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In this paper, we present a test for the maximal rank of the volatility process in continuous diffusion mod-
els observed with noise. Such models are typically applied in mathematical finance, where latent price
processes are corrupted by microstructure noise at ultra high frequencies. Using high frequency observa-
tions, we construct a test statistic for the maximal rank of the time varying stochastic volatility process.
Our methodology is based upon a combination of a matrix perturbation approach and pre-averaging. We
will show the asymptotic mixed normality of the test statistic and obtain a consistent testing procedure.
We complement the paper with a simulation and an empirical study showing the performances on finite
samples.
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1. Introduction

In the last twenty years, asymptotic theory for high frequency data has received a great deal of
attention in probability and statistics. This is mainly motivated by financial applications, where
observations of stock prices are recorded very frequently. In an ideal world, that is, under no-
arbitrage conditions, price processes must follow a semimartingale, which is a celebrated result
of Delbaen and Schachermayer [4]. We refer to a monograph [9] for a comprehensive study of
limit theorems for Itd semimartingales and their manifold applications in statistics.

Despite the aforementioned theoretical result, at ultra high frequencies, the financial data is
contaminated by microstructure noise such as rounding errors, bid-ask bounces and misprints.
One of the standard models for the microstructure noise is an additive i.i.d. process independent
of the latent price (see, e.g., [3,14] among many others; an extension of this model can be found
in [7]). More formally, the model is given as

Yf,‘ = Xfi +8ti with dXt th dt +O’tdW1, (11)

where (X;):c[0,7] 18 a d-dimensional continuous Itd6 semimartingale, ; =iA, and (& ):¢[0,7] 18
a d-dimensional i.i.d. process independent of X with

Ele,]=0 and E[ee}]=:% eR (1.2)
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Here and throughout the paper, we denote with x* the transpose of x, be it a vector or a matrix.
We are in the framework of infill asymptotics, that is, A, — 0 while T remains fixed. This paper
is devoted to the test for the maximal rank of the co-volatility matrix ¢; = o;0;" of the unob-
served diffusion process X. We remark that this is an equivalent formulation of the following
problem: What is the minimal amount of independent Brownian motions required for modeling
the d-dimensional diffusion X? Answering this question might give a direct economical inter-
pretation of the financial data at hand. Furthermore, testing for the full rank of ¢; is connected to
testing for completeness of financial markets.

In a recent paper [8], the described statistical problem has been solved in a continuous diffu-
sion setting without noise (we also refer to an earlier article [6] for a related problem). The main
idea is based upon a matrix perturbation method, which helps to identify the rank of a given ma-
trix. The maximal rank of the stochastic co-volatility process (c;):c[0,7] 1S then asymptotically
identified via a certain ratio statistic, which uses the scaling property of a Brownian motion.
Clearly, the test statistic becomes invalid in the framework of continuous diffusion models ob-
served with noise. To overcome this problem, we apply the pre-averaging approach, which has
been originally proposed in [7,11]. As the name suggests, weighted averages of increments of
the process Y are built over a certain window in order to eliminate the influence of the noise to
some extent. This in turn gives the possibility to infer the co-volatility process (c;)sefo,7]. The

size of the pre-averaging window k,, is typically chosen as k, = O(Arj]/ 2) and objects as the

/4 which is

integrated co-volatility fOT ¢y dt can be estimated with the convergence rate of A;l
known to be optimal.

At this stage, we would like to stress that combining the pre-averaging approach and the ma-
trix perturbation method is by far not trivial. There are mainly two problems that need to be
solved. First of all, when using the optimal window size of k, = O (A, Y 2) in the pre-averaging
approach, the diffusion and the noise parts have the same order, and it becomes virtually impossi-
ble to distinguish the rank of the co-volatility from the unknown rank of the covariance matrix .
Hence, we will choose a proper sub-optimal window size to still obtain a reasonable convergence
rate for the test statistic. The second and more severe problem is that the ratio statistic proposed
in [8] heavily relies on the scaling property of a Brownian motion. This scaling property is not
shared by an i.i.d. noise process introduced in (1.2). Thus, a much deeper probabilistic analysis
of the main statistic is required to come up with a valid testing procedure.

The paper is organized as follows. Section 2 gives the probabilistic description of the model,
presents the main assumptions and defines the testing hypotheses. The background on matrix
perturbation and pre-averaging method is demonstrated in Section 3. Section 4 presents the main
results of the paper as well as an extension of the method to the usage of overlapping increments.
Section 5 is concerned with a simulation study and a real data example. All proofs are collected
in Section 6.

2. The setting and main assumptions

We start with a filtered probability space (€2, F, (Ft)i¢[0, 7], P), satisfying the usual assumptions,
on which all stochastic processes are defined. As indicated at (1.1), we observe the d-dimensional
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process Y = X + ¢ at time points i A, i =0, 1,...,[T/A,]. The process X is given via
t t
X,:Xo—i—/ bsds—i—/ og dWs, 2.1
0 0

where (b;)s¢[0,7] is a d-dimensional drift process, (07):¢[0,7] 1S @ R?*4-yalued volatility process
and W denotes a g-dimensional Brownian motion. We introduce the notation

¢ = 0y07, r; =rank(c;), Ry = sup rs.
se€[0,1)

We need more structural assumptions on the processes b and o.

Assumption (A). The processes b and o have the form

t t
o,=c70+/ asds—i—/ vy d Wy,
0 0

t t
b,=bo+/ a;ds+/ v, dWs, 2.2)
0 0

t t
vt=v0+/ ag/ds+f vy dW,
0 0

where b, and a; are RY-valued, o;, a; and v] are RY%4 -yalued, v, and a, are RI%4%4 _yalyed,
and v is R1*9%4%4 yalyed, all those processes being adapted. Finally, the processes ay, v}, v
are cadlag and the processes aj, a; are locally bounded.

Notice that Assumption (A) is exactly the same assumption, which has been imposed in [8].
We remark that, by enlarging the dimension g of the Brownian motion W if necessary, we may
assume without loss of generality that all processes X, b, o, v are driven by the same Brownian
motion. In the framework of a stochastic differential equation, that is, when b; = h1(X;) and
or = hy(X;), Assumption (A) is automatically satisfied whenever h; € C 2(Rd) and hy € C* (Rd )
(due to It6’s formula). We also remark that Assumption (A) is rather unusual in the literature.
Indeed, for classical high frequency statistics, such as for example, power variations (cf. [2]),
only the first line of (2.2) is required. However, when R7 < d our test statistic, which will be
introduced in Section 4, turns out to be degenerate and, in contrast to classical cases, we require a
higher order stochastic expansion of the increments of X. This explains the role of the second and
third line of (2.2). Finally, we specify our assumptions on the noise process ¢ introduced at (1.2).

