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We study the local robustness properties of general nondifferentiable penalized M-estimators via the influ-
ence function. More precisely, we propose a framework that allows us to define rigorously the influence
function as the limiting influence function of a sequence of approximating estimators. We show that it can
be used to characterize the robustness properties of a wide range of sparse estimators and we derive its form
for general penalized M-estimators including lasso and adaptive lasso type estimators. We prove that our
influence function is equivalent to a derivative in the sense of distribution theory.
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1. Introduction

Sparse models have become very popular in recent years. Since the introduction of penalized
methods to study them in the linear model (Breiman [5], Tibshirani [28]), many extensions and
algorithms have been proposed. Fan and Lv [11] and Tibshirani [29] provide good reviews.
Asymptotic properties of lasso-type estimators have been studied in the fixed dimensional pa-
rameter case (Knight and Fu [19], Fan and Li [10], Zou [36]), as well as in the high dimensional
set up where the number of parameters is allowed to grow at an even faster rate than the sample
size (Bühlmann and van de Geer [6]).

Given the increasing importance that sparsity inducing penalties play in modern statistics,
the need for a clear understanding of the robustness properties of these type of procedures is
evident. Robust statistics develops a theoretical framework that allows us to take into account
that the models used for fitting the data are only idealized approximations of reality. It provides
methods that still give reliable results when slight deviations from the stochastic assumptions
on the model occur. Book-length expositions can be found in Huber [17] and second edition by
Huber and Ronchetti [18], Hampel et al. [13] and Maronna et al. [24].

Some authors have suggested sparse estimators that limit the impact of contamination in the
data (e.g., Sardy et al. [26], Wang et al. [31], Li et al. [20], Lozano and Meinshausen [22] and
Fan et al. [9] among many others). These procedures rely on the intuition that a loss function that
defines robust estimators in the well understood unpenalized fixed dimensional M-estimation set
up, should also define robust estimators when it is penalized by a deterministic function. In the
linear model for instance, Fan et al. [9] show that under very mild conditions on the error term
their estimator satisfies the oracle properties.

One of the main lines of research in the robustness literature was opened by Hampel [12] who
considered local robustness, that is, the impact of moderate distributional deviations from ideal
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models on a statistical procedure. In this setting, the quantities of interest are viewed as function-
als of the underlying distribution. Typically their linear approximation is studied to assess the
behavior of estimators in a neighborhood of the model. In this approach the influence function
plays a crucial role in describing the local stability of the functional analyzed. It allows for an
easy assessment of the relative influence of individual observations on the value of an estimate. If
it is unbounded, a single outlier could cause trouble. If a statistical functional T (F ) is sufficiently
regular, a von Mises expansion (von Mises [30]) yields

T (G) ≈ T (F ) +
∫

IF(z;F,T )d(G − F)(z), (1.1)

where IF(z;F,T ) denotes the influence function of the functional T at the distribution F .
Considering the approximation (1.1) over an ε neighborhood of the model Fε = {G|G =
(1 − ε)F + εH,H arbitrary}, we see that the influence function can be used to linearize the
asymptotic bias in a neighborhood of the ideal model. Therefore, a bounded influence function
implies a bounded approximate bias.

The goal of this article is to give a formal definition of the influence function for a wide class
of penalized M-estimators, that covers most of the existing proposals. This requires developing
a new framework. Indeed, the typical tools used to derive the influence function of M-estimators
suffer from a major problem when considering penalized M-estimators: they cannot handle non-
differentiable penalty functions which are necessary for achieving sparsity (Fan and Li [10]).
Note that in a recent paper Wang et al. [33] give the form of the influence function for their pe-
nalized M-estimator. However, it is derived in a limited set up without developing an appropriate
rigorous framework. Further details can be found in Section 5.

Our work provides a number of contributions to the existing literature. First, we introduce an
influence function defined through a sequence of approximating functionals and show that it is
uniquely defined for penalized M-estimators and two-stage penalized M-estimators. The former
class covers lasso and group lasso type estimators. The latter includes adaptive lasso type esti-
mators. We compute the influence function of all these important examples. Second, we show
that the two main features of the influence functions for M-estimators can also be valid for the
influence function of penalized M-estimators, that is, (a) it allows to assess the relative influence
of individual observations towards the value of an estimate; (b) it allows an immediate and sim-
ple, informal assessment of the asymptotic properties of an estimate (Huber and Ronchetti [18],
pages 14–15). Third, we show that our limiting influence function can be viewed as a distribu-
tional derivative in the sense of Schwartz [27]. This opens the door for further research exploiting
the tools of distribution theory, which to the best of our knowledge, has essentially not been used
in the statistical literature previously. Finally, a key step in our theoretical argument is the innova-
tive use of Berge’s maximum theorem. This is a powerful tool that could have more applications
in statistics.

The rest of the article is organized as follows. Section 2 introduces the general framework and
provides the main results regarding our influence function as well as some examples. Section 3
extends the results to two step penalized M-estimators. Section 4 provides some numerical illus-
trations of the local robustness of penalized estimators and its relation to our influence function.
Section 5 establishes the connection between our influence function and distributional deriva-
tives. Finally, Section 6 concludes by discussing some potential research directions. A selection
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of the proofs of our main results is given at the end of the article. Additional proofs and auxiliary
results are provided in the supplementary material Avella-Medina [1].

