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We consider distributions of ordered random vectors with given one-dimensional marginal distributions.
We give an elementary necessary and sufficient condition for the existence of such a distribution with finite
entropy. In this case, we give explicitly the density of the unique distribution which achieves the maximal
entropy and compute the value of its entropy. This density is the unique one which has a product form on
its support and the given one-dimensional marginals. The proof relies on the study of copulas with given
one-dimensional marginal distributions for its order statistics.
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1. Introduction

Order statistics, an almost surely non-decreasing sequence of random variables, have received
a lot of attention due to the diversity of possible applications. If X = (X1, . . . ,Xd) is a
d-dimensional random vector, then its order statistics XOS = (X(1), . . . ,X(d)) corresponds to
the permutation of the components of X in the non-decreasing order, so that X(1) ≤ X(2) ≤
· · · ≤ X(d). The components of the underlying random vector X are usually, but not necessar-
ily, independent and identically distributed (i.i.d.). Special attention has been given to extreme
values X(1) and X(d), the range X(d) − X(1), or the median value. Direct application of the dis-
tribution of the kth largest order statistic occurs in various fields, such as climatology, extreme
events, reliability, insurance, financial mathematics. We refer to the monographs of David and
Nagaraja [8] and Arnold, Balakrishnan and Nagaraja [1] for a general overview on the subject
of order statistics. We are interested in the dependence structure of order statistics, which has
received great attention. In the i.i.d. case, Bickel [3] showed that any two order statistics are pos-
itively correlated. The copula of the joint distribution of X(1) and X(d) is derived in Schmitz [19]
with exact formulas for Kendall’s τ and Spearman’s ρ. In Avérous, Genest and Kochar [2], it
is shown that the dependence of the j th order statistic on the ith order statistic decreases as the
distance between i and j increases according to the bivariate monotone regression dependence
ordering. The copula connecting the limit distribution of the two largest order statistics, called
bi-extremal copula, is given by de Melo Mendes and Sanfins [9] with some additional properties.
Exact expressions for Pearson’s correlation coefficient, Kendall’s τ and Spearman’s ρ for any
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two order statistics are obtained in Navarro and Balakrishnan [16]. For the non i.i.d. case, Kim
and David [14] show that some pairs of order statistics can be negatively correlated, if the un-
derlying random vector is sufficiently negatively dependent. Positive dependence measures for
two order statistics are considered in Boland et al. [4] when the underlying random variables are
independent but arbitrarily distributed or when they are identically distributed but not indepen-
dent. A generalization of these results for multivariate dependence properties is given by Hu and
Chen [11]. See also Dubhashi and Häggström [10] for conditional distribution of order statistics.

Here, we focus on the cumulative distribution function (c.d.f.) of order statistics without refer-
ring to an underlying distribution. That is, we consider random vectors X = (X1, . . . ,Xd) ∈ Rd

such that a.s. X1 ≤ · · · ≤ Xd and we suppose that the one-dimensional marginal distributions
F = (Fi ,1 ≤ i ≤ d) are given, where Fi is the c.d.f. of Xi . A necessary and sufficient condition
for the existence of a joint distribution of order statistics with one-dimensional marginals F is
that they are stochastically ordered, that is Fi−1(x) ≥ Fi (x) for all 2 ≤ i ≤ d, x ∈ R. With the
marginals fixed, the joint distribution of the order statistics can be characterized by the connect-
ing copula of the random vector, which contains all information on the dependence structure of
the order statistics. Copulas of order statistics derived from an underlying i.i.d. sample were con-
sidered in [2] in order to calculate measures of concordance between any two pairs of order statis-
tics. For order statistics derived from a general parent distribution, Navarro and Spizzichino [17]
shows that the copula of the order statistics depends on the marginals and the copula of the parent
distribution through an exchangeable copula and the average of the marginals. Construction of
some copula of order statistics with given marginals were given in Lebrun and Dutfoy [15].

Our aim is to find the c.d.f. of order statistics of dimension d with fixed marginals which
maximizes the relative entropy Hh defined by (13). In an information-theoretic interpretation,
the maximum entropy distribution is the least informative among order statistics with given
marginals. This problem appears in models where the one-dimensional marginals are well known
(either from different experimentation or from physical models) but the dependence structure is
unknown, see Butucea et al. [7]. In [6], the same authors gave, when it exists, the maximum
entropy distribution of (X1, . . . ,Xd) such that Xi is uniformly distributed on [0,1] for 1 ≤ i ≤ d

and the distribution of X(d) = max1≤i≤d Xi is given, see Remark 4.8.
For a d-dimensional random variable X = (X1, . . . ,Xd) with c.d.f. F and copula CF , the

relative entropy of F can be decomposed into the sum of the relative entropy (with respect to a
one-dimensional probability density h) of its one-dimensional marginals plus the entropy of CF ,
see Lemma 2.1. In our case, since the marginals F = (Fi ,1 ≤ i ≤ d) are fixed, maximizing the
entropy of the joint distribution F of an order statistics is equivalent to maximizing the entropy of
its copula CF under constraints, (see Section 2.4). Therefore, we shall find the maximum entropy
copula for order statistics with fixed marginal distributions.

The main result of this paper is given by Theorem 5.4. It states that there exists a unique
maximum entropy c.d.f. FF given by (52) if and only if:

d∑
i=1

Hh(Fi ) −
d∑

i=2

∫
R

Fi (dt)
∣∣log

(
Fi−1(t) − Fi (t)

)∣∣ > −∞.
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In this case, FF is absolutely continuous with density fF defined as, for x = (x1, . . . , xd) ∈Rd :

fF(x) = f1(x1)

d∏
i=2

fi (xi)

Fi−1(xi) − Fi (xi)
exp

(
−

∫ xi

xi−1

fi (s)
Fi−1(s) − Fi (s)

ds

)
1LF(x),

where fi is the density function of Fi and LF ⊂Rd is the set of ordered vectors (x1, . . . , xd), that
is x1 ≤ · · · ≤ xd , such that Fi−1(t) > Fi (t) for all t ∈ (xi−1, xi) and 2 ≤ i ≤ d . See Example 5.8
for an illustrative example.

The rest of the paper is organized as follows. In Section 2, we introduce the basic notations and
give the definition of the objects used in later parts. Section 3 describes the connection between
copulas of order statistics with fixed marginals, and symmetric copulas with fixed multidiago-
nals. The multidiagonal, given by Definition 3.6, is the generalization of the diagonal section for
copulas, which received great attention in copula literature. We show that there exists a one-to-
one map between these two sets of copulas, see Corollary 3.14. This bijection has good properties
with respect to the entropy as explained in Proposition 3.22. In Section 4, we determine the max-
imum entropy copula with fixed multidiagonal, see Theorem 4.7. Since we obtain a symmetric
copula as a result, this is also the maximum entropy symmetric copula with fixed multidiagonal.
In Section 5, we use the one-to-one map between the two sets of copulas established in Section 3
to give the maximum entropy copula of order statistics with fixed marginals. We finally obtain
the density of the maximum entropy distribution for order statistics with fixed marginals by com-
posing the maximum entropy copula with the marginals, see Theorem 5.4. Section 6 contains the
detailed proofs of Theorem 4.7 and other results from Section 4. Section 7 collects the main
notations of the paper to facilitate reading.

2. Notations and definitions

2.1. Notations in Rd and generalized inverse

For a Borel set A ⊂ Rd , we write |A| for its Lebesgue measure. For x = (x1, . . . , xd) ∈ Rd and
y = (y1, . . . , yd) ∈Rd , we write x ≤ y if xi ≤ yi for all 1 ≤ i ≤ d . We define minx = min{xi,1 ≤
i ≤ d} and maxx = max{xi,1 ≤ i ≤ d} for x = (x1, . . . , xd) ∈ Rd . If J is a real-valued function
defined on R, we set J (x) = (J (x1), . . . , J (xd)). We shall consider the following subsets of Rd :

S = {
(x1, . . . , xd) ∈ R

d, x1 ≤ · · · ≤ xd

}
and � = S ∩ Id,

with I = [0,1]. In what follows, usually x, y will belong to Rd , and s, t to R or I . For a set
A ⊂R, we note by Ac =R \ A its complementary set.

If J is a bounded non-decreasing càd-làg function defined on R. Its generalized inverse J−1

is given by J−1(t) = inf{s ∈ R;J (s) ≥ t}, for t ∈ R, with the convention that inf∅ = +∞ and
infR= −∞. We have for s, t ∈R:

J (t) ≥ s ⇔ t ≥ J−1(s), J−1 ◦ J (t) ≤ t and J ◦ J−1 ◦ J (t) = J (t). (1)
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We define the set of points where J is increasing on their left:

Ig(J ) = {
t ∈R;u < t ⇔ J (u) < J(t)

}
. (2)

We have:

1(Ig(J ))c dJ = 0 a.e., (3)

J−1(R) ⊂ Ig(J ) ∪ {±∞} (4)

and for s ∈R, t ∈ Ig(J ):

J (t) ≤ s ⇔ t ≤ J−1(s) and J−1 ◦ J (t) = t. (5)

Notice that if J is continuous in addition, then we have for t ∈ J (R):

J ◦ J−1(t) = t. (6)

2.2. C.d.f. and copula

Let X = (X1, . . . ,Xd) be a random vector on Rd . Its cumulative distribution function (c.d.f.),
denoted by F is defined by: F(x) = P(X ≤ x), x ∈ Rd . The corresponding one-dimensional
marginal c.d.f.s are (Fi,1 ≤ i ≤ d) with Fi(t) = P(Xi ≤ t), t ∈ R. The c.d.f. F is called a copula
if Xi is uniform on I = [0,1] for all 1 ≤ i ≤ d . (Notice a copula is characterized by its values on
I d only.)

We define Ld as the set of c.d.f.s on Rd whose one-dimensional marginal c.d.f.s are continu-
ous, and C ⊂ Ld as the subset of copulas. We set L0

d (resp. C0) the subset of absolutely continuous
c.d.f. (resp. copulas) on Rd .

Let us define for a c.d.f. F with one-dimensional marginals (Fi,1 ≤ i ≤ d) the function CF

defined on I d :

CF (y) = F
(
F−1

1 (y1), . . . ,F
−1
d (yd)

)
, y = (y1, . . . , yd) ∈ I d . (7)

If F ∈ Ld , then CF defined by (7) is a copula thanks to (6). According to Sklar’s theorem, F

is then completely characterized by its one-dimensional marginal c.d.f.s (Fi,1 ≤ i ≤ d) and the
associated copula CF which contains all information on the dependence:

F(x) = CF

(
F1(x1), . . . ,Fd(xd)

)
, x = (x1, . . . , xd) ∈R

d . (8)

Equivalently, if X = (X1, . . . ,Xd) has c.d.f. F , then CF is the c.d.f. of the random vector:

(
F1(X1), . . . ,Fd(Xd)

)
. (9)
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2.3. Order statistics

For a d-dimensional c.d.f. F , we write PF for the distribution of a random vector X =
(X1, . . . ,Xd) with c.d.f. F . A d-dimensional c.d.f. F is a c.d.f. of order statistics (and we shall
say that X is a vector of order statistics) if PF (X1 ≤ X2 ≤ · · · ≤ Xd) = 1. Let us denote by
LOS

d ⊂ Ld the set of all c.d.f.s of order statistics with continuous one-dimensional marginal
c.d.f.s. The d-tuples (Fi,1 ≤ i ≤ d) of marginal c.d.f.s then verify Fi−1 ≥ Fi for all 2 ≤ i ≤ d .
Let Fd be the set of d-tuples of continuous one-dimensional c.d.f.s compatible with the marginal
c.d.f.s of order statistics:

Fd = {
F = (Fi ,1 ≤ i ≤ d) ∈ (L1)

d ;Fi−1 ≥ Fi ,∀2 ≤ i ≤ d
}
. (10)

For a given F = (Fi ,1 ≤ i ≤ d) in Fd , we define the set of c.d.f.s F of order statistics with
marginal c.d.f.s F:

LOS
d (F) = {

F ∈ LOS
d ;Fi = Fi ,1 ≤ i ≤ d

}
. (11)

If F ∈ Fd , then we have LOS
d (F) 
= ∅, since the c.d.f. of (F−1

1 (U), . . . ,F−1
d (U)), U uniformly

distributed on I , belongs to LOS
d (F). We define COS(F) the set of copulas of order statistics with

marginals F:

COS(F) = {
CF ∈ C;F ∈ LOS

d (F)
}
. (12)

According to Sklar’s theorem, the map F �→ CF is a bijection between LOS
d (F) and COS(F) if

F ∈ Fd .

2.4. Entropy

Let h be a reference probability density function on R. We define h⊗d(x) = ∏d
i=1 h(xi) for

x = (x1, . . . , xd) ∈Rd . The relative Shannon-entropy for a c.d.f. F ∈ Ld is given by:

Hh(F) =
⎧⎨
⎩

−∞, if F ∈ Ld \L0
d,

−
∫
Rd

f log
(
f/h⊗d

)
, if F ∈ L0

d,
(13)

with f the density of F . Notice that Hh(F) ∈ [−∞,0] is well defined. We will use the notation
Hh(X) = Hh(F) if X is a random vector with c.d.f. F and Hh(f ) = Hh(F) if F has density f .
We shall simply write H(F) (resp. H(X) and H(f )) instead of Hh(F) (resp. Hh(X) and Hh(f ))
when h = 1[0,1]. Note that H(F) can be finite only if F is the c.d.f. of a probability distribution
on [0,1]d .

