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We investigate Bayesian non-parametric inference of the �-measure of �-coalescent processes with recur-
rent mutation, parametrised by probability measures on the unit interval. We give verifiable criteria on the
prior for posterior consistency when observations form a time series, and prove that any non-trivial prior is
inconsistent when all observations are contemporaneous. We then show that the likelihood given a data set
of size n ∈ N is constant across �-measures whose leading n − 2 moments agree, and focus on inferring
truncated sequences of moments. We provide a large class of functionals which can be extremised using
finite computation given a credible region of posterior truncated moment sequences, and a pseudo-marginal
Metropolis–Hastings algorithm for sampling the posterior. Finally, we compare the efficiency of the exact
and noisy pseudo-marginal algorithms with and without delayed acceptance acceleration using a simulation
study.

Keywords: Dirichlet mixture model prior; Lambda-coalescent; non-parametric inference; posterior
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1. Introduction

The �-coalescent family is a class of coalescent processes parametrised by probability measures
on the unit interval, � ∈ M1([0,1]), introduced by Donnelly and Kurtz [18], Pitman [47] and
Sagitov [49]. We focus in particular on the family of �-coalescents with recurrent, finite sites,
finite alleles mutation, which we refer to simply as “�-coalescents” throughout this paper. This
class of processes will be introduced formally in Section 2.

In recent years, �-coalescents have gained prominence as population genetic models for
species with a highly skewed family size distribution, particularly among marine species (Boom
et al. [12], Árnason [3], Eldon and Wakeley [23], Birkner and Blath [8]), and have also been
suggested as models of evolution under natural selection (Neher and Hallatschek [43]). The �-
measure models skewness of the family size distribution. Thus, � represents an important con-
founding factor for inference from genetic data, as well as being a quantity of interest in its own
right. Failure to properly account for uncertainty in � could lead to model misspecification and
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incorrect inference. Consequently, likelihood-based inference for �-coalescents has also been an
active area of research (Birkner and Blath [8], Birkner et al. [10], Koskela et al. [34]). A review
of �-coalescents and their use in population genetic inference can be found in Birkner and Blath
[9], and Steinrücken et al. [55] present a review of Beta-coalescent models for marine species.
In this paper, we make the following contributions:

1. We provide the first non-parametric analysis of inferring �-measures from genetic data.
Our method is also the first instance of inferring � using the Bayesian paradigm.

2. We prove inconsistency of the posterior in full generality when data is contemporaneous,
and give verifiable criteria for consistency when the data set forms a time series.

3. We present an implementable parametrisation of the non-parametric inference problem by
quotienting the infinite dimensional space M1([0,1]) in a suitable, data-driven way. We
believe this quotienting approach to have utility in infinite dimensional inference beyond
the context of this work.

4. We implement a pseudo-marginal MCMC algorithm for sampling the posterior, and pro-
vide an illustrative simulation study which demonstrates the feasibility of the algorithm for
inference.

The usual approach to inference is to focus on a parametric family of �-measures and in-
fer the parameters from observations. Common choices of parametric family are �(dr) =
2(2 + ψ2)−1δ0(dr) + ψ2(2 + ψ2)−1δψ(dr) where ψ ∈ (0,1] (Eldon and Wakeley [23]), � =
Beta(2 − α,α) where α ∈ (1,2) (Birkner and Blath [8], Birkner et al. [10]) and �(dr) =
cδ0(dr) + 2−1(1 − c)r dr where c ∈ [0,1] (Durrett and Schweinsberg [22]). We adopt the
Bayesian non-parametric approach to circumvent restrictive, finite-dimensional parametrisations.
We show in Theorem 1 that the posterior is inconsistent in the typical setting of sampling from a
stationary population at a fixed time under any non-trivial prior (i.e., one which does not assign
full mass to the truth), including parametric families. In Theorem 2, we adapt a result of Koskela
et al. [35] to provide verifiable criteria on the prior for posterior consistency when time series
data is available. We also show in Section 5 that the popular Dirichlet process mixture model
prior (Lo [37]) satisfies these conditions. Recent advances in sequencing technology have made
genetic time series data available (Drummond et al. [20,21], Beaumont [4], Anderson [1], Boll-
back et al. [11], Minin et al. [40], Malaspinas et al. [38], Mathieson and McVean [39]), and our
results provide strong motivation for its continued use and development.

In Section 4, we make use of the fact that a sample of size n ∈ N carries information
about � ∈ M1([0,1]) only via its first n − 2 moments to make progress towards an imple-
mentable, non-parametric algorithm. This fact is implicit in well known sampling recursions for
�-coalescent processes (Möhle [42], Birkner and Blath [8,9]) and made explicit in Lemma 4.
It has two important consequences. First, it is natural to parametrise the inference problem with
truncated moment sequences because any variation in the posterior between two �-measures
whose first n − 2 moments coincide is due solely to the prior. Thus, we obtain parametric infer-
ence algorithms requiring no discretisation or truncation, which are nevertheless as general as
any non-parametric method. Second, while the conditions imposed on the prior by Theorem 2
are restrictive when viewed in M1([0,1]) (e.g., they rule out all of the parametric families listed
above), they are sufficiently mild that priors whose support contains an arbitrarily good approx-
imation of the truncated moment sequence of any desired � ∈ M1([0,1]) can be constructed.
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Posterior consistency of finite moment sequences is readily inherited from posterior consistency
of the �-measure.

The truncated moment sequence approach can be thought of as regularising an underdeter-
mined inference problem by identifying an appropriate, data-driven quotient space of parame-
ters. This is reminiscent of the method of likelihood-informed subspaces (Cui et al. [15]), which
is a recently developed tool for efficient MCMC for inverse problems. The difference between
existing subspace approaches and our quotient space is that existing work has focused on projec-
tions onto finite dimensional subspaces which preserve “most” of the likelihood in some sense,
while our method captures the likelihood function exactly. Hence, we believe our work will have
wider utility beyond the �-coalescent setting.

We show in Theorem 3 that identifying n − 2 moments of � does not correspond to identi-
fying smaller regions in M1([0,1]) with increasing n, when measured in either total variation
or Kullback–Leibler divergence. Hence, the straightforward approach of computing a maximum
a posteriori moment sequence, identifying a candidate �∗ ∈ M1([0,1]) with that moment se-
quence and treating �∗ as a point estimator is inappropriate. Instead we use results by Winkler
[58] to provide a broad class of functionals of � which can be maximised or minimised over
credible regions of the posterior. As a simple example, it is often of great interest whether the
Kingman coalescent (Kingman [33]), � = δ0, provides an adequate model for observed genetic
data. Any parametric family containing δ0 as a special case could be used to assess the Kingman
assumption, but such an approach requires justification of the parametric family. It is also pos-
sible that δ0 is a good model within the family, but a poor fit in some broader one. Our method
avoids both of these problems.

Finally, we provide a pseudo-marginal Metropolis–Hastings algorithm (Beaumont [4], An-
drieu and Roberts [2]) for sampling truncated moment sequences from the posterior distribu-
tion. We compare the performance of the standard pseudo-marginal algorithm, the noisy pseudo-
marginal algorithm, as well as delayed acceptance accelerated versions of both algorithms (Chris-
ten and Fox [14]) in order to reduce the number of expensive likelihood estimations and improve
the computational feasibility of our inference. We find that the noisy algorithm does not im-
prove upon standard pseudo-marginal inference in this setting, especially given that twice as
many likelihood evaluations are required. In contrast, an off-the-shelf delayed acceptance step
dramatically speeds up computations. These results are illustrated with a simulation study com-
paring the Kingman hypothesis, � = δ0, based on simulated data from both the Kingman and
Bolthausen–Sznitman (� = U(0,1)) coalescents. The Kingman coalescent is the classical null
model of neutral evolution, while the Bolthausen–Sznitman coalescent has recently emerged as
an alternative model in the presence of selection (Schweinsberg [51]) or population expansion
into uninhabited territory (Berestycki et al. [5]). In particular, the Bolthausen–Sznitman coales-
cent has been suggested as a model for the genetic ancestry of microbial populations such as
influenza or HIV (Neher and Hallatschek [43]).

The rest of the paper is laid out as follows. Section 2 provides an introduction to �-coalescents,
�-Fleming–Viot jump-diffusions and a duality relation connecting the two. In Section 3, we state
and prove our consistency results. Section 4 presents our parametrisation via moments and shows
that it preserves all information in the data. Section 5 contains example families of priors which
satisfy both consistency and tractable push-forward priors on moment sequences. Section 6 con-
tains our results on inferring functionals of � based on finitely many moments. In Section 7, we
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present the pseudo-marginal Metropolis–Hastings algorithm for sampling posterior distributions
of moment sequences, and an accompanying simulation study which demonstrates the practical-
ity of the method. Section 8 concludes with a discussion.

2. Preliminaries

Let [d] := {1, . . . , d} represent d genetic types (e.g. d = 4l for l loci of DNA), M = (Mij )
d
i,j=1 be

a stochastic matrix specifying mutation probabilities between types, θ > 0 be the mutation rate
and � ∈ M1([0,1]) denote the �-measure. Here and throughout we assume M has a unique
stationary distribution m ∈M1([d]).