2. Penalized M-estimators and influence functions

2.1. Background

Consider a collection of n observations {z1, . . . , zn} drawn from a common distribution F

over the space Z , a parameter space � which is an open subset of R
d and a loss function

L : Z × R
d �→ R. Let F̂ = 1

n

∑n
i=1 �zi

be the empirical distribution of F corresponding to the
observed sample, where �z is the distribution probability that assigns mass 1 at the point z and
0 elsewhere. Then the value E

F̂
[L(Z, θ)] = 1

n

∑n
i=1 L(zi, θ) serves as a measure of fit between

the a parameter vector θ ∈ R
p and the observed data. This empirical loss function can be seen

as an estimator of the unknown population risk function EF [L(Z, θ)]. We study the functionals
resulting from the minimization of the regularized risk

�λ(θ;F) = EF

[
L(Z, θ)

] + p(θ;λ) (2.1)

with respect to θ , where p(·;λ) is a continuous penalty function with regularization parameter λ.
Important illustrations of such functionals are considered in Examples 1, 2 and 3 of this paper.

Let T (F ) = θF,λ = θ∗ = argminθ �λ(θ;F). In robust statistics, we are interested in construct-
ing and studying smooth and bounded functionals T , because they yield stable minimizers within
small neighborhoods of F . A bounded derivative ∇T (F ) of T (F ) implies that the functional
T (F ) cannot vary arbitrarily in small neighborhoods of F . One general approach to robustness
is the one based on the influence function (Hampel et al. [13]). Given a distribution space F ,
a parameter space � and a functional T : F �→ �, the influence function of T at a point z ∈ Z
for a distribution F is defined as

IF(z;F,T ) = lim
ε→0+

T (Fε) − T (F )

ε
,

where Fε = (1 − ε)F + ε�z. It has the heuristic interpretation of describing the effect of an
infinitesimal contamination at the point z on the estimate, standardized by the mass of contami-
nation. The well studied M-functionals are defined implicitly as a root of∫

�
(
z,T (F )

)
dF = 0.

They are a special case of the minimizers of (2.1) when the penalty function is set to be zero
and the risk function is differentiable with respect to the parameter. The standard argument for
showing the existence and deriving the form influence function of M-functionals, is to use an
appropriate implicit function theorem. In our set up this would require that �λ has two derivatives
respect to θ . However, it is well known that a penalty function has to be singular at the origin in
order to achieve sparsity (Fan and Li [10] and Negahban et al. [25]). Therefore new tools that
can deal with nondifferentiable penalty functions are required to derive influence functions of
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many modern penalized estimators. We propose to define the influence function as the limit of
the influence functions of a sequence of differentiable penalized M-estimators that converge to
the penalized M-estimator of interest.

2.2. Limiting influence function

We will require the following set of assumptions for the derivation of our theoretical results:

(A1) EF [L(Z, θ)] is continuous in � and has two bounded derivatives with respect to θ

denoted by EF [ψ(Z, θ)] and EF [ψ̇(Z, θ)] respectively, with EF [ψ̇(Z, θ)] nonsingular.
(A2) There is a unique point θ0 ∈ � such that EF [L(Z, θ0)] < infθ∈�\U EF [L(Z, θ)] for

every open set U containing θ0.
(A3) There is a unique θ∗ in an open ball O containing θ0. The functions ψ(z, θ) and

EF [ψ̇(Z, θ)] are continuous at θ∗ for all z ∈R
d .

Assumptions (A1) and (A2) are regularity conditions on the population risk. Namely, they
require some smoothness and a well separated maximum. Assumption (A3) imposes regularity
conditions on the score function ψ and a unique regularized risk minimum on a neighborhood of
the global risk minimum. Obviously when both the population risk and the penalty function are
convex we can take O = �. Nonconvex loss functions and penalty functions restrain the size of
the ball O.

As discussed in the previous subsection, when the penalty function is sufficiently smooth,
a simple application of the implicit function theorem establishes the existence and the form of
the influence function of the minimizer of (2.1). This result is stated in the following lemma.

Lemma 1. Assume (A1)–(A3). Let p : � → R be twice differentiable and S := EF [ψ̇(Z, θ∗)]+
∇2p(θ∗;λ) be invertible. Then the influence function of T (F ) exists for all z ∈R

d and we have

IF(z;F,T ) = −S−1(ψ(
z, θ∗) + ∇p

(
θ∗;λ))

.

Note that S is a fixed matrix that depends on the distribution F as well as on the loss and
penalty functions. From Lemma 1, we conclude that just as for M-estimators, a bounded deriva-
tive for the loss function is required in order to obtain bounded influence estimators in the penal-
ized setting. When the penalty function in (2.1) is not differentiable, the conditions of Lemma 1
do not hold. We therefore propose to study the limiting form of the influence function of penal-
ized M-estimators obtained using smooth penalty functions pm such that limm→∞ pm = p. Such
penalized M-estimators, denoted by T (F ;pm), are defined as the minimizers of

�λ(θ;F,pm) = EF

[
L(Z, θ)

] + pm(θ;λ). (2.2)

We let IFpm(z;T ,F ) be the influence function of T (F ;pm) and define the influence function of
T (F ) as

IF(z;F,T ) := lim
m→∞ IFpm(z;F,T ). (2.3)
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A natural question that arises from this definition is whether the limit depends on the limiting
sequence {pm} chosen. In order to answer this question, we first show that the limiting functional
T (F ) is unique. The use of Berge’s maximum theorem (Berge [4]) is a key step in our proof. It is
an innovative tool in the statistical literature. The lemma is crucial for the uniqueness argument
of the limiting influence function, stated in Proposition 1. While completing this article, the
author noticed that Machado [23] had also used Berge’s maximum theorem for the derivation of
qualitative robustness for model selection criteria based on M-estimators.