According to the next lemma, the relative entropy of any F ∈ L1c
d can be decomposed into the

relative entropy of the one-dimensional marginals c.d.f. (Fi,1 ≤ i ≤ d) and the entropy of the
associated copula CF .
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Lemma 2.1. Let F ∈ L1c
d . We have:

Hh(F) = H(CF ) +
d∑

i=1

Hh(Fi). (14)

Proof. It is left to the reader to check that F has a density, say f , if and only if Fi has a density,
say fi , for 1 ≤ i ≤ d and CF has a density, say cF . Furthermore, in this case, we have:

f (x) = cF

(
F1(x1), . . . ,Fd(xd)

) d∏
i=1

fi(xi) a.e. for x = (x1, . . . , xd) ∈R
d,

as well as, with the convention 0/0 = 0,

cF (u) = f (F−1
1 (u1), . . . ,F

−1
d (ud))∏d

i=1 fi(F
−1
i (ui))

a.e. for u = (u1, . . . , ud) ∈ I d .

On the one hand, if F does not have a density then we have Hh(F) = −∞. Since F does
not have a density, then one of the Fi or CF does not have a density either, and then H(CF ) +∑d

i=1 Hh(Fi) = −∞. Thus (14) holds.
On the other hand, let us assume that F has a density, say f . Elementary computations give

with x = (x1, . . . , xd) and 1 ≤ i ≤ d :

Hh(Fi) = −
∫
R

fi(xi) log
(
(fi/h)(xi)

)
dxi = −

∫
Rd

f (x) log
(
(fi/h)(xi)

)
dx.

We also have with u = (u1, . . . , ud) and x = (x1, . . . , xd):

H(CF ) = −
∫

[0,1]d
cF log(cF ) = −

∫
f (F−1

1 (u1), . . . ,F
−1
d (ud))∏d

i=1 fi(F
−1
i (ui))

log
(
cF (u)

)
du

= −
∫

f (x) log
(
cF

(
F1(x1), . . . ,Fd(xd)

))
dx,

where, for the last equality, we used the change of variable Fi(xi) = ui (for xi ∈ Ig(Fi)) so that
F−1

i (ui) = F−1
i ◦Fi(xi) = xi holds fi(xi) dxi -a.e and that f (x)dx = 0 on (⊗d

i=1Ig(Fi))
c . Then

use that f (x) = cF (F1(x1), . . . ,Fd(xd))
∏d

i=1 fi(xi) a.e. for x = (x1, . . . , xd) ∈ Rd to deduce
that H(CF ) + ∑d

i=1 Hh(Fi) = − ∫
f log(f/h⊗d) = Hh(F). �

Remark 2.2. Notice that if Fi has density fi for 1 ≤ i ≤ d , then one can choose the reference
probability density h(t) = 1

d

∑d
i=1 fi(t) so that Hh(Fi) ≥ − log(d). In this case, Hh(F) is finite

if and only if H(CF ) is finite, and we have:

H(CF ) = Hh(F) −
d∑

i=1

Hh(Fi) = −
∫

f (x) log

(
f (x)∏d

i=1 fi(xi)

)
dx.
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Thus, H(CF ) is the relative entropy of the c.d.f. F with respect to the probability distribution
with c.d.f. ⊗d

i=1Fi of independent real valued random variables with the same one-dimensional

marginal as the one with c.d.f. F . This emphasizes the fact that Hh(F) − ∑d
i=1 Hh(Fi), when it

is well defined, does not depend on h.

For F = (Fi ,1 ≤ i ≤ d) ∈Fd , we define J(F) taking values in [0,+∞] by:

J(F) =
d∑

i=2

∫
R

Fi (dt)
∣∣log

(
Fi−1(t) − Fi (t)

)∣∣. (15)

Our aim is to find the c.d.f. F ∗ ∈ LOS
d (F) which maximizes the entropy Hh. We shall see that

this is possible if and only if J(F) is finite. From an information theory point of view, this is
the distribution which is the least informative among distributions of order statistics with given
one-dimensional marginal c.d.f.s F. Since the vector of marginal distribution functions F is fixed,
thanks to (14), we notice that Hh(F) is maximal on LOS

d (F) if and only if H(CF ) is maximal on
COS(F). Therefore, we focus on finding the copula C∗ ∈ COS(F) which maximizes the entropy H .
We will give the solution of this problem in Section 5 under some additional hypotheses on F.

3. Symmetric copulas with given order statistics

In this section, we introduce an operator on the set COS(F) of copulas of order statistics with fixed
marginal c.d.f.s F. This operator assigns to a copula C ∈ COS(F) the copula of the exchangeable
random vector associated to the order statistics with marginal c.d.f.s F and copula C. We show
that this operator is a bijection between COS(F) and a set of symmetric copulas which can be
characterized by their multidiagonal, which is a generalization of the well-known diagonal sec-
tion of copulas. This bijection has good properties with respect to the entropy H , giving us a
problem equivalent to maximizing H on COS(F). We shall solve this problem in Section 4.

3.1. Symmetric copulas

For x = (x1, . . . , xd) ∈Rd we define xOS = (x(1), . . . , x(d)) the ordered vector (increasing order)
of x, where x(1) ≤ · · · ≤ x(d) and

∑d
i=1 δ̂xi

= ∑d
i=1 δ̂x(i)

, with δ̂t the Dirac mass at t ∈R.
Let Sd be the set of permutations on {1, . . . , d}. For x = (x1, . . . , xd) ∈ Rd and π ∈ Sd , we set

xπ = (xπ(1), . . . , xπ(d)). A function h defined on Rd is symmetric if h(xπ ) = h(x) for all π ∈ Sd .
A random vector X taking values in Rd is exchangeable if Xπ is distributed as X for all π ∈ Sd .
In particular a random vector X taking values in Rd is exchangeable if and only if its c.d.f. is
symmetric. Let Lsym

d ⊂ Ld (resp. Csym ⊂ Ld ) denote the set of symmetric c.d.f. (resp. copulas)
on Rd .

Let F ∈ Ld and define its symmetrization F sym ∈ Lsym
d by:

F sym(x) = 1

d!
∑
π∈Sd

F (xπ ), x ∈R
d . (16)
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In particular, if X is a random vector taking values in Rd with c.d.f. F and � is a random variable
independent of X, uniformly distributed on Sd , then X� is exchangeable with c.d.f. F sym.

We define the following operator on the set of copulas of order statistics.

Definition 3.1. Let F ∈ (L1)
d . For C ∈ C we define SF(C) as the copula of the exchangeable

random variable X�, where X is a random vector on Rd with one-dimensional marginal c.d.f.s
F and copula C and � is an independent random variable uniform on Sd .

The application SF is well-defined on C and takes values in Csym. In the above definition, with
F = (Fi ,1 ≤ i ≤ d), the one-dimensional marginal c.d.f.s of X� are equal to:

G = 1

d

d∑
i=1

Fi . (17)

Since the one-dimensional marginal c.d.f.s Fi are continuous, we get that G is continuous and
thus the c.d.f. of X� belongs to Ld . In particular, thanks to Sklar’s theorem, the copula of X� is
indeed uniquely defined.

Combining (8), (7) and (16), we can give an explicit formula for SF(C):

SF(C)(u) = 1

d!
∑
π∈Sd

C
(
F1

(
G−1(uπ(1))

)
, . . . ,Fd

(
G−1(uπ(d))

))
, u ∈ I d . (18)

Remark 3.2. The copula SF(C) is not equal in general to the exchangeable copula Csym de-
fined similarly to (16) by Csym = (1/d!)∑

π∈Sd
C(xπ ). However, this is the case if the one-

dimensional marginal c.d.f.s Fi are all equal, in which case Fi = G for all 1 ≤ i ≤ d .

If X is a random vector on Rd , let XOS = (X(1), . . . ,X(d)) be the order statistics of X. The
proof of the next lemma is elementary.

Lemma 3.3. Let X be a random vector on Rd with c.d.f. F and � a random variable indepen-
dent of X, uniformly distributed on Sd . We have:

• If F ∈ LOS
d , then a.s. (X�)OS = X.

• If F ∈ Lsym
d , then (XOS)� has the same distribution as X.

For F ∈ Fd , we define the set of copulas Csym(F) ⊂ Csym as the image of COS(F) by the
symmetrizing operator SF:

Csym(F) = SF
(
COS(F)

)
. (19)

The following lemma is one of the main result of this section.

Lemma 3.4. Let F ∈ Fd . The symmetrizing operator SF is a bijection from COS(F) onto Csym(F).
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Proof. Let C1,C2 ∈ COS(F) with SF(C1) = SF(C2). Let X and Y be random vectors with one-
dimensional marginal c.d.f.s F and copula C1,C2, respectively. Since C1,C2 ∈ COS(F), we get
that X and Y are order statistics. Notice X� and Y� have the same one-dimensional marginals
according to (17) and same copula given by SF(C1) = SF(C2). Therefore, X� and Y� have the
same distribution. Thus, their corresponding order statistics (X�)OS and (Y�)OS have the same
distribution. By Lemma 3.3, we get that X and Y have the same distribution as well, which
implies C1 = C2. �

Remark 3.5. We have in general Csym(F) 
= COS(F) ∩ Csym. One exception being when the
marginal c.d.f.s Fi are all equal. In this case, both sides reduce to one copula which is the Fréchet-
Hoeffding upper bound copula: C+(u) = minu, u ∈ I d .

3.2. Multidiagonals and characterization of Csym(F)

Let C ∈ C be a copula and U a random vector with c.d.f. C. The map t �→ C(t, . . . , t) for t ∈ I ,
which is called the diagonal section of C, is the c.d.f. of maxU . We shall consider a generaliza-
tion of the diagonal section of C in the next definition.

Definition 3.6. Let C ∈ C be a copula on Rd and U a random vector with c.d.f. C. The multi-
diagonal of the copula C, δC = (δ(i),1 ≤ i ≤ d), is the d-tuple of the one-dimensional marginal
c.d.f.s of UOS = (U(1), . . . ,U(d)) the order statistics of U : for 1 ≤ i ≤ d

δ(i)(t) = P(U(i) ≤ t), t ∈ I.

We denote by D = {δC;C ∈ C} the set of multidiagonals. Notice that D ⊂Fd , see Remark 3.7.
For δ ∈D a multidiagonal, we define Cδ = {C; δC = δ} the set of copulas with multidiagonal δ.

A characterization of the set D is given by Theorem 1 of [13]: a vector of functions δ =
(δ(1), . . . , δ(d)) belongs to D if and only if δ(i) is a one-dimensional c.d.f. and the following
conditions hold:

δ(i) ≥ δ(i+1), 1 ≤ i ≤ d − 1, (20)

d∑
i=1

δ(i)(s) = ds, 0 ≤ s ≤ 1. (21)

Remark 3.7. The condition (21) implies that δ(i) ∈ L1, 1 ≤ i ≤ d , moreover they are d-Lipschitz.
Also, it is enough to know d − 1 functions from δ(i), 1 ≤ i ≤ d , the remaining one is implicitly
defined by (21). Condition (20) along with the continuity of δ(i) implies that any multidiagonal δC

is compatible with the continuous marginal distributions of an order statistics, therefore D ⊂Fd .

Remark 3.8. Since δ(i), 1 ≤ i ≤ d are non-decreasing and d-Lipschitz, we have for almost every
t ∈ I : 0 ≤ (δ(i))

′(t) ≤ d and thus |(δ(i))
′(t) log((δ(i))

′(t))| ≤ d log(d) for d ≥ 2. We deduce that
for d ≥ 2: ∣∣H(δ(i))

∣∣ ≤ d log(d). (22)



124 Butucea, Delmas, Dutfoy and Fischer

Remark 3.9. Let C ∈ Csym be a symmetric copula on Rd and U a random vector with c.d.f. C.
We check that the multidiagonal δC = (δ(i),1 ≤ i ≤ d) can be expressed in terms of the diagonal
sections (C{i},1 ≤ i ≤ d) where for 1 ≤ i ≤ d :

C{i}(t) = P

(
max

1≤k≤i
Uk ≤ t

)
= C(t, . . . , t︸ ︷︷ ︸

i terms

, 1, . . . ,1︸ ︷︷ ︸
d−i terms

), t ∈ I.

According to 2.8 of [13], we have for 1 ≤ i ≤ d :

δ(i)(t) =
d∑

j=i

(−1)j−i

(
j − 1
i − 1

)(
d

j

)
C{j}(t), t ∈ I.

Conversely, we can express the functions (C{i},1 ≤ i ≤ d) with δC . For 1 ≤ i ≤ d and t ∈ I , we
have:

C{i}(t) = P

(
max

1≤k≤i
Uk ≤ t

)

=
d∑

j=i

P

(
U(j) ≤ t | max

1≤k≤i
Uk = U(j)

)
P

(
max

1≤k≤i
Uk = U(j)

)

=
d∑

j=i

(
j−1
i−1

)
(
d
i

) δ(j)(t),

where we used the definition of δ(i) and the exchangeability of U for the third equality.

The next technical lemma will be used in forthcoming proofs. Recall that J−1 denotes the
generalized inverse of a non-decreasing function J , see Section 2.1 for its definition and proper-
ties, in particular, J−1 ◦ J (t) ≤ t for t ∈ R. Recall also that for x = (x1, . . . , xd) ∈ Rd , we write
G(x) = (G(x1), . . . ,G(xd)).

Lemma 3.10. Let X = (X1, . . . ,Xd) be a random vector on Rd with one-dimensional marginals
c.d.f. (Fi,1 ≤ i ≤ d). Set G = ∑d

i=1 Fi/d . We have for 1 ≤ i ≤ d :

P
(
Xi ≤ G−1 ◦ G(t)

) = P(Xi ≤ t), t ∈ R, that is Fi ◦ G−1 ◦ G = Fi. (23)

We also have for x ∈Rd :

P
(
G(X) ≤ x

) = P
(
X ≤ G−1(x)

)
. (24)

Proof. Since G is the average of the non-decreasing functions Fi , if G(s) = G(s′) for some
s, s′ ∈ R, then we have Fi(s) = Fi(s

′) for every 1 ≤ i ≤ d . Thanks to (1), we have G ◦ G−1 ◦
G(t) = G(t) and thus Fi ◦ G−1 ◦ G(t) = Fi(t). This gives (23).