Let X := {Xt }t≥0 denote the �-Fleming–Viot process with recurrent, finite sites, finite al-
leles mutation: a jump-diffusion on the d-dimensional probability simplex Sd := {x ∈ [0,1]d :∑d

i=1 xi = 1} with generator

G�f (x) = �({0})
2

d∑
i,j=1

xi(δij − xj )
∂2

∂xi∂xj

f (x) + θ

d∑
i,j=1

xj (Mji − δij )
∂

∂xi

f (x)

(1)

+
d∑

i=1

xi

∫
(0,1]

[
f

(
(1 − r)x + rei

) − f (x)
]
r−2�(dr)

acting on functions f ∈ C2(Sd). This process is a model for the distribution of genetic types
[d] in a large population undergoing recurrent mutation and random mating with high-fecundity
reproduction events, in which a single individual becomes ancestral to a non-trivial fraction r ∈
(0,1] of the whole population. As with �-coalescents, we will abbreviate “�-Fleming–Viot
process with recurrent, finite sites, finite alleles mutation” to just “�-Fleming–Viot process”
throughout this paper.

The first term on the right-hand side (henceforth R.H.S.) of (1) models diffusion of the al-
lele frequencies due to random mating, or genetic drift in the terminology of population ge-
netics. The second term models mutation, and the third (jump) term models high-fecundity re-
productive events. Without the jump term, that is, when � = δ0, {Xt }t≥0 reduces to the clas-
sical d-dimensional Wright–Fisher diffusion with recurrent mutation. We denote the law of a
�-Fleming–Viot process with initial condition x ∈ Sd by P

�
x (·), and expectation with respect to

this law by E
�
x [·]. We suppress dependence on initial conditions whenever the stationary pro-

cess is meant. For bounded f : Sd �→ R, let P �
t f (x) := E

�
x [f (Xt )] be the associated transition

semigroup, p�
t (x,y) be the transition density and π�(x) be the corresponding stationary density

on Sd , assumed unique. The transition semigroup is Feller for any � ∈ M1([0,1]) (Bertoin and
Le Gall [6]), and all densities are assumed to exist with respect to the d-dimensional Lebesgue
measure dx.

A realisation of a �-Fleming–Viot process specifies the relative frequencies of genetic types
in an infinite population across time. It is natural to imagine sampling n ∈ N individuals from
the population at a fixed time, and ask about the ancestral tree connecting the sampled individ-
uals. This ancestral tree is a random object, and is described by the �-coalescent, denoted by
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	 := {	t }t≥0, taking values in Pd
n , the set of [d]-labelled partitions of [n] (Donnelly and Kurtz

[18], Section 5). The process is started from the unlabelled partition ψn := {{1}, {2}, . . . , {n}},
and propagates backwards in time from the point of view of the reproductive evolution of the
population. When the process has p ∈ N blocks, any 2 ≤ k ≤ p of them merge at rate

λp,k := �
({0})1{2}(k) +

∫
(0,1]

(1 − r)p−krk−2�(dr),

where 1A(k) is the indicator function of the set A. We will abbreviate λk,k ≡ λk throughout the
paper. Once the process has merged into a single block, known as the most recent common an-
cestor (MRCA), an ancestral type is sampled from an initial law ν ∈ M1([d]). We focus on the
case of a stationary population, in which case ν = m. This type is inherited along the branches of
the �-coalescent tree, with mutations occurring at rate θ and mutant types sampled from M . The
result is a random labelling of partitions for all times 0 ≤ t ≤ T , where T denotes the hitting time
of the MRCA. Let P�

n denote the law of 	 started from ψn, and E�
n denote the corresponding

expectation. For the entirety of the paper, we assume θ and M are known, and focus on infer-
ring �. This assumption is crucial for the proof of consistency of Bayesian inference from time
series data (Theorem 2 in Section 3), but not needed for correctness of the finitely many moments
parametrisation in Section 4, or of the algorithms in Section 7.

The following relationship between �-Fleming–Viot processes and corresponding �-coalescents
is classical (Bertoin and Le Gall [6]), and will be useful in the (in)consistency proofs in the next
section:

E
�

[
d∏

i=1

Xt(i)
ni

]
= E�

n

[
d∏

i=1

m(i)|	t (i)|
]
, (2)

where ni denotes the number of observed individuals with label i ∈ [d] sampled i.i.d. from the
random measure Xt , and |	t(i)| denotes the number of blocks in partition 	t with label i ∈
[d]. Formula (2) is an example of so called moment duality between stochastic processes (see,
e.g., Möhle [41], and references therein for details): Intuitively, (2) states that the law of the type
frequencies of �-coalescent leaves coincides with a multinomial sample from a random measure
drawn from the corresponding �-Fleming–Viot process.

3. Posterior consistency

Let Q ∈ M1(M1([0,1])) be a prior distribution for �, and n = (n1, . . . , nd) ∈ N
d denote ob-

served type frequencies of n := ∑d
i=1 ni [d]-labelled lineages generated by the �-coalescent.

For Borel sets A ∈ B(M1([0,1])), define the posterior as

Q(A|n) =
∫
A

P�
n (n)Q(d�)∫

M1([0,1]) P�
n (n)Q(d�)

.

Informally, posterior consistency holds when Q(·|n) concentrates on a neighbourhood of the
�0 ∈ M1([0,1]) which generated n as n → ∞. This is a natural requirement for statistical
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inference as it ensures the truth can be learned from a sufficient amount of data. For an overview
of Bayesian non-parametric statistics, the reader is directed at Hjort et al. [29] and references
therein.

It is well known that non-parametric posterior consistency is highly sensitive to the details of
the topology defining the neighbourhood system as well as the mode of convergence (Diaconis
and Freedman [17]). This will also be the case for our consistency result for time series data,
Theorem 2. In contrast, the inconsistency result for contemporaneous observations, Theorem 1,
is very universal. Hence, we postpone specification of these details until after Theorem 1.

Remark 1. In Theorem 1 below, we give a formal statement of inconsistency from the point
of view of Bayesian estimators, which are our interest in this paper. Elements of the proof of
Theorem 1 will also be useful in the proving Theorem 2 later in the paper. However, we empha-
size that the negative result also holds for frequentist estimators based on contemporaneous data.
Essentially the same argument used to prove Theorem 1 shows that the limiting likelihood

lim
n→∞E

�
[
q(n|X)

] = π�(x)

is positive for any observation x and any �, at least provided {π�}� is a bounded family of
stationary densities so that the Dominated Convergence Theorem holds without the regularising
effect of the prior. Hence, estimators cannot converge to the true �-measure generating the data.
Ultimately, the problem is that the d-dimensional vector corresponding to one exact draw from
a stationary �-Fleming–Viot process cannot be expected to uniquely identify an infinite dimen-
sional object. Similar problems of identifiability also occur in estimation of lifetime distributions
in branching processes (Höpfner et al. [31], Hoffmann and Olivier [30]), for which identifia-
bility issues can be overcome by letting the length of the observation window grow to infinity,
analogously to Theorem 2 below.

Theorem 1. Let n ∈ N
d denote the observed type frequencies in a sample of size n ∈ N generated

by a �-coalescent started from ψn at a fixed time, and let x := limn→∞ n
n

∈ M1([d]) denote the
limiting observed relative type frequencies. Then the limiting posterior is given by

lim
n→∞Q(A|n) =

∫
A

π�(x)Q(d�)∫
M1([0,1]) π�(x)Q(d�)

.

In particular, the R.H.S. is positive for any A ∈ B(M1([0,1])) which intersects the support of Q,
regardless of the � ∈ M1([0,1]) generating the data.

Proof. Conditioning on the ancestral tree of the observed sample give the following representa-
tion for the posterior:

Q(A|n) =
∫
A

P�
n (n)Q(d�)∫

M1([0,1]) P�
n (n)Q(d�)

=
∫
A

E�
n [1{n}(	0)]Q(d�)∫

M1([0,1]) E�
n [1{n}(	0)]Q(d�)

.
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Using (2) we can write

Q(A|n) =
∫
A
E

�[q(n|X)]Q(d�)∫
M1([0,1]) E�[q(n|X)]Q(d�)

,

where q(n|X) := (
n

n1,...,nd

)∏d
i=1 X

ni

i is the multinomial sampling probability. We will show the
requisite convergence of the numerator and denominator separately, and the result will follow by
the algebra of limits. We begin by considering the numerator.

By Fubini’s theorem∫
A

E
�
[
q(n|X)

]
Q(d�) =

∫
Sd

q(n|y)

∫
A

π�(y)Q(d�)dy =:
∫
Sd

q(n|y)FQ;A(y) dy,

where FQ;A(y) is a sub-probability density on Sd since it is a mixture of probability densities.
Hence FQ;A(y) dy defines a finite measure on Sd , and q(n|y) ≤ 1 so that by the Dominated
Convergence theorem

lim
n→∞

∫
Sd

q(n|y)FQ;A(y) dy =
∫
Sd

lim
n→∞q(n|y)FQ;A(y) dy.

