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The Ising spin glass is a one-parameter exponential family model for binary data with quadratic sufficient
statistic. In this paper, we show that given a single realization from this model, the maximum pseudolike-
lihood estimate (MPLE) of the natural parameter is

√
aN -consistent at a point whenever the log-partition

function has order aN in a neighborhood of that point. This gives consistency rates of the MPLE for fer-
romagnetic Ising models on general weighted graphs in all regimes, extending the results of Chatterjee
(Ann. Statist. 35 (2007) 1931–1946) where only

√
N -consistency of the MPLE was shown. It is also shown

that consistent testing, and hence estimation, is impossible in the high temperature phase in ferromagnetic
Ising models on a converging sequence of simple graphs, which include the Curie–Weiss model. In this
regime, the sufficient statistic is distributed as a weighted sum of independent χ2

1 random variables, and the
asymptotic power of the most powerful test is determined. We also illustrate applications of our results on
synthetic and real-world network data.

Keywords: exponential family; graph limit theory; hypothesis testing; Ising model; pseudolikelihood
estimation; spin glass

1. Introduction

The Ising spin glass is a discrete random field developed in statistical physics as a model for
ferromagnetism [23], and is now widely used in statistics as a model for binary data with appli-
cations in spatial modeling, image processing, and neural networks (cf. [2,20,22] and the refer-
ences therein). To describe the model, suppose that the data is a vector of dependent ±1 random
variables σ = (σ1, σ2, . . . , σN), and the dependence among the coordinates of σ is modeled by a
one-parameter exponential family where the sufficient statistic is a quadratic form:

HN(τ) = τ ′JNτ =
∑

1≤i,j≤N

JN(i, j)τiτj (1.1)

for any τ ∈ SN := {−1,1}N and an N × N symmetric matrix JN with zeros on the diagonals.
The elements of JN are denoted by JN(i, j) = JN(j, i), for 1 ≤ i < j ≤ N . Given any β ≥ 0, the
quadratic form (1.1) defines a parametric family of probability distributions on SN :

Pβ(σ = τ) = 2−N exp

{
1

2
βHN(τ) − FN(β)

}
, (1.2)
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where FN(β) is the log-partition function which is determined by the condition
∑

τ∈SN
Pβ{σ =

τ } = 1, that is,

FN(β) := log

{
1

2N

∑
τ∈SN

e
1
2 βHN(τ)

}
= logE0e

1
2 βHN(σ), (1.3)

where E0 denotes the expectation over σ distributed as P0, the uniform measure on SN . The
parameter β = 1/T is often referred to as the inverse temperature, so the high temperature regime
corresponds to small values of β . The family (1.2) includes many famous statistical physics
models: the usual ferromagnetic Ising model on generals graphs, the Sherrington–Kirkpatrick
mean-field model [30,33,34], and the Hopfield model for neural networks [22].

Estimating the parameter β in (1.2), given one realization from the model, is extremely difficult
using likelihood-based methods because of the presence of an intractable normalizing constant
FN(β) in the likelihood. A variety of numerical methods are known for approximately computing
the likelihood [18], but they are computationally expensive and very little is known about the rate
of convergence.

One alternative to using likelihood-based methods is to consider the maximum pseudolikeli-
hood estimator (MPLE) [4,5]. Chatterjee [10] showed that given a single spin configuration from
the model (1.2), the MPLE β̂N is

√
N -consistent at β = β0,1 whenever lim infN→∞ 1

N
FN(β0) >

0. However, in many popular models such as regular graphs, random graphs, and dense graphs,
the log-partition function FN(β) = o(N) for certain ranges of β , and Chatterjee’s result does not
tell us anything about the consistency of the MPLE.

In this paper, we show that the MPLE is
√

aN -consistent at β = β0, if the log-partition func-
tion has order aN in a neighborhood of β0 (Theorem 2.1), for a sequence aN → ∞. This gives
the consistency rate of the MPLE for all values of β > 0 away from the critical points, and shows
that the rate of the MPLE undergoes phase transitions for Ising models on various graphs en-
sembles (Corollaries 3.1 and 3.2). We also show that no consistent test, and hence no estimator,
exists if the log-partition function remains bounded (Theorem 2.3). As a consequence, consis-
tent estimation is impossible in the high temperature regime in ferromagnetic Ising models on
a converging sequence (in cut-metric as defined by Lovaśz and co-authors [7,8,27]) of graphs
(Theorem 3.3). This strengthens previous results of Comets and Gidas [12] and Chatterjee [10]
where the MLE and the MPLE was, respectively, shown to be inconsistent for 0 ≤ β < 1 in
the Curie–Weiss model, which corresponds to taking JN(i, j) = 1/N , for all 1 ≤ i < j ≤ N . Fi-
nally, using the emerging theory of graph limits [7,8,27], the limiting distribution of the sufficient
statistic HN(σ), and the asymptotic power of the most powerful test are derived for dense graphs
in the high temperature regime (Theorem 3.4).

While proving the consistency of the MPLE, we show that the asymptotic order of the suf-
ficient statistic HN(σ) is same as the order of the log-partition function for general matrices
JN ; a result which appears to be new and might be of independent interest. More precisely, the
sequence of random variables 1

aN
HN(σ) is asymptotically tight under Pβ0 , and the limiting dis-

tribution (if any) is non-zero when the log-partition function has order aN in a neighborhood of

1A sequence of estimators {β̂N }N≥1 is said to be aN -consistent at β = β0 if aN |β̂N − β0| = OP (1), that is,

lim supK→∞ lim supN→∞ Pβ0 (aN |β̂N − β0| > K) = 0.
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β0 (Lemma 5.1). Moreover, simple bounds for matrices JN with non-negative entries provide
the correct order of the log-partition function in the high temperature regime for a wide class of
Ising models (Lemma 7.1).

Finally, we illustrate the usefulness of the MPLE and the applicability of our results on a real
dataset: In Section 4, we study the effect of gender among friends in two Facebook friendship-
networks from the Stanford Large Network Dataset (SNAP) collection.

Another active area of research is high-dimensional structure estimation in a sparse Ising
model, where the goal is to consistently estimate the underlying matrix JN , under certain struc-
tural constraints from i.i.d. samples from the model (see [1,9,32,35] and the references therein).
This is in contrast with the present work, where the matrix JN is known and we estimate the
natural parameter and its error rate given a single realization from the model.

1.1. Organization

The rest of the paper is organized as follows: The consistency of the MPLE and general in-
consistency results are described in Section 2. Applications of these results to various graph
ensembles including regular graphs, random graphs, and general weighted graphs, are explained
in Section 3. Theorems 2.1 and 2.3 are proved in Sections 5 and 6, respectively. The proofs of
Corollaries 3.1 and 3.2 are given in Section 7. The results on converging sequence of graphs are
in Section 8. The analysis of the Facebook dataset is given in Section 4.

2. Consistency of the MPLE

The maximum pseudolikelihood estimator (MPLE), introduced by Besag [4,5], can be conve-
niently used to approximate the joint distribution of σ ∼ Pβ that avoids calculations with the
normalizing constant.

Definition 2.1. Given a random vector (X1,X2, . . . ,XN) whose joint distribution is parame-
trized by a parameter β ∈ R, the MPLE of β is defined as

β̂N := arg max
N∏

i=1

fi(β,X), (2.1)

where fi(β,X) is the conditional probability density of Xi given (Xj )j 
=i .

Given σ ∼ Pβ from the model (1.2), the conditional density of σi , given (σj )j 
=i can be easily
computed. To this end, given τ ∈ SN , define the function Lτ : [0,∞) →R as

Lτ (x) := 1

N

N∑
i=1

mi(τ)
(
τi − tanh

(
xmi(τ )

))
, (2.2)
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where

mi(τ) :=
N∑

j=1

JN(i, j)τj . (2.3)

Note that mi(τ) does not depend on τi since the diagonal element JN(i, i) = 0. Interpret-
ing tanh(±∞) = ±1, the function Lτ can be extended to [0,∞] by defining Lτ (∞) :=
1
N

∑N
i=1(mi(τ )τi − |mi(τ)|). Then it is easy to verify that (see Chatterjee [10], Section 1.2)

1
N

∂
∂β

∑N
i=1 logfi(β, τ ) = Lτ (β), and the function Lτ (β) is a decreasing function of β . There-

fore, the MPLE for β in the model (1.2) is

β̂N (σ ) := inf
{
x ≥ 0 : Lσ (x) = 0

}
, (2.4)

where σ ∼ Pβ is a random element from (1.2). Hereafter, we suppress the dependence on σ and
denote by β̂N := β̂N (σ ) the MPLE of β .