Recall definition (2) for Ig(J ) the set of points where the function J is increasing on their
left. Since G is the average of the non-decreasing functions Fi , we deduce that Ig(G) =
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⋃
1≤i≤d Ig(Fi). Notice that a.s. Xi belongs to Ig(Fi). Thanks to (5), we get that a.s. {G(X) ≤

x} = {X ≤ G−1(x)}. This gives (24). �

We will also require the following lemma.

Lemma 3.11. Let X = (X1, . . . ,Xd) be a random vector on Rd with one-dimensional marginals
c.d.f. (Fi,1 ≤ i ≤ d). Set G = ∑d

i=1 Fi/d . We have for 1 ≤ i ≤ d :

(
Fi ◦ G−1)−1 = G ◦ F−1

i . (25)

Proof. Recall Definition (2) for Ig(J ) the set of points where the function J is increasing on their
left. Let 1 ≤ i ≤ d . Thanks to (4), we have F−1

i (R) ⊂ Ig(Fi) ∪ {±∞}. Since G is the average of
the non-decreasing functions Fi , we deduce that Ig(G) = ⋃

1≤i≤d Ig(Fi). Thus we get:

F−1
i (R) ⊂ Ig(G) ∪ {±∞}, (26)

for all 1 ≤ i ≤ d . The function Fi ◦ G−1 is also bounded, non-decreasing and càd-làg therefore
we have for t, s,∈ R:

t ≥ (
Fi ◦ G−1)−1

(s) ⇐⇒ Fi ◦ G−1(t) ≥ s ⇐⇒ G−1(t) ≥ F−1
i (s)

⇐⇒ t ≥ G ◦ F−1
i (s),

where we used the equivalence of (1) for the first and second equivalence, (26) and the equiva-
lence of (5) for the last. This gives that (Fi ◦ G−1)−1 = G ◦ F−1

i . �

In the following lemma, we show that for F ∈ Fd , all copulas in Csym(F) share the same
multidiagonal denoted by δF.

Lemma 3.12. Let F = (Fi ,1 ≤ i ≤ d) ∈ Fd . Let C ∈ COS(F) and U be a random vector with
c.d.f. SF(C). Let δF = (δ(i),1 ≤ i ≤ d) be the multidiagonal of SF(C), that is the one-dimensional
marginal c.d.f.s of UOS, the order statistics of U . We have that δF does not depend on C and for
1 ≤ i ≤ d :

δ(i) = Fi ◦ G−1 and δ−1
(i) = G ◦ F−1

i , (27)

with G given by (17). Furthermore, C is the unique copula of UOS.

With obvious notation, we might simply write δF = F ◦ G−1, with G given by (17).

Proof of Lemma 3.12. Let X be a random vector of order statistics with marginals F ∈ Fd and
copula C. Then SF(C) is the copula of the exchangeable random vector X�, where � is uniform
on Sd and independent of X. We have already seen in (17) that the one-dimensional marginals
of X� have the same distribution given by G ∈ L1. Thanks to (9), we deduce that the random
vector U , with c.d.f. SF(C), has the same distribution as G(X�). Since G is non-decreasing, this
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implies that the order statistics of U , UOS, has the same distribution as G((X�)OS) that is as
G(X), thanks to Lemma 3.3. Then use (24) to get for x ∈Rd :

P
(
UOS ≤ x

) = P
(
G(X) ≤ x

) = P
(
X ≤ G−1(x)

)
. (28)

This gives the first part of the lemma as the multidiagonal of U is the one-dimensional marginal
c.d.f.s of its order statistics. The second equation in (27) is due to Lemma 3.11. The fact that C is
the copula of UOS and its uniqueness are due to (28) and the continuity of δ(i), see Remark 3.7. �

The next proposition shows that the set Csym(F) is actually the set of symmetric copulas with
diagonal section δF. This yields the main result of this section given by the subsequent corollary.

Proposition 3.13. Let F ∈Fd . We have Csym(F) = CδF ∩ Csym.

Proof. By Lemma 3.12, we have Csym(F) ⊂ CδF ∩ Csym.
Let C ∈ CδF ∩ Csym and U be a random vector with c.d.f. C. Let G be given by (17). No-

tice that X = G−1(U) is an exchangeable random vector with marginals G and copula C.
Thanks to Lemma 3.3, the proof will be complete as soon as we prove that the one-dimensional
marginal c.d.f.s of XOS = (X(1), . . . ,X(d)), the order statistics of X, is given by F. Notice
XOS = G−1(UOS), with UOS the order statistics of U whose one-dimensional marginal c.d.f.s
are given by δF. We have for 1 ≤ i ≤ d and t ∈ R:

P(X(i) ≤ t) = P
(
G−1(U(i)) ≤ t

) = P
(
U(i) ≤ G(t)

) = Fi ◦ G−1 ◦ G(t) = Fi (t),

where we used (1) for the second equality, (27) for the third, and (23) for the last. This finishes
the proof. �

Corollary 3.14. According to Proposition 3.13, (19) and Lemma 3.4, we get that for any F ∈ Fd ,
the symmetrizing operator SF is a bijection between COS(F) and CδF ∩ Csym.

We end this section by an ancillary result we shall use later.

Lemma 3.15. Let F ∈Fd . We have J(F) = J(δF).

Proof. Let F = (Fi ,1 ≤ i ≤ d). We get, using (27) and the change of variable s = G−1(t) that:∫
I

δ′
(i)(t)

∣∣log
(
δ(i−1)(t) − δ(i)(t)

)∣∣dt =
∫

G−1((0,1))

Fi (ds)
∣∣log

(
Fi−1(s) − Fi (s)

)∣∣.
Since dFi = 0 outside G−1((0,1)) (as G is increasing as soon as Fi is increasing), we get that
the last integration above is also over R. We deduce that:

J
(
δF) =

d∑
i=2

∫
R

Fi (ds)
∣∣log

(
Fi−1(s) − Fi (s)

)∣∣ = J(F).
�
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3.3. Density and entropy of copulas in Csym(F)

We prove in this section that SF preserves the absolute continuity on COS(F) for F ∈ Fd and the
entropy up to a constant. Let us introduce some notation. For marginals F ∈ Fd , let

�F
i = {

s ∈R,Fi−1(s) > Fi (s)
}

for 2 ≤ i ≤ d. (29)

The complementary set (�F
i )c is the collection of the points where Fi−1 = Fi . We define �F ⊂ I

as:

�F =
d⋃

i=2

Fi

((
�F

i

)c)
. (30)

By Remark 3.7, we have D ⊂Fd , then the definitions (29) and (30) apply for all δ ∈D. In partic-
ular, for δ = (δ(1), . . . , δ(d)) ∈ D the sets �δ

i , 2 ≤ i ≤ d are open subsets of I , therefore (�δ
i )

c ∩ I

is a compact subset. This and the continuity of δ(i) imply that δ(i)((�
δ
i )

c) = δ(i)((�
δ
i )

c ∩I ) is also
compact, hence �δ is compact. Notice that {0,1} ⊂ �δ always holds. We define C0

δ = Cδ ∩C0 the
subset of absolutely continuous copulas with multidiagonal δ and the subset D0 = {δ ∈ D,C0

δ 
=
∅} of multidiagonals of absolutely continuous copulas. According to Theorem 2 of [13], the
multidiagonal δ belongs to D0 if and only if it belongs to D and the Lebesgue measure of �δ is
zero: |�δ| = 0.

Lemma 3.16. Let δ ∈ D. We have δ ∈ D0 if and only if for all 2 ≤ i ≤ d , a.e.:

δ′
(i−1)1(�δ

i )c = δ′
(i)1(�δ

i )c = 0. (31)

Furthermore, we have that J(δ) < +∞ implies δ ∈ D0.

Proof. Let J be a function defined on I , Lipschitz and non-decreasing. Let A be a Borel subset
of I . We have:

∣∣J (A)
∣∣ =

∫
1J (A)(t) dt =

∫ 1

0
1{s∈J−1◦J (A)}J ′(s) ds =

∫ 1

0
1A(s)J ′(s) ds,

where we used (3) and (5) for the last equality. This gives that |J (A)| = 0 if and only if a.e.
J ′1A = 0. Then use that δ ∈ D0 if and only if |δ(i)((�

δ
i )

c)| = 0 for all 1 ≤ i ≤ d and that
δ(i−1)((�

δ
i )

c) = δ(i)((�
δ
i )

c) to conclude that δ ∈ D0 if and only if (31) holds for all 2 ≤ i ≤ d .
The last part of the lemma is clear. �

Definition 3.17. Let F0
d ⊂ Fd be the subset of marginals F such that there exists an absolutely

continuous c.d.f. of order statistics with marginals F, that is LOS
d (F) ∩L0

d 
=∅.

In particular, we have D0 ⊂F0
d . The next lemma gives a characterization of the set F0

d .
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Lemma 3.18. Let F ∈ Fd . Then F ∈ F0
d if and only if Fi ∈ L0

1 for 1 ≤ i ≤ d and |�F| = 0.
Furthermore, we have that Fi ∈ L0

1 for 1 ≤ i ≤ d and J(F) < +∞ imply F ∈ F0
d .

Proof. Let F ∈ LOS
d (F). We know that F ∈ L0

d if and only if Fi ∈ L0
1 for 1 ≤ i ≤ d and CF ∈ C0,

the subset of absolutely continuous copulas (see, for example, [12]). Therefore, F ∈ F0
d if and

only if Fi ∈ L0
1 for 1 ≤ i ≤ d and COS(F) ∩ C0 
= ∅. Recall that δF is defined by (27). We first

show that

COS(F) ∩ C0 
= ∅ if and only if C0
δF ∩ Csym 
=∅. (32)

Let C ∈ COS(F) ∩ C0. Then Lemma 3.12 ensures that SF(C) ∈ CδF ∩ Csym. The absolute
continuity of SF(C) is a direct consequence of (18), (27) and Remark 3.7 which ensures that
δF
(i),1 ≤ i ≤ d are d-Lipschitz, therefore their derivatives exist a.e. on I . This ensures that

C0
δF ∩ Csym 
= ∅.

Conversely, let C ∈ C0
δF ∩ Csym. Let U be a random vector with c.d.f. C. Then its order

statistics UOS is also absolutely continuous. Therefore, the copula of UOS, which is S−1
F (C)

by Lemma 3.12, is also absolutely continuous. This proves thanks to Proposition 3.13 and
Lemma 3.4 that S−1

F (C) ∈ COS(F) ∩ C0. This gives (32).
Notice that C0

δF ∩ Csym 
=∅ is equivalent to C0
δF 
=∅, since for any C ∈ C0

δF we have that Csym

defined by (16) belongs to C0
δF ∩Csym. By Theorem 2 of [13], C0

δF 
=∅ if and only if �δF
has zero

Lebesgue measure. The proof is then complete as one can easily verify using (27) that �δF = �F

and thanks to Lemma 3.15. �

From now on, we consider F ∈ F0
d . We give an auxiliary lemma on the support of the copulas

in COS(F) ∩ C0.

Lemma 3.19. Let F = (Fi ,1 ≤ i ≤ d) ∈ F0
d and C ∈ COS(F) ∩ C0. Then the density of C van-

ishes a.e. on I d \ T F with:

T F = {
u = (u1, . . . , ud) ∈ I d ;F−1

1 (u1) ≤ · · · ≤ F−1
d (ud)

}
. (33)

Proof. Let X = (X1, . . . ,Xd) be a random vector of order statistics with one-dimensional
marginal c.d.f.s F and copula C ∈ C0. Let U = (U1, . . . ,Ud) be a random vector with c.d.f.
C. Then it is distributed as (F1(X1), . . . ,Fd(Xd)), see (9). We get P(U ∈ T F) = 1, since X is a
vector of order statistics and Xi ∈ Ig(Fi ) a.s. for 1 ≤ i ≤ d . This gives the result. �

Now we establish the connection between the sets COS(F) ∩ C0 and Csym(F) ∩ C0.

Lemma 3.20. Let F ∈ F0
d . The symmetrizing operator SF is a bijection from COS(F) ∩ C0 onto

Csym(F) ∩ C0. Moreover, if C ∈ COS(F) ∩ C0, with density function c, then the density function
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sF(C) of SF(C) is given by, for a.e. u = (u1, . . . , ud) ∈ I d :

sF(C)(u) = 1

d!c
(
δ(1)(u(1)), . . . , δ(d)(u(d))

) d∏
i=1

δ′
(i)(u(i)). (34)

Let T F be given by (33). If C ∈ Csym(F) ∩ C0 with density c, then the density s−1
F (C) of S−1

F (C)

is given by, for a.e. u = (u1, . . . , ud) ∈ I d :

s−1
F (C)(u) = d!c(δ

−1
(1) (u1), . . . , δ

−1
(d)(ud))∏d

i=1 δ′
(i) ◦ δ−1

(i) (ui)
1T F(u)1{∏d

i=1 δ′
(i)

◦δ−1
(i)

(ui )>0}. (35)

Proof. By Proposition 3.13, we deduce that Csym(F) ∩ C0 = C0
δF ∩ Csym. Lemma 3.4 and the

proof of Lemma 3.18 ensures that SF is a bijection between COS(F) ∩ C0 and Csym(F) ∩ C0.
The explicit formula (34) can be obtained by taking the mixed derivative of the right hand side
of (18). By Lemma 3.19, all the terms in the sum disappear except the one on the right hand side
of (34).

To obtain (35), let C ∈ Csym(F) ∩ C0 with density c, and U be a random vector with c.d.f. C.
The order statistics UOS derived from U is also absolutely continuous with cumulative distribu-
tion function K , and density function k given by:

k(u) = d!c(u)1�(u), u ∈ I d .