Lemma 2. Let C∞(�) = {f : � → R| f continuous and infinitely differentiable} and consider
a sequence {pm}m≥1 ∈ C∞(�) converging to p in the Sobolev space W 2,2(�) when m → ∞.
Suppose that for the problem (2.1), each of the approximating problems (2.2) resulting from
{pm}m≥1 satisfy (A1)–(A3). Then we have limm T (F ;pm) = T (F ).

Proposition 1. Under the conditions of Lemma 2, the limiting influence function defined in (2.3)
does not depend on the choice of pm.

Remark 2.1. The uniqueness of (2.3) holds for any local minimum as long as they are well
separated. Indeed (A3) can be relaxed by simply considering a unique minimizer contained in an
open ball O that does not necessarily contain θ0. We can see from the proofs of Lemma 2 and
Proposition 1 that this is enough for them to hold.

Example 1 (Lasso type penalties). Without loss of generality, we will assume that the tuning
parameter λ is such that the resulting estimators are sparse. More specifically, we consider θF,λ =
θ∗ = (θ∗T

1 , θ∗T
2 )T with θ∗

1 ∈ R
s , s < d and θ∗

2 = 0. The following proposition gives the form
of the influence function of estimators that arise when considering a general class of penalty
functions. It covers as special cases convex penalties such as the lasso (Tibshirani [28]) and
nonconvex penalties such as the scad (Fan and Li [10]).

Proposition 2. Denote by θ∗ = T (F ) the penalized M-functional obtained as the minimizer of
(2.1) with penalty functions of the form pλ(θ) = ∑p

j=1 pλ,j (|θj |), where pλ,j (·) are differen-
tiable functions. Then under (A1)–(A3) the influence function (2.3) of T (F ) has the form

IF(z;F,T ) = −S−1(ψ(
z, θ∗) + φλ

(
θ∗)),

where S−1 = blockdiag{(M11 + Pλ)
−1,0}, M11 = EF [ψ̇11(Z,T (F ))], Pλ is a diagonal matrix

with diagonal elements p′′
λ,j (|θ∗

j |) for j = 1, . . . , s, and φλ(θ
∗) is a d dimensional vector with

components p′
λ,j (|θ∗

j |) sgn(θ∗
j ) for j = 1, . . . , s and 0 elsewhere.

Example 2 (Group lasso type penalties). We now give the form of the influence function of
penalized M-estimators achieving sparsity for grouped variables via group lasso type penalties
(e.g., Yuan and Lin [34], Wang et al. [32], Huang et al. [14]). We suppose, as in the previous
example, that the regularization parameter λ is such that the resulting regularized θ∗ is sparse.

Proposition 3. Denote by θ∗ = T (F ) the penalized M-functional obtained as the minimizer of
(2.1) with group penalty functions of the form pλ(θ) = ∑G

g=1 pλ,g(‖θ(g)‖2), where pλ,g(·) are
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differentiable functions, θ = (θ(1), . . . , θ(G)) and each θ(g) is a subvector of θ corresponding to
the gth group of variables. Then under (A1)–(A3) the influence function (2.3) of T (F ) has the
form

IF(z;F,T ) = −S−1(ψ(
z, θ∗) + φλ

(
θ∗)),

where S−1 = blockdiag{(M11 +Pλ)
−1,0}, M11 = EF [ψ̇11(Z,T (F ))] and Pλ is a block diagonal

matrix with blocks p′′
λ,g(‖θ(g)‖2)(θ(g)θ

T
(g) − ‖θ(g)‖2I|g|)/‖θ(g)‖3

2 where

φλ

(
θ∗) =

{
p′

λ,g

(∥∥θ∗
(g)

∥∥)
θ∗
j /

∥∥θ∗
(g)

∥∥
2, if θ∗

(g) �= 0,

0, if θ∗
(g) = 0.

I|g| is a diagonal matrix of size |g|, i.e. the cardinality of group g, and p′
λ,g(t) and p′′

λ,g(t) are
the first two derivatives of pλ,g(t) for t > 0.

It is clear from Propositions 2 and 3 that a bounded ψ function is necessary for a Penalized
M-estimator to have bounded limiting influence function. The fact that the influence function has
some zero components is rather surprising. Further discussion on this feature can be found in the
last two sections.