Consistency results for the MPLE in Ising models are known in the case of lattices [11,19,21,
31], complete graphs [10], and spatial point processes [24]. However, for general processes where
the dependence is neither local nor mean-field, it is very difficult to prove consistency results for
MPLE. In a major breakthrough, Chatterjee [10] developed a remarkable technique using ex-
changeable pairs and showed [10], Theorem 1.1, that the MPLE {β̂N }N≥1, given a single realiza-
tion σ ∈ SN from (1.2), is a

√
N -consistent estimator at β = β0 > 0, whenever supN ‖JN‖ < ∞2

and

lim inf
N→∞

1

N
FN(β0) > 0. (2.5)

To the best of our knowledge, all results regarding MPLE {β̂N }N≥1 are in the regime where it
is

√
N -consistent. However, in many examples such as the Ising model on dense graphs, d(N)-

regular graphs with d(N) → ∞, and Erdős–Rényi graphs G(N,p(N)), with logN
N

� p(N) � 1,
the log-partition function FN(β) = o(N) for certain ranges for β . In these cases, the hypothesis
(2.5) is not satisfied, and Chatterjee’s result is not applicable for deriving the consistency of
the MPLE. The following theorem (see Section 5.2 for proof) shows that the consistency of the
MPLE at a point is governed by the order of the log-partition function in a neighborhood of that
point. This generalizes the result of Chatterjee [10] giving the rate of consistency of the MPLE
for all values β (at all temperatures) away from the critical points.

Theorem 2.1. Let supN≥1 ‖JN‖ < ∞, and β0 > 0 be fixed. Suppose {aN }N≥1 is a sequence of
positive reals diverging to ∞ such that for some δ > 0 we have

0 < lim inf
N→∞

1

aN

FN(β0 − δ) ≤ lim sup
N→∞

1

aN

FN(β0 + δ) < ∞. (2.6)

Moreover, assume that the following conditions hold:

2For any N × N symmetric matrix A, denote by ‖A‖ = supx∈RN
‖Ax‖2‖x‖2

the operator norm of A.
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(a) lim supK→∞ lim supN→∞ 1
aN

Eβ0(
∑N

i=1 |mi(σ )| · 111{|mi(σ )| > K}) = 0, where mi(σ ) is
as defined in (2.3).

(b) lim supN→∞ 1
aN

∑N
i,j=1 JN(i, j)2 < ∞.

Then the MPLE {β̂N }N≥1 for the model (1.2) is a
√

aN -consistent sequence of estimators for
β = β0.

Conditions (a) and (b) are technical requirements arising out of the proof technique, which
ensure that the main contributions come from mi(σ ) that are small, and on average the entries in
JN are not too large compared to aN . The proof of the result is given in Section 5.1 (with technical
lemmas proved in Appendix A). The proof is organized as follows: Using the two conditions of
the theorem, Lemma 5.2 shows that Eβ0(Lσ (β0)

2) = O(aN/N2), which implies that Lσ (β0) is
small with high probability. To derive the rate of consistency of the pseudo-likelihood, it thus
suffices to get a lower bound of the derivative L′

σ (β). Again invoking the two conditions of
Theorem 2.1, in Lemma A.3 we derive a lower bound on

N∑
i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K
}

for K fixed. This translates into the desired lower bound on the derivative L′
σ (β) using which

the proof of the theorem is then completed.
The conditions of the theorem are satisfied in most commonly used models (see Section 3).

Moreover, the result of Chatterjee [10], Theorem 1.1, is an immediate corollary of Theorem 2.1
(refer to Section 5.3 for the proof).

Corollary 2.2 ([10], Theorem 1.1). Let supN≥1 ‖JN‖ < ∞ and β0 > 0 be such that (2.5) holds.

Then the sequence of estimators {β̂N }N≥1 is
√

N consistent for β = β0.

Remark 2.1. Condition (2.6) in the Theorem 2.1 demands the right order of the log-partition
function in a small neighborhood around the point β0. This avoids the critical points, where the
order of the log-partition function (and its derivative) undergoes a sharp transition. It follows
from the proof of Theorem 2.1 that the following (possibly slightly weaker) condition works as
well instead of (2.6):

0 < lim
δ→0

lim inf
N→∞

1

aN

F ′
N(β0 − δ) ≤ lim sup

N→∞
1

aN

F ′
N(β0) < ∞.

However, for most of the applications estimates of the log-partition function are more readily
available. Thus, the sufficient conditions are stated in terms of the log-partition function instead
of its derivative.

Note that Theorem 2.1 does not apply to the case FN(β0) = O(1). Next, we show that if
FN(β0) = O(1), then there is no sequence of estimators which consistently estimates β0. In fact,
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we show that even testing is impossible in this regime: Given a single spin-configuration σ ∈ SN

from (1.2), there exists no sequence of consistent tests3 for the hypothesis testing problem:

H0 : β = β1 versus H1 : β = β2. (2.7)

This is summarized in the following theorem (see Section 6 for proof):

Theorem 2.3. Let supN≥1 ‖JN‖ < ∞, and β0 > 0 be fixed. Suppose

lim sup
N→∞

FN(β0) < ∞. (2.8)

Then for 0 ≤ β1 < β2 ≤ β0, there exists no consistent sequence of tests for the testing prob-
lem (2.7). In particular, there exists no consistent sequence of estimators for β in the interval
[0, β0].

One of the main applications of above results is in deriving the rate of the MPLE for Ising
models on weighted graphs, that is, for matrices JN with non-negative entries. For such matrices,
condition (b) in Theorem 2.1 can be directly verified, and we have the following simplified
corollary:

Corollary 2.4. Consider the model (1.2) such that JN is a sequence of matrices with non-
negative entries with limN→∞ ‖JN‖ = λ > 0.

(a) The sequence of estimators {β̂N }N≥1 is ‖JN‖F :=
√∑N

i,j=1 JN(i, j)2 consistent at β =
β0 for any β0 < 1

λ
, whenever condition (a) in Theorem 2.1 holds.

(b) If lim supN→∞
∑N

i,j=1 JN(i, j)2 < ∞, then exists no consistent sequence of estimators

for β in the interval [0, 1
λ
).

3. Applications

The
√

N -consistency of the MPLE in the Sherrington–Kirkpatrick (SK) model and the Hopfield
model, for all values of β > 0, follows from results of Chatterjee [10]. Our results give the rate
of consistency of the MPLE in the regime where it is not

√
N -consistent.

We begin with a simple example where the rate of the MPLE undergoes multiple phase tran-
sitions.

3A sequence of test functions φN : SN → {0,1} is said to be consistent for the testing problem (2.7) if
limN→∞ Eβ1φN = 0 and limN→∞ Eβ2φN = 1.
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Example 1. Consider the model (1.2) with

JN(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

N
, if 1 ≤ i 
= j ≤ N

2
,

1√
N

, if
N

2
< i 
= j ≤ N

2
+ √

N,

0, otherwise.

Then the sequence of estimators {β̂N }N≥1 is inconsistent for β ∈ (0,1), N1/4-consistent for β ∈
(1,2), and

√
N -consistent if β > 2.

The proof of the above example is given in Section 7.2. In fact, this example can be easily
generalized to construct a K-block matrix JN such that the consistency rate of MPLE undergoes
K phase transitions. However, for most popular choices of JN the rate of the MPLE undergoes
at most one phase transition from ‖JN‖F -consistent to

√
N -consistent.

3.1. Ising model on regular graphs

Let GN be a sequence of dN regular graphs. Consider the family of probability distributions (1.2)
with the sufficient statistic

HN(τ) = 1

dN

τ ′A(GN)τ, (3.1)

where A(GN) = ((aN(i, j))) is the adjacency matrix of the graph GN . This includes Ising mod-
els on lattices, complete graph, hypercube, and random regular graphs, among others, and have
been extensively studied in probability and statistical physics. Dembo et al. [14,15] derived the
limit of the log-partition function for random regular (and other locally-tree like) graphs. Levin
et al. [26] showed that the mixing time of the Glauber dynamics on the complete graph exhibits
the cutoff phenomenon [16] in the high temperature regime. The cutoff phenomenon for lattices
was established by Lubetzky and Sly in a series of breakthrough papers (refer to [28,29] and the
references therein).

The next result gives the rate of consistency of the MPLE for general regular graphs. The
proofs are deferred to Section 7.

Corollary 3.1. Fix β0 > 0 and let GN be a sequence of dN regular graphs. Suppose {β̂N }N≥1 is
the MPLE for the model (1.2) with sufficient statistic (3.1).

(a) If 0 < β0 < 1, {β̂N }N≥1 is a
√

N/dN -consistent sequence of estimators for β0.
(b) If β0 > 1, {β̂N }N≥1 is a

√
N -consistent sequence of estimators for β0.

The above theorem shows that the rate of the MPLE undergoes a phase transition at β = 1 for
general regular graphs. In particular if dN = d = O(1) remains bounded, then the above theorem
shows that the MPLE is

√
N for all non-negative β 
= 1. However, in this case, it is easy to

argue that lim infN→∞ 1
N

FN(β) > 0, for all β > 0 (see proof of lower bound in Corollary 3.1).



