1Mα�

+ (
1 + 2ceCM

)∫
R

|x|α�P̃ (dx)

)
.

Proof. We have ψ(�(x,1/μ)) − ψ(x) = ∫ 1/μ

0 ψ ′(�(x, s))V (�(x, s))ds and thus∣∣Lμψ(x)
∣∣ ≤ μ‖V ‖∞

∫ 1/μ

0

∣∣ψ ′(�(x, s)
)∣∣ds + λ̄

∫
R

∣∣ψ(y) − ψ(x)
∣∣k(x,dy).

Also, we obtain |L+∞ψ(x)| ≤ ‖V ‖∞|ψ ′(x)| + λ̄
∫
R

|ψ(y) − ψ(x)|k(x,dy), which leads to

∀μ ∈ [1,+∞], ∣∣Lμψ(x)
∣∣ ≤ ‖V ‖∞ max|y|≤‖V ‖∞

∣∣ψ ′(x + y)
∣∣ + λ̄

∫
R

∣∣ψ(y) − ψ(x)
∣∣k(x,dy),

and then ∫
R

∣∣Lμψ(x)
∣∣αP (dx) ≤ 2α−1‖V ‖α∞

∫
R

max|y|≤‖V ‖∞

∣∣ψ ′(x + y)
∣∣αP (dx)

+ 2α−1λ̄α

∫
R

∫
R

∣∣ψ(z) − ψ(x)
∣∣αk(x,dz)P (dx).

For the first term, we use that |ψ ′(z)|α = �α|T (z) − z|α(�−1) ≤ �α2(α(�−1)−1)+(|T (z)|α(�−1) +
|z|α(�−1)). Since T is nondecreasing, we get

max|y|≤‖V ‖∞

∣∣ψ ′(x + y)
∣∣α ≤ �α2(α(�−1)−1)+(

max
(∣∣T (

x + ‖V ‖∞
)∣∣α(�−1)

,
∣∣T (

x − ‖V ‖∞
)∣∣α(�−1))

+ 2(α(�−1)−1)+(|x|α(�−1) + ‖V ‖α(�−1)∞
))

.
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For the second term, since π(dx,dy) = P(dx)δT (x)(dy) achieves the optimal transport between
P and P̃ , we get by using (2.1) P(dx)P (dz)-a.s., F increasing and the continuity of ψ and T that
|ψ(z) − ψ(x)| ≤ max(|T (z) − x|�, |z − T (x)|�) for all x, z ∈ R. We obtain |ψ(z) − ψ(x)|α ≤
2α�−1(|x|α� + |T (x)|α� + |z|α� + |T (z)|α�) and thus∫

R

∫
R

∣∣ψ(z) − ψ(x)
∣∣αk(x,dz)P (dx)

≤ 2α�−1
(∫

R

|x|α�P (dx) +
∫
R

|x|α�P̃ (dx)

+ 2α�−1
(

Mα� +
∫
R

|x|α�P (dx)

)
+

∫
R

(∣∣T (x + M)
∣∣α� + ∣∣T (x − M)

∣∣α�)
P(dx)

)
.

Gathering all the terms and using Lemma 6.3, we get (6.14). �

Lemma 6.11. Let � > 1, r > 0. We consider ψr(x) = ∫ x

0 �|F̃−1
r (Fr(y)) − y|�−2(F̃−1

r (Fr(y)) −
y)dy and ψ

μ
r (x) = ∫ x

0 �|(F̃ μ
r )−1(F

μ
r (y)) − y|�−2[(F̃ μ

r )−1(F
μ
r (y)) − y]dy. Then, under the as-

sumptions of Theorem 6.4, Lμψ
μ
r converges locally uniformly to Lψr .

Proof. According to Proposition 6.8, the functions Fr , F̃r , F
μ
r , F̃

μ
r are continuous and in-

creasing. The convergence in law stated by Proposition A.1 gives the pointwise convergence
of F

μ
r (resp. (F̃

μ
r )−1) to Fr (resp. F̃−1

r ). Since x �→ (F̃
μ
r )−1(F

μ
r (x)) is increasing, a classi-

cal result sometimes named as the second Dini theorem gives the local uniform convergence
of (F̃

μ
r )−1(F

μ
r (x)) to F̃−1

r (F
μ
r (x)). Then, using that z �→ �|z|�−2z is (� − 1)-Hölderian for

1 < � ≤ 2 and locally Lipschitz for � > 2, we get local uniform convergence of (ψ
μ
r )′(x) and

ψ
μ
r (x) − ψ

μ
r (0) toward ψ ′

r (x) and ψr(x) − ψr(0). We write

Lμψμ
r (x) − Lψr(x) = μ

∫ 1
μ

0

[(
ψμ

r

)′(
�(x, s)

) − ψ ′
r

(
�(x, s)

)]
V

(
�(x, s)

)
ds

+ μ

∫ 1
μ

0
ψ ′

r

(
�(x, s)

)
V

(
�(x, s)

) − ψ ′
r (x)V (x)ds (6.15)

+ λ(x)

∫
R

(
ψμ

r (y) − ψr(y) − ψμ
r (x) + ψr(x)

)
k(x,dy).