Assumption (E). The i.i.d. process (¢/)iej0,1] is (Ft)-adapted and independent of a, a’, a”,
v/, v, W, hence also independent of b, o and X. Furthermore, it is Gaussian, meaning that

& ~Ny(0, %) and Elesef]1 =0 forall s,t € [0, T] with s # .

Remark 2.1. Theoretically, we could discuss a more general structure of the noise. In particular,
we could give up the assumption of the Gaussianity. What we really require is the mutual inde-
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pendence of the noise at different times as well as the existence of the moments up to a certain
order.

Now, for any r € {0, 1, ..., d}, we introduce the following subsets of 2:
QA ={weQ:Rr@=r}, QFf ={weQ:Rr(w)=r}. (2.3)

Notice that the sets Q7. and Q%r are indeed Fr-measurable. This can be justified as follows.
The rank r; is the biggest integer r < d such that the sum of the determinants of the matrices
(¢{)i.jes, where J runs through all subsets of {1,...,d} with r points, is positive; see, for
example, [6], Lemma 3. Since the mapping 7 — c¢; is continuous by Assumption (A), this implies
that for any r the random set {t : 7;(w) > r} is open in [0, T'), so the mapping ¢ + r; is lower
semi-continuous. The very same argument proves that the random set

{t €[0,T): Rr(w) =”t(w)}

is non-empty and open for each w € Q2. Hence, this set has a positive Lebesgue measure, which
helps to statistically identify the maximal rank R7 (in contrast to lower ranks 7, < R, which
might be attained at a single point on the interval [0, T]).

The following discussion is devoted to testing the null hypothesis Hy : RT = r against the
alternative Hy : Rt # r (or Hyp : Rt <r against Hy : Rt > r). Notice that this a pathwise hy-
pothesis, since we test whether a given path w belongs to Q. (or Q%r) or not. It is in general
impossible to know whether this hypothesis holds for another path o’ € €.

3. Matrix perturbation and pre-averaging approach

3.1. Matrix perturbation method

The matrix perturbation method is a numerical approach to the computation of the rank of a
given matrix. It has been introduced in [8] in the context of rank testing. To explain the main idea
of our method, we need to introduce some notation. Recall that d and ¢ are the dimensions of
X and W, respectively. Let M denote the set of all d x d matrices and M,, r € {0, ..., d}, the
set of all matrices in M with rank r. Furthermore, let M’ be the set of all d x ¢ matrices. For
any matrix A, we denote by A; the ith column of A; for any vectors xp, ..., x4 in RY, we write
mat(xy, ..., xq) for the matrix in M whose ith column is the column vector x;. Forr € {0, ..., d}
and A, B € M we define the quantity

g ={GeM:Gi=A;orG;=B; with#{i : G; = A;} =r}.

In other words, M, p is the set of all matrices G € M with r columns equal to those of A and
the remaining d — r ones equal to those of B (all of them being at their original places). We also
define the number

v (A, B) == Z det(G). (3.1
GGM;\,B
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We demonstrate the main ideas of the matrix perturbation approach for a deterministic problem
first. Let A € M be an unknown matrix with unknown rank r. Assume that, although A is un-
known, we have a way of computing det(A + A B) for all A > 0 and some given matrix B € M.
The multilinearity property of the determinant implies the following asymptotic expansion

det(A+AB)=2""y.(A, B)+ 02" T)  asalo. (3.2)

This expansion is the key to identification of the unknown rank r. Indeed, when y, (A, B) #0
we deduce that

det(A 4+ 21 B)

=247 asa 0. (3.3)
det(A + AB)

However, it is impossible to choose a matrix B € M, which guarantees y, (A, B) # 0 for all
A € M,. To solve this problem, we can use a random perturbation. As it has been shown in [8],
for any A € M, we have y,- (A, B) # 0 almost surely when B is the random matrix whose entries
are independent standard normal (in fact, the random variable y, (A, B) has a Lebesgue density).
This is intuitively clear, because the multivariate standard normal distribution does not prefer
directions. It is exactly this idea which will be the core of our testing procedure.

3.2. Pre-averaging approach

In this subsection, we briefly introduce the pre-averaging method; we refer to for example, [7,11]
for a more detailed exposition.

Let g : [0, 1] — R be a weight function with g(0) = g(1) = 0, which is continuous, piecewise
C! with piecewise Lipschitz derivative g’ and fol g%(x)dx > 0. A canonical choice of such a
function is given by g(x) = min(x, 1 — x); see [7] for its interpretation. Now, let (k;),>1 be a
sequence of positive integers representing the window size such that k, — oo and u,, :=k, A,, —
0. For any stochastic process V, we define the pre-averaged increments via

kn—1 . kn—1 . .

= J J+1 J
V? = E g(k_)A?+jV =- E <g<k—> - g<k—>>v(i+j)An’ (3.4)

n n n

j=1 j=0

where ATV := V;a, — Vi_1)a,. Roughly speaking, this local averaging procedure reduces the
influence of the noise process when we apply it to the noisy diffusion process Y defined at (1.1).
Indeed, we may show that

Y:l = Op(vky,Ap) and El"l = O0p(\/1/kn),

where the first approximation is essentially justified by the independence of the increments of
W and the first identity of (3.4), and the second approximation follows from the i.i.d. structure
of the noise process and the second identity of (3.4). We clearly see that a large k,, increases the
influence of the diffusion part X and diminishes the influence of the noise part . However, in
standard statistical problems, for example, estimation of quadratic variation, the optimal rate of
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convergence is obtained when the contributions of both terms are balanced. This results in the
choice of the window size k,, with k,+/A, =6 + o(A,l/ 4), where 6 € (0, co0). With this window
size, we deduce for instance that

[T/An]—ky+1

T
—ny\ ;h\x P _
Var Y () — ewzf cdt+607' TS,
4 0
i=0
where the constants 1 and v, are defined by

1 1
Yy = /0 (&) dx, o= /0 g%(x)dx

(cf. [7]). The bias can be corrected via

(T/An]—kn+1 [T/An]

n Ay —ny ~mx V1A, 0 nors P T
€= 0y Z (ri)(¥i) _zglzwz Z (A7Y)(A7Y) —>/0 ¢ dt,

i=0 i=1

and the statistic C;' becomes a consistent estimator of the quadratic covariation of X with con-

vergence rate A, /4 This rate is known to be optimal.

As explained in the Introduction, the optimal choice of the window size k,, as introduced above
would not lead to a feasible testing procedure for the maximal rank Rr. Due to the complex
structure of the test statistic, which will be introduced in Section 4, there is generally no de-
biasing procedure as above (unless R = d; see Remark 4.12). For this reason we introduce the
following window size k;,:

kA =6 +0(A)%), 00,00,  uyi=kyAp. (3.5)

Within the framework of our test statistic, this choice of &, leads to an optimal rate of conver-
gence, which becomes A, 1/6 (although better rates of convergence are theoretically possible,
but they can only be derived under Q%; see again Remark 4.12). We show the intuition behind
this choice in the next section. We remark that an easier choice of the window size would be
kn = 0(8,
central limit theorem. However, this would lead to a slower rate of convergence of A, Y 8. For
this reason, we dispense with the exact exposition of this case.