3. Two-stage penalized M-estimators

We can extend the results of the previous section to a class of two-stage penalized M-estimators.
Important examples of the adaptive lasso estimators are discussed below. The following set up
can be viewed as a direct extension of the framework provided by Zhelonkin et al. [35]. Let
F be the distribution function of Z = (Z(1),Z(2)) and let θ = (θ1, θ2) be a vector defining the
arguments of the first and second stages, with θ1 ∈ �1 ⊂ R

d1 , θ2 ∈ �2 ⊂ R
d2 . We consider

penalized M-estimators (θ∗
1 , θ∗

2 ) = (S(F ),T (F )) defined by

θ∗
1 = argmin

θ1

{
EF

[
L(1)

(
Z(1), θ1

)] + p(1)(θ1;γ )
}
, (3.1)

θ∗
2 = argmin

θ2

{
EF

[
L(2)

(
Z(2), θ2,Z

(1), θ∗
1

)] + p(2)
(
θ2, θ

∗
1 ;λ)}

, (3.2)

where L(i) and p(i) denote respectively, the loss and penalty functions in the ith stage. For the
theoretical argument, we adapt assumptions (A1)–(A3) to this set up in the following straightfor-
ward way:

(A1′) The loss function L(1) and L(2) are such that:
(i) EF [L(1)(Z(1), θ1)] is continuous in �1 and has two derivatives with respect

to θ1 denoted by EF [ψ(1)(Z(1), θ1)] and EF [ψ̇(1)(Z(1), θ1)] respectively, with
EF [ψ̇(1)(Z(1), θ1)] nonsingular.

(ii) EF [L(2)(Z(2), θ2,Z
(1), θ1)] is continuous in �1 × �2 and has two derivatives

with respect to θ2 denoted respectively, by EF [ψ(2)(Z(2), θ2,Z
(1), θ1)] and
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EF [ψ̇(2)(Z(2), θ2,Z
(1), θ1)], where EF [ψ̇(2)(Z(2), θ2,Z

(1), θ1)] is nonsingular.
EF [ψ(2)(Z(2), θ2,Z

(1), θ1)] has a derivative with respect to θ1 denoted by
EF [ψ(2)

1 (Z(2), θ2,Z
(1), θ1)].

(A2′) There are unique points θ01 ∈ �1 and θ02 ∈ �2 such that:
(i) EF [L(1)(Z(1), θ01)] < infθ1∈�1\U1 EF [L(1)(Z(1), θ1)] for every open set U1 con-

taining θ01.
(ii) EF [L(2)(Z(2), θ02,Z

(1), θ01)] < infθ2∈�2\U2 EF [L(2)(Z(2), θ02Z
(1), θ01)] for every

open set U2 containing θ02.
(A3′) There are open subsets of �1 and �2 denoted by O1 and O2, and unique solutions

θ∗
1 ∈O1 and θ∗

2 ∈O2 such that:
(i) θ01 ∈O1, and the functions ψ(1)(z(1), θ1) and EF [ψ̇(1)(Z(1), θ1)] are continuous at

θ∗
1 for all z(1) ∈ R

d1 .
(ii) θ02 ∈ O2, and the functions ψ(2)(z(2), θ2, z

(1), θ1) and EF [ψ̇(2)(Z(2), θ2;Z(1), θ1)]
are continuous at θ∗ for all z.

We first provide the influence function of (3.2) for sufficiently smooth penalty functions.

Lemma 3. Denote by θ∗ = (S(F ),T (F )) the estimators defined by (3.1)–(3.2), and assume
(A1′)–(A3′). Let p(i) : �i → R be twice differentiable with respect to θi and ∇θ2p

(2) be differ-
entiable with respect to θ1. Let also S := EF [ψ̇(2)(Z(2), θ∗

2 ,Z(1), θ∗
1 )] + ∇θ2,θ2p

(2)(θ∗
2 , θ∗

1 ;λ) be
invertible. Then the influence function of T (F ) exists for all z ∈ R

d and we have:

IF(z;F,T ) = −S−1(ψ(2)
(
Z(2), θ∗

2 ,Z(1), θ∗
1

) + ∇θ2p
(2)

(
θ∗

2 , θ∗
1 ;λ)

+ (
EF

[
ψ

(2)
1

(
Z(2), θ∗

2 ,Z(1), θ∗
1

)] + ∇θ2,θ1p
(2)

(
θ∗

2 , θ∗
1 ;λ))

IF
(
z(1);F,S

))
,

where IF(z(1);S,F ) has the form given in Lemma 1.

Unsurprisingly, bounded-influence estimators are obtained only by taking loss functions with
bounded derivatives in both stages. The expression obtained is very similar to the one derived in
the unpenalized set up by Zhelonkin et al. [35]. We are now ready to state the uniqueness of the
limiting two-stage estimator (3.2) and its influence function.

Lemma 4. For i = 1,2, let {p(i)
mi

} be a sequence in C∞(�i) converging to p(i) in the Sobolev

space W 2,2(�i) when mi → ∞ and assume {∇θ2p
(2)
m } is differentiable with respect to θ1. Con-

sider the sequence of problems of the (2.1) implied by (3.1)–(3.2) and {p(i)
mi

} for i = 1,2. Assume

that each of them satisfy (A1′)–(A3′). Then we have limm T (F ;p(2)
m ) = T (F ).

Proposition 4. Under the conditions of Lemma 4, the limiting influence function (2.3) of (3.2)
does not depend on the choice of pm = (p

(1)
m ,p

(2)
m ).