500 B.B. Bhattacharya and S. Mukherjee

Theorem 2.1 then concludes that β̂N is
√

N -consistent for all values of β > 0. In fact, using
similar arguments as in the proof of Corollary 3.1, it follows that the MPLE {β̂N }N≥1 is

√
N -

consistent for all β > 0 in all bounded degree graphs with at least O(N) edges. This shows
that MPLE is

√
N -consistent for lattice graphs re-deriving classical results (see [21] and the

references therein).
For dN → ∞, the behavior of the MPLE at β = 1 remains unclear. It is believed that the

MPLE might have a non-Gaussian limiting distribution at the critical point β = 1 [10].

Remark 3.1. If dN = 
(N),4 then Theorem 3.1 shows that the MPLE is O(1) consistent for
0 < β0 < 1, suggesting that the MPLE might be inconsistent in this regime. Chatterjee [10]
showed that this is indeed the case for the Curie–Weiss model (where JN(i, j) = 1/N for all
i 
= j ) for 0 ≤ β < 1. Comets and Gidas [12] showed that even the MLE of β in the Curie–Weiss
model is inconsistent for 0 ≤ β < 1. Later, in Theorem 3.4 we strengthen this result by showing
that for Ising models on arbitrary dense graphs, there exists no sequence of consistent estimators
before the phase transition point. This extends the results in [10,12] and justifies the O(1)-rate
of the MPLE in the dense case.

3.2. Ising model on Erdős–Rényi graphs

Let GN ∼ G(N,p(N)) be a sequence of Erdős–Rényi graphs. Consider the family of probability
distributions (1.2) with the sufficient statistic

HN(τ) = 1

Np(N)
τ ′A(GN)τ, (3.2)

where A(GN) = ((aN(i, j))) is the adjacency matrix of the graph GN .

Corollary 3.2. Fix β0 > 0 and consider a sequence GN ∼ G(N,p(N)) of Erdős–Rényi graphs,
with logN

N
� p(N) ≤ 1. Let {β̂N }N≥1 be the MPLE for the model (1.2) with sufficient statis-

tic (3.2).

(a) If 0 < β0 < 1, {β̂N }N≥1 is a
√

1/p(N)-consistent sequence of estimators for β0.
(b) If β0 > 1, {β̂N }N≥1 is a

√
N -consistent sequence of estimators for β0.

As in the regular case, the rate of the MPLE undergoes a phase transition at β = 1 for
Erdős–Rényi graphs. Figure 1 shows the error bars for the MPLE for the Ising model on

GN ∼ G(N,p(N)), with N = 2000 and p(N) = N− 1
3 , for a sequence of values of β ∈ [0,2].

3.3. Ising model on dense graphs

Recall that the MPLE is inconsistent in the Curie–Weiss model in the high temperature regime,
0 ≤ β < 1 [10]. In this section, using the emerging theory of graph limits and Theorem 2.3

4Given non-negative sequences {aN }N≥1 and {bN }N≥1, the notation aN = 
(bN ) means that there exist constants
k1, k2 > 0, such that k1bN ≤ aN ≤ k2bN , for all N large enough.
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Figure 1. The MPLE and the 1-standard deviation error bar in an Ising model on GN ∼ G(N,p(N)) with

N = 2000 and p(N) = N− 1
3 averaged over 100 repetitions for a sequence of values of β ∈ [0,2]. Lengths

of the error bars undergo a phase transition at β = 1, as predicted by Corollary 3.2 which shows that for

0 ≤ β < 1 the MPLE is N
1
6 consistent, and for β > 1, the MPLE is

√
N -consistent.

above, we strengthen this result to show that consistent testing is impossible in the entire high
temperature regime in Ising models on a converging sequence of dense graphs. We also calculate
the distribution of the most powerful test and the asymptotic power in this regime.

3.3.1. Graph limit theory

Let GN be a simple graph with vertices V (GN) = {1,2, . . . ,N} and adjacency matrix A(GN).
Lovász and co-authors [7,8] developed a limit theory of graphs, which connects various topics
such as graph homomorphisms, Szemerédi regularity lemma, and extremal graph theory. In the
following, we summarize the basic results for converging sequence of graphs (cf. Lovász [27]
for a detailed exposition). To this end, note that any graph GN can be represented as a function
WGN

: [0,1]2 → [0,1] in a natural way: Define WGN
(x, y) := 1 if and only if (
nx�, 
ny�) is an

edge in GN , that is, partition [0,1]2 into N2 squares of side length 1/N , and define WGN
(x, y) =

1, when (x, y) is in the (a, b)th square and (a, b) is an edge in GN . Let W be the space of all
measurable functions from [0,1]2 into [0,1] that satisfy W(x,y) = W(y,x) for all x, y ∈ [0,1].
For every W ∈ W and any fixed simple graph H = (V (H),E(H)) define the homomorphism
density

t (H,W) =
∫

[0,1]|V (H)|

∏
(i,j)∈E(H)

W(xi, xj )dx1 dx2 · · · dx|V (H)|.
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A sequence of simple graphs {GN }N≥1 is said to converge to W ∈ W if for every finite simple
graph H ,

lim
N→∞ t (H,GN) = t (H,W). (3.3)

The limit objects, that is, the elements of W , are called graph limits or graphons. Conversely,
every such function arises as the limit of an appropriate graph sequence.

It turns out that the above notion of convergence can be suitably metrized using the so-called
cut-metric (cf. [27], Chapter 8, for details). Moreover, every function W ∈ W defines an operator
TW : L2[0,1] → L2[0,1]:

(TWf )(x) =
∫ 1

0
W(x,y)f (y)dy. (3.4)

TW is a Hilbert–Schmidt operator with operator norm denoted by ‖W‖, which is compact and
has a discrete spectrum, that is, a countable multiset of non-zero real eigenvalues {λi(W)}i∈N. In
particular, every non-zero eigenvalue has finite multiplicity and

∞∑
i=1

λ2
i (W) =

∫
[0,1]2

W(x,y)2 dx dy := ‖W‖2
2. (3.5)

3.3.2. Consistency and asymptotic power

Recall that for a graph GN , A(GN) is the adjacency matrix of GN . Now, using graph limit theory
we show the following result:

Theorem 3.3. Let {GN }N≥1 be a sequence of simple graphs which converges in cut-metric to
W ∈ W such that

∫
[0,1]2 W(x,y)dx dy > 0. Consider the testing problem (2.7) given a single

realization σ ∈ SN from (1.2) with sufficient statistic HN(τ) = 1
N

τ ′A(GN)τ .

(a) If 0 ≤ β1 < β2 < 1
‖W‖ , then there does not exist a sequence of consistent tests for (2.7).

(b) If β0 > 1
‖W‖ , then the MPLE {β̂N }N≥1 is a sequence of

√
N -consistent estimators for

β = β0.

The proof of the theorem is given in Section 8. It involves showing that FN(β0) = O(1) when-
ever 0 ≤ β0 < 1

‖W‖ , for any converging sequence of graphs, which together with Theorem 2.3

proves (a). To show (b) it suffices to show that limN→∞ 1
N

FN(β0) > 0, for β0 > 1
‖W‖ (by Corol-

lary 2.2). For Ising models on a convergence sequence of graphs, limN→∞ 1
N

FN(β0) is given
by a variational problem (8.1) (cf. [8], Theorem 2.14). Even though explicitly solving this varia-
tional problem for large values of β is extremely difficult, a simple argument can be used to show
that the value of the variational problem is positive for β > 1

‖W‖ .
By the Neyman–Pearson lemma, the most-powerful (MP) test for (2.7) is based on the suffi-

cient statistic HN(σ). By Theorem 3.3, the test based on HN(σ) is not consistent (see Figure 2).
However, the asymptotic power of the MP-test can be derived from the limiting distribution of
HN(σ), for any β < 1

‖W‖ .
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Figure 2. The power of the MP-test for the Ising model on an Erdős–Rényi random graph G(N,p) as
a function of p and β , with N = 500. Every point (p,β) in the grid shows the empirical power of the
MP-test averaged over 100 repetitions. Note the phase transition curve β(p) = 1

p above which the MP-test
has power 1, as predicted by Theorem 3.4.

Theorem 3.4. Let {GN }N≥1 be a sequence of simple graphs which converges in cut-metric to
W ∈ W , with

∫
[0,1]2 W(x,y)dx dy > 0. If σ ∼ Pβ , then for β < 1

‖W‖

HN(σ) = 1

N
σ ′A(GN)σ

D→
∞∑
i=1

λi(W)

(
1

1 − βλi(W)
ξi − 1

)
, (3.6)

where ξ1, ξ2, . . . , are i.i.d. χ2
1 random variables.

Hereafter, the random variable in the RHS of (3.6) will be denoted by Qβ,W and can be used
to compute the asymptotic power for the test based on HN(σ) for the testing problem (2.7), when
0 ≤ β1 < β2 < 1

‖W‖ . To this end, we need the following definition:

Definition 3.1. Let W ∈ W and β < 1
‖W‖ . Denote by Fβ,W the distribution function of the ran-

dom variable Qβ,W defined in (3.6). Also, let q1−α,β,W be the (1 − α)th quantile of Fβ,W , that
is, Pβ(Qβ,W ≥ q1−α,β,W ) = α.