By Lemma 3.12, S−1
F (C) is the copula of UOS. From (7), we have for u = (u1, . . . , ud) ∈ I d :

S−1
F (C)(u) = K

(
δ−1
(1) (u1), . . . , δ

−1
(d)(ud)

)
. (36)

According to (5), we deduce that G−1 ◦ G ◦ F−1
i = F−1

i on (0,1). This implies that for s, t ∈
(0,1), 1 ≤ i < j ≤ d :

δ−1
(i) (s) ≤ δ−1

(j)(t) ⇔ G ◦ F−1
i (s) ≤ G ◦ F−1

j (t)

⇒ G−1 ◦ G ◦ F−1
i (s) ≤ G−1 ◦ G ◦ F−1

j (t)

⇔ F−1
i (s) ≤ F−1

j (t)

⇒ G ◦ F−1
i (s) ≤ G ◦ F−1

j (t),

where we used (27) for the first equivalence, that G−1 is non-decreasing for the first implication
and G is non-decreasing for the second. Thus we have, for s, t ∈ (0,1), that the two conditions
δ−1
(i) (s) ≤ δ−1

(j)(t) and F−1
i (s) ≤ F−1

j (t) are equivalent. Thus, we deduce that the two sets

{
(u1, . . . , ud) ∈ I d ; δ−1

(1)
(u1) ≤ · · · ≤ δ−1

(d)
(ud)

}
and T F are equal up to a set of zero Lebesgue measure. Then we deduce (35) from (36). �
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We give a general result on the entropy of an exchangeable random vector and the entropy of
its order statistics.

Lemma 3.21. Let X be a random vector on I d , XOS the corresponding order statistics and �

an independent uniform random variable on Sd . Then we have:

H
((

XOS)
�

) = log(d!) + H
(
XOS)

.

Proof. Let F be the c.d.f. of XOS. If F /∈ L0
d , then the c.d.f. F sym of (XOS)� given by (16)

verifies also F sym /∈ L0
d , therefore H((XOS)�) = H(XOS) + log(d!) = −∞. If F ∈ L0

d with
density function f , then the density function f sym of F sym is given by, for x ∈ I d :

f sym(x) = 1

d!f
(
xOS)

,

where xOS is the ordered vector of x. Therefore, using that f (x) = 0 if x 
= xOS, we have:

H
((

XOS)
�

) = −
∫

Id

f sym log
(
f sym)

= log(d!) − 1

d!
∫

Id

f
(
xOS)

log
(
f

(
xOS))

dx

= log(d!) −
∫

Id

f (x) log
(
f (x)

)
dx

= log(d!) + H
(
XOS)

. �

Now we are ready to give the connection between the entropy of C and SF(C) for C ∈ COS(F),
which is the main result of this section. Recall the definition of δF = (δF

(i),1 ≤ i ≤ d) given in

Lemma 3.12 and thanks to Remark 3.8, H(δF
(i)) is finite for all 1 ≤ i ≤ d .

Proposition 3.22. Let F ∈Fd and C ∈ COS(F). Then we have:

H
(
SF(C)

) = log(d!) + H(C) +
d∑

i=1

H
(
δF
(i)

)
. (37)

Proof. Let U be an exchangeable random vector with c.d.f. SF(C), and UOS its order statistics.
According to Lemma 3.12, UOS has one-dimensional marginal c.d.f.s δF = (δF

(i),1 ≤ i ≤ d) and
copula C. Therefore, using (14) with h = 1[0,1], we get:

H
(
UOS) = H(C) +

d∑
i=1

H
(
δF
(i)

)
.
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On the other hand, since SF(C) is symmetric, Lemma 3.3 ensures that (UOS)� has the same
distribution as U . Therefore Lemma 3.21 gives:

H
(
SF(C)

) = H(U) = H
((

UOS)
�

) = H
(
UOS) + log(d!) = H(C) +

d∑
i=1

H
(
δF
(i)

) + log(d!).
�

Corollary 3.23. Since the marginal c.d.f.s F are fixed, the difference between H(C) and
H(SF(C)) is constant for all C ∈ COS(F). Therefore if the entropy of a copula C ∈ COS(F) is
maximal, then SF(C) also has maximal entropy on Csym(F) = CδF ∩ Csym.

4. Maximum entropy copula with given multidiagonals

This section is a generalization of [6], where the maximum entropy copula with given diagonal
section (i.e., given distribution for the maximum of its marginals) is studied.

Recall that multidiagonals of copulas on Rd are given by Definition 3.6. We recall some further
notation: D denotes the set of multidiagonals; for δ ∈ D, Cδ denotes the subset of copulas with
multidiagonal δ; C0 denotes the subset copulas which are absolutely continuous, and C0

δ = Cδ ∩
C0. The set D0 ⊂D contains all diagonals for which C0

δ 
=∅.
We give an explicit formula for C∗ such that H(C∗) = maxC∈Cδ

H(C), with H the entropy,
see definition (13). Notice that the maximum can be taken over C0

δ , since the entropy is minus
infinity otherwise. When d = 2, the problem was solved in [6].

Let δ = (δ(i),1 ≤ i ≤ d) ∈ D be a multidiagonal. Since δ(i), 1 ≤ i ≤ d are d-Lipschitz, the
entropy of H(δ(i)) is well defined and finite, see Remark 3.8 and J(δ) given by (15) is also well
defined and belongs to [0,+∞].

The next two lemmas provide sets on which the density of a copula with given multidiagonal
is zero. For δ ∈ D, let:

Zδ = {
u ∈ I d; there exists 1 ≤ i ≤ d such that δ′

(i)(u(i)) = 0
}
. (38)

Lemma 4.1. Let δ ∈ D0. Then for all copulas C ∈ C0
δ with density c, we have c1Zδ = 0 a.e. that

is c(u)1Zδ (u) = 0 for a.e. u ∈ I d .

Proof. By definition of δ(i), we have for all r ∈ I :∫
Id

c(u)1{u(i)≤r} du = δ(i)(r) =
∫ r

0
δ′
(i)(s) ds.

This implies, by the monotone class theorem, that for all measurable subsets K of I , we have:∫
Id

c(u)1K(u(i)) du =
∫

K

δ′
(i)(s) ds.

Since c ≥ 0 a.e., we deduce that a.e. c(u)1{δ′
(i)

(u(i))=0} = 0 and thus a.e. c1Zδ = 0. �
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Recall the definition of �δ
i given by (29) for 2 ≤ i ≤ d . We also define �δ

1 = (0, d1) with
d1 = inf{s ∈ I ; δ(1)(s) = 1} and �δ

d+1 = (gd+1,1) with gd+1 = sup{s ∈ I ; δ(d)(s) = 0}. Since

�δ
i are open subsets of I , there exist at most countably many disjoint intervals {(g(j)

i , d
(j)
i ),

j ∈ Ji} such that

�δ
i =

⋃
j∈Ji

(
g

(j)
i , d

(j)
i

)
. (39)

We denote by m
(j)
i = (g

(j)
i + d

(j)
i )/2 the midpoint of these intervals for 2 ≤ i ≤ d + 1. In partic-

ular md+1 = (1 + gd+1)/2. We also define m1 = 0. For δ ∈ D, let:

Lδ = {
u = (u1, . . . , ud) ∈ I d; (u(i−1), u(i)) ⊂ �δ

i for all 2 ≤ i ≤ d
}
. (40)

We have the following lemma for all absolutely continuous copulas C ∈ C0
δ with density c.

Lemma 4.2. Let δ ∈ D0 and 2 ≤ i ≤ d . Then for all copulas C ∈ C0
δ with density c, we have

c1I\Lδ = 0 a.e., that is for a.e. u = (u1, . . . , ud) ∈ I d , for all s /∈ �δ
i :

c(u)1{u(i−1)<s<u(i)} = 0. (41)

Proof. The complementary set (�δ
i )

c is given by:

(
�δ

i

)c =
⋃
j∈Ji

{
g

(j)
i , d

(j)
i

}
. (42)

Let U = (U1, . . . ,Ud) be a random vector with c.d.f. C ∈ C0
δ . For 2 ≤ i ≤ d and s ∈⋃

j∈Ji
{g(j)

i , d
(j)
i }, that is δ(i−1)(s) = δ(i)(s), we have:

P(U(i−1) < s < U(i)) = P(U(i−1) < s) − P(U(i) ≤ s) = δ(i−1)(s) − δ(i)(s) = 0.

This implies that (41) holds a.e. for all s ∈ ⋃
j∈Ji

{g(j)
i , d

(j)
i }. Since Ji is at most countable, we

have for a.e. u ∈ I d and for all s ∈ ⋃
j∈Ji

{g(j)
i , d

(j)
i }, that (41) holds. Since for all u ∈ I , s /∈ �δ

i

there exists s′ ∈ ⋃
j∈Ji

{g(j)
i , d

(j)
i } such that

1{u(i−1)<s<u(i)} = 1{u(i−1)<s′<u(i)},

we can conclude that for a.e. u ∈ I d and for all s /∈ �δ
i (41) hold. �

Notice that for all u = (u1, . . . , ud) ∈ I d :

1Lδ (u) ≤
d∏

i=1

1�δ
i ∩�δ

i+1
(u(i)). (43)
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We define the function cδ on I d as, for u = (u1, . . . , ud) ∈ I d :

cδ(u) = 1

d!1Lδ (u)

d∏
i=1

ai(u(i)), (44)

where the function ai , 1 ≤ i ≤ d , are given by, for t ∈ I :

ai(t) = K ′
i (t)e

Ki+1(t)−Ki(t)1�δ
i ∩�δ

i+1
(t), (45)

with for 1 ≤ i ≤ d , t ∈ (g
(j)
i , d

(j)
i ):

Ki(t) =
∫ t

m
(j)
i

δ′
(i)(s)

δ(i−1)(s) − δ(i)(s)
ds (46)

and the conventions δ(0) = 1 and Kd+1 = 0. Notice that for t ∈ �δ
1 :

K1(t) = − log
(
1 − δ(1)(t)

)
. (47)

Remark 4.3. The choice of m
(j)
i for the integration lower bound in (46) is arbitrary as any other

value in (g
(j)
i , d

(j)
i ) would not change the definition of cδ in (44).

Remark 4.4. For all 1 ≤ i ≤ d , j ∈ Ji , t ∈ (m
(j)
i , d

(j)
i ), we have the following lower bound for

Ki(t):

Ki(t) ≥
∫ t

m
(j)
i

δ′
(i)(s)

δ(i−1)(d
(j)
i ) − δ(i)(s)

ds = log

(
δ(i−1)(d

(j)
i ) − δ(i)(m

(j)
i )

δ(i−1)(d
(j)
i ) − δ(i)(t)

)
.

Since δ(i) is non-decreasing and δ(i−1)(d
(j)
i ) = δ(i)(d

(j)
i ), we have lim

t↗d
(j)
i

Ki(t) = +∞.

The following proposition states that cδ is the density of an absolutely continuous symmetric
copula Cδ ∈ C0

δ ∩ Csym. It is more general than the results in [6], where only the diagonal δ(d)

was supposed given.

Proposition 4.5. Let δ ∈ D0. The function cδ defined in (44)–(46) is the density of a symmetric
copula Cδ ∈ C0

δ ∩ Csym. In addition, we have:

H(Cδ) = −J(δ) + log(d!) + (d − 1) +
d∑

i=1

H(δ(i)). (48)

The proof of this proposition is given in Section 6.2. The following characterization of Cδ is
proved in Section 6.6.
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Proposition 4.6. Let δ ∈ D0. Then Cδ is the only copula in C0
δ whose density is of the form

(1/d!)1Lδ (u)
∏d

i=1 hi(u(i)), where hi , 1 ≤ i ≤ d are measurable non-negative functions defined
on I .

The following theorem states that the unique optimal solution of maxC∈Cδ
H(C), if it exists,

is given by Cδ . Its proof is given in Sections 6.7 for case (a) and 6.8 for case (b).

Theorem 4.7. Let δ ∈ D.

(a) If J(δ) = +∞, then maxC∈Cδ
H(C) = −∞.

(b) If J(δ) < +∞, then δ ∈ D0, maxC∈Cδ
H(C) > −∞ and Cδ given in Proposition 4.5 is the

unique copula such that H(Cδ) = maxC∈Cδ
H(C).

The copula Cδ will be called the maximum entropy copula with given multidiagonal.

Remark 4.8. In [6], we considered the problem of the maximum entropy copula with given
diagonal section, that is when only δ(d) is fixed. When d = 2, the problem considered here
coincides with the problem of maximum entropy copula with given diagonal section, see Re-
mark 3.7. For d > 2, the constraints of the problem discussed here are more restrictive. With the
same techniques it is possible to calculate the maximum entropy copula for which the c.d.f. of
the k largest order statistics are given (that is δ(i) are given for d − k + 1 ≤ i ≤ d). Reasoning
the same way as in the proof of Theorem 4.7, we can deduce that this copula will be of the
form

∏d−k
i=1 b̃(u(i))

∏d
i=d−k+1 ãi (u(i)) on its domain, involving k + 1 different functions b̃ and

ãi , d − k + 1 ≤ i ≤ d to compute based on the constraints.