), which would completely eliminate the influence of the noise process on the

4. Main results

4.1. Test statistic

In this subsection, we introduce a random perturbation of the original data and define the main
statistics. Following the basic ideas of [8] and the motivation of Section 3.1, we define a d-
dimensional “perturbation” process X’ by

! ~ !/
X, =0W,,
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where & € M is a positive definite deterministic d x d matrix and W’ is a d-dimensional Brow-
nian motion. Without loss of generality, we may assume that W’ is also defined on the filtered
probability space (2, F, (Fy)iefo,71. P). Let G C F be the sub-o-algebra, which is generated by
all processes appearing in Assumption (A) and by the noise process ¢. We assume that W’ is
independent of G. Now, we use X' to define the perturbed process

Z/" =Y 4 Jeug X, “.1)

where k = 1, 2 and the sequence u,, is defined at (3.5). In some sense, the perturbation process X
plays the role of the random perturbation matrix B introduced after (3.3). As we will see below,
our two main statistics will be constructed at two different frequencies A, and 2A,,, which will
be indicated by the constant x = 1, 2.

Recall the definition of the pre-averaged quantity V;l introduced in (3.4) for a stochastic pro-
cess V. We sometimes write V(g)i.1 instead of V? if we want to stress the dependency of the
term V? on the weight function g. Furthermore, we use the notation V(g)?"‘ to indicate that the
quantity V(g)l’f is built using frequency x A, with x =1, 2, that is,

kn—1 .

- J

V=) g(k—)(ijm,, — Vit (1) An)- 4.2)
j=t "

Ifv= Z””‘_deﬁned at (4.1), we will slightly abuse the notation introduced in (4.2) and use the
convention Z(g)!"* := Z™*(g)!"*. Now, we define our main test statistics via

[T /3dun]—1
S@F* =3dun > F(Z@ G nareti-tom/ V) 1. ..a): (4.3)
i=0

for k = 1, 2 with the test function f on (R9)d given as

FG1 . xg) = det(mat(xy, . .., xq)) . (4.4)

Note that the summands in (4.3) use non-overlapping increments of the process Z™*, and also

the statistics S (g)'}’l and S (g)'}’2 are based on distinct increments; see also Section 4.5 for a more
detailed discussion.

Remark 4.1. The statistic S (g)'%"‘ is similar in spirit to the one introduced in [8], where a d-
dimensional continuous Itd6 semimartingale without noise has been considered. Therein, the
statistics S;’K defined in [8], equation (2.13), which use the raw increments instead of pre-

averaged ones, satisfy the following law of large numbers
n,2
5 F, pi-kr
n,
St

This should be compared with the motivation described at (3.3). The latter convergence asymp-
totically identifies the maximal rank R7. The crucial difference to our framework is that this
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convergence is no longer valid when we use the statistics S (g)';"( introduced in (4.3). It relies
on the fact that the noise process ¢ does not have the scaling property of the driving Brownian
motion W. To overcome this issue, we will not only use different frequencies A, and 2A,,, but
also two different weight functions g and %, which are connected through certain identities. For
this purpose, a very thorough analysis of the asymptotic behaviour of S(g)7" is required.

Remark 4.2. Let us explain the choice of the window size k, introduced at (3.5) and the per-
turbation rate ,/ku,. Under Assumptions (A) and (E), we will prove the following asymptotic
decomposition fori =0, ...,[T/3du,] —1andx =1, 2

1 — n,K — n,K
- Mat(Z () Gi 1y - 2@ (it 1)d s d—1))ky)

n

= A" + Viun(B(1, 7" + B2, 9" + B3, 9)!™) (4.5)
+ Kunc(g):'l”( + K”nD(g);z’Kv

where the R?*¢-valued sequences A(g)!™,C(g)!", D(g)!"* and B(g)!" := B(1, )" +
B(2,9)!"" + B(3,8)!"" are tight. The matrix A(g);"", which is the dominating term in the ex-
pansion, is defined by

O 3i+x—1)duy,
JKu,

nK __ ET72 n,K 57 n,K
A(g);" = mat(W(g)(3i+K71)dk,,’ cees W(g)((3i+/c71)d+/c(d71))k,,)’

while B(1, g)!"* depends on b, v introduced in (2.2), B(2, g);"* comes solely from the pertur-
bation X" and B(3, g)!" is associated with the noise process ¢ (the third order term C(g)!"*
is connected to a,v’,v” and the term D(g)!"" depends on a,a’,a”,v’,v”, defined in (2.2)).
Since det(A(g);™) = 0 whenever Ry < d, our statistic S(g)7" is degenerate in the sense that
the second order term enters the law of large numbers. At this stage, we realize that the choice
of the window size k, = O(A,, 2 3) and the perturbation rate ,/ku, creates a balance between
the second order term B(1, g)?"‘ in the stochastic expansion coming from the diffusion process,
B(3,g)!"" stemming from the noise process ¢ and B(2, g);"* induced by the perturbation pro-
cess X’. The classical choice k, = O(A;]/ 2) would make the noise part one of the dominating
terms, but in this case, the estimation of the maximal rank R7 would be virtually impossible
since we impose no assumptions on the covariance matrix X of the noise. On the other hand,
when k,, = 0(A;3/ 4) the noise part would enter the third order term and thus would not influ-
ence the limit theory. Although the asymptotic results become much easier in the latter case, the
convergence rate gets rather low (A, I/ 8). Hence, within the framework of our test statistic, the
choice k, = 0(A,, 2/ 3) meets the balance between feasibility of the testing procedure and the
optimal rate of convergence.

Clearly, B(g)?’K plays the role of the perturbation matrix B defined in Section 3.1 while A =
Kty Since it is impossible to guarantee that the matrices B(1, g)}"* and B(3, g)!"* have full
rank, we require the presence of the matrix B(2, g);"'( to insure almost sure invertibility of the

sum. Thus, the perturbation process X’ plays the role of regularization.
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4.2. Notation

In order to state the limit theory for the statistics S (g)’}"{, we need to introduce some notation.
For any weight function g, we define the quantities

1 1
1#1(g)=/ (') dx, wz(g)=/ g2 (x)dx,
0 0 (4.6)

1 1
¥a(g) = /0 sWdr,  Yalg) = /0 xg? () dx.
Forr €{0,1,...,d}, we define the function F, on (R2dyd by
» )
Fr(ui,...,vq) = yr(mat(xy, ..., xg), mat(yi, ..., ya))", v = (i’) eR¥™, 47
J

where y, was introduced at (3.1). Let W and W’ be Brownian motions of dimension g and d,
respectively, and let 0= (0, i>1 be an i.i.d. sequences of d-dimensional standard normal ran-
dom variables. W, W/, and © are defined on some filtered probability space (Q, F, (?,) >0, @)
and are assumed to be independent. Let M= be the space of all symmetric positive-semidefinite
matrices ¢ € M. We introduce the space U = M’ x M x RY4® x RY x MZ0 and let u =
(a, B, y,a, ) €U. By ¢'/? € M we denote the matrix root of ¢.