Example 3 (Adaptive lasso type penalties). The adaptive lasso of Zou [36] is a popular two
stage procedure that improves on the results of the lasso by ensuring the oracle properties of Fan
and Li [10] under milder conditions. The tools developed above allow us to derive the influence
function of adaptive lasso type estimators.



Influence functions for penalized M-estimators 3185

Proposition 5. Let θ be the d dimensional parameter of interest and let θ(0) = S(F ) be an
initial estimate of θ , with s(0) non zero components, defined by (3.1). For j = 1, . . . , d and
some nonnegative function w, define the weights wj = w(|θ(0)

j |). Denote by θ∗ = T (F ) the
penalized M-estimators obtained as the minimizer of (3.2) with a penalty function of the form
p(θ, θ(0);λ) = λ

∑p

j=1 wj |θj | and loss function L(Z, θ, θ(0)). Then under (A1′)–(A3′) the in-
fluence function (2.3) of T (F ) has the form

IF(z;F,T ) = −S−1(ψ(
z, θ∗) + φλ

(
θ∗, θ(0)

) + ϕλ

(
θ∗, θ(0)

)
IF(z;F,S)

)
,

where S−1 = blockdiag{M−1
11 ,0}, M11 = EF [ψ̇(1)(Z,T (F ))], φλ(θ

∗, θ(0)) is a d dimen-

sional vector with components λw′(|θ(0)
j |) sgn(θ

(0)
j ) sgn(θ∗

j ) for j = 1, . . . , d where w′ de-

notes the derivative of w, and ϕλ(θ
∗, θ(0)) = blockdiag{Hγ ,0} is a matrix with Hγ =

{∇
θ

(0)
k

φλ,j (θ
∗, θ(0))}s(0)

j,k=1.

The form of IF(z;F,T ) depends on the choice of the initial estimator. A bounded influence
estimator T (F ) can only be obtained by taking a bounded influence initial estimator S(F ) and
choosing a loss function defining a bounded ψ function in the second stage. Among the non-
sparse initial estimates proposed in the literature, Zou [36] proposed to use maximum likelihood
estimates for the fixed parameter case where d does not vary with n. In the high dimensional
set up where d > n, Huang et al. [15] proposed to use an initial zero consistent estimate, e.g.
marginal least squares. For those cases the influence function of S(F ) is simply proportional to
ψ(1) as they are well-known M-estimators. Lasso estimators have also been proposed as initial
estimates. See, for instance, Fan et al. [9] and Avella-Medina and Ronchetti [2], in the context of
high dimensional penalized likelihood and robust quasilikelihood estimation, respectively. Note
that for wj = 1/|θ(0)

j | the usual convention is that for θ
(0)
j = 0 we define wj = ∞ and ∞ · 0 = 0.

Hence for this choice of wj , a coefficient set to zero in the first step will never appear in T (F ).

4. Numerical illustrations

4.1. Orthogonal design

In the special case of the linear model with orthogonal design, the asymptotic bias of the lasso,
group lasso and adaptive lasso estimators under a contamination neighborhood (1 − ε)F + εG

can be computed explicitly. In particular, it can be seen that if h = ∫
XjY d(G − F) is bounded

and ε is sufficiently small, the bias of j th component of the lasso estimator θ̂j is very well
approximated by the limiting influence function. A similar conclusion can be reached for the
bias of the group and adaptive lasso estimators.

We illustrate this point in an orthogonal design linear model simulation study. Specifically,
we simulated a sparse linear model yi = xT

i β + ui for i = 1, . . . ,100, where the xi ’s are i.i.d.
standard normal variables, β = (1,1,1,0,0,0,0,0,0)T , ui ∼ (1 − b) · N(0,1) + b · N(0,10)

and b ∼ Bernoulli(ε). Figure 1 illustrates how the influence function approximates the asymp-
totic bias of the lasso, group lasso and adaptive lasso estimators of β1 for ε ∈ (0,0.2) and tuning
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Figure 1. The solid dark curves are the bias of the respective minimizers of (2.1), the dotted lines are the
bias approximations of the influence function, the solid light curves are the empirical mean biases and the
dashed lines represent the quantiles 0.025 and 0.975 respectively. Plots (a)–(c) show the behavior of the
bias of the lasso for the tuning parameters λ = {0.2,1.2,2} and contamination parameter ε ∈ (0,0.2). Plots
(d)–(f) and (g)–(i) show the same results for the group lasso and the adaptive lasso, respectively.

parameter λ = {0.2,1.2,2}. The green lines report the mean and the quantiles 0.025 and 0.975
of the empirical biases obtained over 1000 replications. For the group lasso, we considered the
groups (β1, β2, β3), (β4, β5, β6) and (β7, β8, β9). The least squares estimator was used to con-
struct the weights of the adaptive lasso.

We see that the linearized asymptotic bias obtained from the influence function is quite ac-
curate for small values of ε, especially for small and large values of λ. Given that the influence
function gives an insensitive approximation to the asymptotic bias for the coefficients estimated
as 0, the accuracy of this approximation will depend on how much contamination the estimator
can absorb before the estimated null coefficients become non null. If a penalized estimator is
insensitive to contamination in terms of the model selected, then the linearized asymptotic bias
will be exact. This question seems to be related to the definition of qualitative model selection
robustness proposed by Machado [23] and is beyond the scope of this work.
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Figure 2. The solid horizontal lines indicate the zero bias benchmark with respect to the true value of
the parameter β1. The solid dark lines indicate the bias of the minimizers of (2.1), the dotted lines the
bias approximation of the influence function, the solid light curvesthe empirical mean biases and the light
dashed curves represent the quantiles 0.025 and 0.975, respectively.