By the Law of Large Numbers n ∼ �nx� so that q(n|y) → q(�nx�|y), and by Stirling’s formula

q
(�nx�|y) ∼

d∏
i=1

(
yi

xi

)nxi

,

or

log
(
q
(�nx�|y)) ∼ n

d∑
i=1

xi log

(
yi

xi

)
= −n

d∑
i=1

xi log

(
xi

yi

)
= −nKL(x,y),

where KL(x,y) denotes the Kullback–Leibler divergence between the probability mass func-
tions x and y. By Gibbs’ inequality KL(x,y) ≥ 0 and KL(x,y) = 0 if and only if x = y, so that
q(n|·) → δx(·) almost surely. Hence,∫

Sd

lim
n→∞q(n|y)FQ;A(y) dy = FQ;A(x) =

∫
A

π�(x)Q(d�),

as required. The argument for the denominator is identical after substituting M1([0,1]) for the
domain of integration A. �

Remark 2. There is an apparent contradiction between the negative conclusion of Theorem 1
and recent positive results (Spence et al. [54], Theorems 2, 3, 4 and 5) showing that �-measures
can often be identified from their site frequency spectra. The contradiction is resolved by not-
ing that Spence et al. [54] work directly with the expected site frequency spectrum, thereby
sidestepping both the randomness of the ancestral tree and the randomness of the mutation pro-
cess given the tree. Numerical investigations by Spence et al. [54] show that their method is
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unreliable unless a modest number (10–100) of independent realisations of ancestral trees is
available. Independent trees cannot be sampled from populations whose ancestry is described by
any non-Kingman �-coalescent, even in the idealised scenario of an infinitely long genome in
the presence of recombination. However, as noted by Spence et al. [54], in practice the decay
of correlations with increasing genome length is determined by the prelimiting model of evolu-
tion, and not necessarily the limiting �-coalescent. For example, the selective sweep model of
Durrett and Schweinsberg [22] can allow for asymptotically independent trees across a genome
in the presence of multiple mergers for some combinations of parameters, in which case the
identifiability results of Spence et al. [54] hold.

The following example is an extension of a result by Der and Plotkin [16], and demonstrates
that the lack of consistency can have dramatic consequences for statistical identifiability even in
the case of very simple priors.

Example 1. Consider d = 2, Mij = 1/2 for i, j ∈ {1,2}, and set Q(d�) = 1
2δδ0(d�) +

1
2δδ1(d�). The stationary law π�(x) is known in the parent-independent, two-allele case for
both of these atoms (Der and Plotkin [16]):

πδ0(x) = �(2θ)

[�(θ)]2
xθ−1(1 − x)θ−1,

πδ1(x) = 1

θ
|1 − 2x| 1−θ

θ ,

so the expected limiting posterior probabilities can be computed assuming either data-generating
measure. These are listed in Table 1 for some candidate values of θ , while Figure 1 depicts limit-
ing posterior probabilities as functions of the observed allele frequencies. The extreme sensitiv-
ity of the posterior probabilities in Figure 1 is akin to the “Bayesian brittleness” investigated by
Owhadi et al. [46], resulting in inferences which are not robust to small changes in the observed
allele frequencies, prior probabilities or latent parameters.

Table 1. Expected posterior probabilities given an in-
finite number of contemporaneous observations in the
parent-independent, two-allele model

θ E
δ0 [Q(δ0|X)] E

δ1 [Q(δ0|X)]
0.04 0.84 0.16
0.1 0.73 0.27
0.5 0.54 0.46
1 0.50 0.50
5 0.65 0.35

10 0.75 0.25
17 0.82 0.18
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Figure 1. Limiting posterior probabilities as functions of the observed allele frequency x for θ = 0.1 and
10 in the parent-independent, two-allele model. Q(δ0|x) is dotted, Q(δ1|x) is dash-dotted, πδ0(x) is solid
and πδ1(x) is dashed. Note the extreme sensitivity of the posterior to the observed allele frequencies near
x = 0.5 when θ = 10 and near x = 0 or 1 when θ = 0.1.

The fact that πδ0(x) = πδ1(x) when θ = 1 in Example 1 was pointed out by Der and Plotkin
[16] as proof of the fact that �-measures cannot in general be uniquely identified from indepen-
dent draws from π�(x). Our calculations illustrate that inference suffers from low power and
poor stability even when θ 
= 1 if all observations are contemporaneous.

The inconsistency result of Theorem 1 holds for essentially arbitrary priors. Our next aim is to
show that the posterior can be consistent when the data set is a time series of increasing length.
This does not contradict the unidentifiability claim of Der and Plotkin [16], because the authors
only consider independent draws from π�. In contrast, in our setting it is information about
transition densities p�


(x,y) which facilitates posterior consistency.
We begin by defining the topology and weak posterior consistency following the set up of

van der Meulen and van Zanten [56], who considered similar time series data for one dimen-
sional diffusions. In addition to topological details, posterior consistency is highly sensitive to
the support of the prior, which should not exclude the truth. This is usually guaranteed by insist-
ing that the prior places positive mass on all neighbourhoods of the truth, typically measured in
terms of Kullback–Leibler divergence. In our setting, such a support condition is provided by (5)
below.

Definition 1. Fix η > 0 and let Dη be a collection of Lebesgue probability densities on [η,1]
satisfying infr∈[η,1] φ(r) > 0 and supr∈[η,1] φ(r) < ∞ for each φ ∈Dη . We assume that �(dr) =
φ(r) dr for φ ∈ Dη, and denote the data generating density by φ0.

Restricting the support of φ to [η,1] ensures that the �-coalescent can have no Kingman
component, and that the �-Fleming–Viot process is a compound Poisson process with drift.
Furthermore, most previously studied parametric families of �-measures are ruled out, including
all those mentioned in Introduction. However, we will see in Section 4 that the prior can be
chosen to satisfy the conditions of Definition 1 and place mass arbitrarily close to any desired
�-measure, or family of �-measures, in a way we will make precise in Example 2.
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Before we define and prove consistency of Bayesian nonparametric inference, we need to first
establish that � is identifiable from discrete observations. This is done in Lemma 1 below.

Lemma 1. For any pair φ0 
= φ ∈ Dη and any 
 > 0 there exists x ∈ Sd and a test function f

such that P
φ0

 f (x) 
= P

φ

f (x). In particular, identifying P

φ

 is equivalent to identifying φ.

Proof. Let φ0 ∈ Dη and φ ∈Dη agree on their first n−3 moments, and suppose that the (n−2)th
moments λ0

n and λn differ, as must be the case for some n ≥ 3 if φ0 
= φ. We begin by using the
spectral representation of Griffiths [25] to show that certain eigenvalues of the corresponding
�-Fleming–Viot generators Gφ0 and Gφ are different.

By Griffiths [25], Theorem 5, the eigenvalues are naturally indexed with multi-indices n ∈
N

d . Let q0
n and qn denote the eigenvalues of Gφ0 and Gφ with index n, respectively. Define

independent random variables (U,Y,V ) ∼ 2u1[0,1]⊗φ⊗U(0,1), and let W := UY . By Griffiths
[25], equation (41), we have that qn can be written as

qn =
(

n

2

)
E

[
(1 − W)n−2] + C(θ,M,n),

for each n such that
∑d

i=1 ni = n, where the expectation is with respect to the law of W , and
C(θ,M,n) is a constant depending only on its arguments. A binomial expansion yields

E
[
(1 − W)n−2] =

n−2∑
k=2

(
n − 2

k

)
(−1)kE

[
Wk

]

=
n−2∑
k=2

(
n − 2

k

)
(−1)k

2

k + 2
λk+2.

All terms on the R.H.S. coincide for qn and q0
n except the k = n − 2 term, for which

(−1)n−22

n
λn 
= (−1)n−22

n
λ′

n

by assumption. Hence, the eigenvalues q0
m and qm for two densities φ0 and φ coincide for multi-

indices of total degree up to m ≤ n − 1, and eigenvalues for multi-indices of total degree n differ
when n − 2 is the order of the first moment which is distinct between φ0 and φ.

Next, we use the above result on eigenvalues, in conjunction with Griffiths [25], Theorem 5,
to show that Gφ0 and Gφ also have some distinct right eigenfunctions. To that end, let h0

n(x) and
hn(x) be the respective eigenfunctions of Gφ0 and Gφ with eigenvalues q0

n and qn. Applying the
representation of Gφ in Griffiths [25], equation (39), to the monomial test function

q(m|x) :=
d∏

i=1

x
mi

i ,
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as well as a binomial expansion to the resulting [(1 − W)xi + WV ]mi−1−δij terms yields

Gφq(m|x)

=
d∑

i=1

(
mi

2

)mi−2∑
k=0

(1 − W)m−k−2(WV )kq
(
m − (k + 1)ei |x

)
(3)

−
d∑

i,j=1

mi(mj − δij )

mi−1−δij∑
k=0

(
mi − 1 − δij

k

)
(1 − W)m−k−2(WV )kq(m − kei |x)

+ θ

d∑
i=1

(
d∑

j=1

Mjixj − xi

)
∂

∂xi

q(m|x).

The fact that the R.H.S. depends on φ only via powers of W up to order n − 2 makes it clear
that the action of the generators Gφ0 and Gφ coincide on polynomials of degree m < n, which the
eigenfunctions h0

m(x) and hm(x) are for m < n by Griffiths [25], Theorem 5.
Now consider h0

n(x) and hn(x) for a fixed n of total degree n. Again by Griffiths [25], Theo-
rem 5, the total degree n terms of both equal ξn, and hence coincide. See Griffiths [25], Theo-
rem 5, for the definition of ξ as a linear, M-dependent transformation of x. We will focus instead
on terms of total degree n − 1, and to that effect introduce the representations

hn(x) = ξn +
d∑

i=1

an(n−ei )hn−ei
(x) +

∑
m:m<n−1

anmhm(x),

Gφhn(x) = −qnhn(x) +
d∑

i=1

bn(n−ei )hn−ei
(x) +

∑
m:m<n−1

bnmhm(x) (4)

−
d∑

i=1

an(n−ei )qn−ei
hn−ei

(x) −
∑

m:m<n−1

anmqmhm(x),

where the coefficients anm and bnm must satisfy anmqm = bnm in order for hn(x) to be an eigen-
function, as first three terms on the R.H.S. of (4) arise as the definition of an eigenfunction
expansion of Gφξn. Let a0

nm and b0
nm be the analogous coefficients for the same representations

of the polynomials h0
n and Gφ0h0

n.
For each m, the only term of total degree m in hm(x) is ξm. Therefore, if b0

n(n−ei )

= bn(n−ei )

for some i ∈ [d], then a0
n(n−ei )


= an(n−ei ) since q0
n−ei

= qn−ei
, and we are done because then

hn(x) contains at least one term which has a coefficient different to that of the corresponding
term in h0

n(x). Terms of total degree n − 1 arise in the first line of (3) by taking k = 0, in the
second by taking k = 1, and do not arise in the third. In particular, the coefficient of q(n − ei |x)
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on the R.H.S. of (3) is(
ni

2

)
E

[
(1 − W)n−2] − (n − 2)

(
ni

2

)
E

[
(1 − W)n−3WV

]
=

(
ni

2

)[
1 +

n−2∑
k=1

(
n − 2

k

)
(−1)k

2 + k

2
λk+2

]
.