Now, for k = 1, 2, we define the 2d-dimensional variables (explicitly writing the components
withl e {l,...,d})

q Kj
W(u, g0} = TZ /( ) g(s/k = (j—1D)dW. (4.8)
=1 K(j—
<
W(u, g, 05 = %alf(, l)g(S/K—(j—l))ds
Kk(j—
1 Z “J —k ,—m
+- ) ylk’”/ g(s/k — (G — D)W, dW,
K =1 k(j=D
(4.9)
1 & e .
+ = m —(j—1)dW!
=30 / L Elre= =)
L)\ * & —
#H(10) " Sy,
m=1

Some explanations are in order to understand these definitions.

Remark 4.3. To get an intuition for the notation, we remark that the components of u € U ac-
count for the processes in Assumption (A) that will appear in the limit. This means that « is
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related to oy, B to &, y to vy and a to b;. Finally, ¢ accounts for the covariance structure of
the noise and is associated with X. As motivated above, we use different rates in our procedure.
Therefore, we also have to define the limit for the two cases k =1, 2.

Remark 4.4. Note that the random-vectors W (u, g, «); and W (u, g, «); are uncorrelated when-
everi # j.

Using the notation at (4.7), we define for a weight function g, u = («, B, y,a, ¢) € U and
k =1, 2 the real-valued random variables

fr(ﬁvgsl() =Fr(\Il(£,g,K)1, ...,\I’(ﬂ,g,/{)d),

and set

Fr(ﬂ»gs/() :E[Fr(ﬂvgsk)],

_ (4.10)
Ty, g. 1) =E[F,(u, g,6)%] = Tr(u, g.6)°,

where the expectation I is taken with respect to the measure PP, introduced after equation (4.7).

Remark 4.5. Under the special assumption that ¢ = 0 (which corresponds to the situation with-
out noise), the sequences (W (u, g, 1)) j>1 and (¥ (u, g, 2) ;) j>1 have the same global law which
implies also that I'y(u, g,1) =T, (u, g,2) and F;(g, g, )= F;(g,g, 2). This is not the case
when ¢ # 0. Proposition 4.9 will demonstrate under which conditions one can find another
weight function 4 such that I',(u, g, 1) = »(u, h,2) and I'l.(u, g, 1) = I'/.(u, h, 2) even in the
general situation that ¢ # 0.

Remark 4.6. We have introduced the random variables W (u, g, «); only for weight functions,
implying that g is continuous and piecewise C! with a piecewise Lipschitz derivative g’. As a
matter of fact, we will often work with a discretized version g" of g defined as

ky—1 ;
Heey o LI T
g"(s) = X;g(k)l(%ﬁ](s). 4.11)
=
Note that g"(0) = g"(1) =0 and that g" converges to g uniformly on [0, 1]. By definition,
g" fails to be a weight function as it is not continuous. Nevertheless, the integrals fol g"(s)ds,

fol ¢"(s)dW. and fol g" (s)W]; dW’ still make sense. This corresponds to the fact that v (g")
introduced at (4.6) is well-defined for [ = 2, 3, 4. Moreover, we have by a Riemann approxima-
tion argument that

vi(g") =vi@+0(k, "), 1=2,34
For 1 (g"), we must approximate the derivative and set

kp—1

1 () — g(L)\2
vi(g") == r Z(; <W> =y1(e) + 0(k, "), (4.12)
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where the second identity follows again by a Riemann approximation argument. With this con-
vention, we can extend the notation and write W(u, g",«);, F,(u,g", k), I'(u, g", k) and
[(u, g", k), respectively.

4.3. Law of large numbers

In this subsection, we present the law of large numbers for the statistic S (g)'}"(. The quantity
[ (u, g, k) defined at (4.10) will essentially determine the limit. First, we demonstrate how the
terms 'y (u, g, k) and I',.(u, g, k) depend on the rank of the argument «. The following lemma
has been shown in [8], Lemma 3.1.

Lemma 4.7. Let u = (o, B, y,a,9) € U with B € Mg and g be a weight function. Then, if
ref0,...,d}and k =1, 2, we deduce that

rank(o) =r = T,(u,g,k)>0, I (u, g, k) >0, (4.13)
rank(e) <r — TI,(u,g,x)= F;(g, g,k)=0. 4.14)

The law of large numbers is as follows.

Theorem 4.8. Assume that conditions (A) and (E) hold. Let r € {0, ...,d} and g be a weight
function. Then, on QrT and for k = 1,2, we obtain the convergence

T
(eun) 4 S()* 5 S(r, )t :=/ T, (05,5, vy, by, T, g, k) ds > 0. (4.15)
0

In view of Remark 4.1, Theorem 4.8 is not directly applicable since the limit S(r, g)% cru-
cially depends on «, meaning that generally S(r, g)lT # S(r, g)2T. In particular, the ratio statistics
S (g)'}’2 /S (g)';’l does not contain any information about the unknown maximal rank Rr. To
make use of Theorem 4.8 we need a better understanding of the structure of the functional I',.
The following proposition is absolutely crucial for our testing procedure.

Proposition 4.9. (i) Fix r € {0,...,d}, u € U and xk = 1,2. Then there exist C*°-functions
Truicr T - RY = Rosuch that

Tr(u, 8, 6) = Truic (¥1(2), .- ¥a(2)), Uy, 8.6) =71/, (¥1(8).....Ya(g) (4.16)
for any weight function g.
(ii) Let g and h be weight functions such that 1 (h) = 4y1(g) and Y (h) = ¥;(g) for | =
2,3,4. Then, foranyr € {0, ...,d} and any u € U, we obtain that

r(u, g, 1)=Tr(u,h,2), [ (u,g,1)=T(u,h,?2).
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Proposition 4.9(i) says that the quantity I', (u, g, ) does not depend on the entire function g,
but only on the quantities ¥;(g), / = 1,...,4. But most importantly, Proposition 4.9(ii) and
Theorem 4.8 imply the convergence

2
S(h)y

1
S(e)7

Loodr on g (4.17)

whenever the pair of weight functions g, & satisfies the conditions of Proposition 4.9(ii). This
opens the door to hypothesis testing. We now give an example of a pair of weight function g,
which fulfills the conditions of Proposition 4.9(ii).