Let a > 0. For x ∈ [−a, a] and μ ≥ 1 and s ∈ [0,1/μ], |�(x, s)| ≤ a + ‖V ‖∞. The uniform
convergence of (ψ

μ
r )′ on [−(a + ‖V ‖∞), a + ‖V ‖∞] and Assumption 6.1(i) gives the uniform

in x ∈ [−a, a] convergence to zero of the first term of the right-hand side of (6.15). Similarly,
the third term uniformly converges to zero on [−a, a] by using the local uniform convergence of
ψ

μ
r (x)−ψ

μ
r (0), Assumptions 6.1(ii) and 6.2(iii). Last, the second term also converges uniformly

to zero on [−a, a] by using that � is continuous on [−a, a] × [0,1], the Heine–Cantor theorem
and the continuity of ψ ′

rV . �

Proof of Theorem 6.4. We use the approximating family of pure jump processes {Xμ
t }μ≥1 and

{X̃μ
t }μ≥1. By using the uniform bound (6.12) on moments of order �(1 + ε) and the convergence
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in law given by Proposition A.1, we have by Theorem 6.9 of Villani [18]

W�
� (Pt , P̃t ) − W�

� (P0, P̃0) = lim
μ→∞W�

�

(
P

μ
t , P̃

μ
t

) − W�
� (P0, P̃0).

Theorem 3.1 yields

W�
�

(
P

μ
t , P̃

μ
t

) − W�
� (P0, P̃0) = −

∫ t

0

(∫
R

Lμψμ
r (x)P μ

r (dx) +
∫
R

L̃μψ̃μ
r (x)P̃ μ

r (dx)

)
dr.

To obtain (6.5), it is sufficient show that
∫
R

Lμψ
μ
r (x)P

μ
r (dx) converges for all r ∈ [0, t] to∫

R
Lψr(x)Pr(dx). Indeed, we can then apply the dominated convergence theorem by using

(6.14) and (6.12). For N > 0, we define [z]N = max(−N,min(z,N)) for any z ∈R, and write∣∣∣∣∫
R

Lμψμ
r (x)P μ

r (dx) −
∫
R

LψrPr(dx)

∣∣∣∣ ≤
∣∣∣∣∫

R

(
Lμψμ

r (x) − [
Lμψμ

r (x)
]
N

)
P μ

r (dx)

∣∣∣∣
+

∣∣∣∣∫
R

([
Lμψμ

r (x)
]
N

− [
Lψr(x)

]
N

)
P μ

r (dx)

∣∣∣∣
+

∣∣∣∣∫
R

[
Lψr(x)

]
N

(
P μ

r (dx) − Pr(dx)
)∣∣∣∣

+
∣∣∣∣∫

R

([
Lψr(x)

]
N

− Lψr(x)
)
Pr(dx)

∣∣∣∣.
Let η > 0. Using

∫
R

|Lμψ
μ
r (x)|1{|Lμψ

μ
r (x)|>N}P

μ
r (dx) ≤ N−ε

∫
R

|Lμψ
μ
r (x)|(1+ε)P

μ
r (dx) and

(6.14) with α = 1 + ε, we can find N large enough so that the first and the fourth terms are
bounded by η/4, uniformly in μ ≥ 1. For the second term, we use that that the family P

μ
t is tight

since it converges weakly to Pt . Let K be a compact subset of R such that
∫
R\K P

μ
r (dx) ≤ η

16N

for any μ ≥ 1. From Lemma 6.11, there exists μη such that supx∈K |Lμψμ(x) − Lψ(x)| ≤ η/8
for μ ≥ μη. We get∣∣∣∣∫

R

([
Lμψμ

r (x)
]
N

− [
Lψr(x)

]
N

)
P μ

r (dx)

∣∣∣∣ ≤ 2N
η

16N
+ η

8
= η

4
.