These coefficients all differ for Gφ0 and Gφ because they can be written as the same linear com-
binations of the first n − 2 moments of φ0 and φ, respectively. The lower degree terms with
coefficients anm with m < n − 1 cannot contribute to the coefficients of terms of degree n − 1.
Finally, the coefficients of xn−ei and ξn−ei coincide because ξ is a linear transformation of x.

In short, the eigenfunction hn(x) has the form

hn(x) = ξn +
d∑

i=1

(
ni

2

)[1 + ∑n−2
k=1

(
n−2
k

)
(−1)k 2+k

2 λk+2](
n−1

2

)
E[(1 − W)n−3] + Cn−ei ,θ,M

ξn−ei + lower order terms,

and the coefficients of the degree n − 1 terms all differ between h0
n(x) and hn(x).

Finally, fix 
 > 0, and consider P
φ0

 hn(x) and P

φ

hn(x) = e−qn
hn(x). The former is a poly-

nomial, but cannot be a scalar multiple of the latter because otherwise hn(x) would be an eigen-
function of Gφ0 , which we have shown is not the case. Hence, the two polynomials P

φ0

 hn(x) and

P
φ

hn(x) are distinct, and thus differ on some non-empty, open set, which concludes the proof. �

Definition 2. Fix a sampling interval 
 > 0 and a finite Borel measure ν on Sd placing positive
mass in all non-empty open sets. A weak topology on Dη is generated by open sets of the form

U
φ
f,ε := {

φ′ : ∥∥P
φ′

 f (x) − P

φ

f (x)

∥∥
1,ν

< ε
}
,

for any φ ∈ Dη , ε > 0 and f ∈ Cb(Sd), the set of continuous and bounded functions on Sd ,
where ‖ · ‖p,ν is the Lp(Sd , ν)-norm. The Lebesgue measure is meant whenever no measure is
specified.

Lemma 1 of Koskela et al. [35] yields that the topology generated by U
φ
f,ε is Hausdorff, and

hence separates points.

Definition 3. Let n0, . . . ,nm denote m + 1 samples observed at times 0,
, . . . ,
m from a
stationary �-coalescent, with each sample being of size n ∈ N. See e.g. Beaumont [4] for details
of how temporally structured samples can be generated. Weak posterior consistency holds if
Q(Uc

φ0
|n0, . . . ,nm) → 0 P

φ0 -a.s. as n,m → ∞, where Uφ0 is any open neighbourhood of φ0 ∈
Dη.

Theorem 2. Let n0, . . . ,nm be as in Definition 3 and x0, . . . ,xm denote the observed limiting
type frequencies as n → ∞, i.e. xi = limn→∞ ni/n. Suppose that Dη , the support of Q, satisfies
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the conditions of Definition 1. Furthermore, for any ε > 0 and any φ0 ∈ Dη suppose that

Q

(
φ ∈Dη :

∫ 1

η

{∣∣∣∣log

(
φ0(r)

φ(r)

)∣∣∣∣ +
∣∣∣∣φ0(r)

φ(r)
− 1

∣∣∣∣}r−2φ0(r) dr < ε

)
> 0. (5)

Then weak posterior consistency holds for Q on Dη.

Remark 3. A similar result for jump diffusions with unit diffusion coefficient was established in
Koskela et al. [35], Theorem 1, and our proof will follow a similar structure. Before presenting
the proof, let us highlight how the present result differs from the jump diffusion case. Both proofs
of consistency require verification of a Kullback–Leibler condition for the prior, and uniform
equicontinuity of the family of semigroups corresponding to densities supported by the prior. The
former result is immediate by the same argument used to prove Koskela et al. [35], Lemma 2,
whose statement is provided below in Lemma 2 in the interest of a self-contained proof. The
latter, Lemma 3 below, is different to its counterpart, Koskela et al. [35], Lemma 3, which relies
on positive definiteness of the diffusion coefficient.

Proof of Theorem 2. For fixed m ∈ N, the same argument used to prove Theorem 1 yields that
the following convergence holds Pφ0 -a.s. as n → ∞:

lim
n→∞Q(dφ|n0, . . . ,nm) ∝ πφ(x0)

m∏
i=1

p
φ

(xi−1,xi )Q(dφ).

Hence it is sufficient to establish posterior consistency for m + 1 exact observations from a
stationary �-Fleming–Viot process as m → ∞. We achieve this by adapting the proof of Koskela
et al. [35], Theorem 1, which entails verifying two conditions. The first is that the prior places
sufficient mass in Kullback–Leibler neighbourhoods of φ0, that is, that for any ε > 0 we have

Q
(
φ ∈Dη : KL(φ0, φ) < ε

)
> 0, (6)

where KL is Kullback–Leibler divergence between p
φ0

 and p

φ

:

KL(φ0, φ) :=
∫
Sd

∫
Sd

log

(
p

φ0

 (x,y)

p
φ

(x,y)

)
p

φ0

 (x,y)πφ0(x) dydx.

The second is establishing uniform equicontinuity of {P φ

 : φ ∈Dη}:

sup
φ∈Dη

sup
‖x−y‖2<δ

∣∣P φ

f (x) − P

φ

f (y)

∣∣ < ε

for each 
 > 0 and f ∈ Cb(Sd).
Condition (6) follows from a straightforward modification of Koskela et al. [35], Lemma 2.

A statement of this result, adapted to the present context and notation, is provided below. Its
proof follows the same structure that of as Koskela et al. [35], Lemma 2, and is omitted.
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Lemma 2. Condition (5) implies condition (6) for any ε > 0.

It remains to establish uniform equicontinuity on the semigroup {P φ

f : φ ∈ Dη} for f ∈

Cb(Sd). This can be done by verifying the hypotheses of Koskela et al. [35], Lemma 3, which
we will do below.

Lemma 3. For each 
 > 0 and f ∈ Cb(Sd), the collection {P φ

f : φ ∈ Dη} is uniformly

equicontinuous: for any ε > 0 there exists δ := δ(ε, f,
) > 0 such that

sup
φ∈Dη

sup
‖x−y‖2<δ

∣∣P φ

f (x) − P

φ

f (y)

∣∣ < ε.

Proof. We begin by showing that the required uniform equicontinuity is true for f ∈ Lip(Sd),
the set of Lipschitz functions on Sd .

By Wang [57], Proposition 2.2, in particular equation (2.2), a sufficient condition for equicon-
tinuity for a fixed φ ∈ Dη is that for ‖x − y‖2 ≤ δ we have

θ(x − y)T (M − Id)(x − y)

‖x − y‖2(1 + ‖x − y‖2)
+

∫ 1

η

d∑
i=1

|xi − yi |r−2φ(r) dr ≤ Cδ‖x − y‖2, (7)

where Id is the d ×d identity matrix. Now the first term is trivially bounded by θ‖M − Id‖2‖x −
y‖2, and the second by η−2

√
d‖x − y‖2 using the Cauchy–Schwarz inequality. Still by Wang

[57], Proposition 2.2, for f ∈ Lip(Sd) and ‖x − y‖2 ≤ δ we have the bound∣∣P φ

f (x) − P

φ

f (y)

∣∣ ≤ (
2 + δ−1)eCδ
C(f )‖x − y‖2,

where C(f ) is a constant depending only on f . Uniformity in φ ∈Dη now follows from the fact
that the constant Cδ in (7) is independent of φ.

Now consider a general test function f ∈ Cb(Sd). The simplex Sd is compact, meaning that
Lipschitz functions are dense in Cb(Sd). Thus for any β > 0, there exists g ∈ Lip(Sd) be such
that ‖g − f ‖∞ < β . The triangle inequality then yields the elementary bound

sup
φ∈Dη

sup
‖x−y‖2<δ

∣∣P φ

f (x) − P

φ

f (y)

∣∣
≤ sup

φ∈Dη

sup
‖x−y‖2<δ

{∣∣P φ

f (x) − P

φ

g(x)

∣∣ + ∣∣P φ

f (y) − P

φ

g(y)

∣∣ + ∣∣P φ

g(x) − P

φ

g(y)

∣∣}.
Now, the first term on the R.H.S. can be bounded by∣∣P φ


f (x) + P
φ

g(x)

∣∣ = E
φ
x
[
f (Xt ) − g(Xt )

] ≤ E
φ
x
[∣∣f (Xt ) − g(Xt )

∣∣] < β

by construction of g. The second term is bounded analogously. The last term can be made ar-
bitrarily small by choice of sufficiently small δ. For fixed f , all three bounds are uniform in φ,
which concludes the proof. �
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The remainder of the proof follows as in Koskela et al. [35]. It suffices to show that for f ∈
Cb(Sd) and B := {φ ∈ Dη : ‖P φ


f − P
φ0

 f ‖1,ν > ε} we have Q(B|x0, . . . ,xm) → 0 P

φ0 -almost
surely. To that end we fix f ∈ Lip(Sd), ε > 0 and thus the set B . Condition (6) implies that
van der Meulen and van Zanten [56], Lemma 5.2, holds, so that if for a measurable collection of
subsets Cm ⊂Dη there exists c > 0 such that

emc

∫
Cm

πφ(x0)

m∏
i=1

p
φ

(xi−1,xi )Q(dφ) → 0

P
φ0 -almost surely, then Q(Cm|x0, . . . ,xm) → 0 P

φ0 -almost surely as well. Likewise, Lemma 3
implies van der Meulen and van Zanten [56], Lemma 5.3: there exists a compact subset K ⊂ Sd ,
N ∈N and compact, connected sets I1, . . . , IN that cover K such that

B ⊂
N⋃

j=1

B+
j ∪

N⋃
j=1

B−
j ,

where

B±
j :=

{
φ ∈ Dη : P φ


f (x) − P
φ0

 f (x) > ± ε

4ν(K)
for every x ∈ Ij

}
.