Example 4.10. We define the two auxiliary weight functions g(x) := max(0, min(x, 1 — x))

and 7z(x) := max (0, min(ax, b(1 — x))) with a = 27—2\/3 and b = ﬁ Then, a pair of weight

functions satisfying the conditions of Proposition 4.9(ii) is given by g.(x) := g(cx) and h.(x) :=
i~z(cx —c+ 1) where c = % (see Figure 1). Indeed, for ¢ > 1, we obtain that

Vi(he) =4y1(8c) =4c,

1
Ya(he) =Yn(ge) = E,

1
Y3(he) = Y3(ge) = 4_7
C

8c—4—4/3 1
he) = - S, 5 =512
Ya(he) 962 palge) 242
and for ¢ = 8+2f“/§, we have 80_9‘6‘;2*/5 = 5y = S 11262‘/5.

Remark 4.11. From a statistical point of view and regarding the definition of the pre-averaged
increments in (3.4), we see that it is certainly not ideal to choose weight functions which are
osf osf
0af 0al
osf 0af
02} 02}

01 0.1

L L L L n L L L L
0.2 04 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0

S

Figure 1. A particular pair of weight functions g. (left), i, (right) from Example 4.10 with ¢ = 8+

satisfying the conditions of Proposition 4.9(ii).

°°’
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locally constant. Nevertheless, Example 4.10 is an attempt to reduce the parts where the weight
functions are constant while still sticking to a rather simple “triangular” form.

Remark 4.12. Here we demonstrate why the classical choice of the local window k, /A, =6 +
o(A ,11/ 4) does not work in the context of rank estimation. We assume for the moment that the noise
covariance matrix X has full rank and let A € M be a matrix with unknown rank r, which should
represent the volatility matrix. Furthermore, let B € M be a perturbation matrix and let A > 0
represent the perturbation rate ,/u, as in Section 3.1. With the window size k, O(A_l/ 2)
the noise and the diffusive parts become balanced and Proposition 4.9(i) suggests that we may
estimate objects of the form

(1, g) =det((xgA+ y, B) +AB)"  with xg = ¥2(g), ye = ¥1(2).

We will now expand the quantity ® (A, g) using again the multilinearity of the determinant. For
this purpose, we denote with P3 the set of all multi-integers p = (p1, p2, p3) with p; > 0 and
p1-+p2+ p3 =d, and I3 the set of all partitions I = (I1, Iz, I3) of {0, ..., d} such that /; contains
exactly p; points. For p € P3, 1 € 73 and Ay, A2, A3 € M, we call GA Ay Ay the matrlx in M
whose ith column is the ith column of A; when j € I;. We then 1mmed1ately deduce the identity

QA 8) = < Z Z AP3 det(GigA,ygz,B) +27 Z det(Gx AveE.B)

p=(p1,p2,p3)€P3, 1€Z, 1€Zi0,4-r)
p2#0,p3<d—r

2
+ > > AP det(GY Ay B))

p=(p1.p2,p3)€P3, 1€,
p3>d—r

= (D10, §) + B2k ) + P30 9)) .

When r <d and A | 0, the first term ®1 (%, g), which in particular contains yg det(X) # 0, dom-
inates ®; (A, g) which has the order AY~", while ®3(%, g) is negligible with respect to ®5 (1, g).
However, recalling the theory from Section 3.1 it is exactly the term ®»(A, g), which contains
the information about the unknown rank 7. In a purely deterministic framework, we may hope to
correct for the dominating bias caused by the term @1 (A, g) by taking a suitable linear combina-
tion of a particular family (® (A, g7));. Unfortunately, in a statistical setting, the objects contained
in @1 (A, g) can be only estimated with a precision rate u,, 12 (cf. Theorem 4.13 below), which
would still give a huge bias that dominates ®, (A, g) whenever r < d. This is precisely the reason

why we see little hope in using the optimal window size k, = O(A_l/ 2)

4.4. Central limit theorem and testing procedure

In order to provide a formal testing procedure associated with the convergence in probability at
(4.17), we need to show a joint stable central limit theorem for the statistics (S(g)T , S(h)'}2)

We say that a sequence of random variables H, converges stably in law to H (H, LN H), where
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H is defined on an extension (ﬁ, F , ]IND) of the original probability space (€2, F, IP), if and only if
lim E[¢(H,)Z] =E[¢(H)Z]
n—>0oo

for any bounded and continuous function ¢ and any bounded JF-measurable random variable Z.
We refer to [1,10] or [12] for a detailed study of stable convergence. Note that stable convergence
is a stronger mode of convergence than weak convergence, but it is weaker than convergence in
probability.

Now, let g and / be two weight functions satisfying the conditions of Proposition 4.9(ii). We
define the statistic U (r, g, h) = (U (r, g, h)', U (r, g, h)’?) via

1

U(r,g, h)k = (Wi =0S(g)n! — S(r, 9%, Qua) IS — S(r, 1)3). (4.18)

3

The following theorem is one of the most important results of the paper.

Theorem 4.13. Assume that conditions (A) and (E) are satisfied, the weight functions g, h fulfill
the assumptions of Proposition 4.9(ii) and Rt (w) <r for some r € {0, ...d}. Then we obtain the
stable convergence

Ur, g )% 25 MN(0. V(. 8. )r), 4.19)
where

Vr.g.Mr (4.20)

T T
=dlag<3d/ F;/A(O—‘Yagvl)s’bsazaga l)dsa3d/ F;/«(O—.SUa:avSabSvZah’z)dS)
0 0

is a diagonal matrix. MIN(0, V (r, g, h)1) denotes the two dimensional mixed normal distribu-
tion with G-conditional mean 0 and G-conditional covariance matrix V (r, g, h).

Note that the rate of convergence u;l/ 2 corresponds to A, 16 for our choice of the window
size k, at (3.5). We remark that due to Proposition 4.9(ii), we know that S(r, g)lT =S(, h)zT such
that the same centering term appears in both components on the right-hand side of (4.18). Again
thanks to Proposition 4.9(ii) we see that the two diagonal elements of V (r, g, h)r coincide. In
order to obtain a feasible version of the stable convergence in (4.19), we need to construct a
consistent estimator of the G-conditional covariance matrix V (r, g, h)7. To this end, we define
the following estimators for the “second moments”:

(T/3dun]—1
L1 - )1
Vs =9d% Y FAZO) ko /) . a)- (4.21)
i=0
[T/3du,]—1

.....
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(T/3duy]—1

Vg, h)’;:lZ — 9d2un Z f((Z(g)'(g,lde D))k, /m)j:l ’’’’’ d) 4.23)

X f((Z(h)(3ld+d+2(J k! V 2”")1':1,...,[1)’

where f is given at (4.4). Following the intuition from (4.17) we define an estimator R (g. M7
via

_log(SM* /S5
log2 ’

R(g, bt :=d (4.24)
Now, we obtain the following proposition.

Proposition 4.14. Assume that conditions (A) and (E) are satisfied and the weight functions g, h
Sfulfill the assumptions of Proposition 4.9(ii).