The following corollary is an immediate consequence of the Neyman–Pearson lemma and
Theorem 3.4.
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Corollary 3.5. Fix α ∈ (0,1) and 0 ≤ β1 < β2 < 1
‖W‖ . The most powerful level α test for (2.7)

rejects H0 when HN(σ) > q1−α,β1,W , and has limiting power

lim
N→∞Pβ2

(
HN(σ) > q1−α,β1,W

) = 1 − Qβ2,W (q1−α,β1,W ). (3.7)

In most of the relevant examples, the limiting graphon W has finitely many non-zero eigen-
values, and the expression on the RHS of (3.7) can be computed easily in terms of the quantiles
of the chi-squared distribution.

Example 2. Suppose GN ∼ G(N,p) be a Erdős–Rényi random graph with 0 < p ≤ 1. Then GN

converges to the constant function Wp :≡ p on [0,1]2, which has only one non-zero eigenvalue
λ1(Wp) = p. Therefore, consistent testing is impossible for 0 ≤ β < 1

p
(see Figure 2). Moreover,

for β < 1/p, (3.7) simplifies to

HN(σ)
D→ Qβ,Wp = p

(
1

1 − βp
χ2

1 − 1

)
.

If q1−α denotes the (1 − α)th quantile of the χ2
1 distribution, then by (3.7), the limiting power of

the test with rejection region {HN(σ) > cα := p(q1−α − 1)} for the testing problem β = 0 versus
β = β0 < 1/p is

lim
N→∞Pβ0

(
HN(σ) > cα

) = P
(
χ2

1 > (1 − β0p)q1−α

)
. (3.8)

The limiting power of the MP-test for the Curie–Weiss model (which corresponds to taking p = 1
in (3.8)) is shown in Figure 3. Note that it has a phase transition at β = 1, as stated in Theo-
rem 3.3.

Remark 3.2. Note that throughout the paper, the term phase transition has been is used to imply
a change in the rate of consistency of the pseudo-likelihood estimate β̂N . Interestingly, in all our
examples (Corollaries 3.1, 3.2 and Theorem 3.3) the change in the rate of consistency happens ex-
actly at the point of thermodynamic phase transition, that is, prior to this phase transition point the
log-partition function is o(N), whereas after the phase-transition point the log-partition function
scales linearly with N . In fact, in the setting of Corollary 3.1, the limiting log-partition function
is continuous but not differentiable at the phase transition point β = 1 (see [3], Theorem 2.2(b)).
Similar statements about the non-differentiability of the limiting log-partition function should
also hold for the other two examples, but since they are not directly used in our calculations, this
direction has not been pursued.

4. Analysis of the facebook dataset

Ising models have been widely used to understand correlations among neighboring vertices in
network data with binary node attributes. Here, we use it to study the effect of gender in Face-
book friendship-networks using data from the Stanford Large Network Dataset (SNAP) col-
lection, available freely at http://snap.stanford.edu/data/egonets-Facebook.html. The nodes are

http://snap.stanford.edu/data/egonets-Facebook.html
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Figure 3. The power of the MP-test in the Curie–Weiss model as a function of β; the black curve is
the empirical power for the Curie–Weiss model with N = 500 and 1000 repetitions at each point along a
sequence of values (of length 500) of β ∈ [0,2]. The red curve is the limiting power function (corresponds
to taking p = 1 in (3.8)) as a function of β ∈ [0,2]. The blue line corresponds to the level α = 0.05 of the
test.

groups of users from Facebook and there is an edge between two users if they are friends.
The dataset also include several anonymized node features, such as hometown, gender, birth-
day, school, and university. We consider two networks (referred to as FB1 and FB2) with gender
as the binary node feature, encoding, without loss of generality, male by 1 and female by −1.
The nodes labelled 1 are colored blue and those labelled −1 are colored red. The FB1 network
has 221 nodes and 3176 edges. Among the 221 nodes, 170 are labelled 1 and 51 are labelled
−1. The FB2 network has 333 nodes and 2519 edges, with 213 nodes labelled 1 and 120 la-
belled −1.

In order to understand how gender correlates with friendship, we fit Ising models on the two
networks. The MPLE for β corresponding to the two networks are given in the table in Figure 4.
This can be used to test the null hypothesis that gender does not correlate with friendship. The
p-values show that the null hypothesis is rejected at the 5% level in both cases, suggesting, as
expected, significant correlation in the friendship-network based on gender. The MPLE in FB1
is larger, which suggests a stronger gender-based correlation in FB1, which might be due to the
larger male-to-female ratio in FB1 than in FB2.

Figure 4 also shows the error bars for the MPLE calculated using parametric bootstrap: 105

realizations of the Ising model were resampled using the original MPLE, which then gives an
estimate of the standard error of the MPLE. Note that the error bar for FB1 is slightly longer than
that for FB2. This might be because the FB1 network, with average degree 28.74, is significantly
dense than FB2, which has average degree 15.13.
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Figure 4. Facebook friendship-network: The table gives the MPLE of β for Ising models on two Facebook
friendship-networks and the corresponding p-values for testing independence. The plot shows the empirical
(resampled) error-bars for the MPLE in the two networks.

5. Proof of consistency of the MPLE

This section contains the proof of Theorem 2.1. The technical lemmas required for the proof are
listed in Section 5.1 and proved later in Appendix A.1. Using this, we complete the proof of the
theorem in Section 5.2. Corollary 2.2 is proved in Section 5.3.

5.1. Technical lemmas

The proof of Theorem 2.1 requires a few technical lemmas. We begin by showing that in Ising
models satisfying (2.6), the asymptotic order of the sufficient statistic HN(σ) is the same as
the order of the log-partition function, that is, (a) the sequence 1

aN
HN(σ) does not tend to 0

in distribution, and (b) 1
aN

HN(σ) is OP (1). In fact, (b) is not required in the rest of the proof,
however we include it because, together with (a), it gives the correct order of HN(σ), which
appears to be new and might be of independent interest. The proof of the lemma is given in
Appendix A.1.

Lemma 5.1. Under assumption (2.6), the following hold:

(a) limε→0 lim supN→∞ Pβ0(HN(σ) < εaN) = 0,
(b) limK→∞ lim supN→∞ Pβ0(HN(σ) > KaN) = 0.

The next lemma is similar to the lemma in [10], Lemma 1.2, where it was shown that the
second moment of the function Lσ (β0) is O(1/N) whenever the log-partition function scales
like N . Here, by a finer analysis using part (a) of Lemma 5.1 we show that the Eβ0(Lσ (β0)

2) =
O(aN/N2), if the log-partition function has order aN . The proof of the lemma is given in Ap-
pendix A.2.
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Lemma 5.2. Let Lσ be as defined in (2.2). Then under the assumptions in Theorem 2.1, for N

large enough,

lim sup
N→∞

N2

aN

Eβ0

(
Lσ (β0)

2) < ∞.

Lemma 5.3. Under the assumptions in Theorem 2.1,

lim
ε→0

lim
K→∞ lim

N→∞Pβ0

(
N∑

i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K
} ≤ εaN

)
= 0.

The above lemma replaces the application of Paley–Zygmund inequality of [10], Lemma 2.2,
and will be used to complete the proof of Theorem 2.1.

5.2. Completing the proof of Theorem 2.1

By Chebyshev’s inequality and Lemma 5.2 there exists C < ∞ such that

Pβ0

(∣∣Lσ (β0)
∣∣ > K1

√
aN/N

) ≤ N2

aN

Eβ0Lσ (β0)
2 ≤ C

K2
1

. (5.1)

Now, fix δ > 0. Therefore, it is possible to choose K1 = K1(δ) such that the RHS above is less
than δ.

Also, by Lemma 5.3 there exists ε := ε(δ) > 0 and K2 = K2(ε, δ) < ∞ such that

Pβ0

(
N∑

i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K2
} ≥ εaN

)
≥ 1 − δ, (5.2)

for N large enough. Thus, taking N large enough and setting

TN(β0) :=
{

σ ∈ SN : ∣∣Lσ (β0)
∣∣ ≤ K1

√
aN

N
,

N∑
i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K2
} ≥ εaN

}
,

we have Pβ0(TN) ≥ 1 − δ. For σ ∈ TN ,

∣∣L′
σ (β0)

∣∣ =
∣∣∣∣ ∂

∂β
Lσ (β)

∣∣∣∣
β=β0

= 1

N

N∑
i=1

mi(σ )2 sech2(β0mi(σ )
)

≥ 1

N
sech2(β0K2)

N∑
i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K2
}

(5.3)

≥ ε
aN

N
sech2(β0K2).
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Therefore,

K1

√
aN

N
≥ ∣∣Lσ (β0)

∣∣ = ∣∣Lσ (β0) − Lσ

(
β̂N (σ )

)∣∣
≥

∫ β0∨β̂N (σ )

β0∧β̂N (σ )

L′
σ (β)dβ

≥ εaN

K2N

∣∣tanh
(
K2β̂N (σ )

) − tanh(K2β0)
∣∣.