Note that in theory the
√

(k logp)/n rates of convergence of penalized estimators are obtained
for tuning parameters of order O(

√
(logp)/n) (Loh and Wainwright [21]). Therefore, in practice

we expect to choose small values of λ.
Figure 2 further stresses this point. It provides another picture of plots (a) and (b) showed in

Figure 1 by taking into account the distance of the lasso functional and the true value of the
parameter β1. It is clear from (b) that λ = 1.2 is already too large a tuning parameter.

4.2. High dimensional Poisson regression

We consider now a more sophisticated example where an analytic expression of the asymp-
totic bias cannot be computed. We show instead how the estimators behave in terms of L2-
loss, that is, ‖β̂ − β‖2 when the contamination increases. The results of Sections 2 and 3 imply
that penalized M-estimators defined by a loss function having a bounded derivative will have a
bounded influence function. Therefore such estimators are expected to have a bounded bias in
a contamination neighborhood of the model. Typical likelihood based procedures on the other
hand will in general have an unbounded score function and will therefore be very sensitive to
small contaminations. We will show that this is exactly what happens when we consider a high
dimensional regression problem. Specifically, we simulated a Poisson regression model with
canonical link g(μi) = logμi = 1.8xi1 + xi2 + 1.5xi5, for i = 1, . . . ,100. The covariates xij

were generated from standard uniforms with correlation cor(xij , xik) = ρ|j−k| and ρ = 0.5 for
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Figure 3. The boxplots show the performance measured by the L2-loss of classical and robust counterparts
of the lasso and adaptive lasso as the contamination increases. In all the simulations, we set ν = 5.

j, k = 1, . . . ,250. The response variables Yi were generated according to a perturbed Poisson
distribution of the form (1 − b) ·P(μi) + b · P(νμi) where b ∼ Bernoulli(ε). We set ν = 5,10
and ε = {0,0.025,0.05,0.075,0.1}. For each combination of ε and ν we generated 100 data sets.
The tuning parameters were chosen by 5-fold cross-validation. We consider classical and robust
counterparts of the lasso and the adaptive lasso based on the robust quasilikelihood of Cantoni
and Ronchetti [7] as in Avella-Medina and Ronchetti [2]. The estimators where computed with
the coordinate descent algorithm described in the latter paper.

Figures 3 and 4 clearly show that the robust penalized estimators are stable under moder-
ate contamination whereas their classical counterparts are not. When ν = 10, even very small
contaminations completely ruin the performance of the classical procedures. It is interesting to
note that this particular robust estimator seems that have its breakdown point somewhere around
ε = 0.075 as its performance starts deteriorating at that point. This example illustrates the fact
that the influence function only provides information about the local robustness properties.
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Figure 4. The boxplots show the performance measured by the L2-loss of classical and robust counterparts
of the lasso and adaptive lasso as the contamination increases. In all the simulations we set ν = 10.

5. Connections to distribution theory

Wang et al. [33] studied the robustness properties of their proposed robust penalized estimator
by calculating its finite sample breakdown point and influence function. It can be seen that their
derivation of the influence function (Theorem 3) could easily be extended to more general loss
functions. In their proof they implicitly use distributions in the sense of Schwartz [27], since they
require the first two derivatives of the absolute value function. They use sgn(x) as first derivative
of |x| and the Dirac delta function δ(x) as its second derivative. These derivatives are justified by
the theory of distributions. However, working explicitly with the Dirac delta function understood
informally as

δ(x) =
{+∞, if x = 0,

0, otherwise,

and inverting a matrix containing such an expression, is not fully satisfactory from a formal
mathematical standpoint. Interestingly, the expression obtained in Theorem 3 in Wang et al. [33]
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is the same as the one we give in Proposition 3. This suggests that a more careful treatment of
the problem with a rigorous use of differentiation in the sense of distribution theory will yield
the same influence function.

At first glance, the theory of distributions seems to provide a natural and rigorous way of tack-
ling nondifferentiable penalties. However, the theory suffers from at least two major drawbacks
for the purposes of deriving influence functions with direct computations. The product of two
distributions cannot be consistently defined in general. This makes the manipulation of distribu-
tions delicate. Furthermore, to the best of our knowledge there is no implicit function theorem for
distributions. This closes the door to the derivation of the influence function as the derivative of
an implicit function as in Lemma 1. We relegate to the Appendix an example where we explicitly
compute the distributional derivative of the lasso and scad functionals. Extending this approach
to more general problems does not look obvious. We can however show that the influence func-
tions derived in Section 2 using the limiting influence function can be viewed as distributional
derivatives. Before giving this result in Proposition 6, we need an intermediate result that is inter-
esting on its own and concerns the continuity of T (Fε) with respect to ε. Its proof uses Berge’s
maximum theorem and is similar to the proof of Lemma 2.

Lemma 5. Under (A1)–(A3), the penalized M-estimator T (Fε) resulting from the minimization
of (2.1) is continuous with respect to ε ∈ (−ε̄, ε̄), ε̄ > 0.