Thus it is only necessary to show Q(B±
j |x0, . . . ,xm) → 0 P

φ0 -almost surely. Define the stochas-
tic process

Dm :=
(∫

B+
j

πφ(x0)

m∏
i=1

p
φ

(xi−1,xi )Q(dφ)

)1/2

.

Now Dm → 0 exponentially fast as m → ∞ by an argument identical to that used to prove
van der Meulen and van Zanten [56], Theorem 3.5. The same is also true of the analogous
stochastic process defined by integrating over B−

j , which completes the proof. �

In the next section, we show that given a data set of size n, it is natural to infer the first
n − 2 moments of � because they fully capture the signal in the data set. Example 2 at the end
of Section 4 provides a family of priors which satisfy the hypotheses of Theorem 2, and whose
support can be chosen to contain arbitrarily close approximations to truncated moment sequences
of any � ∈ M1([0,1]).

Remark 4. The hypotheses of Theorem 2 are strong, and thus it would be desirable to obtain a
posterior contraction rate in addition to just consistency. In fact, methods akin to that employed
in the proof have been extended to provide rates for compound Poisson processes (Gugushvili
et al. [26]) and scalar diffusions on compact intervals (Nickl and Söhl [45]). However, extending
either approach to our setting would require bounds of the form∥∥πφ − πφ0

∥∥
2 ≤ Cn−β,

∥∥πφ/πφ0 − 1
∥∥

2 ≤ C̃n−β̃
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for some constants β, β̃,C, C̃ > 0. Since the �-Fleming–Viot stationary density is intractable
in nearly all cases, it does not seem possible to extend our approach to obtain rates of posterior
consistency.

4. Parametrisation by finitely many moments

Consider a set of type frequencies n ∈N
d of size n := ∑d

i=1 ni generated by a �-coalescent with
finite alleles mutation started from ψn.

Lemma 4. The likelihood satisfies P�
n (n) = Pλ3,λ4,...,λn

n (n). That is, � is conditionally indepen-
dent of n given {λk}nk=3.

Proof. Let −qnn = ∑n−1
k=1

(
n

n−k+1

)
λn,n−k+1 be the total merger rate of the �-coalescent with n

blocks. It is well known that the �-coalescent likelihood is the unique solution to the recursion
(Möhle [42], Birkner and Blath [8,9]):

P�
n (n) = θ

nθ − qnn

d∑
i,j=1

(nj − 1 + δij )MjiP�
n (n − ei + ej )

(8)

+ 1

nθ − qnn

∑
i:ni≥2

ni∑
k=2

(
n

k

)
λn,k

ni − k + 1

n − k + 1
P�

n−k+1

(
n − (k − 1)ei

)
,

with boundary condition P�
1 (ei ) = m(i). Repeated application of this recursion yields a closed

system of linear equations for the likelihood because all sample sizes on the R.H.S. are equal to
or smaller than the one on the left-hand side. This system is far too large to solve for all but very
small sample sizes, but it is clear that the solution can depend on � only through the polynomial
moments {λm,k}nk≤m=2.

Polynomial moments can be written as a linear combination of monomial moments:

λm,k =
m−k∑
j=0

(
m − k

j

)
(−1)jλk+j , (9)

meaning that only the monomial moments {λk}nk=2 are required. Since λ2 = ∫ 1
0 �(dx) = 1, the

moments {λk}nk=3 are sufficient. �

Motivated by Lemma 4 we make the following definition:

Definition 4. Let ∼n be the equivalence relation on M1([0,1]) defined via

�1∼n�2 if λ
(1)
k = λ

(2)
k for k ∈ {3, . . . , n},

where λ
(i)
k := ∫ 1

0 xk−2�i(dx). We call the equivalence classes of ∼n moment classes of order n.
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Table 2. Moment sequences of particular �-coalescents. Here (a)k := a(a + 1) · · · (a + k − 1) denotes the
rising factorial

� δ0 δ1 Beta(2 − α,α) U(0,1) 2
2+ψ2 δ0 + ψ2

2+ψ2 δψ cδ0 + (1−c)
2 r dr

λk 0 1 (2−α)k−2
(2)k−2

1
k−1

ψk

2+ψ2
1−c
2k

In view of Lemma 4 it is natural to consider the problem of inferring � from n in the quo-
tient space M1([0,1])/∼n, not in M1([0,1]). Moreover, requiring all linear combinations of
the form (9) to be non-negative guarantees a unique solution to the Hausdorff moment prob-
lem, so that each completely monotonic moment sequence bounded by 1 corresponds to some
� ∈ M1([0,1]). Hence, we parametrise the space M1([0,1])/∼n by truncated, completely
monotonic moment sequences of length n − 2 with leading term λ3 ≤ 1. This approach yields
a compact, finite-dimensional parameter space which nevertheless captures all the signal in the
data. Table 2 lists some moment sequences corresponding to popular families of �-measures.

Naturally, the prior Q ought to be chosen to yield a tractable push-forward prior on truncated
moment sequences. These push-forward priors inherit posterior consistency whenever Q satisfies
the conditions of Theorem 2 because truncated moment sequences can be written as bounded
functionals of �.

5. Prior distributions

In this section, we provide an example family of priors which satisfies the consistency criteria of
Theorem 2 and has tractable push-forward distributions on truncated moment sequences.

Definition 5. Let Q ∈ M1(M1([0,1])) be a prior distribution for �. Then the moments {λk}nk=3
have joint prior Qn on the space of completely monotonic sequences of length n − 2 given by

Qn(λ3 ∈ dy3, . . . , λn ∈ dyn) :=
∫
M1([0,1])

n∏
k=3

1{dyk}
(∫

(0,1]
rk−2�(dr)

)
Q(d�). (10)

The prior Q should to be chosen such that the R.H.S. of (10) is tractable, and the following
example illustrates that such a choice is possible.

Example 2. Fix η > 0 and α ∈ M([η,1]) with finite mass and a strictly positive Lebesque
density α(r). Suppose Dη satisfies the conditions of Definition 1, and in addition that every
φ ∈Dη is continuous. Let R(dτ) be a probability measure on (0,∞) placing positive mass in all
non-empty open sets. For x ∈ [η,1] and τ > 0 let

qx,τ (r) := 1[η,1](r − x)hτ (r − x)

hτ ([η,1]) ,

where hτ is the Gaussian density on R with mean 0 and variance τ−1.
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Let DP(α) be the law of a Dirichlet process centred on α (Ferguson [24]) and let Q be given
by the Dirichlet process mixture distribution (Lo [37]) with mixing distribution DP(α) ⊗ R and
mixture components qx,τ . In other words, let F ∼ DP(α) and F(r1),F (r2), . . . be the weights of
ordered atoms of F . Let {τi}∞i=1 be i.i.d. draws from R. Then a draw from Q is given by

φ(r)|F, {τi}∞i=1 =
∞∑
i=1

F(ri)qri ,τi
(r).

The prior Q places full mass on equivalent densities bounded from above and away from 0
by construction. Thus Q is supported by a set whose elements satisfy Lemma 1, at which point
it remains to check (5) to verify Q has posterior consistency. Theorem 1 of Bhattacharya and
Dunson [7] yields that for any δ > 0 the prior places positive mass in all open balls: Q(φ ∈ Dη :
‖φ −φ0‖∞ < δ) > 0 for any φ0 ∈ Dη under the above assumptions on α, R and (qx,τ )x∈[η,1],τ>0.
Now fix ε > 0, φ0 ∈Dη , as well as 0 < δ < c such that

log

(
c

c − δ

)
∨

∣∣∣∣log

(
c

c + δ

)∣∣∣∣ + δ

c − δ
< η2ε.

Then

Q

(
φ ∈Dη :

∫ 1

η

{∣∣∣∣log

(
φ0(r)

φ(r)

)∣∣∣∣ +
∣∣∣∣φ0(r)

φ(r)
− 1

∣∣∣∣}r−2φ0(r) dr < ε

)
≥ Q

(
φ ∈Dη : ‖φ − φ0‖∞ < δ

)
> 0,

because for any φ satisfying ‖φ − φ0‖∞ < δ we have∫ 1

η

{∣∣∣∣log

(
φ0(r)

φ(r)

)∣∣∣∣ +
∣∣∣∣φ0(r)

φ(r)
− 1

∣∣∣∣}r−2φ0(r) dr

≤
∫ 1

η

{
log

(
φ0(r)

φ0(r) − δ

)
∨

∣∣∣∣log

(
φ0(r)

φ0(r) + δ

)∣∣∣∣ +
∣∣∣∣ φ0(r)

φ0(r) − δ
− 1

∣∣∣∣}r−2φ0(r) dr

≤
(

log

(
c

c − δ

)
∨

∣∣∣∣log

(
c

c + δ

)∣∣∣∣ + δ

c − δ

)
η−2 < ε.