Let R = R(δ) := K2
K1ε

. This implies that

Pβ0

(√
aN

∣∣tanh(K2β̂N ) − tanh(K2β0)
∣∣ ≥ R

) ≤ δ, (5.4)

and Theorem 2.1 follows.

5.3. Proof of Corollary 2.2

Note that for τ ∈ SN and any K > 0,

N∑
i=1

∣∣mi(τ)
∣∣111{∣∣mi(τ)

∣∣ > K
} ≤ 1

K

N∑
i=1

mi(τ)2 = 1

K
τ ′J 2

Nτ ≤ N‖JN‖2

K
.

Therefore, condition (a) in Theorem 2.1 holds with aN = N .
Moreover,

N∑
i,j=1

J 2
N(i, j) =

N∑
i=1

‖JNei‖2
2 ≤ ‖JN‖2

N∑
i=1

‖ei‖2
2 = N‖JN‖2,

that is condition (b) in Theorem 2.1 holds with aN = N .
Finally, to check (2.6) note that F ′

N(β) = 1
2Eβσ ′JNσ ≤ M

2 N , where M := ‖JN‖ < ∞. There-
fore,

lim
δ→0

lim inf
N→∞

1

N
FN(β0 − δ) ≥ lim

δ→0
lim inf
N→∞

(
1

N
FN(β0) − M

2
δ

)
> 0,

by condition (2.5). Also, limδ→0 lim supN→∞ 1
N

FN(β0 + δ) ≤ M limδ→0(β0 + δ) < ∞. This
verifies (2.6) and by an application of Theorem 2.1 the result follows.

6. Proof of Theorem 2.3

In this section, we give the proof of Theorem 2.3, which shows that consistent testing and esti-
mation is impossible whenever the partition function is O(1). This is a consequence of a general
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result (see Proposition 6.1 below) which shows that distinguishing two probability measures PN

versus QN is impossible whenever the KL divergence between the two measures PN and QN

remains asymptotically bounded.

6.1. Non-existence of consistent tests

For every N ≥ 1, let (XN,FN) be a measure space and PN and QN two distributions on this
measure space. Let μN be a dominating measure for both PN and QN , and pN and qN denote
the respective densities with respect to this measure. Also, denote the Kullback–Leibler (KL)
divergence between QN and PN by

D(QN‖PN) := EQN
LN(XXX) := EQN

log
qN(XXX)

pN(XXX)
(6.1)

=
∫
XN

qN(xxx) log
qN(xxx)

pN(xxx)
dμN.

Consider the problem of testing PN versus QN . A sequence of tests φN is consistent for this
testing problem if there exists a sequence of test functions {φN }N≥1 such that limN→∞ EPN

φN =
0, and limN→∞ EQN

φN = 1.

Proposition 6.1. Consider the problem of testing PN versus QN . If

lim sup
N→∞

D(QN‖PN) < ∞, (6.2)

then there does not exist a consistent sequence of tests for this testing problem.

The proof of the proposition is given in Appendix B. In the following, we use it to prove
Theorem 2.3.

6.2. Completing the proof of Theorem 2.3

Given Proposition 6.1, it remains to verify that

D(Pβ1‖Pβ2) = FN(β2) − FN(β1) − (β2 − β1)F
′
N(β1) < ∞, (6.3)

for 0 ≤ β1 < β2 ≤ β0 (where β0 satisfies (2.8)).
By hypothesis (2.8) there exists M < ∞ such that FN(β1) < M and FN(β2) < M , for N large

enough. Moreover, by the monotonicity of F ′
N(·),

(β2 − β1)F
′
N(β1) ≤

∫ β2

β1

F ′
N(θ)dθ = FN(β2) − FN(β1) < M,

proving (6.3).
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7. Applications: Proofs of Corollary 2.4, 3.1 and 3.2

In this section, we prove Corollary 2.4 which will then be used to derive rates of consistency of
the MPLE for Ising models on different graph ensembles, using Theorems 2.1 and 2.3. To apply
these results, we need to determine the correct order of FN(β0) in a neighborhood of a point
β0 > 0. However, the exact asymptotics FN(β0) is known only for specific choices of the matrix
JN and for specific values of β0.

Nevertheless, the correct order of FN(β0) can be easily obtained in various examples, using,
for instance, the following very useful lemma, which is of independent interest and may find
other applications.

Lemma 7.1. Consider the family of probability distributions on SN given by (1.2). Assume that
the elements of the matrix JN are non-negative, and λ1(JN) ≤ λ2(JN) ≤ · · · ≤ λN(JN) are the
eigenvalues of the matrix JN .

(a) For 0 < β < 1
‖JN‖ ,

FN(β) ≤ −1

2

n∑
i=1

log
(
1 − βλi(JN)

)
. (7.1)

(b) For any β > 0,

FN(β) ≥
∑

1≤i<j≤N

log cosh
(
βJN(i, j)

)
. (7.2)

Proof. Let W := (W1,W2, . . . ,WN)′ be a vector of i.i.d. N(0,1) random variables. Note that
for any s ≥ 1 and non-negative integers b1, b2, . . . , bs

E0σ
b1
1 σ

b2
2 · · ·σbs

s ≤ EW
b1
1 W

b2
2 · · ·Wbs

s .

Since the matrix JN has non-negative entries, by expanding the exponential function in power
series every term can be bounded using the above inequality. This implies that

eFN(β) = E0e
1
2 βσ ′JNσ ≤ Ee

1
2 βW ′JNW . (7.3)

The RHS of (7.3) can be computed exactly as follows: Let JN = ∑N
i=1 λi(JN)pip

′
i , be the spec-

tral decomposition of JN , where p1,p2, . . . , pN are the normalized eigenvectors of JN . Then
setting p′

iW = Zi for 1 ≤ i ≤ N , we get

Ee
1
2 βW ′JNW = Ee

1
2 β

∑N
i=1 λi(JN )(p′

iW)2 = Ee
1
2 β

∑N
i=1 λi(JN )Z2

i . (7.4)

Note that Z := (Z1,Z2, . . . ,FN) is a vector of i.i.d. N(0,1) random variables. Therefore, (7.3)
and (7.4) implies

Ee
1
2 βW ′JNW ≤

N∏
i=1

(
1 − βλi(JN)

)− 1
2 ,
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using the MGF of the chi-squared distribution (since βλi(JN) < 1, for all 1 ≤ i ≤ N ). The in-
equality (7.1) follows by taking log on both sides.

To prove (b), let {Yij ,1 ≤ i < j ≤ N} be i.i.d. with P(Yij = ±1) = 1
2 . Then for any collection

of non-negative integers ((bij ))1≤i<j≤N ,

E
∏

1≤i<j≤N

Y
bij

ij ≤ E0

∏
1≤i<j≤N

(σiσj )
bij .

Indeed, this follows on noting that both the LHS and RHS are {0,1}-valued, and the LHS is 1 if
and only if bij is even for all (i, j), which is when the RHS is 1 as well. This implies,

eFN(β) = E0

∏
1≤i<j≤N

eβJN (i,j)σiσj ≥ E
∏

1≤i<j≤N

eβJN (i,j)Yij

=
∏

1≤i<j≤N

cosh
(
βJN(i, j)

)
.

The inequality (7.2) follows on taking log on both sides. �

Remark 7.1. Note that the upper bound (7.1) is obtained by replacing the spin configuration
σ = (σ1, σ2, . . . , σN) with a vector of i.i.d. N(0,1) random variables. To get the lower bound,
the collection {σiσj }1≤i<j≤N is replaced by i.i.d. Rademacher random variables. Surprisingly,
the bounds obtained by these simple comparison techniques often give the correct asymptotic
order of FN(β) in the high temperature regime β < 1

‖JN‖ . To get the order of FN(β) beyond the
phase transition, the standard mean-field approximation can be used (see Section 7.1 for details).

7.1. Proof of Corollary 2.4

For all β > 0, by the bound (7.2) in Lemma 7.1, we get

FN(β) ≥
∑

1≤i<j≤N

log cosh
(
βJN(i, j)

) ≥ C1β
2

∑
1≤i<j≤N

J 2
N(i, j), (7.5)

where C1 := inf|x|≤1
log coshx

x2 > 0. To get the upper bound, we use (7.1) for β < 1
λ

FN(β) ≤ −1

2

N∑
i=1

log
(
1 − βλi(JN)

) ≤ C2β
2

2

N∑
i=1

λi

(
J 2

N

)

≤ C2β
2

2
tr
(
J 2

N

)
(7.6)

= C2β
2

2

N∑
i,j=1

JN(i, j)2,
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where C2 = C2(β) := sup|x|≤β
− log(1−x)−x

x2 < ∞ for any β < 1
λ

, and we use the fact that∑N
i=1 λi(JN) = 0. The bounds (7.5) and (7.6) together implies (2.6) with aN = ∑N

i,j=1 JN(i, j)2

for β = β0 < 1
λ

. Therefore, if
∑N

i,j=1 JN(i, j)2 → ∞, part (a) follows by Theorem 2.1.