Proposition 6. Under the assumptions of Proposition 1, the influence function (2.3) of the mini-
mizer T (F ) of (2.1) is the distributional derivative of T (Fε) with respect to ε evaluated at 0.

6. Discussion

We introduced the idea of calculating the influence function of penalized M-estimators with the
help of a sequence of approximating functionals. In Sections 2 and 3, we justified the validity of
such an approach and derived the limiting influence functions of general penalized M-estimators.
In particular, these computations show that the local robustness properties are a direct result of
the form and boundedness of the derivative of the loss function. This reflects the intuition that the
sources of local instability for M-estimators and their penalized counterparts should be the same.
In Section 4, we illustrated via numerical examples the bias problem arising in a contamination
neighborhood and its relation to the influence function. Finally, in Section 5, we showed that the
influence function can be viewed as a derivative in the sense of distribution theory.

Let us conclude this paper with a short discussion of appealing future directions for research.
We believe that the limiting influence function introduced in this paper could be useful for asymp-
totic distributional considerations. In the case of Fisher consistent M-estimators, substituting G

by the empirical distribution F̂ in (1.1), we have

√
n
(
T (F̂ ) − T (F )

) ≈ 1√
n

n∑
i=1

IF(zi;F,T )

because
∫

IF(z;F,T )dF(z) = 0. Then by the central limit theorem we obtain that
√

n(T (F̂ ) −
T (F )) is asymptotically normally distributed with mean 0 and variance V (F,T ) = ∫

IF(z;
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F,T ) IFT (z;F,T )dF(z). A rigorous general argument can be found in Huber [16] and Huber
and Ronchetti [18]. For M-estimators, the conditions for Fréchet differentiability of Clarke [8]
guarantee the validity of the von Mises expansion and imply good robustness properties as dis-
cussed in Bednarski [3]. Using these formulas and the influence functions derived in Sections 2
and 3, we see that for penalized M-estimators, the approximation (1.1) leads to the expression

√
n
(
θ̂ − θ∗) →d N

(
0,V (F,T )

)
,

where V (F,T ) is block diagonal with 0 entries for the elements corresponding to θ2. All the
analysis in Sections 2 and 3 was developed for a fixed λ. If we assume that there is a true un-
derlying set of parameters θ0, this implies in general that θ∗ �= θ0. Note however that if we work
instead with a λn tending to zero at an appropriate rate, the heuristic asymptotic distribution
would match the oracle properties (Fan and Li [10]) for the class of lasso type estimators satis-
fying such properties. Examples of this type of estimators were derived for instance in Fan and
Lv [11] and Avella-Medina and Ronchetti [2]. The von Mises expansion could be therefore used
to assess informally the asymptotic properties of an important class of penalized M-estimators.
A more careful study of this phenomenon is required for a better understanding of the conditions
under which it holds and is left for future research. Still, as pointed out in Hampel et al. [13],
page 85: “. . . it is usually easier to verify the asymptotic normality in another way instead of
trying to assess the necessary regularity conditions to make this approach rigorous”.

7. Proofs

Proof of Lemma 2

Let b(p) = infθ∈O �λ(θ;F,p) and f (θ,p) = b(p)−�λ(θ;F,p). The mapping � : W 2,2 �→ �,
�p = {θ |θ ∈ �,f (θ,p) ≤ 0} is closed by construction (Berge [4], Example, page 111). There-
fore, �p is compact for any p, which implies that � is continuous (Berge [4], Example,
page 109). From Proposition 7 in the supplementary document [1], M(p) = max{−�λ(θ;F,p)|
θ ∈ �p} is continuous in W 2,2 and the mapping �p = {θ |θ ∈ �p,−�λ(θ;F,p) = M(p)}
is upper hemicontinuous from W 2,2 to O. Since θm = φpm = {θ |θ ∈ �pm,−�λ(θ;F,p) =
supM(pm)} is single valued and upper hemicontinuous, it is continuous. Therefore, we have
limm θm = θ∗ = φp = limm φpm.

Proof of Proposition 1

For ease of notation, we will write ψp = ψ(Z;T (F ;pm)), Sp = EF [ψ̇(Z;T (F ;pm))] +
∇2pm(T (F ;pm)), D = F −�z and IF(pm) = IFpm(z;F,T ). Further let {pm}m≥1 and {p′

m}m≥1

be to sequences in C∞(�) converging to p in W 2,2(�). Then Lemma 1 and (A3) guarantee that

IF
(
p′

m

) − IF(pm) = S−1
p ED[ψp] − S−1

p′ ED[ψp′ ]
= S−1

p′ ED[ψp − ψp′ ] + S−1
p (Sp − Sp′)S−1

p ED[ψp] + o
(‖Sp − Sp′‖).
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By Lemma 2, we have limm T (F ;p′
m) = limm T (F ;pm) = T (F ). Therefore, ED[ψp − ψp′ ] →

0 and ‖Sp − Sp′‖ → 0. Hence, (A3) and limpm = limp′
m = p give limm[IF(pm)− IF(p′

m)] = 0.