5. Maximum entropy distribution of order statistics with given
marginals

We use the results of Section 4 to compute the density of the maximum entropy copula for
marginals F ∈F0

d with F0
d defined in Section 3.3. Recall δF = (δ(1), . . . , δ(d)) = F ◦G−1 and the

definition of �δF
in (30). Recall Ki defined by (46), for 1 ≤ i ≤ d and T F defined by (33). We

define the function cF on I d , for u = (u1, . . . , ud) ∈ I d :

cF(u) =
d∏

i=2

eKi(δ
−1
(i−1)

(ui−1))−Ki(δ
−1
(i)

(ui ))

δ(i−1) ◦ δ−1
(i) (ui) − ui

1{u∈T F;(δ−1
(1)

(u1),...,δ
−1
(d)

(ud ))∈L
δF }1{∏d

i=1 δ′
(i)

◦δ−1
(i)

(ui )>0}. (49)

Recall the function J(δ) defined on the set of multidiagonals by (15) and CδF the copula with
density given by (44)–(46).

Proposition 5.1. Let F ∈ F0
d . The function cF defined by (49) is the density of the copula CF =

S−1
F (CδF) which belongs to COS(F). The entropy of CF is given by:

H(CF) = d − 1 − J
(
δF)

. (50)
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Proof. Since F ∈F0
d , we have that δF ∈D0. According to Proposition 4.5, cδF defined by (44) is

the density of a symmetric copula CδF which belongs to Csym(F)∩C0, thanks to Proposition 3.13
and Lemma 3.20. According to Lemma 3.20, formula (35) we get that cF = s−1

F (CδF) is therefore
the density of a copula CF which belongs to COS(F) ∩ C0. Use (35) and (6) to check (49). To
conclude, use (37) and (48) to get (50). �

Analogously to Lemma 4.2, we have the following restriction on the support of all F ∈
LOS

d (F) ∩ L0
d . Recall the definition of �F

i in (29). The proof of the next lemma is similar to
the proof of Lemma 4.2 and is left to the reader.

Lemma 5.2. Let F ∈ F0
d and t ∈ Fi ((�

F
i )c) for some 2 ≤ i ≤ d . Then we have for all F ∈

LOS
d (F) ∩L0

d with density function f :

f (x)1{xi−1<t<xi } = 0 for a.e. x = (x1, . . . , xd) ∈ S.

For δ ∈D, recall the definition of Lδ in (40). Let Lδ = Lδ ∩S. More generally, for F ∈ Fd , we
set:

LF = {
x = (x1, . . . , xd) ∈ S; (xi−1, xi) ⊂ �F

i for all 2 ≤ i ≤ d
}
. (51)

The next lemma establishes the connection between the sets LδF defined by (40) and LF.

Lemma 5.3. Let F = (F1, . . . ,Fd) ∈ F0
d with density functions fi for 1 ≤ i ≤ d . Let δF =

(δ(1), . . . , δ(d)) given by (27), T F given by (33) and LδF defined by (40). Then for∏d
i=1 fi (xi) dx1 · · ·xd -a.e. x ∈Rd we have that

1T F
(
F1(x1), . . . ,Fd(xd)

)
1L

δF

(
δ−1
(1) ◦ F1(x1), . . . , δ

−1
(d) ◦ Fd(xd)

) = 1LF(x).

Proof. According to (3) and (5), we have fi (t) dt -a.e. that F−1
i ◦ Fi (t) = t . This implies that∏

i=1 fi (xi) dx1 · · ·dxd -a.e., (F1(x1), . . . ,Fd(xd)) belongs to T F if and only if x ∈ S. Recall the

sets �δF

i given by (29). For
∏

i=1 fi (xi) dx1 · · ·dxd -a.e. x ∈ S, we have:(
δ−1
(1) ◦ F1(x1), . . . , δ

−1
(d) ◦ Fd(xd)

) ∈ LδF

⇐⇒ (
δ−1
(i−1)

◦ Fi−1(xi−1), δ
−1
(i)

◦ Fi (xi)
) ⊂ �δF

i , 2 ≤ i ≤ d

⇐⇒ ∀t ∈ (
δ−1
(i−1) ◦ Fi−1(xi−1), δ

−1
(i) ◦ Fi (xi)

) : δ(i−1)(t) > δ(i)(t), 2 ≤ i ≤ d

⇐⇒ ∀t ∈ (
G ◦ F−1

i−1 ◦ Fi−1(xi−1),G ◦ F−1
i ◦ Fi (xi)

) : Fi−1 ◦ G−1(t) > Fi ◦ G−1(t),

2 ≤ i ≤ d

⇐⇒ ∀t ∈ (
G(xi−1),G(xi)

) : Fi−1 ◦ G−1(t) > Fi ◦ G−1(t), 2 ≤ i ≤ d,

where the first equivalence comes from the definition of LδF , the second from the definition of

ψδF

i , the third from (27) and the last from the fact that fi (t) dt -a.e. F−1
i ◦ Fi (t) = t . Consider the
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change of variable s = G−1(t). We have by (1):

t < G(xi) ⇐⇒ G−1(t) < xi ⇐⇒ s < xi.

Since xi−1 ∈ Ig(Fi−1) fi−1(xi−1) dxi−1-a.e., we get xi−1 ∈ Ig(G) and by (5):

G(xi−1) < t ⇐⇒ xi−1 < G−1(t) ⇐⇒ xi−1 < s.

Therefore, we deduce that
∏

i=1 fi (xi) dx1 · · ·dxd -a.e. x ∈ S:

(
δ−1
(1) ◦ F1(x1), . . . , δ

−1
(d) ◦ Fd(xd)

) ∈ LδF

⇐⇒ ∀s ∈ (xi−1, xi) : Fi−1(s) > Fi (s), 2 ≤ i ≤ d

⇐⇒ x ∈ LF. �

Using Proposition 3.22, we check that the copula CF maximizes the entropy over the set
COS(F). For F ∈ F0

d , we define the c.d.f. FF as, for x = (x1, . . . , xd) ∈Rd :

FF(x) = CF
(
F1(x1), . . . ,Fd(xd)

)
. (52)

Let fi denote the density function of Fi when it exists. Let us further note for 2 ≤ i ≤ d , t ∈ R:


i(t) = fi (t)
Fi−1(t) − Fi (t)

· (53)

When the densities fi exist for all 1 ≤ i ≤ d , we define the function fF for x = (x1, . . . , xd) ∈ Rd

as:

fF(x) = f1(x1)

d∏
i=2


i(xi) exp

(
−

∫ xi

xi−1


i(s) ds

)
1LF(x), (54)

with LF given by (51). The next theorem asserts that the c.d.f. FF maximizes the entropy over
the set LOS

d (F) and that its density is fF. Recall J defined by (15). Recall that h is an arbitrary
probability density on R.

Theorem 5.4. Let F = (Fi ,1 ≤ i ≤ d) ∈Fd .

(a) If there exists 1 ≤ i ≤ d such that Hh(Fi ) = −∞, or if J(F) = +∞, then we have

max
F∈LOS

d (F)

Hh(F ) = −∞.

(b) If Hh(Fi ) > −∞ for all 1 ≤ i ≤ d , and J(F) < +∞, then we have F ∈ F0
d ,

maxF∈LOS
d (F) Hh(F ) > −∞, and FF defined in (52) is the unique c.d.f. in LOS

d (F) such
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that Hh(FF) = maxF∈LOS
d (F) Hh(F ). Furthermore, the density function of FF exists, and

is given by fF defined in (54). We also have:

Hh(FF) = d − 1 +
d∑

i=1

Hh(Fi ) − J(F).

Proof. The proof of case (a) is postponed to Section 6.7.
We shall assume that Hh(Fi ) > −∞ for all 1 ≤ i ≤ d and J(δF) < +∞. This implies that the

densities fi of Fi exist for 1 ≤ i ≤ d and, thanks to Lemma 3.18, that F ∈ F0
d . Let FF be defined

by (52), that is the c.d.f. with copula CF from Proposition 5.1 and one-dimensional marginal
c.d.f.s F. Thanks to Proposition 5.1, we have FF ∈ LOS

d (F).
We deduce from (14), Propositions 3.13 and 3.22, Theorem 4.7 case (b) and Proposition 5.1

that FF is the only c.d.f. such that Hh(FF) = maxF∈LOS
d (F) Hh(F ). We deduce from (14), (50)

and Lemma 3.15 that:

Hh(FF) = d − 1 +
d∑

i=1

Hh(Fi ) − J(F).

Since the copula CF is absolutely continuous with density cF given in (49), we deduce from
(52) that FF has density fF given by, for a.e. x = (x1, . . . , , xd) ∈ Rd :

fF(x) = cF
(
F1(x1), . . . ,Fd(xd)

) d∏
i=1

fi (xi). (55)

Recall the expression (49) of cF as well as Ki defined by (46), for 1 ≤ i ≤ d . Using the change
of variable s = G−1(t) and (23), we get (similarly to the proof of Lemma 3.15):

Ki ◦ δ−1
(i) ◦ Fi (xi) − Ki ◦ δ−1

(i−1) ◦ Fi−1(xi−1) =
∫ F−1

i ◦Fi (xi )

F−1
i−1◦Fi−1(xi−1)


i(s) ds. (56)

Using (23), we also get:

fi (xi)

δ(i−1) ◦ δ−1
(i) ◦ Fi (xi) − Fi (xi)

= fi (xi)

Fi−1 ◦ F−1
i ◦ Fi (xi) − Fi (xi)

· (57)

According to (5), we have fi (t) dt -a.e. that F−1
i ◦ Fi (t) = t . For 1 ≤ i ≤ d , we have from (5) that∏

i=1 fi (xi) dx1 · · ·dxd -a.e.:

1{∏d
i=1 δ′

(i)
◦δ−1

(i)
(Fi (xi ))>0} = 1. (58)

We deduce from (49), (55), (56), (57), (58) and Lemma 5.3 that a.e. for x = (x1, . . . , xd) ∈ Rd :

fF(x) = f1(x1)

d∏
i=2


i(xi)e
− ∫ xi

xi−1

i (s) ds

1LF(x).
�
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Remark 5.5. We deduce from the proof of Theorem 5.4 case (b) and Proposition 5.1, that if
F = (Fi ,1 ≤ i ≤ d) ∈ F0

d , then fF defined by (54) is a probability density function on S ⊂Rd .

Remark 5.6. The density fF has a product form on LF, that is it can be written as, for a.e.
x = (x1, . . . , xd) ∈ Rd :

fF(x) =
d∏

i=1

pi(xi)1LF(x), (59)

where the functions (pi,1 ≤ i ≤ d) are measurable and non-negative.

In addition to Remark 5.6, the next corollary asserts that FF is the only element of LOS
d (F),

whose density has a product form.

Corollary 5.7. Let F ∈ F0
d . Let F ∈ LOS

d (F) be an absolutely continuous c.d.f. with density f

given by, a.e. for x = (x1, . . . , xd) ∈ Rd : f (x) = ∏d
i=1 hi(xi)1LF(x), with hi , 1 ≤ i ≤ d some

measurable non-negative functions on R. Then we have F = FF on Rd .

Proof. Let X = (X1, . . . ,Xd) be an order statistic with c.d.f. F , and F sym the c.d.f. of X� given
by (16), with � uniform on Sd and independent of X. Then the c.d.f. F sym is also absolutely
continuous, and its density f sym is given by:

f sym(x) = 1

d!
d∏

i=1

hi(x(i))1LF
(
xOS)

, (60)

where xOS is the ordered vector of x. The one-dimensional marginal c.d.f.s of X� are all equal to
G given by (17). Let C ∈ COS(F) ∩ C0 denote the copula of F . Then according to (7), the copula
SF(C) of X� is given by, for a.e. u = (u1, . . . , ud) ∈ I d :

SF(C)(u) = F sym(
G−1(u)

)
.

Therefore its density sF(C) can be expressed as:

sF(C)(u) = f sym(G−1(u))∏d
i=1 g ◦ G−1(ui)

d∏
i=1

1{g◦G−1(ui )>0}

= 1

d!1LF
(
G−1(uOS)) d∏

i=1

hi ◦ G−1(u(i))

g ◦ G−1(u(i))
1{g◦G−1(u(i))>0},

where g is the density of G. Notice that for x = (x1, . . . , xd) ∈ S, we have a.e.:

1{∏d
i=1 hi(xi )>0} ≤ 1{∏d

i=1 fi(xi )>0},
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with fi the density of Xi . Therefore, by Lemma 5.3 and since G is continuous, we have that∏d
i=1 hi ◦ G−1(u(i)) du1 · · ·dud -a.e.:

1LF
(
G−1(uOS)) = 1L

δF

(
δ−1
(1) ◦ δ(1)(u(1)), . . . , δ

−1
(d) ◦ δ(d)(u(d))

)
.

By Lemma 3.12, SF(C) belongs to C0
δF and thus sF(C) = 0 a.e. on ZδF defined by (38). Then use

(3) and (5) to get that δ−1
(i) ◦ δ(i)(u(i)) = u(i) a.e. on Zc

δF . This gives:

1LF
(
G−1(uOS)) = 1L

δF

(
uOS) = 1L

δF (u)

that is sF(C) is of the form sF(C)(u) = (1/d!)1L
δF (u)

∏d
i=1 h̄i (u(i)) for some measurable non-

negative functions (h̄i ,1 ≤ i ≤ d). Then, thanks to Proposition 4.6, we get that SF(C) = CδF .
Then, use Proposition 5.1 to get that F = FF. �

Example 5.8. We consider the following example. Let +∞ > λ1 > · · · > λd > 0 and for
1 ≤ i ≤ d let Fi be the c.d.f. of the exponential distribution with mean 1/λi and density
fi (t) = λie−λi t1{t>0}. Notice that Fi−1 > Fi on (0,+∞), so that LF = {(x1, . . . , xd) ∈ Rd;0 ≤
x1 ≤ · · · ≤ xd}. It is easy to check that J(F) < +∞ with F = (Fi ,1 ≤ i ≤ d). Elementary com-
putations yield that the maximum entropy density of the order statistic (X1, . . . ,Xd), where Xi

has distribution Fi , is given by:

fF(x1, . . . , xd) = 1LF(x)λ1e−�2x1
(
1 − e−�2x1

)λ2/�2
d∏

i=2

λie
−�i+1xi

(1 − e−�i+1xi )λi+1/�i+1

(1 − e−�ixi )λi−1/�i
,

where �i = λi−1 − λi for 1 ≤ i ≤ d + 1 and λd+1 = 0.
In the particular case λi = (d − i + 1)λ for some λ > 0, we get:

fF(x1, . . . , xd) = 1LF(x) d!λde−λx1
(
1 − e−λx1

)d−1
d∏

i=2

e−λxi

(1 − e−λxi )2
·

By considering the change of variable ui = 1 − e−λxi , we get the following result. For
1 ≤ i ≤ d let Fi be the c.d.f. of the β(1, d − i + 1) distribution with density fi (t) = (d − i +
1)(1 − t)d−i1(0,1)(t). Notice that Fi−1 > Fi on (0,1). The maximum entropy density of the
order statistic (U1, . . . ,Ud), where Ui has distribution Fi , is given by:

fF(u1, . . . , ud) = 1{0<u1<···<ud<1} d!ud−1
1

d∏
i=2

1

u2
i

·

Elementary computations give H(FF) = − log(d!) + 2d − (d + 1)
∑d

i=1(1/i).
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6. Proofs

6.1. Preliminary notations for the optimization problem

Recall notations from Sections 2 and 3. In particular, if u = (u1, . . . , ud) ∈ I d then uOS =
(u(1), . . . , u(d)) denote the ordered vector of u.