Finally, if lim supN→∞
∑N

i,j=1 JN(i, j)2 < ∞, then FN(β) = O(1) for β < 1
λ

and by Theo-
rem 2.3 part (b) follows.

7.2. Proof of Example 1

It is well known that in the Curie–Weiss model for β > 1 (see [8], Example 3.9)

lim
N→∞

1

N
E0e

β
2N

∑
1≤i 
=j≤N σiσj := F(β) ∈ (0,∞). (7.7)

Note that

σ ′JNσ = 1

N

∑
1≤i 
=j≤ N

2

σiσj + 1√
N

∑
N
2 <i 
=j≤ N

2 +√
N

σiσj

= σ (1)′ANσ(1) + σ (2)′BNσ (2),

where AN is a N/2 × N/2 matrix with AN(i, j) = 1/N , for i 
= j , and BN is a
√

N × √
N

matrix with BN(i, j) = 1/
√

N , for i 
= j , and σ = (σ (1), σ (2)). Therefore,

eFN(β) = E0e
β
2 σ ′JNσ = E0e

β
2 σ (1) ′ANσ(1)

E0e
β
2 σ (2) ′BNσ(2)

. (7.8)

Note that JN‖ = 1 and by (7.1) FN(β) = O(1) for β < 1. Thus, there exists no sequence of
consistent estimators for β ∈ (0,1) by Theorem 2.3.

For 1 < β < 2, by (7.7)

0 < lim inf
N→∞

1√
N

FN(β) ≤ lim sup
N→∞

1√
N

FN(β) < ∞,

since σ (2)′BNσ (2) is the Hamiltonian of a Curie–Weiss model on size
√

N . Moreover, |mi(τ)| ≤
1, for all 1 ≤ i ≤ N and τ ∈ SN ; so taking K = 1, 1√

N

∑N
i=1 |mi(σ )|111{|mi(σ )| > K} = 0, es-

tablishing condition (a) of Theorem 2.1. Therefore, the MPLE {β̂N }N≥1 is N1/4-consistent for
β ∈ (1,2) by Theorem 2.1.

Similarly, for β > 2

0 < lim inf
N→∞

1

N
FN(β) ≤ lim sup

N→∞
1

N
FN(β) < ∞,

and so the MPLE {β̂N }N≥1 is
√

N -consistent.
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7.3. Proof of Corollary 3.1

Note that when the sufficient statistic is of the form (3.1), |mi(τ)| ≤ 1, for all τ ∈ SN . There-
fore, taking K = 1, dN

N

∑N
i=1 |mi(σ )|111{|mi(σ )| > K} = 0, which implies condition (a) of The-

orem 2.1. Moreover, in this case, ‖JN‖ = 1, and
∑N

i,j=1 JN(i, j)2 = N/dN . Therefore, part (a)
follows by Corollary 2.4.

By Corollary 2.2, to show part (b) it suffices to verify that condition (2.5) holds for all β0 >

1. This is done using the mean field approximation of Lemma C.1. By plugging in the vector
(m,m, . . . ,m)′ for the vector z in the RHS of (C.1)

FN(β0) ≥ N sup
m∈[−1,1]

{
β0m

2

2
− I (m)

}
, (7.9)

where I (x) := 1
2 (1 + x) log(1 + x) + 1

2 (1 − x) log(1 − x) for x ∈ [−1,1]. Thus, it suffices to

show that supm∈[−1,1] g(m) > 0, where g(m) := β0m
2

2 − I (m). To this end, note that g′′(0) =
β0 − 1 > 0, that is, m = 0 is not a local maximum of g. This implies the RHS of (7.9) is positive,
thus verifying condition (2.5).

7.4. Proof of Corollary 3.2

Let di be the degree of the vertex i in GN , for 1 ≤ i ≤ N . Then |mi(τ)| ≤ di

Np(N)
, for all τ ∈ SN .

In the regime logN
N

� p(N) ≤ 1, the maximum degree � = maxi∈V (GN) di = Np(N)(1 + o(1))

with high probability [25]. Therefore, |mi(τ)| ≤ 1 + o(1) for all 1 ≤ i ≤ N , and by taking K ≥
2 it follows that p(N)

∑N
i=1 |mi(σ )|111{|mi(σ )| > K} = 0, with high probability. This implies

condition (a) of Theorem 2.1.
Moreover, for logN

N
� p(N) ≤ 1, ‖JN‖ = 1 + o(1) with high probability [25], and

p(N)

N∑
i,j=1

JN(i, j)2 = 2

N2p(N)

∣∣E(GN)
∣∣ P→ 1,

and part (a) follows from Corollary 2.4.
To prove part (b), we use the mean field approximation as in Corollary 3.1. By plugging in the

vector (m,m, . . . ,m)′ for the vector z in the RHS of (C.1), we get

FN(β0) ≥ N sup
m∈[−1,1]

{
β0m

2|E(GN)|
N2p(N)

− I (m)

}
.

Condition (2.5) follows by arguments similar to those in Corollary 3.1 and the fact 2|E(GN)|
N2p(N)

P→ 1.
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8. Proofs of Theorems 3.3 and 3.4

In this section, we show the existence of a untestable/testable threshold in Ising models on con-
verging sequence of dense graphs, and compute the distribution and asymptotic power of the
most powerful test, before the phase transition.

8.1. Proof of Theorem 3.3

If GN converges to W , then 1
N

‖A(GN)‖ converges to the operator norm of ‖W‖ (see (3.4)).
Moreover,

1

N2

N∑
i=1

λi

(
A(GN)2) → t (C2,W),

and part (a) follows by Corollary 2.4.
We now show (b). From [8], Theoem 2.14, when GN converges to W , then

limN→∞ 1
N

FN(β) = E (W,β), where

E (W,β) := sup
m:[0,1]�→[−1,1]

{
β

2

∫
[0,1]2

m(x)m(y)W(x, y)dx dy −
∫ 1

0
I
(
m(x)

)
dx

}
, (8.1)

and I (x) = 1
2 {(1 + x) log(1 + x) + (1 − x) log(1 − x)} as in Corollary 3.1. By Corollary 2.2, it

enough to show that E (W,β) > 0, for β > 1
‖W‖ .

To this end, let v1(x) to be the eigenvector corresponding to the eigenvalue λ = ‖W‖. Then
|λv1(x)| = | ∫ 1

0 W(x,y)v1(y)dy| ≤ 1, and supx∈[0,1] |v1(x)| < ∞. Thus, there exists δ > 0 such
that for z ∈ (−δ, δ) we have supx∈[0,1] |zv1(x)| ≤ 1, and

E (W,β) ≥ sup
|z|<δ

{
β

2
z2

∫
[0,1]2

v1(x)v1(y)W(x, y)dx dy −
∫ 1

0
I
(
zv1(x)

)
dx

}

= sup
|z|<δ

{
βz2λ

2

∫ 1

0
v1(x)2 dx −

∫ 1

0
I
(
zv1(x)

)
dx

}
.

Setting h(z) := βz2λ
2

∫ 1
0 v1(x)2 dx −∫ 1

0 I (zv1(x))dx it suffices to show that z = 0 is not a point

of local maxima of the function h. This follows on noting that h′′(0) = (βλ−1)
∫ 1

0 v1(x)2 dx > 0.

8.2. Proof of Theorem 3.4

By Lemma D.1 (see Appendix D), the limiting distribution (3.6) is well defined.
The following proposition (proved in Appendix D) gives the limit of the log-partition function,

for a converging sequence of dense graphs, for β < 1
‖W‖ .
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Proposition 8.1. Let {GN }N≥1 be a sequence of simple graphs converging in cut-metric to W ∈
W , such that

∫
[0,1]2 W(x,y)2 dx dy > 0. Then for any 0 < β < 1

‖W‖

lim
N→∞FN(β) = −1

2

∞∑
i=1

{
log

(
1 − βλi(W)

) − βλi(W)
}
. (8.2)

The above proposition can be used to complete the proof of Theorem 3.3 as follows: Fix δ > 0
such that β + δ < 1

‖W‖ . Then for any t ∈ (−β, δ),

Eβ exp

{
t

2
· 1

N
σ ′WNσ

}
= exp

{
FN(β + t) − FN(β)

}
(8.3)

→
∞∏
i=1

e− 1
2 tλi (W)√

1 − tλi (W)
1−βλi(W)

,

by Proposition 8.1.
By Lemma D.1 the RHS above is the MGF of the random variable

Qβ,W

2 defined in (3.6).