We now use the machinery of Regazzini et al. [48] to give an explicit system of equations for
the distribution function of Qn under this choice of Q. Define the family of functions

gp(x) :=
∫ 1

η

rp
(
c + (

1 − c(1 − η)
)
qx,τ (r)

)
dr

for p ∈ N and x ∈ [η,1], as well as the vectors gn(x) := (g1(x), g2(x), . . . , gn(x)) and sn :=
(s1, . . . , sn) ∈R

n. For brevity, for a measure ν and a function f let ν(f ) := ∫
f dν whenever the

integral exists.
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Let γα be a Gamma random measure with parameter α, that is, a random finite mea-
sure on [η,1] such that for any measurable partition {A1, . . . ,An} the random variables
(γα(A1), . . . , γα(An)) are independent and gamma distributed with common scale parameter
1 and respective shape parameters α(Ak). Let

hn(sn;gn;α) := E
[
exp

(
isn · γα(gn)

)]
be the characteristic function of γα(gn) := (γα(g1), . . . , γα(gn)). Note that hn(sn;gn;α) =
hn(1; sn · gn;α) and by Regazzini et al. [48], Proposition 10

hn(sn;gn;α) = exp

(
−

∫ 1

0
log(1 − isn · gn) dα

)
. (11)

Now let Fn(σ ,gn,α) be the joint distribution function of F(gn) := (F (g1), . . . ,F (gn)) under
DP(α). The following trick was introduced in Hannum et al. [28], equation (2.9):

Fn(σ ,gn,α) = Fn

(
0, γα(gn − σ ), α

)
for any σ ∈ R

n, so that it is sufficient to invert hn at the origin to obtain Fn. This can be done
using the multidimensional version of the Gurland inversion formula Gurland [27], Theorem 3:

Let C0, . . . ,Cn ∈R
n+1 solve

Cn = −1,
(12)

n−r−1∑
k=0

(
n − r

k

)
Cr+k = 1 for r ∈ {0, . . . , n − 1}.

Then

(−1)n+12nFn(σ ,gn,α)

= C0 +
n∑

k=1

Ck

(πi)k

∑
1≤j1<···<jk≤n

∫ ∞

0
. . .

∫ ∞

0

hk(sk;gj1 − σj1, . . . , gjk
− σjk

;α)

s1 × · · · × sk
dsk.

The characteristic functions hk and the constants Ck can be computed from (11) and (12) re-
spectively, so that the R.H.S. can be evaluated numerically for practical applications. Numerical
methods are discussed in Regazzini et al. [48], Section 6.

Finally, we demonstrate that the restrictive assumptions of Theorem 2 still allow inference for
broad classes of moment sequences with arbitrarily small approximation errors. Let β(r) be any
non-negative probability density on [0,1], and define the truncation β̄(r) := κ(η, c,K)−1(β(r)∨
c ∧ K), where κ is the normalising constant

κ(η, c,K) :=
∫ 1

η

β(r) − (
β(r) − K

)+ + (
c − β(r)

)+
dr.
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Note that Q(φ ∈ Dη : ‖φ − β̄‖∞ < δ) > 0 for any δ > 0, and fix such a φ. Now consider the error
on the kth moment:∣∣∣∣∫ 1

0
rkβ(r) dr −

∫ 1

η

rkφ(r) dr

∣∣∣∣
≤ β

(
(0, η)

) + (1 − η)δ + (κ(η, c,K) − 1)β([η,1]) + c(1 − η)

κ(η, c,K)
+

∫ 1

η

(β(r) − K)+

κ(η, c,K)
dr.

Each term on the R.H.S. can be made small by choosing η, c and δ sufficiently small, and K

sufficiently large because κ → 1 as η → 0, c → 0 and K → ∞, and∫ 1

η

(
β(r) − K

)+
dr = 1 −

∫ 1

η

β(r) ∧ K dr → β
(
(0, η)

)
as K → ∞ by the Monotone Convergence Theorem. A further approximation step also enables
consideration of atoms by choosing β which places all of its mass in neighbourhoods of the
desired locations for atoms. Hence, it is possible to ensure the support of Q extends arbitrarily
close to any desired moment sequences despite the restrictive assumptions on Dη in Theorem 2.

6. Robust bounds on functionals of �

Having established consistency criteria for the posterior and a finite parametrisation via n − 2
leading moments, we now turn to what can be said about � based on inferring these moments. It
would be ideal if the diameter of moment classes shrunk with increasing n, as then it would be
possible to fix a representative � ∈M1([0,1]) with specified n−2 leading moments and control
the remaining within-moment-class error. In Theorem 3, we show that such shrinking does not
happen, and devote the remainder of the section to presenting quantities which can be controlled
based on n − 2 moments alone. We begin by recalling some standard results from the theory of
orthogonal polynomials.

Definition 6. Suppose n is odd. Let m := n−3
2 and {φk}mk=0 be the first m + 1 �-orthogonal

polynomials. Let {ξk}mk=1 be the zeros of φm.

Remark 5. It is a standard result that {φk}m−1
k=0 and {ξk}mk=1 are constant within moment classes

of order at least n.

The following bounds on � in terms of its leading n − 2 moments are classical.

Lemma 5 (Chebyshev–Markov–Stieltjes (CMS) inequalities). Define

ρm−1(z) :=
(

m−1∑
k=0

∣∣φk(z)
∣∣2

)−1

.
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Then the following inequalities are sharp:

�
([0, ξj ]

) ≤
j∑

k=1

ρm−1(ξk) ≤ �
([0, ξj+1)

)
for j = {1, . . . ,m},

where ξm+1 := 1.

We are now in a position to prove the following theorem.

Theorem 3. For any n ∈ N and any completely monotonic sequence of moments {λk,k}nk=3 with
λ3,3 ≤ 1 there exist uncountably many measures � ∈ M1([0,1]), all with leading moments
{λk,k}nk=3 and all satisfying the CMS inequalities, such that for any pair �x and �y of them
we have dTV(�x,�y) = 2, where dTV is the total variation distance.

Proof. It will be convenient to write the CMS inequalities in the following, equivalent form:

0 ≤ �
([0, ξ1)

) ≤ ρm−1(ξ1),

0 ≤ �
([ξj , ξj+1)

) ≤ ρm−1(ξj ) + ρm−1(ξj+1) for j ∈ {1, . . . ,m − 1},
0 ≤ �

([ξm,1]) ≤ ρm−1(ξm),

where the last inequality follows from the fact that
∑m

k=1 ρm−1(ξk) = 1. This equality holds
because

∑m
k=1 ρm−1(ξk) is the sum of all order m Gauss quadrature weights, or equivalently the

quadrature applied to the constant function 1, which is a polynomial of degree 0. The equality
follows by recalling that Gauss quadrature is exact for polynomials of order up to 2m − 1.

Now let the measures �x and �y be described by sequences of (m + 1) weights (x0, x1, . . . ,

xm) and (y0, y1, . . . , ym), with the j th weight denoting the mass that the corresponding measure
places in the interval [ξj , ξj+1) (with obvious adjustments for the right-hand boundary terms).

For brevity, let ζj := ρm−1(ξj ). Suppose first that m is odd, and let the vectors of weights be
given as

(x0, x1, x2, x3, x4, . . . , xm−1, xm) = (ζ1,0, ζ2 + ζ3,0, ζ4 + ζ5, . . . ,0, ζm),

(y0, y1, y2, y3, y4, . . . , ym−1, ym) = (0, ζ1 + ζ2,0, ζ3 + ζ4,0, . . . , ζm−1 + ζm,0).

Both measures have total mass
∑m

j=1 ζj = 1, and the interlacing masses have no overlap so
dTV(�x,�y) = 2. The case where m is even is similar. �

Remark 6. The same result holds in Kullback–Leibler divergence due to Pinsker’s inequality:
for probability measures P and Q such that P ∼ Q, and letting KL(P,Q) := EP [log(dP/dQ)]
we have

dTV(P,Q) ≤
√

1

2
KL(P,Q),

so that KL(�x,�y) ≥ 8 for �x and �y as in Theorem 3.
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Despite this seemingly disappointing result, it is possible to make some conclusions about �

based on n − 2 moments. For example, the Kingman hypothesis can be tested in a robust way
by checking whether the vector (0,0, . . . ,0) lies in a desired credible region of the posterior
Qn(·|n), and the plausibility of any other � of interest can be assessed similarly. More generally,
it is possible to maximise/minimise a certain class of functionals subject to moment constraints
obtained from a credible region to obtain robust bounds for quantities of interest. We begin by
recalling some relevant definitions.

Definition 7. Let m,n ∈ N, and fix R-valued constants {ck}mk=1, a sequence {ik}mk=1 of {3, . . . , n}-
valued indices and a binary sequence {jk}mk=1 of zeros and ones. Let

Cm := {
� ∈ M1

([0,1]) : (−1)jkλik ≤ ck for k ∈ {1, . . . ,m}} (13)

be a subset of M1([0,1]) with leading n − 2 moments in a desired region specified by m linear
inequalities. Let ext(Cm) be the extremal points in Cm, that is, those which cannot be written as
non-trivial convex combinations of elements in Cm, and

CD :=
{

ν ∈ Cm : ν =
p∑

k=1

wkδxk
where 1 ≤ p ≤ m + 1,wk ≥ 0, xk ∈ [0,1] and

p∑
k=1

wk = 1

}

be the set of discrete probability measures on [0,1] with at most m + 1 atoms.