(i) Letr €10,...,d}. Then, on Q3"

(12) v (g "

(4.25)
i>3d/ I(0y. &, s, by, T, 8. 1) + T2(05, &, vy, by, 5, g, 1) ds,
0
d
(4u2) "V (g, )E*
i (4.26)
l3d/ (05, &, vy, by, £, 1, 2) + T2(0y, &, vg, by, B, h,2) ds,
0
—d
(2u2) "V (g, n)p"
i (4.27)
i) 3d/ FF(GS18:3 Vs, bSv Z’ gv 1)Fr(a,\"a’ Us, bs» 27 h, 2)ds
0
(ii) We have the (stable) central limit theorem
1 R(g.h)-—Rr a
&7 ZRT da o 0. 1), (4.28)

A ui’l \Y4 V(na T7 g5

where ® is defined on an extension (S~2, F, ]I~D) of the original probability space (2, F,P) and is
independent of the o -algebra G. The random variable V (n, T, g, h) is defined via

V(g h)y'! 4 aREMi=dy (g p)3? — a1 +REWi—dy (g pyi:12

vonte = (S(e)y 10g2)?
T

(4.29)

We remark that Proposition 4.14(ii) follows directly from Theorem 4.13, Proposition 4.14(i)
and the delta method for stable convergence. For this, it is essential to realize that, even though



3036 T. Fissler and M. Podolskij

the estimator V (n, T, g, h) for the conditional variance is not G-measurable, it converges to a
G-measurable limit due to Proposition 4.14(i) and Theorem 4.8.

Notice also that due to Proposition 4.9(ii) the right-hand side of (4.25) and (4.26) coincide
and, moreover, that the right-hand side of (4.27) can be written as

T
3d/ (0.5, v5.bs, T, 8. 1) ds.
0

Remark 4.15. Instead of using the estimators for the second moments given in (4.21) till (4.23),
we could also use a more direct approach and consider

[T/2du,]—1
V@7 :=3"un Y {F(Z@Siarj 1y /i) —1....a)
i=0

,,,,,

Notice that similar to Proposition 4.14(i), we have that
—d p d
2) V' (eh — 3d/ (05,5, vs,bs, T, g, 1)ds.
0

Then (4.28) also holds upon replacing V (n, T, g, h) defined at (4.29) by

2V'(9)T

Vi, T,g)=—"""T
(S(2)%" 10g2)?

The feasible central limit theorem at (4.28) opens the door to hypothesis testing. Let us define
the rejection regions via

CZ’:V = {(1): ‘k\(g, h)l;w — r‘ > 2—a/2V unv(nﬂ T’ 8 h)}’ (430)
Cr="i={w: R(g, h)s —r > zi—a/unV(n, T, g, h)}, (4.31)

where z, denotes the a-quantile of the standard normal distribution. Obviously, the rejection
region C2»=" corresponds to Hy : Ry =r vs. Hy : Ry # r, while C*=" corresponds to Hp : Ry <
r vs. Hy : Ry > r. The asymptotic level and consistency of the tests are demonstrated in the
following corollary.

Corollary 4.16. Assume that conditions (A) and (E) are satisfied and the weight functions g, h
fulfill the assumptions of Proposition 4.9(ii).

(i) The test defined through (4.30) has asymptotic level o in the sense that

AcCQy, P(A)>0 = P(Cy™|A)— a. (4.32)
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Furthermore, the test is consistent, that is,

P(Cy= N (27)°) = P((27))- (4.33)
(ii) The test defined through (4.31) has asymptotic level at most « in the sense that
ACQ:, PMA)>0 = limsupP(C/<|A) <a. (4.34)
n—oo

Furthermore, the test is consistent, that is,

P~ N (27")°) —» P((QF)°). (4.35)

4.5. Working with overlapping increments

Recall that our test statistics S(g)7", k¥ = 1,2, defined at (4.3) work with “maximally non-
overlapping” increments in the following sense: (i) Each single summand uses non-overlapping
increments, (ii) for each ¥ = 1, 2 the summands in § (g)r}"( contain distinct increments, and fi-

nally (iii) also the statistics S (g)’;’1 and § (g)';’2 are composed of distinct increments. The partic-
ular reasons for using non-overlapping increments on these three levels are also different. Point
(i) is necessary to obtain the asymptotic decomposition explained in Remark 4.2. On the other
hand, (ii) ensures the stable central limit theorem at (4.19) for each single component and (iii)
implies the diagonal form of the conditional covariance matrix at (4.20), so in particular, the
conditional covariance is not degenerate.

In order to reduce the asymptotic variance of the rank-estimator at (4.38) and to improve
its finite sample performance, it is desirable to use overlapping increments at least at some of
the different levels. Whereas (i) is crucial for the whole approximation idea, (ii) and (iii) are
less compulsory. Concerning point (iii) one can allow for common increments in the two main
statistics as long as the conditional covariance appearing in Theorem 4.13 is not degenerate; see,
for example, [8]. A natural ansatz of tailoring new statistics using overlapping increments on the
level of (ii) and (iii) is the following. We define

- [T/An]*’(dknfl .
S@r =80 Y FZ@H /)y ) (4.36)
i=0

for « = 1,2, a weight function g and the function f defined at (4.4). Proving a law of large
numbers is a quite straightforward corollary to Theorem 4.8. The idea is to split up the sum in
(4.36) into the sum of 3dk,, partial sums, each of them having summands with distinct increments
and being of the form at (4.3) with different starting points.

Corollary 4.17. Assume that conditions (A) and (E) hold. Let r € {0, ..., d} and g be a weight
function. Then, on QrT and for k = 1,2, we obtain the convergence

r—d’a n, P K
(kun) ~8(9)3" — S(r, 9)%, (4.37)

where S(r, g)% is defined at (4.15).
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Then, using a pair of weight functions g, &, satisfying the conditions of Proposition 4.9(ii) we
obtain an analog version of the convergence at (4.17), such that

log(S(h)%%/S(g)%")
log?2

R(g. ) :=d — (4.38)

is a consistent estimator for the maximal rank.

In contrast to the straightforward derivation of the law of large numbers, it is far from being
trivial to derive a stable central limit theorem corresponding to Theorem 4.13. In principle, one
could show a one dimensional central limit theorem for each of the two components (of course
with a different conditional variance) with the so called “small blocks—big blocks”-technique
which has become a standard method for proving central limit theorems for dependent data; see
[7,11]. However, for the joint convergence, the remaining major problem is to show that the
resulting conditional covariance matrix is not degenerate. It is not clear how one could show
this, and also simulation studies give evidence that the sample covariance matrix is also ‘almost’
degenerate. Consequently, a central limit theorem like the one at (4.28), and with that hypothesis
testing, seems to be much more complicated.