Appendix A: Proofs of technical lemmas

In the appendix we prove the lemmas used in the proof of Theorem 2.1. The rest of the section
is organized as follows: Appendix A.1 contains the proof of Lemma 5.1. The proofs of Lemmas
5.2 and 5.3 are given in Appendices A.2 and A.3, respectively.

A.1. Proof of Lemma 5.1

By (2.6) there exists δ ∈ (0, β0/2) such that lim infN→∞ 1
aN

FN(β0 −δ) > 0. By the monotonicity
of F ′

N(·),

FN(β0 − δ) =
∫ β0−δ

0
F ′

N(t)dt ≤ (β0 − δ)F ′
N(β0 − δ) ≤ β0F

′
N(β0 − δ),

it follows that lim infN→∞ 1
aN

F ′
N(β0 − δ) > 0. Thus, for any ε > 0

Pβ0

(
HN(σ) < εaN

) = Pβ0

(
e− 1

2 δHN(σ) > e− 1
2 δεaN

) ≤ e
1
2 δεaN+FN(β0−δ)−FN(β0),

which, on taking logarithms, implies that

logPβ0

(
HN(σ) < εaN

) ≤ εδaN

2
−

∫ β0

β0−δ

F ′
N(t)dt ≤ εδaN

2
− F ′

N(β0 − δ)δ.
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Dividing both sides by aN and taking limits as N → ∞ followed by ε → 0 we have

lim
ε→0

lim sup
N→∞

1

aN

logPβ0

(
HN(σ) < εaN

) ≤ − lim inf
N→∞

1

aN

F ′
N(β0 − δ) < 0,

thus completing the proof of (a).
To show (b), again invoking (2.6) there exists δ > 0 such that lim supN→∞ FN(β0 + 2δ) < ∞.

Since

FN(β0 + 2δ) =
∫ β0+2δ

0
F ′

N(t)dt ≥ δF ′
N(β0 + δ),

it follows that lim supN→∞ 1
aN

F ′
N(β0 + δ) < ∞. Thus, for any K < ∞

P
(
HN(σ) > KaN

) = P
(
e

1
2 δHN(σ) > e

1
2 δKaN

) ≤ e− 1
2 δKaN+FN(β0+δ)−FN(β0).

Taking logarithm on both sides,

logP
(
HN(σ) > KaN

) ≤ −δKaN

2
+

∫ β0+δ

β0

F ′
N(t)dt

≤ −δKaN

2
+ F ′

N(β0 + δ),

from which dividing by aN and taking limits as N → ∞ followed by K → ∞ gives

lim
K→∞ lim sup

N→∞
1

aN

logP
(
HN(σ) > KaN

) = −∞,

thus proving part (b).

A.2. Proof of Lemma 5.2

We begin with a technical estimate which will be needed to bound the second moment of Lσ (β0).

Lemma A.1. Under assumption (2.6) and mi(σ ) as defined in (2.3),

lim sup
N→∞

1

aN

Eβ0

N∑
i=1

mi(σ ) tanh
(
β0mi(σ )

)
< ∞.

Proof. By (2.6) there exists δ > 0 such that lim supN→∞ 1
aN

FN(β0 + δ) < ∞. Therefore,

FN(β0 + δ) = ∫ β0+δ

0 F ′
N(t)dt ≥ δF ′

N(β0), and so

1

aN

lim sup
N→∞

Z′
N(β0) < ∞. (A.1)



Inference in Ising models 517

Now, observe that mi(σ ) does not depend on σi , and Eβ0(σi |(σj )j 
=i ) = tanh(β0mi(σ )). Since

2F ′
N(β0) = Eβ0HN(σ) = Eβ0

(
N∑

i=1

σimi(σ )

)

= Eβ0

(
N∑

i=1

mi(σ ) tanh
(
β0mi(σ )

))
,

the result follows from (A.1). �

The above lemma will be used to complete the proof of Lemma 5.2. To this end, for 1 ≤ j ≤ N

and τ ∈ SN , let

τ (j) := (τ1, . . . , τj−1,−τj , τj+1, . . . , τN)

and

pj (τ ) = e−β0τj mj (τ)

eβ0τj mj (τ) + e−β0τj mj (τ)
. (A.2)

From equation (10) of Chatterjee [10] it follows that

Eβ

(
Lσ (β0)

2) = 1

N
Eβ

N∑
j=1

(
Lσ (β0) − Lσ(j) (β0)

)
mj(σ )σjpj (σ ). (A.3)

Setting r(x) := x tanh(β0x), note that

Lσ (β0) − Lσ(j)(β0) = 2mj(σ )σj

N
+ 1

N

N∑
i=1

{
r
(
mi

(
σ (j)

)) − r
(
mi(σ )

)}
.

Now, by a second order Taylor expansion,

Eβ

(
Lσ (β0)

2) = aN

N2
(T1 + T2 + T3), (A.4)

where

T1 = 2

aN

N∑
j=1

mj(σ )2pj (σ ),

T2 = − 2

aN

N∑
i,j=1

JN(i, j)r ′(mi(σ )
)
mj(σ )pj (σ )
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and

T3 = 2

aN

N∑
i,j=1

r ′′(θij (σ )
)
JN(i, j)2mj(σ )σjpj (σ ),

for some θij (σ ) in the interval [mi(σ
(j)),mi(σ )]. Therefore, to prove the lemma, it suffices to

control these three terms.
To control T1, note that

Eβ0

(
pj (σ )|(σi)i 
=j

) = 2

eβ0mj (σ ) + e−β0mj (σ )
= 1

2
sech2(β0mj(σ )

)
,

and x2 sech2(β0x) ≤ M1x tanh(β0x) for all x ∈R for some M1 = M1(β0) < ∞, which gives

Eβ0T1 = 1

aN

Eβ0

N∑
j=1

mj(σ )2 sech2(β0mj(σ )
)

(A.5)

≤ M1

aN

Eβ0

N∑
j=1

mj(σ ) tanh
(
β0mj(σ )

)
,

which is finite as N → ∞ by an application of Lemma A.1.
Now, let us bound T2. By the Cauchy–Schwarz inequality,

|T2| ≤ 2

aN

{
N∑

i=1

r ′(mi(σ )
)2

}1/2{ N∑
i=1

(
N∑

j=1

JN(i, j)mj (σ )σjpj (σ )

)2}1/2

≤ 2‖JN‖
aN

{
N∑

i=1

r ′(mi(σ )
)2

}1/2{ N∑
j=1

mj(σ )2pj (σ )2

}1/2

.

Taking expectation on both sides above and using Cauchy–Schwarz inequality again

Eβ0 |T2| ≤ 2‖JN‖
aN

{
Eβ0

N∑
i=1

r ′(mi(σ )
)2 ·Eβ0

N∑
j=1

mj(σ )2pj (σ )

}1/2

. (A.6)

Now, since r ′(x)2 = {tanh(β0x) + β0x sech2(β0x)}2 ≤ M2x tanh(β0x), for some constant M2 =
M2(β0), by Lemma A.1

lim sup
N→∞

1

aN

Eβ0

N∑
i=1

r ′(mi(σ )
)2

< ∞.

Using this along with (A.5) in (A.6) gives lim supN→∞ Eβ0 |T2| < ∞.
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It remains to bound T3. Since M3 = M3(β0) := supx∈R |r ′′(x)| < ∞, we have

|T3| ≤ 2M3

aN

N∑
i,j=1

JN(i, j)2
∣∣mj(σ )

∣∣pj (σ )

≤ 2M3

aN

{
N∑

j=1

(
N∑

i=1

JN(i, j)2

)2}1/2{ N∑
j=1

mj(σ )2pj (σ )

}1/2

(A.7)

≤ 2M3‖JN‖
aN

{
N∑

i,j=1

JN(i, j)2

}1/2{ N∑
j=1

mj(σ )2pj (σ )

}1/2

,

where the last step uses
∑N

i=1 JN(i, j)2 = ‖JNej‖2 ≤ ‖JN‖2. Finally, taking expectations on
both sides in (A.7), and using condition (b) on the first term, and (A.5) on the second term, gives
lim supN→∞ Eβ0 |T3| < ∞.