Proof of Proposition 2

From Proposition 1, it suffices to show that the limiting influence function of a smooth approxi-
mation of the problem has the desired form. One possible infinitely differentiable approximation
for the absolute value is

sm(t) = 2

m
log

(
etm + 1

) − t −→
m→∞|t |.

Its first two derivatives have the form

s′
m(t) := 2etm

etm + 1
− 1 −→

m→∞ sgn(t) =
⎧⎨
⎩

−1, if t < 0,

+1, if t > 0,

0, otherwise

(7.1)

and

s′′
m(t) = 2metm

(etm + 1)2
−→
m→∞

{
0, if t �= 0,

+∞, otherwise.
(7.2)

Defining pm(θ) = ∑p

j=1 pλ,j (sm(θj )), from Lemma 1 and the notation of Proposition 1 we have

IFpm(z;T ,F ) = −S−1
pm

(
ψ

(
z;T (F ;pm)

) + ∇pm

(
T (F ;pm)

))
.

Remember that for a partitioned matrix A, if all the necessary inverses exist, the elements of A−1

are

A11 = (
A11 − A12A

−1
22 A21

)−1
, A22 = (

A22 − A21A
−1
11 A12

)−1
,

A12 = −A11A12A
−1
22 , A21 = −A−1

22 A21A
11

}
. (7.3)

Since (7.2) implies ∇2pm(T (F ))jj → 0 for j = 1, . . . , s and ∇2pm(T (F ))jj → ∞ for j =
s + 1, . . . , d , (7.3) yields

S−1
pm

=
[

EF

[
ψ̇11

(
Z,T (F )

)] + ∇2p1
m

(
T (F )

)
EF

[
ψ̇12

(
Z,T (F )

)]
EF

[
ψ̇21

(
Z,T (F )

)]
EF

[
ψ̇22

(
Z,T (F )

)] + ∇2p2
m

(
T (F )

)]−1

(7.4)

−→
m→∞

[
(M11 + Pλ)

−1 0

0 0

]
= S−1.

Hence from (7.1), (7.2) and (7.4), it is easily seen that limm IFpm(z;F,T ) = IF(z;F,T ) has the
claimed form.
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Proof of Proposition 3

The difficulty of deriving the influence function for group lasso type penalties comes from the
fact that

√|t | is not differentiable. Following the proof of Proposition 2, we will approximate
√

t

by
√

sm(t), t ≥ 0. This yields

(√
sm(t)

)′ = etm − 1

(etm + 1)s2
m(t)

−→
m→∞

{
t−1/2, if t > 0,

∞, for t ↓ 0
(7.5)

and

(√
sm(t)

)′′ = 2metm

(etm + 1)2s
1/2
m (t)

− (etm − 1)2

2(etm + 1)2s
3/2
m (t)

−→
m→∞

{−t−3/2, if t > 0,

−∞, for t ↓ 0.

Note that after some simplifications

((√
sm(t)

)′′)−1(√
sm(t)

)′ = sm(t)(etm + 1)(etm − 1)

4metmsm(t) − −(etm − 1)2
−→
m→∞−t, t ≥ 0. (7.6)

Therefore for the penalty pm(θ) = ∑G
g=1 pλ,g(

√
sm(‖θ(g)‖2

2)) we have ∇2pm,g(T (F )(g))jj →
∞ for j = 1, . . . , |g| if T (F )(g) = 0 and

(
EF

[
ψ̇22

(
Z,T (F )

)] + ∇2p2
m

(
T (F )

))−1∇p2
m

(
T (F )

) −→
m→∞ 0. (7.7)

The same argument used in (7.4) gives

S−1
pm

−→
m→∞

[
(M11 + Pλ)

−1 0

0 0

]
= S−1. (7.8)

Finally, from Lemma 1, we have

IFpm(z;T ,F ) = (
EF

[
ψ̇

(
Z;T (F ;pm)

)] + ∇2pm

(
T (F ;pm)

))−1

(7.9)
× (

ψ
(
z;T (F ;pm)

) + ∇pλ,m

(
T (F ;pm)

))
.

Thus, the claimed results follows using (7.5)–(7.8) when taking the limit of (7.9) as m → ∞.

Proof of Proposition 5

From Lemma 4 and Proposition 4, we know that we only need to take a sequence of approxi-
mating influence functions. First note that ∇θ(0)EF [ψ(Z,T (F ))] = 0 and ∇θj ,θj

wj |θj | = 0 for
θj �= 0. Then an argument similar to the one given in Proposition 2 completes the proof.
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Proof of Proposition 6

By Lemma 5, T (Fε) is a continuous function of ε in a neighborhood of 0. Therefore, T (Fε)

is locally integrable. Lemma 7 in the supplementary document [1] tells us that T (Fε) has a
distributional derivative given by the limiting form of the derivatives of T (Fε;pm).
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Supplementary Material

Supplement to “Influence functions for penalized M-estimators” (DOI: 10.3150/16-
BEJ841SUPP; .pdf). The supplementary file is organized as follows. Appendices A and B contain
some definitions and results from Berge [4] and from distribution theory. Appendix C provides
the proofs of Lemmas 1, 3, 4 and 5 as well as Proposition 4. Appendix D gives a direct compu-
tation of the influence function via distributional derivatives for the lasso and scad functionals
in the orthogonal linear model. Finally, Appendix E is a discussion of the empirical influence
function in high dimensions.
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