Example 3. The extremal points of M1([0,1]) are the Dirac measures:

ext
(
M1

([0,1])) = {
δx : x ∈ [0,1]}.

For our purposes, Cm should be thought of as an envelope containing a desired credible region
of truncated, completely monotonic moment sequences expressed using finitely many linear con-
straints. We postpone discussion of how an approximate credible region can be obtained to the
next section, and simply assume one is available. The importance of Definition 7 is that maxima
and minima of certain functionals of � coincide on Cm and CD , and that CD is finite-dimensional
so that these extrema can be found numerically. The class of functionals for which this can be
done is given below.

Definition 8. The functional F : C �→ R is measure-affine if, for every ν ∈ C and p ∈
M1(ext(C)) such that ν(E) = ∫

ext(C)
γ (E)p(dγ ) for every E ∈ B([0,1]), F is p-integrable and

F(ν) =
∫

ext(C)

F (γ )p(dγ ).

Intuitively, ν is a barycentre of C with weights on extremal points given by p, and F is
measure-affine if it commutes with the operation of expressing ν as the weighted sum of extremal
points. If C consists of finitely many points, this definition coincides with the usual definition of
affine functions.

The following two results originate from Winkler [58], Proposition 3.1 and Theorem 3.2.
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Lemma 6. If q : [0,1] �→ R is bounded on at least one side, then F : ν �→ Eν[q] is measure-
affine.

Lemma 7. Let Cm be as in Definition 7 and F : Cm �→R be measure-affine. Then

inf
ν∈Cm

F (ν) = inf
ν∈CD

F (ν), (14)

sup
ν∈Cm

F (ν) = sup
ν∈CD

F (ν). (15)

The purpose of Lemma 7 is that the optimisation problems on the R.H.S. of (14) and (15)
are finite-dimensional and can be solved numerically. Hence, tight bounds for measure-affine
functionals F(�) over credibility regions can be computed in an assumption-free manner.

In order to specify Cm it remains to be able to approximate the posterior, which we achieve
via MCMC. This will be detailed in the next section. Before that, we conclude this section with
a simple example computation.

Example 4. Suppose a posterior credible region is specified via two linear constraints as

C2 = {
� ∈ M1

([0,1]) : λ3 ≤ 0.5 and 0.3 ≤ λ4
}
,

and that the measure-affine functional of interest is the exponential:

F(�) :=
∫ 1

0
e−r�(dr).

Then the finite dimensional subspace CD ⊂ C2 consists of discrete probability measures on [0,1]
with at most three atoms:

CD =
{

� ∈ C2 : � =
p∑

k=1

wkδrk where 1 ≤ p ≤ 3,wk ≥ 0, rk ∈ [0,1] and
p∑

k=1

wk = 1

}
.

This yields three maximisation/minimisation problems, one corresponding to each number of
atoms, though in practice only the largest needs to be solved since the two others can be recovered
as special cases. In this case, the constrained optimisation problem is

Maximise/Minimise: ae−x + be−y + (1 − a − b)e−z,

Subject to: ax + by + (1 − a − b)z ≤ 0.5,

−ax2 − by2 − (1 − a − b)z2 ≤ −0.3,

a, b ≤ 1,

−a,−b ≤ 0,

a + b ≤ 1,
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x, y, z ≤ 1,

−x,−y,−z ≤ 0.

Numerical evaluation in Mathematica yields the bounds F(�) ∈ (0.620,0.810).

7. Simulation study

Efficient methods for approximating the �-coalescent likelihood pointwise exist (Birkner et al.
[10], Koskela et al. [34]) and can be readily adapted to the form developed by Beaumont
[4] for time series data. These likelihood estimators can then be used in the pseudo-marginal
Metropolis–Hastings algorithm (Beaumont [4], Andrieu and Roberts [2]), in which the likeli-
hood evaluations required in a standard Metropolis–Hastings algorithm are replaced with unbi-
ased estimators. The resulting algorithm still targets the correct posterior and inherits the efficient
exploration of parameter space of MCMC methods. Thus it is well-suited to high-dimensional
situations with intractable likelihood.

Let S(n) denote the space of completely monotonic sequences of length n−2, and for λ ∈ S(n)

let L(λ;n) be the likelihood function and L̂(λ;n) be an unbiased estimator. We recall the pseudo-
marginal Metropolis–Hastings algorithm in Algorithm 1.

Algorithm 1 returns a sample of moment sequences S, whose limiting distribution is the pos-
terior. A credible region C can be approximated from MCMC output, and used to form Cm as
per (13). Measure-affine quantities of interest can then be maximised or minimised using finite
computation by making use of Lemma 7.

By way of demonstration, we perform a simulation study on simulated data, focusing on as-
sessing the Kingman hypothesis, � = δ0, which can be robustly evaluated based upon whether

Algorithm 1 Pseudo-marginal Metropolis–Hastings for finite moment sequences
Require: Prior Pn, observation n, transition kernel K : S(n) × S(n) �→R+ and N ∈ N.

1: Initialise sample S ← ∅ and moment sequence λ ← λ0.
2: Compute likelihood estimator L̂(λ;n).
3: for j = 1, . . . , N do
4: Sample λ′ ∼ K(λ, ·).
5: Compute likelihood estimator L̂(λ′;n).

6: Set a ← 1 ∧ K(λ′,λ)L̂(λ′;n)Pn(λ′)
K(λ,λ′)L̂(λ;n)Pn(λ)

.

7: Sample U ∼ U(0,1).
8: if U < a then
9: Set S ← S ∪ {λ′}, L̂(λ) ← L̂(λ′) and λ ← λ′.

10: else
11: Set S ← S ∪ {λ}.
12: end if
13: end for
14: return S
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Table 3. Simulated observed sequences from the two models with θ = 0.1 and M as described in the
paragraph above

Time Bolthausen–Sznitman Kingman

0.0 20 × 1001001111 20 × 0010000000

0.5 19 × 1001001111 15 × 0010000000
1 × 1101001111 5 × 0000000000

1.0 20 × 1001001111 8 × 0010000000
6 × 0000000000
6 × 0010001000

1.5 19 × 1001001111 10 × 0010000000
1 × 1001101111 6 × 0000000000

4 × 0010001000

2.0 19 × 1001001111 16 × 0010000000
1 × 1001001110 4 × 0010001000

or not λ3 = 0. The type space consists of 10 binary loci, or 210 types, with mutations flipping
a uniformly chosen locus, that is, the matrix M has 10 identical, non-zero entries in each row
corresponding to flipping one locus each. The total mutation rate is set at θ = 0.1. Samples of
20 lineages were simulated at each of five time points from both the Kingman (λ3 = 0) and
Bolthausen–Sznitman (� = U(0,1), λ3 = 0.5) coalescents. The data sets are summarised in
Table 3. Both data sets come from independent simulations, and are sampled from a popula-
tion at stationarity. The Kingman coalescent is a classical model of genetic ancestry, while the
Bolthausen–Sznitman coalescent has recently been suggested as a ancestral model for influenza
and HIV (Neher and Hallatschek [43]).

We set η = 10−6 and specify the prior for the density of � on [η,1] as a Dirichlet process mix-
ture model of truncated Gaussian kernels. The base measure is the uniform measure on [η,1],
with total mass scaled to 0.1. Finally, the prior for τ−1/2, the standard deviations of the truncated
Gaussian kernels was chosen to be the Beta(1.0,3.0) distribution on [0,1]. Truncating the maxi-
mal standard deviation at 1 excludes some very flat densities from the support of the prior, but the
standard normal density is already very flat across [η,1] and the truncation was found to yield
substantial gains in speed of convergence of algorithms. Note that neither data generating model
lies in the support of this prior, but both can be well approximated by members of the support.
The choice of hyperparameters was made because it yields a relatively flat marginal prior for λ3,
the quantity of interest (cf. Figure 3), and the prior satisfies the requirements of the consistency
result in Theorem 2.

We make use of the Sethuraman stick-breaking construction of the Dirichlet process (Sethu-
raman [52]) and truncate our prior after the first four atoms. For our choice of base mea-
sure and concentration parameter, this results in a total variation truncation error of order
400e−30 ≈ 3.7 × 10−11 (Ishwaran and James [32], Theorem 2). Any truncation error could be
avoided by pushing forward the prior directly onto the space of moment sequences as illustrated
in Section 5. The cost is a more computationally expensive prior to sample and evaluate, as well
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as a higher dimensional parameter space consisting of 98 moments for our data sets. We do not
investigate this strategy further in this paper.

The four atom truncation results in 11 parameters: four locations and standard deviations of
truncated Gaussian kernels, and three stick break points. The fourth break point is set to fulfil
the constraint of the weights summing to 1. We propose updates to these parameters using a
truncated Gaussian random walk on [η,1]4 × [0,1]4 × [0,1]3 with covariance matrix 0.0025 Id.
This scaling was found to result in a reasonable balance of acceptance probability and jump size
for the first moment λ3.