Last, we note that x �→ [Lψr(x)]N is bounded and continuous by Assumption 6.1, Assump-
tion 6.2(v) and the continuity of ψ ′

r . The weak convergence of P
μ
t gives the existence of μ′

η ≥ μη

such that | ∫
R
[Lψr(x)]N(P

μ
r (dx)−Pr(dx))| ≤ η/4 for μ ≥ μ′

η. We get | ∫
R

Lμψ
μ
r (x)P

μ
r (dx)−∫

R
LψrPr(dx)| ≤ η for μ ≥ μ′

η, which yields the claim. �

Appendix: Weak convergence of X
μ
t to Xt

Proposition A.1. Let Assumptions 6.1 and 6.2(iii) and (v) hold. Then, for any t ≥ 0, P
μ
t con-

verges weakly to Pt when μ → +∞.
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Proof. We start by proving that {Xμ
t }t≥0 converges in law to {Xt }t≥0 as μ → +∞. We know

that for every 0 < s < t , n ∈ N
∗, s1, . . . , sn ∈ (0, s), and all C∞ functions g : Rn → R and

f : Rn →R with compact support, we have

E

[(
f

(
X

μ
t

) − f
(
Xμ

s

) −
∫ t

s

Lμf
(
Xμ

r

)
dr

)
g
(
Xμ

s1
, . . . ,Xμ

sn

)] = 0, (A.1)

where Lμ is defined in (6.9).
Let us first write

Lμf (x) − Lf (x) = μ

∫ 1
μ

0

[
V

(
�(x, s)

)
f ′(�(x, s)

) − V (x)f ′(x)
]

ds.

Since f has a compact support, Vf ′ is bounded and uniformly continuous on this compact by
Assumption 6.1(i). This gives that Lμf converges uniformly to Lf .

Now, we want to check the tightness criterion of Aldous (see, e.g., Theorem 4.5, page 320 of
Jacod and Shiryaev [10]). To do so, we use the representation (6.11). Let T̄ > 0. We obtain for
t ∈ [0, T̄ ], |Xμ

t | ≤ |X0| + ‖V ‖∞
μ

N
μ

T̄
+ MNT̄ and thus the tightness of (supt∈[0,T̄ ] |Xμ

t |)μ≥1 since

N
μ

T̄
/μ converges in probability to T̄ as μ → +∞. Besides, if S and S′ denote two stopping times

such that S ≤ S′ ≤ min(S + δ, T̄ ), we have |Xμ

S′ − X
μ
S | ≤ ‖V ‖∞(N

μ
S+δ − N

μ
S )/μ + M(NS+δ −

NS). We get by the strong Markov property of Poisson processes

P
(∣∣Xμ

S′ − X
μ
S

∣∣ > η
) ≤ P

(‖V ‖∞N
μ
δ /μ > η/2

) + P(MNδ > η/2),

for any η > 0. Let ε > 0. We choose δ > 0 small enough such that ‖V ‖∞δ < η/2 and
(1 − e−λ̄δ) < ε/2. Since N

μ
δ /μ converges in probability to δ, there is μ̄ such that for μ ≥ μ̄,

P(‖V ‖∞N
μ
δ /μ > η/2) < ε/2 and thus P(|Xμ

S′ − X
μ
S | > η) < ε.

We note D the space of càdlàg real functions on [0,+∞) endowed with the Skorokhod topol-
ogy and P μ(dω) the probability law of {Xμ

t }t≥0. We rewrite (A.1) as∫
D

(
f

(
ω(t)

) − f
(
ω(s)

) −
∫ t

s

Lμf
(
ω(r)

)
dr

)
g
(
ω(s1), . . . ,ω(sn)

)
P μ(dω) = 0.

The family (P μ(dω))μ≥1 is tight, and we denote by P ∞(dω) a limit point of this family. For r >

0, ω ∈ D �→ ω(r) is not continuous, but TP∞ = {r > 0,P ∞(ω(r) �= ω(r−)) > 0} is a countable
set such that for r ∈ [0,+∞) \ TP∞ , ω �→ ω(r) is P ∞(dω)-a.s. continuous. Since f , Lf and
g are bounded continuous by using Assumption 6.1 and 6.2(v), we get by using the uniform
convergence of Lμf to Lf and the weak convergence of a subsequence P μk towards P ∞ that∫

D

(
f

(
ω(t)

) − f
(
ω(s)

) −
∫ t

s

Lf
(
ω(r)

)
dr

)
g
(
ω(s1), . . . ,ω(sn)

)
P ∞(dω) = 0, (A.2)

when s1, . . . , sn, s, t are not in TP∞ . By using the right-continuity of ω, the dominated conver-
gence theorem gives that (A.2) still holds for any 0 < s < t , n ∈ N

∗, s1, . . . , sn ∈ (0, s). Thus,
any limit point of (P μ(dω))μ≥1 is a solution of the martingale problem associated to {Xt }t≥0.
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By using Theorem II13 of Lepeltier and Marchal [13], we have the uniqueness for the martingale
problem, which gives the weak convergence of {Xμ

t }t≥0 to {Xt }t≥0.
Now, from the representation (6.10), we easily get P(Xt = Xt−) = 1 for any t > 0. Thus,

for all t ≥ 0, ω ∈ D �→ ω(t) is P ∞-a.s. continuous, and for any bounded continuous function
h : R→R, we have

∫
D

h(ω(t))P μ(dω) →μ→+∞
∫
D

h(ω(t))P ∞(dω). �
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