5. Simulation study and real data example

5.1. Simulations

In this subsection, we want to examine how well the testing procedure for the maximal rank
performs in finite samples. The main focus lies on considering the convergence results in (4.28),
(4.32) and (4.33). Complementing these results, we examine how well the estimator R (g, h)’}
works to estimate the maximal rank Ry and we compare it with the estimator for overlapping
increments R (g, 1) (using the law of large numbers which is implicitly given by (4.28)). To this
end, we also consider the truncated and integer-valued modifications of the estimators defined as

N 0. Rg.hE<1/2,
R™@g.h)p:=1r,  R(g.hhelr—1/2r+1/2re{l,....d=1}, (5.1
d, R h7r=d-1)2,

B 0, IE(g,h)’} <1/2,
R™(g,h)%:=1r, Rg.Wkelr—1/2,r+1/2),re{l,....,d -1}, (5.2)
d, R(g,ht>d—1/2.

We emphasize that due to the rate of convergence of A, 6 we expect a worse performance

in finite samples in comparison to the simulation study in [8] (there, the rate of convergence is
-1/2

Ay 0.
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5.1.1. Models and parameters

For all simulations, we set T = 1. Assuming a trading day consists of 23400 seconds, we use
the sampling frequencies A, 1'=23400 x 10* for k =0, 1, 2. We remark that nowadays liquid
assets can be observed even at the highest frequency A;l = 23400 x 10%. We work with a fix
dimension of d = 8, which makes the simulation results comparable with the real data example
of Section 5.2. Following the simulation study in [8], we set & = I; and due to [7] we use 6 = 1/3
for the pre-averaging procedure. Additionally, we set &k, := [0/ Az/ 3] such that (3.5) is satisfied.
We use the weight functions g, & explicitly constructed in Example 4.10. For the noise part, we
always assume a covariance structure of ¥ = 0.00051; like in [7]. We perform 100 repetitions
for X to uncover the finite sample properties. To reduce the influence of the random perturbation,
we simulate W’ 10 times for each repetition. The following quantities are reported:

e k: the implicitly given sampling frequency defined as A’l = 23400 x 10~;

e the first two moments of the test statistic \/(gvh% defined at (4.28) to check for the
normal approximation;
o Qf: the proportion of rejection for the possible null hypotheses Q2 with r € {0, ..., d}

defined at (2.3) at level o = 0.05.

In order to compare the rank estimators for the overlapping and the non-overlapping approach,
we first take the empirical means of the estimators ﬁ(g, h)| and ﬁ(g, h)| over 10 different
simulations of W', and we take the respective empirical medians of ﬁim(g, h)} and Eim(g, Y.
For the sake of brevity, we denote these quantities again with the same notation. We report the
following quantities:

e mean: the sample mean over the 100 repetitions of R(g, h)" and R (g, h)
e variance: the sample variance over the 100 repetitions of R(g h)” and R(g 't

e ratio: the proportions of the event that the estimator R”‘t(g, h)'| and R”‘t(g, h)} coincides
with R;.

For the non-overlapping approach, we use again the three frequencies An’l = 23400 x 10%,
k =0,1,2. Due to computational restrictions, we conduct the simulation for the overlapping
approach just for the lowest frequency A, ! =23400. We consider the following models for the
semimartingale X defined at (2.1).

Model 1 We have a vanishing drift b; = 0 and a constant volatility o; = I; of full rank.

Model 2 We observe pure noise, so b; =0 and o; = 0.

Model 3 We have a constant drift b, = 0.5 and a constant volatility structure with rank R; =6
which is given by

-1

Oy =

eNeoloBoNeoloNeols
[=NoNeoBoNoNoNeNe
=Nl Soleho o=
=N T NeloNeoloNoh=
—_ O OO OO o0

=NeoloBoNeolol e
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S oo oo —O
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Model 4 We have a vanishing drift b, = 0 and a time varying volatility process given by o; =
max(sin(27t), 0)I;, such that Ry = 8.

5.1.2. Summary

According to our theoretical results, the empirical counterparts of the first two moments, level
and power reported in Table 1 seem to converge to their theoretical analogues as the frequency
increases. However, the speed of convergence depends on the particular model, and generally,
even at the highest frequency A, 1'=23400 x 102, the empirical results are still quite far away
from the theoretical asymptotic results, which is due to the rather slow convergence rate of A;, 176
More specifically, the numerical results at the lowest frequency A, 1'=23400 are less reliable
for all four models.

In particular, for models 1, 2 and 3, we observe reasonable results for the convergence of the
empirical moments. Only at the lowest frequency A;l = 23400, model 3 performs considerably
worse than models 1 and 2. An explanation is that there are several small order terms in the
expansion of the main statistic, which seem to influence the finite sample performance at rela-
tively low frequencies. Recall that there is a drift term in model 3, whereas models 1 and 2 have
vanishing drift and constant volatility, such that these lower order terms do not appear. Also the
relatively bad performance of the empirical moments in model 4 is in line with that explanation.
It is the only model with time varying volatility — and the range of the rank is quite extreme: one
has full rank in [0, 1/2) and pure noise in [1/2, 0]. Astonishingly, in model 4 one obtains the best
results for the empirical moments at the lowest frequency.

The approximation of power again depends on the complexity of the time-varying coefficients
of the model. Quite intuitively, we observe a better power performance for alternative hypotheses,
which are more distant to the true one. In models 1 and 3, at the lowest frequency, the underesti-
mation of the true maximal rank (7.29 and 5.87; see Table 2) induces a bias in the corresponding

Table 1. The results for the statistic R (g, h)’ll in four models are summarized according to their order

0 1 2 3 4 5 6 7 8
ko lstmt  2ndmt ) o 9 o o o o <o o
0 —1.84 71527 0933 0903 0843 0781 0693 0609 0553 0527 0.535
1019 1571 0990 0962 0908 0836 0734 0637 0539 0471 0444
2 —022 399 1000 0981 0954 0922 0800 0632 0435 0313 0285
0 230 647200 0567 0597 0.622 0676 0743 0814 0866 0.898 0935
1 011 1351 0360 0400 0491 0602 0738 0841 0917 0952 0.980
2011 372 0253 0281 0448 0647 0791 0916 0969 0988 0.996
0 —23.09 229x10° 0830 0764 0714 0657 0607 0565 0580 0590 0617
1 015 17.40 0903 0825 0721 0594 0494 0433 0400 0451 0534
2 —0.02 384 0975 0927 0811 0684 0499 0346 0278 0330 0515
0 054 1044 0.818 0780 0723 0679 0631 0591 0560 0540 0.521
I 1720 276x10° 0905 0.883 0856 0825 0772 0717 0681 0.637 0.606
2 —179 128166 0933 0915 0889 0824 0725 0642 0553 0505 0517
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Table 2. The results for the rank estimators R (g, h)'; and
R(g, h)’} of the overlapping and non-overlapping approach for
the four models are summarized according to their order

Overlapping k Mean Variance Ratio
No 0 7.29 8.86 0.48
No 1 8.12 7.01 0.64
No 2 7.80 3.40 0.61
Yes 0 7.88 0.55 0.72
No 0 0.02 1.41 0.55
No 1 —0.04 0.70 0.59
No 2 0.11 0.39 0.58
Yes 0 0.08 0.04 0.93
No 0 5.87 5.33 0.15
No 1 5.82 2.81 0.27
No 2 6.00 1.34 0.29
Yes 0 5.96 0.24 0.67
No 0 9.10 27.82 0.60
No 1 8.63 20.77 0.68
No 2 7.99 10.62 0.56
Yes 0 8.93 1.49 0.90

tests: in model 1, the proportion of rejection for the null hypothesis Q? is 0.527 which is smaller
than 0.535, the proportion of rejection for the true hypothesis Q? (also compare the values for
95 and 526 for model 3). In model 4, we have the same effect at the highest frequency where the
proportion of rejection is 0.505 for ¢ 97 and 0.517 for 98 This cannot merely be explained by the
relatively small bias of —0.01 of R(g, h)"; see Table 2 However, the rounded but not truncated
version of R(g, h)' takes 17 times the value 7, but only 11 times the value 8 in our simulated
sample, which can serve as an explanation of the biased test.