In order to apply the technique established in [5], we introduce the linear functional A =
(Ai ,1 ≤ i ≤ 2d) : L1(I d) → L1(I )2d as, for f ∈ L1(I d) and r ∈ I :

Ai (f )(r) =
∫

Id

f (u)1{ui≤r} du and Ad+i (f )(r) =
∫

Id

f (u)1{u(i)≤r} du for 1 ≤ i ≤ d.

Let δ = (δ(i),1 ≤ i ≤ d) ∈ D0 be a multidiagonal, see Definition 3.6. We set bδ = (bi,1 ≤ i ≤
2d) given by bi = idI the identity function on I and bd+i = δ(i), for 1 ≤ i ≤ d . If, for c ∈
L1(I d), we have Ai (c) = bi , 1 ≤ i ≤ d and c ≥ 0 a.e., then we deduce that c is the density of an
absolutely continuous copula, say C. If we further have Ad+i (c) = bd+i , for 1 ≤ i ≤ d , then δ is
the multidiagonal of C.

Lemma 6.1. Let δ ∈D0 and bδ = (bi,1 ≤ i ≤ 2d). If c ∈ L1(I d) is non-negative, symmetric and
satisfies Ad+i (c) = bd+i for 1 ≤ i ≤ d , then c is the density of a copula with multidiagonal δ.

Proof. The symmetry and non-negativity of c as well as the condition Ad+1(c)(1) = ∫
Id c =

bd+1(1) = 1 ensures that c is a density function of an exchangeable random vector V =
(V1, . . . , Vd) on Id . Recall V OS = (V(1), . . . , V(d)) denotes the corresponding order statistics.
By symmetry, the lemma is proved as soon as we check that A1(c) = b1. We have for r ∈ I :

A1(c)(r) = P(V1 ≤ r) =
d∑

i=1

P(V(i) ≤ r|V1 = V(i))P(V1 = V(i)) =
d∑

i=1

δ(i)(r)
1

d
= r,

where we used the exchangeability of V and the definition of δ(i) for the third equality, and (21)
for the last. This gives A1(c) = b1. �

6.2. Proof of Proposition 4.5

Let δ ∈ D0. Lemma 3.16 implies that δ(i)((�
δ
i )

c) has zero Lebesgue measure for all 2 ≤ i ≤ d

with �δ
i given by (29). By construction, the function cδ defined by (44) is non-negative, sym-

metric and well defined a.e. on I d . Recall the notation (g
(j)
i , d

(j)
i ) used in (39) and the definition

(45) of the functions ai . We define the functions Bi on I as, for 1 ≤ i ≤ d + 1, t ∈ (g
(j)
i , d

(j)
i )

(with the conventions �δ
1 = (0, d1),�

δ
d+1 = (gd+1,1)):

Bd+1(t) = 1 and Bi(t) =
∫ d

(j)
i

t

ai(s)Bi+1(s) ds for 1 ≤ i ≤ d. (61)
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For t ∈ (�δ
i )

c , we set Bi(t) = 0. Recall Ki defined in (46) for 1 ≤ i ≤ d+1 with the convention
Kd+1 = 0. We show that Bi can be simply expressed by Ki on �δ

i .

Lemma 6.2. Let 1 ≤ i ≤ d + 1 and t ∈ �δ
i . Then we have:

Bi(t) = exp
(−Ki(t)

)
. (62)

Proof. For i = d + 1, the result is trivial. We proceed by induction on i. We suppose that
Bi+1(t) = exp(−Ki+1(t)) holds for some 1 ≤ i ≤ d , and all t ∈ ψδ

i+1. We have for t ∈
(g

(j)
i , d

(j)
i ):

Bi(t) =
∫ d

(j)
i

t

ai(s)Bi+1(s) ds

=
∫ d

(j)
i

t

K ′
i (s)e

Ki+1(s)−Ki(s)1�δ
i ∩�δ

i+1
(s)Bi+1(s) ds

=
∫ d

(j)
i

t

K ′
i (s)e

−Ki(s)1�δ
i ∩�δ

i+1
(s) ds

=
∫ d

(j)
i

t

K ′
i (s)e

−Ki(s) ds

= exp
(−Ki(t)

)
,

where we used the definition of ai given by (45) for the second equality, the induction hypoth-
esis for the third equality, (t, d

(j)
i ) ⊂ �δ

i and Lemma 3.16 for the fourth equality, and finally
Remark 4.4 for the fifth equality. This ends the induction. �

Similarly, we define the functions Ei on I as, for 0 ≤ i ≤ d as for t ∈ (g
(j)

i+1, d
(j)

i+1):

E0(t) = 1, and Ei(t) =
∫ t

g
(j)
i+1

ai(s)Ei−1(s) ds for 1 ≤ i ≤ d. (63)

For t ∈ (�δ
i+1)

c we set Ei(t) = 0. The next lemma gives a simple formula for Ei on �δ
i+1.

Lemma 6.3. Let 0 ≤ i ≤ d and t ∈ �δ
i+1. Then we have:

Ei(t) = (
δ(i)(t) − δ(i+1)(t)

)
exp

(
Ki+1(t)

)
. (64)

Proof. For i = 0, the result is clear thanks to the convention δ(0) = 1 and (47). We proceed by
induction on i. We suppose that Ei−1(t) = (δ(i−1)(t)−δ(i)(t)) exp(Ki(t)) holds for some 1 ≤ i ≤
d , and all t ∈ ψδ

i . Let us denote hi = δ(i−1) − δ(i). Before computing Ei(t) for t ∈ (g
(j)

i+1, d
(j)

i+1),
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we give an alternative expression for exp(Ki(s)) for s ∈ (g
(j)

i+1, t):

eKi+1(s) = exp

(
−

∫ t

m
(j)
i+1

h′
i+1(u)

hi+1(u)
+

∫ t

s

h′
i+1(u)

hi+1(u)
+

∫ s

m
(j)
i+1

δ′
(i)(u)

hi+1(u)
du

)
(65)

= hi+1(t)

hi+1(s)
exp

(
−

∫ t

m
(j)
i+1

h′
i+1(u)

hi+1(u)
+

∫ s

m
(j)
i+1

δ′
(i)(u)

hi+1(u)
du

)
.

Then we have for t ∈ (g
(j)

i+1, d
(j)

i+1):

Ei(t) =
∫ t

g
(j)
i+1

ai(s)Ei−1(s) ds

=
∫ t

g
(j)
i+1

K ′
i (s)e

Ki+1(s)−Ki(s)1�δ
i ∩�δ

i+1
(s)Ei−1(s) ds

=
∫ t

g
(j)
i+1

K ′
i (s)e

Ki+1(s)hi(s)1�δ
i ∩�δ

i+1
(s) ds

=
∫ t

g
(j)
i+1

δ′
(i)(s)e

Ki+1(s)1�δ
i ∩�δ

i+1
(s) ds

= hi+1(t) exp

(
−

∫ t

m
(j)
i+1

h′
i+1(u)

hi+1(u)
du

)∫ t

g
(j)
i+1

(
δ′
(i)(s)

hi+1(s)
exp

(∫ s

m
(j)
i+1

δ′
(i)(u)

hi+1(u)
du

))
ds

= hi+1(t) exp

(
−

∫ t

m
(j)
i+1

h′
i+1(u) − δ′

(i)(u)

hi+1(u)
du

)

= hi+1(t) exp
(
Ki+1(t)

)
,

where we used the definition of ai given by (45) for the second equality, the induction hypothesis
for the third equality, Lemma 3.16 and (65) for the fifth equality, and for the seventh equality we
use that, for t ∈ (g

(j)

i+1,m
(j)

i+1) (similarly to Remark 4.4):

∫ t

m
(j)
i+1

δ′
(i)(s)

hi+1(s)
ds ≤

∫ t

m
(j)
i+1

δ′
(i)(s)

δ(i)(s) − δ(i+1)(g
(j)

i+1)
ds = log

(
δ(i)(t) − δ(i+1)(g

(j)

i+1)

δ(i)(m
(j)

i+1) − δ(i+1)(g
(j)

i+1)

)
,

giving lim
t↘g

(j)
i+1

∫ t

m
(j)
i+1

δ′
(i)

(s)

hi+1(s)
ds = −∞. �

The following lemma justifies the introduction of the functions Bi,Ei .
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Lemma 6.4. We have with u(0) = 0 for 1 ≤ i ≤ d , t ∈ �δ
i :∫

Id

cδ(u)1{u(i−1)≤t≤u(i)} du = Bi(t)Ei−1(t). (66)

Proof. The definition (61) of Bi for 1 ≤ i ≤ d gives that for t ∈ I :

Bi(t) =
∫

ai(ri)ai+1(ri+1) · · ·ad(rd)1{t≤ri≤ri+1≤···≤rd≤1}1{[t,ri )⊂�δ
i }

d−1∏
j=i

1{(rj ,rj+1)⊂�δ
j+1} dr,

with r = (ri , ri+1, . . . , rd) ∈ I d−i+1. Similarly, we have for 1 ≤ i ≤ d , t ∈ I that Ei−1(t) is equal
to: ∫

a1(q1)a2(q2) · · ·ai−1(qi−1)1{0≤q1≤q2≤···≤qi−1≤t}1{(qi−1,t]⊂�δ
i }

i−2∏
j=1

1{(qj ,qj+1)⊂�δ
j+1} dq,

with q = (q1, q2, . . . , qi−1) ∈ I i−1. Multiplying Bi(t) with Ei−1(t) gives:

Bi(t)Ei−1(t) =
∫

�

d∏
j=1

aj (uj )1{ui−1≤t≤ui }
d−1∏
j=1

1{(uj ,uj+1)⊂�δ
j+1} du

=
∫

�

d∏
j=1

aj (uj )1{ui−1≤t≤ui }1Lδ (u) du

= d!
∫

�
cδ(u)1{ui−1≤t≤ui } du

=
∫

Id

cδ(u)1{u(i−1)≤t≤u(i)} du,

where we used the symmetry of cδ for the fourth equality. �

Lemma 6.4 with i = 1 ensures that
∫
Id cδ(u) du = limt↘0 B1(t)E0(t) = 1, that is cδ a proba-

bility density function on Id . Now we compute Ad+1(cδ). We have, for t ∈ �δ
i :

Ad+1(cδ)(t) =
∫

Id

cδ(u)1{u(1)≤t} du

= 1 −
∫

Id

cδ(u)1{u(1)≥t} du = 1 − B1(t)E0(t)

= δ(1)(t),

where we used Lemma 6.4 with i = 1 for the third equality, then (62) and (47) for the fourth
equality. By continuity this gives Ad+1(cδ) = δ(1) on I . For 2 ≤ i ≤ d , we have by induction
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for t ∈ �δ
i :

Ad+i (cδ)(t) =
∫

Id

cδ(u)1{u(i)≤t} du

=
∫

Id

cδ(u)1{u(i−1)≤t} du −
∫

Id

cδ(u)1{u(i−1)≤t≤u(i)} du

=Ad+i−1(cδ)(t) − Bi(t)Ei−1(t)

= δ(i−1)(t) − (
δ(i−1)(t) − δ(i)(t)

)
= δ(i)(t),

where we used the induction and Lemma 6.4 for the third equality, as well as (62) and (64) for
the fourth. By continuity, we obtain Ad+i (cδ) = δ(i) on I . Then use Lemma 6.1 to get that cδ is
the density of a (symmetric) copula, say Cδ , with multidiagonal δ.

To conclude, we compute the entropy H(Cδ) = − ∫
Id cδ log(cδ).

Lemma 6.5. We have:

H(Cδ) = log(d!) +
d∑

i=1

H(δ(i)) + (d − 1) − J(δ).

Proof. Recall that for u ∈ Lδ :

log
(
cδ(u)

) = − log(d!) +
d∑

i=1

log
(
δ′
(i)(u(i))

) −
d∑

i=2

log
(
δ(i−1)(u(i)) − δ(i)(u(i))

)

−
d∑

i=2

(
Ki(u(i)) − Ki(u(i−1))

)
,

where we used (47) to express a1 = δ′
(1)e

K2 a.e., so that the sums in the last two terms start at
i = 2.

We first show that the function u �→ cδ(u) log(δ′
(i)(u(i))) belongs to L1(I d) for all 1 ≤ i ≤ d .