A.3. Proof of Lemma 5.3

Fixing δ > 0 by Lemma 5.1(a) there exists ε = ε(δ) > 0 such that

Pβ0

(
HN(σ) < 3εβ0aN

) ≤ δ, (A.8)

for N large enough. Also, using Lemma 5.2 and Chebyshev’s inequality, for K1 = K1(δ) :=√
C(β0)

δ
we have

Pβ0

(∣∣Lσ (β0)
∣∣ > K1

√
aN/N

) ≤ N2

aN

Eβ0Lσ (β0)
2 ≤ δ. (A.9)

Moreover, by condition (a) in Theorem 2.1 there exists K2 = K2(δ) < ∞ such that for all N

large enough we have

Eβ0

N∑
i=1

∣∣mj(σ )
∣∣111{∣∣mj(σ )

∣∣ > K2
} ≤ εδβ0aN

and so by Markov’s inequality

Pβ0

(
N∑

i=1

∣∣mj(σ )
∣∣111{∣∣mj(σ )

∣∣ > K2
}

> εβ0aN

)
(A.10)

≤ Eβ0

∑N
i=1 |mj(σ )|111{|mj(σ )| > K2}

εβ0aN

≤ δ.
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Defining

AN(δ) :=
{

σ ∈ SN : HN(σ) ≥ 3εβ0aN,
∣∣Lσ (β0)

∣∣ ≤ K1

√
aN

N
,

N∑
i=1

∣∣mj(σ )
∣∣111{|mj(σ )| > K2

}
> εβ0aN

}
,

we have Pβ0(AN(δ)) ≥ 1 − 3δ, for N large enough (by combining (A.8), (A.9), and (A.10)).
Now, on the set AN(δ) using the bounds tanhx ≤ x on x ≤ K2, and tanhx ≤ 1 on x > K2,

β0

N∑
i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K2
} + εβ0aN ≥

N∑
i=1

mi(σ ) tanh
(
β0mi(σ )

)
= HN(σ) − NLσ (β0) ≥ 3εβ0aN − K1

√
aN .

Thus, on the set AN(δ),

N∑
i=1

mi(σ )2111
{∣∣mi(σ )

∣∣ ≤ K2
} ≥ 2εaN − K1

β0

√
aN > εaN

for all N large, completing the proof.

Appendix B: Proof of Lemma 6.1

For every N ≥ 1, let (XN,FN) be a measure space and PN and QN two distributions on this
measure space. Recall the definition of Kullback–Leibler divergence D(QN‖PN) from (6.1),
and consider the problem of testing PN versus QN such that condition (6.2) holds. Since
D(QN‖PN) = EQN

LN , by assumption (6.2)

0 ≤ EQN
LN = EQN

L+
N −EQN

L−
N ≤ M1, (B.1)

for some M1 < ∞ and all large N . Also, there exists M2 < ∞ such that EQN
L−

N ≤ M2, for all N .
To see this, note that

EQN
L−

N = −
∞∑

s=1

EQN
LN111{−s ≤ LN < −s + 1}

≤
∞∑

s=1

se−(s−1)PN(−s ≤ LN < −s + 1) (B.2)

≤
∞∑

s=1

se−(s−1) := M2 < ∞.
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Hence, by (B.1) and (B.2), EQN
|LN | = EQN

L+
N + EQN

L−
N ≤ M1 + 2M2 =: M < ∞. There-

fore, by Markov’s inequality, for any ε > 0

QN

(|LN | > M/ε
) ≤ ε

M
EQN

(|LN |) ≤ ε.

Now, suppose there exists a sequence of test functions φN such that EPN
φN → 0. Then

EQN
φN ≤QN

(|LN | > M/ε
) +EQN

(
φN111

{|LN | ≤ M/ε
}) ≤ ε + eM/εEPN

φN .

Taking limits on both sides gives, lim supN→∞ EQN
φN ≤ ε. Since ε > 0 is arbitrary

limN→∞ EQN
φN = 0, that is, φN is not a consistent sequence of test functions.

Appendix C: The mean-field approximation

A standard technique to derive a lower bound on the log-partition function is the mean-field
approximation (refer to [13] for details). Here, we give a short proof for the sake of completeness.

Lemma C.1. Consider the family of probability distributions on SN given by (1.2). Then for any
matrix

FN(β) ≥ sup
z∈[−1,1]N

{
β

2
z′JNz −

N∑
i=1

I(zi)

}
, (C.1)

where I (x) = 1
2 [(1 + x) log(1 + x) + (1 − x) log(1 − x)] for x ∈ [−1,1].

Proof. Let D(·‖·) be the Kullback–Leibler divergence between two probability measures. By a
direction computation, for any probability mass function ν on SN = [−1,1]N we have

D(ν‖Pβ) = FN(β) + N log 2 +Eν logν(σ ) − 1

2
EνHN(σ).

Now, since D(ν‖Pβ) ≥ 0 we have

FN(β) ≥ β

2
EνHN(σ) −Eν logν(σ ) − N log 2.

One can obtain a lower bound on FN(β) by taking supremum in LHS over product measures,
that is ν(σ ) = ∏N

i=1 νi(σi). Hence, setting zi = Eνi
σ = νi(1) − νi(−1) ∈ [−1,1], the bound in

(C.1) follows. �

Appendix D: Proof of Proposition 8.1

We begin by deriving the MGF of the limiting distribution (3.6). The proof involves straightfor-
ward calculations using the MGF of the chi-squared distribution, similar to [6], Proposition 7.1.
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Lemma D.1. Let {ai}i≥1, {bi}i≥1 be a sequence of real numbers such that
∑∞

i=1 a2
i < ∞ and∑∞

i=1(ai − bi) = μ for some finite real number μ. Suppose ξ1, ξ2, . . . be i.i.d. χ2
1 random vari-

ables.

(a) Then the sum S := 1
2

∑∞
i=1(aiξi − bi) converges almost surely and in L1.

(b) Moroever, if M := supi≥1 |ai | < ∞, then for 0 < t < 1
M

,

Ee
1
2 t

∑∞
i=1(aiξi−bi ) =

∞∏
i=1

e− 1
2 tbi

√
1 − tai

. (D.1)

Proof. By defining SN := 1
2

∑N
i=1(aiξi − bi) and FN := σ({ξj }Nj=1), it follows that (SN ,FN)

is a martingale, with

lim sup
N

ES2
N = 1

4

(
μ2 +

∞∑
j=1

a2
j

)
< ∞,

and so SN converges almost surely and in L1 [17].

To compute the moment generating function of S, first note that etSN
P→ etS . Thus if the

collection of random variables {etSN } is uniformly integrable, then we have

EetS = lim
N→∞EetSN = lim

N→∞

N∏
i=1

e− 1
2 tbi

√
1 − tai

=
∞∏
i=1

e− 1
2 tbi

√
1 − tai

,

thus completing the proof of the lemma. It thus remains to prove uniform integrability, for which
it suffices to show that for some δ > 0 we have lim supN→∞ Ee(t+δ)SN < ∞. Since t < 1

M
there

exists δ > 0 such that t + δ < 1
M

. For this δ setting t ′ := t + δ we have

logEet ′SN = 1

2

N∑
i=1

{−t ′bi − log
(
1 − t ′ai

)}
. (D.2)

Now setting C := sup|x|≤t ′M
− log(1−x)−x

x2 < ∞ we have − log(1 − x) − x ≤ Cx2 for |x| < t ′M ,

and so the RHS of (D.2) can be bounded by 1
2

∑N
i=1{t ′(ai − bi) + Ct ′2a2

i }, which converges

to et ′μ+Ct ′2
∑∞

i=1 a2
i . Therefore, etSN is uniformly integrable, thus completing the proof of the

lemma. �

The above lemma can be used to complete the proof of Proposition 8.1. To this end, let WN :=
A(GN). Then, by [6], Theorem 1.4, it follows that

1

N
σ ′WNσ

D→
∞∑
i=1

λi(W)(ξi − 1),
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where ξ1, ξ2, . . . , are i.i.d. χ2
1 random variables. Thus,

exp

{
β

2
· 1

N
σ ′WNσ

}
D→ exp

{
β

2

∞∑
i=1

λi(W)(ξi − 1)

}
. (D.3)

If the LHS in (D.3) is uniformly integrable, then

lim
N→∞E exp

{
β

2
· 1

N
σ ′WNσ

}
= E exp

{
β

2

∞∑
i=1

λi(W)(ξi − 1)

}
(D.4)

=
∞∏
i=1

e− 1
2 βλi(W)

√
1 − βλi(W)

,

where the last equality uses Lemma D.1. The proof of part (a) then follows on taking log of both
sides of the above equality.

It remains to show that the LHS in (D.3) is uniformly integrable, that is,

lim sup
N→∞

logE0 exp

{
β + δ

2
· 1

N
σ ′WNσ

}
= lim

N→∞FN(β + δ) < ∞, (D.5)

for some δ > 0. To this end, note that if 0 < β < 1/‖W‖, there exists δ > 0 such that γ :=
β + δ < 1/‖W‖. Now, using (7.3) and the fact

∑N
i=1 λi(GN) = 0, we have

FN(γ ) ≤
N∑

i=1

{
−1

2
log

(
1 − γ λi(WN)

N

)
− γ

2
· λi(WN)

N

}
. (D.6)

Since WN ⇒ W in the cut metric, limN→∞ γ λi (WN)
N

= γ ‖W‖ < 1, and so there exists ε > 0 such

that for all N large enough γ λi (WN)
N

≤ 1 − ε. For x ≤ 1 − ε there exists M = M(ε) such that

− log(1−x)−x ≤ Mx2. Using this the RHS of (D.6) can be bounded by
Mγ 2 ∑N

i=1 λ2
i (WN)

N2 which

converges to Mγ 2‖W‖2
2 = Mγ 2, as N → ∞. This proves (D.5) and completes the proof of the

proposition.
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