We approximate the likelihoods required for computing the acceptance probability a using a
straightforward adaptation of the optimised importance sampling method of Koskela et al. [34]
to the time series setting of Beaumont [4], but need to specify the number of particles to use.
More particles will result in more accurate approximations, but at greater computational cost. In
Doucet et al. [19] the authors show that tuning the variance of the log likelihood estimator to
1.44 results in efficient algorithms under a wide range of assumptions. Preliminary simulations
showed this was achieved in our setting by choosing 75 particles for Bolthausen–Sznitman data,
and 180 particles for Kingman data.

Remark 7. In the context of real data, when the true data generating parameters are not known,
optimising the number of particles using trial runs may require an infeasible amount of com-
putation. In practice, adaptive algorithms, which optimise parameters online, can be used to
circumvent this problem. Recent work by Sherlock et al. [53] has shown how to implement such
adaptivity to all four algorithms discussed below, while maintaining ergodicity and the correct
stationary distribution of the algorithm.

It is well known that the standard, exact pseudo-marginal algorithm suffers from “sticking”
behaviour, where an unusually high likelihood estimator prevents the algorithm from moving for
a macroscopic number of steps (Andrieu and Roberts [2]). The usual solution is to use a noisy
version of the algorithm, in which the likelihood estimator is recomputed at each stage. This
doubles the number of required likelihood evaluations and biases the algorithm into an incorrect
stationary distribution, but can greatly reduce the variance of estimates. We compare both the
exact and noisy versions of the pseudo-marginal algorithm in Figure 2. We also investigate the
effect of delayed acceptance acceleration (Christen and Fox [14]), in which proposed moves are
first subjected to an accept-reject decision based on an approximate likelihood function that is
cheap to compute. Only samples which are accepted at this first stage are subjected to an accept-
reject decision based on the full likelihood estimates, or more specifically a slight modification
to ensure that the delayed acceptance mechanism does not affect the stationary distribution of the
algorithm. In the �-coalescent setting approximate likelihoods are readily available in the form
of Product of Approximate Conditionals (or PAC) methods (Koskela et al. [34], Section 4.3),
which we use to implement delayed acceptance chains.

Figure 2 shows trace plots of 20 000 steps from the four algorithms introduced above. The
exact pseudo-marginal algorithm exhibits sticking behaviour as might be expected, but it is sur-
prising to see that the noisy algorithm does not completely eliminate it. We conjecture that the
remaining stickiness in the noisy trace plot is due to multiple, narrow modes in the 11 dimen-
sional posterior. It is also clear that the bias in the noisy algorithm is confounding the signal in
the data, as the traces are much more intermixed than those of the exact algorithm.
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Figure 2. Trace plot of the pseudo-marginal algorithm (top left), the noisy algorithm (top right) and corre-
sponding delayed acceptance algorithms (bottom row). Also shown are computation times (on a mid-range
Toshiba laptop with an Intel i5 processor) and acceptance probabilities. Delayed acceptance runs show
acceptance probabilities for both stages, as well as an overall probability. All runs are independent and
initialised from the prior.

Both the noisy and exact pseudo-marginal algorithm are very computationally expensive to
run, particularly for the Kingman data set due to the larger number of particles used to estimate
likelihoods. Delayed acceptance acceleration reduces these run times as expected, particularly
for the Kingman case. Both delayed acceptance algorithms also suffer from sticking, and show
less clear separation of the traces than the exact algorithm. They also look very similar to each
other.

Since it appears to be difficult to eliminate sticking behaviour in this case, we chose to lever-
age the speed up obtained by making use of delayed acceptance and ran a further exact, delayed
acceptance pseudo-marginal algorithm for 200 000 steps. A trace plot is shown in Figure 3. Stick-
ing behaviour is still present, but on a much shorter scale relative to the run length. Run times are
comparable to the noisy algorithm without delayed acceptance, and the Bolthausen–Sznitman
trace is again clearly centred at a higher level than the Kingman trace. We thinned the output of
this long run by a factor of 4000 to reduce the effect of sticking points to obtain 50 samples of
first moments, which were used to plot the histograms in Figure 3.
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Figure 3. (Left) Trace plot of the delayed acceptance exact pseudo-marginal algorithm, along with com-
putation times (on a mid-range Toshiba laptop with an Intel i5 processor) and acceptance probabilities for
both stages as well as overall. Both runs are independent and initialised from the prior. (Right) Histograms
of both Kingman (dashed) and Bolthausen–Sznitman (solid) posteriors estimated from 50 MCMC samples
obtained by thinning the runs shown on the left. The estimated prior density is shown (dotted), based on
10 000 independent samples from the prior.

It is clear from both the trace plots and histograms in Figure 3 that the run length is still
not sufficient for fully converged estimates. However, both plots already show a clear shift of
posterior modes toward the values generating the data. The red histogram is consistent with the
Kingman coalescent, while the blue one is consistent with the Bolthausen–Sznitman coalescent.
Moreover, approximate 95% credible intervals are λ3 ∈ [0.1,0.6] for the Bolthausen–Sznitman
posterior, and λ3 ∈ [η,0.5] for the Kingman posterior. This suggests the relatively short time
series is nevertheless sufficiently informative to reject the incorrect model in both cases.

8. Discussion

In this paper, we have presented a robust framework for Bayesian non-parametric inference under
�-coalescent processes for time series data, and studied the feasibility of implementable families
of algorithms for practical inference. We demonstrated that time series data is necessary for con-
sistent inference, and gave verifiable conditions for posterior consistenct. As seen in Example 1,
lack of consistency can lead to very low statistical power and high sensitivity of inference both
to confounding parameters, such as mutation rate, and the observed allele frequencies. A theo-
retical guarantee of consistency is crucial as expressions for statistical power rely on intractable
stationary distributions and transition densities of �-Fleming–Viot jump-diffusions, making the
reliability of experiments without time series data very difficult to evaluate.

Efficient methods for importance sampling �-coalescent trees are available (Birkner et al.
[10], Koskela et al. [34]), and these can be used to generalise the pseudo-marginal MCMC al-
gorithms of Beaumont [4] for temporally spaced data. The consistency conditions of Theorem 2
on the prior are sufficiently mild to permit the use of Dirichlet process mixture model priors,
which can be readily truncated for implementable algorithms. Alternatively, we have shown that
parametrising the inference problem via truncated moment sequences leads to implementable
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algorithms with no discretisation or truncation error. This work provides a strong indication that
time series data, and accompanying inference methods such as the one outlined above, should be
adopted as standard whenever the coalescent generating the data cannot be assumed to be known.

Generalising of consistency result within the �-Fleming–Viot process class to include un-
known drift, which can be used to model e.g. mutation, recombination and selection, as well
as more general �-measures is of great interest. However, it is difficult for a number of rea-
sons. First, relaxing conditions on � near 0 while ensuring the integral in (5) remains finite is
challenging. Likewise, it is well known that equivalent changes of measure for Lévy processes
necessitate equivalent Lévy measures (see, e.g., Sato [50], Theorem 33.1), and this is also the
condition needed for the jump-diffusions considered in Cheridito et al. [13]. The way in which
the drift can be transformed while maintaining absolute continuity in Cheridito et al. [13] is also
restrictive, and depends on the diffusion coefficient and Lévy compensator. Finally, any differ-
ence in diffusion coefficients will obviously destroy absolute continuity outright, so if there were
an atom �({0}) > 0, its size would have to be known with certainty.

It would also be of great interest to obtain contraction rates of the posterior under verifiable
conditions. Obtaining rates is a challenging problem in non-i.i.d. Bayesian non-parametric infer-
ence, and existing results by Gugushvili et al. [26] for compound Poisson processes and Nickl
and Söhl [45] for scalar diffusions do not seem generalisable. A different approach by Nguyen
[44] for mixing measures of infinite mixture models could present a promising directions of fu-
ture work by viewing the �-coalescent tree as a mixture of merger events, but adaptation into the
present setting is a formidable task and is beyond the scope of this paper.

The method of parametrising the unknown �-measure by its first n − 2 moments when the
data set is of size n ∈ N reflects the limited amount of signal in finite data. More precisely, the
likelihood given a sample of size n ∈ N is constant within moment classes of order n, so that
any variation in the posterior within these moment classes is due solely to the prior. Hence,
this parametrisation can be seen as regularising an under-determined inference problem in an
infinite dimensional space by identifying an appropriate, data-driven, finite dimensional quotient
space in which to conduct inference. We believe this approach to have more broad applicability
in non-parametric statistics as well as an alternative to direct regularisation by a prior in the
infinite dimensional space, or to approximate projections onto finite dimensional subspaces (Cui
et al. [15]).

The algorithms used to approximate the posterior and maximise/minimise quantities of interest
given the posterior are highly computationally intensive, and we do not expect our approach to be
competitive with well-chosen parametric families when the number of observed lineages or loci
is large. However, the simulations in Section 7 demonstrate that our assumption-free framework
can be used to empirically evaluate the modelling fit of parametric families given moderately
sized pilot data, for instance by ensuring that the family contains a candidate � which matches
the MAP estimators of some small number of moments. Such parametric families can then be
confidently used to process larger data sets. The pseudo-marginal method can also be adapted
to incorporate unknown mutation parameters, recombination and other forces not considered in
this paper, albeit at the cost of greater computational cost and lower parameter identifiability.
This cost can be alleviated to a large extent by modern GPU and cluster computing approaches,
because the importance sampling algorithm used to estimate likelihoods is readily parallelisable.
For example, up to 500 fold speed up was reported by Lee et al. [36] when computations were
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parallelised on GPUs instead of being run in serial on CPUs. Such gains in computation speed
would make the algorithms employed in Section 7 practical for many realistic genetic data sets.
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