Since Ad+i (cδ) = δ(i), we deduce that for 1 ≤ i ≤ d and any measurable non-negative function
h defined on I : ∫

Id

cδ(u)h(u(i)) du =
∫

I

δ′
(i)(t)h(t) dt. (67)

In particular, we get:∫
Id

cδ(u)
∣∣log

(
δ′
(i)(u(i))

)∣∣du =
∫

I

δ′
(i)(t)

∣∣log
(
δ′
(i)(t)

)∣∣dt,
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which is finite thanks to Remark 3.8. Therefore, the function u �→ cδ(u) log(δ′
(i)(u(i))) is indeed

in L1(I d), and its integral J1,i is given by:

J1,i =
∫

Id

cδ(u) log
(
δ′
(i)(u(i))

)
du =

∫
I

δ′
(i)(t) log

(
δ′
(i)(t)

)
dt = −H(δ(i)).

We proceed by showing that u �→ cδ(u)(Ki(u(i)) − Ki(u(i−1))) belongs to L1(I d) for 2 ≤ i ≤
d . Since this is a non-negative function, a direct calculation of its integral J2,i gives:

J2,i = d!
∫

�
cδ(u)

(
Ki(ui) − Ki(ui−1)

)
du

=
∫

I 2
(Ei−2ai−1)(ui−1)

(
Ki(ui) − Ki(ui−1)

)
(aiBi+1)(ui)1{ui−1≤ui ,(ui−1,ui )⊂�δ

i } dui−1 dui,

where we used the symmetry of cδ for the first equality; the definition of the functions Bi and Ei

given by (61) and (63) for the second equality. Using (45), (62), (64) and Lemma 3.16, we have:

Ei−2ai−1 = δ′
(i−1)e

Ki 1�δ
i−1∩�δ

i
= δ′

(i−1)e
Ki and aiBi+1 = K ′

ie
−Ki 1�δ

i ∩�δ
i+1

= K ′
ie

−Ki .

Therefore, we have:

J2,i =
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′
(i−1)(ui−1)

(∫ d
(j)
i

ui−1

K ′
i (ui)

(
Ki(ui) − Ki(ui−1)

)
eKi(ui−1)−Ki(ui) dui

)
dui−1

=
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′
(i−1)(ui−1)

(∫ +∞

0
se−s ds

)
dui−1

=
∑
j∈Ji

∫ d
(j)
i

g
(j)
i

δ′
(i−1)(ui−1) dui−1

= 1,

where we applied the change of variable s = Ki(ui) − Ki(ui−1) and Remark 4.4 for the fourth
equality; finally Lemma 3.16 for the sixth equality.

Let us define J3,i , 2 ≤ i ≤ d as:

J3,i = −
∫

Id

cδ(u) log
(
δ(i−1)(u(i)) − δ(i)(u(i))

)
du.

Notice that the integrand is non-positive a.e., since for t ∈ I , 2 ≤ i ≤ d , we have δ(i−1)(t) −
δ(i)(t) ≤ 1. Therefore, we get by (67):

J3,i =
∫

Id

cδ(u)
∣∣log

(
δ(i−1)(u(i)) − δ(i)(u(i))

)∣∣du =
∫

I

δ′
(i)(t)

∣∣log
(
δ(i−1)(t) − δ(i)(t)

)∣∣dt.
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Notice that J3,i ∈ [0,+∞] and
∑d

i=2 J3,1 = J(δ). The results on J1,i , J2,i and J3,i imply that we
can decompose H(Cδ) as:

H(Cδ) = log(d!) −
d∑

i=1

J1,i +
d∑

i=2

J2,i −
d∑

i=2

J3,i = log(d!) +
d∑

i=1

H(δ(i)) + (d − 1) − J(δ).
�

6.3. The optimization problem

Let δ ∈ D0. Recall notation from Section 6.1. The problem of maximizing H over C0
δ can be

written as an optimization problem (P δ) with infinite dimensional constraints:

maximize H(c) subject to

{
A(c) = bδ,

c ≥ 0 a.e. and c ∈ L1(I d
)
.

(P δ)

Notice that if f ∈ L1(I d) is non-negative and solves A(f ) = bδ , then f is the density of a
copula. We say that a function f is feasible for (P δ) if f ∈ L1(I d), f ≥ 0 a.e., A(f ) = bδ and
H(f ) > −∞. We say that f is an optimal solution of (P δ) if f is feasible and H(f ) ≥ H(g)

for all g feasible. The next proposition gives conditions which ensure the existence of an optimal
solution.

Proposition 6.6. Let δ ∈D0. If there exists c feasible for (P δ), then there exists a unique optimal
solution to (P δ) and it is symmetric.

Proof. Since A(f ) = bδ implies A1(f )(1) = b1(1) that is
∫
Id f (x) dx = 1, we can directly ap-

ply Corollary 2.3 of [5] which states that if there exists a feasible c, then there exists a unique
optimal solution to (P δ). Since the constraints of (P δ) are symmetric, such as the functional
H , we deduce that if c∗ is the optimal solution, then so is c∗

π defined for π ∈ Sd and u ∈ I d as
c∗
π (u) = c∗(uπ ). By uniqueness of the optimal solution, we deduce that c∗ = c∗

π for all permuta-
tions π ∈ Sd ; hence c∗ is symmetric. �

Combining Lemmas 4.2 and 4.1 gives the following corollary on the support of any c verifying
A(c) = bδ .

Corollary 6.7. Let δ ∈ D0. If c ∈ L1(I d) is non-negative and verifies A(c) = bδ , then c = 0 a.e.
on Zδ ∪ Lc

δ with Lδ defined by (40) and Lc
δ = I d \ Lδ .

6.4. Reduction of the optimization problem (P δ)

Let δ ∈ D0. Since the optimal solution of (P δ) is symmetric, see Proposition 6.6, we can reduce
the optimization problem by considering it on the simplex �. We define μ to be the Lebesgue
measure restricted to (Zc

δ ∩ Lδ) ∩ �: μ(du) = 1(Zc
δ∩Lδ)∩�(u) du. We define, for f ∈ L1(I d):

Hμ(f ) = −
∫

Id

f (u) log
(
f (u)

)
μ(du).



Maximum entropy distribution of order statistics with given marginals 147

From Corollary 6.7, we can deduce that if c ∈ L1(I d) is non-negative symmetric and solves
A(c) = bδ , then:

H(c) = d!Hμ(c). (68)

Let us also define, for f ∈ L1(I d), 1 ≤ i ≤ d , r ∈ I :

Aμ
i (c)(r) = d!

∫
Id

c(u)1{ui≤r}μ(du).

We shall consider the restricted optimization problem (P δ
μ) given by:

maximize Hμ(c) subject to

{
Aμ(c) = δ,

c ≥ 0 μ-a.e. and c ∈ L1(I d
)
.

(P δ
μ)

We have the following equivalence between (P δ) and (P δ
μ). Recall that uOS denotes the ordered

vector of u ∈ Rd .

Corollary 6.8. Let δ ∈ D0. If c is the optimal solution of (P δ) then it is also an optimal solution
to (P δ

μ). If ĉ is an optimal solution of (P δ
μ), then c, defined by c(u) = ĉ(uOS)1Zc

δ∩Lδ
(u) is the

optimal solution to (P δ).

Notice the Corollary implies that (P δ
μ) has a μ-a.e. unique optimal solution: if c1 and c2 are

two optimal solutions of (P δ
μ) then μ-a.e. c1 = c2. Thanks to Proposition 6.6 and (68), Corol-

lary 6.8 is a direct consequence of the following lemma that establishes the connection between
the constraints.

Lemma 6.9. Let δ ∈ D0. For c ∈ L1(I d) symmetric and non-negative the following two condi-
tions are equivalent:

1. A(c) = bδ .
2. Aμ(c) = δ and c = 0 a.e. on Zδ ∪ Lc

δ .

Proof. Assume that A(c) = bδ . We have, by Corollary 6.7, that c = 0 a.e. on Zδ ∪ Lc
δ . This and

the symmetry of c gives, for 1 ≤ i ≤ d , r ∈ I :

Aμ
i (c)(r) = d!

∫
Id

c(u)1{u(i)≤r}1�(u) du =
∫

Id

c(u)1{u(i)≤r} du = δ(i)(r).

On the other hand, let us assume that Aμ(c) = δ and c = 0 a.e. on Zδ ∪ Lc
δ . We have, for 1 ≤ i ≤

d , r ∈ I :

Ad+i (c)(r) =
∫

Id

c(u)1{u(i)≤r}1Zc
δ∩Lδ

(u) du = d!
∫

Id

c(u)1{ui≤r}μ(du) = δ(i)(r),

where we used c = 0 a.e. on Zδ ∪ Lc
δ for the first equality, the symmetry of c and the definition

of μ for the second, and Aμ(c) = δ for the third. Lemma 6.1 ensures then that Ai (c) = bi for
1 ≤ i ≤ d . This ends the proof. �
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6.5. Solution for the reduced optimization problem (P δ
μ)

Let δ ∈ D0. We compute (Aμ)∗ : L∞(I )d → L∞(I d) the adjoint of Aμ. For λ = (λi,1 ≤ i ≤
d) ∈ L∞(I )d and f ∈ L1(I d), we have:

〈(
Aμ

)∗
(λ), f

〉 = 〈
λ,Aμ(f )

〉 = d∑
i=1

∫
I

λi(r)

∫
Id

f (u)1{ui≤r} dμ(u)dr

=
∫

Id

f (u)

d∑
i=1

�i(ui) dμ(u),

where we used the definition of the adjoint operator for the first equality, Fubini’s theorem for
the second, and the following definition of the functions (�i,1 ≤ i ≤ d) for the third:

�i(t) =
∫

I

λi(r)1{r≥t} dr, t ∈ I.

Thus, we have for λ ∈ L∞(I )d and u = (u1, . . . , ud) ∈ I d :

(
Aμ

)∗
(λ)(u) =

d∑
i=1

�i(ui). (69)

We will use Theorem 2.9. from [5] on abstract entropy minimization, which we recall here,
adapted to the context of (P δ

μ).

Theorem 6.10 (Borwein, Lewis and Nussbaum). Suppose there exists c > 0 μ-a.e. which is
feasible for (P δ

μ). Then there exists a μ-a.e. unique optimal solution, c∗, of (P δ
μ). Furthermore,

we have c∗ > 0 μ-a.e. and there exists a sequence (λn,n ∈N∗) of elements of L∞(I )d such that:∫
Id

c∗(u)
∣∣(Aμ

)∗(
λn

)
(u) − log

(
c∗(u)

)∣∣μ(du) −−−→
n→∞ 0. (70)

Now we are ready to prove that the optimal solution c∗ of (P δ
μ) is the product of measurable

univariate functions.

Lemma 6.11. Let δ ∈ D0. Suppose that there exists c > 0 μ-a.e.which is feasible for (P δ
μ). Then

there exist non-negative, measurable functions (a∗
i ,1 ≤ i ≤ d) defined on I such that a∗

i (s) = 0
if δ′

(i)(s) = 0 and the function c∗ defined a.e. on I d by:

c∗(u) = 1

d!1Lδ (u)

d∏
i=1

a∗
i (ui)

is the optimal solution to (P δ
μ).
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Proof. According to Theorem 6.10, there exists a sequence (λn,n ∈ N) of elements of L∞(I )d

such that the optimal solution, say c∗, satisfies (70). This implies, thanks to (69), that there exist
d sequences (�n

i , n ∈ N∗,1 ≤ i ≤ d) of elements of L∞(I ) such that the following convergence
holds in L1(I d , c∗μ):

d∑
i=1

�n
i (ui)

log−−−→
n→∞

(
c∗(u)

)
. (71)

We first assume that there exist �i , 1 ≤ i ≤ d measurable functions defined on I such that
μ-a.e. on S:

d∑
i=1

�i(ui) = log
(
c∗(u)

)
. (72)

Set a∗
i = d

√
d! exp(�i) so that μ-a.e. on S:

c∗(u) = 1

d!
d∏

i=1

a∗
i (ui). (73)

Recall μ(du) = 1(Zc
δ∩Lδ)∩�(u) du. From the definition (38) of Zδ , we deduce that without loss

of generality, we can assume that a∗
i (ui) = 0 if δ′

(i)(ui) = 0. Therefore, we obtain c∗(u) =
(1/d!)1Lδ (u)

∏d
i=1 a∗

i (ui) for u ∈ I d .
To complete the proof, we now show that (72) holds for �i , 1 ≤ i ≤ d measurable func-

tions. We introduce the notation u(−i) = (u1, . . . , ui−1, ui+1, . . . , ud) ∈ I d−1. Let us define
the probability measure P(du) = c∗(u)μ(du)/

∫
Id c∗(y)μ(dy) on I d . We fix j , 1 ≤ j ≤ d .

In order to apply Proposition 2 of [18], which ensures the existence of the limiting measur-
able functions �i , 1 ≤ i ≤ d , we first check that P is absolutely continuous with respect to
P

j

1 ⊗ P
j

2 , where P
j

1 (du(−j)) = ∫
uj ∈I

P (du(−j) duj ) and P
j

2 (duj ) = ∫
u(−j)∈Id−1 P(du(−j) duj )

are the marginals of P . Notice that there exists a non-negative density function h such
that P(du) = h(u(−j), uj ) du(−j) duj . Let h1(u(−j)) = ∫

h(u(−j), uj ) duj and h2(uj ) =∫
h(u(−j), uj ) du(−j) denote the density of the marginals P

j

1 and P
j

2 . Then the density

of the product measure P
j

1 ⊗ P
j

2 is given by P
j

1 ⊗ P
j

2 (du) = h1(u(−j))h2(uj ) du(−j) duj .
The support of the density h is noted by T0 = {u ∈ I d;h(u) > 0}, and the support of the
marginals are noted by T1 = {v ∈ I d−1;h1(v) > 0} and T2 = {t ∈ I ;h2(t) > 0}. With this
notation, we have that a.e. T0 ⊂ T1 × T2 (that is T0 ∩ (T1 × T2)

c is of zero Lebesgue mea-
sure). If A ⊂ Id is such that

∫
1A(u)h1(u(−j))h2(uj ) du(−j) duj = 0, then we also have∫

1A∩(T1×T2)(u)h1(u(−j))h2(uj ) du(−j) duj = 0. Since h1h2 is positive on T1 × T2, this implies
that A ∩ (T1 × T2) has zero Lebesgue measure. Therefore, we have:∫

1A(u)h(u)du =
∫

1A∩(T1×T2)(u)h(u)du +
∫

1A\(T1×T2)(u)h(u)du = 0,

since h = 0 a.e. on A \ (T1 × T2). This proves that P is absolutely continuous with respect
to P

j

1 ⊗ P
j

2 . Then according to Proposition 2 of [18], (71) implies that there exist measurable
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functions �j and �̃j defined respectively, on I d−1 and I , such that c∗μ-a.e. on �:

log
(
c∗(u)

) = �j(u(−j)) + �̃j (uj ).

As μ-a.e. c∗ > 0, this equality holds μ-a.e. on S. Since we have such a representation for every
1 ≤ j ≤ d , we can easily verify that log(c∗(u)) = ∑d

i=1 �i(ui) μ-a.e. with �̃j = �j up to an
additive constant. �

6.6. Proof of Proposition 4.6

Let δ ∈D0. Recall that uOS denotes the ordered vector of u ∈ Rd . Let c be the density of a sym-
metric copula in Rd such that A(c) = bδ and c is of product form, that is, thanks to Corollary 6.8,
c(u) = c∗(uOS) with

c∗(u) = 1

d!1Lδ (u)

d∏
i=1

a∗
i (ui), u = (u1, . . . , ud) ∈ �,

where a∗
i , 1 ≤ i ≤ d are measurable non-negative functions defined on I . In this section, we

shall prove that c equals cδ defined by (44); that is, for all 1 ≤ i ≤ d , a∗
i is a.e. equal, up to a

multiplicative constant, to ai defined in (45). This will prove Proposition 4.6.
Recall the definitions of g

(j)
i ,m

(j)
i , d

(j)
i from Section 4, for 1 ≤ i ≤ d + 1. We deduce from

(43) that:

c∗(u) = 1

d!1Lδ (u)

d∏
i=1

a∗
i (ui)1�δ

i ∩�δ
i+1

(ui), u = (u1, . . . , ud) ∈ �.

We deduce also from Lemma 6.9 that Aμ(c∗) = δ. We introduce the following family of func-
tions:

B∗
d+1(t) = E∗

0 (t) = 1,

and for 1 ≤ i ≤ d , t ∈ (g
(j)
i , d

(j)
i ) and t ′ ∈ (g

(j)

i+1, d
(j)

i+1):

B∗
i (t) =

∫ d
(j)
i

t

a∗
i (s)B∗

i+1(s) ds, E∗
i

(
t ′
) =

∫ t ′

g
(j)
i+1

a∗
i (s)E∗

i−1(s) ds.

Recall the functions Bi , for 1 ≤ i ≤ d + 1, and Ei , for 0 ≤ i ≤ d defined by (61) and (63). We
will prove by (downward) induction on i ∈ {1, . . . , d + 1} that:

B∗
i (t) = B∗

i

(
m

(j)
i

)
Bi(t), t ∈ (

g
(j)
i , d

(j)
i

)
. (74)

For i = d + 1, it trivially holds. Let us assume that (74) holds for i + 1, d ≥ i ≥ 1. Recall the
convention Kd+1 = 0, δ(d+1) = 0 and δ(0) = 1. Arguing as in the proof of Lemma 6.4, we deduce



Maximum entropy distribution of order statistics with given marginals 151

from Aμ
i (c∗) = δ(i) that for r ∈ �δ

i :

δ(i)(r) = d!
∫

Id

c∗(u)1{u(i)≤r}μ(du)

= d!
∫

Id

c∗(u)1{u(i+1)≤r}μ(du) +
∫

�
1Lδ (u)

d∏
j=1

(
a∗
j (uj )1�δ

j ∩�δ
j+1

(uj )
)
1{ui≤r≤ui+1} du

= δ(i+1)(r) + B∗
i+1(r)E

∗
i (r).

This gives on �δ
i :

δ(i) − δ(i+1) = B∗
i+1E

∗
i . (75)

Notice (75) holds for i = d thanks to the conventions. We get on �δ
i :

δ′
(i) − δ′

(i+1) = −K ′
i+1B

∗
i+1E

∗
i + B∗

i+1a
∗
i E∗

i−1 = −δ′
(i+1) + B∗

i+1a
∗
i E∗

i−1,

where we took the derivative in (75), twice the induction hypothesis for B∗
i+1 and (62) for the

first equality; then (46) and (75) for the second. We deduce that on �δ
i :

δ′
(i) = B∗

i+1a
∗
i E∗

i−1. (76)

On �δ
i , we can divide (76) by (75) and get, thanks to (46):

a∗
i B∗

i+1

B∗
i

= δ′
(i)

δ(i−1) − δ(i)

= K ′
i .

Notice that (B∗
i )′ = −a∗

i B∗
i+1. So using the representation (62) of Bi , we get that (74) holds for i.

Thus (74) holds for 1 ≤ i ≤ d + 1. Then use (74) as well as (B∗
i )′ = −a∗

i B∗
i+1 and B ′

i = −aiBi+1

to get that for t ∈ (g
(j)
i , d

(j)
i ) ∩ (g

(k)
i+1, d

(k)
i+1):

a∗
i (t) = B∗

i (m
(j)
i )

B∗
i+1(m

(k)
i+1)

ai(t).

Therefore if u = (u1, . . . , ud) ∈ Lδ , we have:

d∏
i=1

a∗
i (u(i)) = B∗

1 (m1)

B∗
d+1(md+1)

d∏
i=1

ai(u(i)),

since when u ∈ Lδ , u(i−1) and u(i) belong to the same interval (g
(j)
i , d

(j)
i ) for 2 ≤ i ≤ d . This en-

sures that cδ and c∗ are densities of probability function which differ by a multiplicative constant,
therefore they are equal. This ends the proof of Proposition 4.6.
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6.7. Proof of case (a) for Theorems 4.7 and 5.4

We first consider the case d = 2. Let δ ∈D0 with J(δ) = +∞. Recall J(δ) is defined by (15). We
have:

J(δ) = −
∫

I

δ′
(2)(t) log

(
2
(
t − δ(2)(t)

))
dt

= − log(2) −
∫

I

log
(
t − δ(2)(t)

)
dt +

∫
I

(
1 − δ′

(2)(t)
)

log
(
t − δ(2)(t)

)
dt

= − log(2) −
∫

I

log
(
t − δ(2)(t)

)
dt + [(

t − δ(2)(t)
)

log
(
t − δ(2)(t)

) − (
t − δ(2)(t)

)]1
0

= − log(2) −
∫

I

log
(
t − δ(2)(t)

)
dt,

where we used δ(1) +δ(2) = 2t for the first equality, δ(2)(1) = 1 and δ(2)(0) = 0 for the second and
last. In particular, we obtain that J(δ) is equal to − log(2) + J (δ(2)), with J as also defined by
(1) in [6]. Therefore, we deduce case (a) of Theorem 4.7 (for d = 2) from case (a) of Theorem 2.4
in [6]. Then, we get from (14) and Theorem 4.7 case (a) that Hh(F) = −∞ for all F ∈ LOS

2 (F).
This proves case (a) for Theorem 5.4 (for d = 2).

We then consider the case d ≥ 2. Let δ ∈ D0 with J(δ) = +∞. This implies that there exists
2 ≤ i ≤ d such that

∫
I
δ′
(i)(t)| log(δ(i−1)(t) − δ(i)(t))|dt = +∞. Set F = (δ(i−1), δ(i)) and notice

that F belongs to F2 as δ(i) is d-Lipschitz. Since
∫
I
δ′
(i)(t)| log(δ(i−1)(t)− δ(i)(t))|dt = +∞, we

deduce from the first part of this Section that maxF∈LOS
2 (F) Hh(F ) = −∞.

Consider a copula C belonging to Cδ ∩ Csym and U a random vector on I d with c.d.f. C.
According to Lemma 3.21 and Lemma 3.3, as C is symmetric, we have:

H
(
UOS) = H(U) − log(d!) = H(C) − log(d!).

It is easy to check that if X = (X1, . . . ,Xd) is a random vector on I d and 2 ≤ i ≤ d , then we
have H((Xi−1,Xi)) ≥ H(X). This implies that, for V = (UOS

i−1,U
OS
i ),

H(V ) ≥ H(C) − log(d!).

Since the c.d.f. of UOS

 is δ(
) as C ∈ Cδ , we deduce the c.d.f. of V belongs to LOS

2 (F), and thus
H(V ) = −∞. This implies that H(C) = −∞. Thanks to Proposition 6.6 which states that the
entropy is maximal on symmetric copulas, we deduce that:

max
C∈Cδ

H(C) = max
C∈Cδ∩Csym

H(C) = −∞.

This proves cases (a) for Theorem 4.7. Then, we get from (14) that Hh(F) = −∞ for all F ∈
LOS

d (F). This proves case (a) for Theorem 5.4.
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6.8. Proof of Theorem 4.7, case (b)

Let δ ∈ D with J(δ) < +∞. Thanks to Lemma 3.16, J(δ) < +∞ implies that δ ∈ D0. By con-
struction, cδ introduced in Proposition 4.5 verifies μ-a.e. cδ > 0. The density cδ is a feasible
solution to the problem (P δ

μ). Theorem 6.10 ensures the existence of a unique optimal solution
c∗. Furthermore, by Lemma 6.11, we have that there exist non-negative, measurable functions
a∗
i , 1 ≤ i ≤ d , such that c∗(u) = (1/d!)1Lδ (u)

∏d
i=1 a∗

i (ui) μ-a.e. By Corollary 6.8, the optimal
solution c of (P δ) is given by, for u = (u1, . . . , ud):

c(u) = c∗(uOS)
1Zc

δ∩Lδ
(u) = 1

d!1Lδ (u)

d∏
i=1

a∗
i (u(i))1{δ′

(i)
(u(i))
=0}.

Since c is of product form, Proposition 4.6 yields that c = cδ a.e., therefore Cδ is the unique
copula achieving H(Cδ) = maxC∈Cδ

H(C).

7. Overview of the notations

– Fd : set of continuous one-dimensional marginal c.d.f.s F = (F1, . . . ,Fd) of d-dimensional
order statistics, see (10).

– F0
d : set of continuous one-dimensional marginal c.d.f.s F = (F1, . . . ,Fd) of d-dimensional

abs. cont. order statistics, see Definition 3.17.
– Hh(F): the relative entropy (with respect to the reference probability density h) of the

random variable corresponding to the c.d.f. F , see (13).
– H(F) = Hh(F) when h = 1[0,1] and F is the c.d.f. of a random variable taking values in

[0,1]d .
– J(F): the quantity appearing in the expression of the entropy of the maximum entropy dis-

tribution of order statistics with marginal c.d.f.s F ∈ Fd , see (15).
– Ld : set of c.d.f.s on Rd with continuous one-dimensional marginal c.d.f.s.
– L0

d : set of absolutely continuous c.d.f.s on Rd .
– LOS

d : set of c.d.f.s of d-dimensional order statistics with continuous one dimensional
marginal c.d.f.s.

– LOS
d (F): set of c.d.f.s of d-dimensional order statistics with marginal c.d.f.s F, see (11).

– Lsym
d : set of symmetric c.d.f.s on Rd with continuous one-dimensional marginal c.d.f.s.

– F sym: the symmetrization of the c.d.f. F , see (16).
– SF: symmetrizing operator on copulas, associated to the marginal c.d.f.s F, see Defini-

tion 3.1.
– C: set of all copulas.
– C0: set of absolutely continuous copulas.
– COS(F): set of copulas of order statistics with marginal c.d.f.s F, see (12).
– Csym: set of symmetric (permutation invariant) copulas.
– Csym(F): image of the set COS(F) by the operator SF, see (19). It is the set of symmetric

copulas with multidiagonal δF.
– Cδ : set of copulas with multidiagonal δ, see Section 3.2.
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– C0
δ : set of abs. cont. copulas with multidiagonal δ, see Section 3.2.

– D: set of multidiagonals of copulas, see Section 3.2.
– D0: set of multidiagonals of abs. cont. copulas, see Section 3.2.
– �F

i : set of points t ∈ R for which the marginal c.d.f.s F = (F1, . . . ,Fd) verify Fi−1(t) >

Fi(t), see (29).
– T F: set of points u = (u1, . . . , ud) ∈ I d for which F−1

1 (u1) ≤ · · · ≤ F−1
d (ud), see (33). The

density of all copulas in COS(F) vanishes outside T F.
– LF: set of ordered vectors x ∈ Rd such that the marginal c.d.f.s F = (F1, . . . ,Fd) verify

Fi−1(t) > Fi (t) for all t ∈ (xi−1, xi), 2 ≤ i ≤ d , see (51). The density of any abs. cont. c.d.f.
in LOS

d (F) vanishes outside LF.
– Lδ : set of points u = (u1, . . . , ud) ∈ I d for which all points t ∈ (u(i−1), u(i)) verify

δ(i−1)(t) > δ(i)(t) for all 2 ≤ i ≤ d , see (40). The density of any copula in C0
δ vanishes

outside Lδ .
– Zδ : set of points u = (u1, . . . , ud) ∈ I d such that δ′

(i)(u(i)) = 0 for some 1 ≤ i ≤ d , see (38).

The density of any copula in C0
δ vanishes on Zδ .
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