If we first focus on the results for the non-overlapping statistics in Table 2 we can see that the
bias and the variance of the corresponding rank-estimator seem to become smaller as A, — 0.
Especially for the variance we can see this in all models. In line with this convergence, one would
expect that the ratio of events that R™ (g, h)' coincides with the true maximal rank increases as
A, — 0. However, we can assert this increase only for model 3. This is the only model where the
true maximal rank, which is 6, is an “inner point” of the possible values {0, ..., 8}. In the other
models, truncation effects in the definition at (5.1) take place. For example, in model 4, at the
frequencies An_l =23400 x 10, k=0, 1, there is actually an upwards bias (41.10 and +0.63),
whereas for the highest frequency, there is a negligible bias (—0.01).

Comparing the results for the non-overlapping approach with the overlapping approach out-
lined in Section 4.5 yields qualitatively expectable, but quantitatively impressive results. First of
all, the bias of the estimator using the overlapping approach is of comparable size as the one
for the non-overlapping approach at the same frequency A;l = 23400. On the other hand, the
sample variances of the two different approaches is dramatically different. Comparing the esti-
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mators at the same frequency, the overlapping approach reduces the variance by a factor of 16
(model 1) up to 35 (model 2). Even for the unfair comparison at different frequencies for the
different approaches (A, ! = 23400 x 10? for the non-overlapping approach and A1 =123400
for the overlapping approach), the variance in the overlapping approach is still smaller than the
one in the non-overlapping approach by a factor of 5 (model 3) up to 10 (model 2). As a result of
the variance reduction, the proportion of the event that the estimators defined at (5.1) and (5.2)
coincide with the true maximal rank increases in all models when switching to the overlapping
approach. In our simulation study, this proportion of correct estimation in the overlapping ap-
proach is considerably higher than that proportion for the non-overlapping approach uniformly
over all frequencies. Only the comparison on model 4 seems to be slightly unfair due to the
positive bias of R (g, )} and the truncation effects when calculating ﬁim(g, h)y.

We remark that we have conducted several pre-simulations for lower dimensions. In theses
cases, the speed of convergence both of the empirical moments and of the empirical powers
is the higher the lower the dimension is. This can be explained by the fact that the true rate
of convergence is [T/3dun]1/ 2 rather than A, 1/ 6, which decreases when d is growing. On the
other hand, for constant volatility models the speed of convergence seems to increase as the time
horizon increases, which is also in line with the above statement. For more complicated models,
the relation is not so easy. The explanation is that one should rather replace T with the Lebesgue
measure of the set {r € [0, T']: r, = Rt} in the rate of convergence given above.

5.2. Real data example

5.2.1. Data description

In order to test our theoretical results on real data, we consider a homogeneous market of eight
stocks from big American banks: American International, Allstate, Bank of America, Citigroup,
Goldman Sachs, J. P. Morgan, MetLife, and Prudential Financial. The sample period is 2006—
2009, both years included, which results in a total number of 1007 trading days. We performed a
pre-cleaning of the data to exclude misprints. We have applied the previous-tick method to obtain
1-second equidistant observations in each trading day, that is 23 401 prices in total for each day.

5.2.2. Data cleaning

As our asymptotic theory is not robust to jumps in the price process X, we need to eliminate
possible jumps first. To remove possible intraday jumps, we apply the following algorithm:

1. For each component Y™ of the observed price process, we calculate the mean daily squared
volatility, denoted by (’a\i’”)2 for day i. To this end, we use the jump-robust pre-averaged
estimator defined at [5], equation (4.35). As parameters we use the standard weight func-
tion g(x) = min(x, I — x), 6 = 1/3 and k, = [0/A,/*], resulting in v, = v (g) = 1/12;
see (4.6).

2. For each day i and each component Y, we define a threshold

Threshold!" := 36" \/ Y2k}, A
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3. We delete a pre-averaged increment 7? within day i of the multi-dimensional price process
whenever there is at least one component m € {1, ..., d} such that

|Y_’";l | > Threshold;".

Since we have to cancel the increments in all components whenever there occurs a jump in a sin-
gle component, the algorithm removes quite a number of increments. The number of remaining
increments is about 71.9% of the original number before the data cleaning.

5.2.3. Results

In line with the simulation study, we set 6 = I;, 6 = 1/3 and k,, = [0/ Az/ 3] and use the weight

functions g, h which are constructed in Example 4.10. Over each time window, we use 10 in-
dependent realizations of the random perturbation W’. Again, we report R (g. 7T (R(g 7.,
respectlvely) as the mean over that sample of the respective estimators, and Rint (g. M7
(Rmt(g, h)7., respectively) as the respective median.

We report the results for the non-overlapping increments approach for a time window of one
day in Figure 2 and over a rolling time window of 10 days in Figure 3. One can find the results
for the overlapping increments approach for a time window of one day in Figure 4. For a first
analysis of the results, we ignore the time varying structure of the data and compute the sample
mean and variance of the estimators R(g, h)1 s R(g, h)lo, and R(g, h)"; see Table 3.

For the non-overlapping situation with a one-day time window, we clearly see a positive bias.
The sample variance reduces both when switching to a larger time horizon and when switching

25
L

20

rank-estimators

T T T T T
0 200 400 600 800 1000
days

Figure 2. Estimators R (g, h)’]1 (circles) and I/?\im(g, h)’l1 (squares) over a one-day time window.
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Figure 3. Estimators R (g, h)'llO (circles) and RN (g, h)'llO (squares) over a 10-days rolling time window.

to the overlapping increments approach. Consequently, it is clearly preferable to work with the
results of the overlapping increments approach. An obvious and interesting question is whether

one could reject the null hypothesis that the market at hand is complete. This amounts to

asking
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Figure 4. Estimators R (g, h)’]1 (circles) and ﬁim(g, h)'lZ (squares) over a one-day time window.
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Table 3. Sample mean and variance of ﬁ(g,h)’l’,
R(g. ). and R(g, h)}

Overlapping T Mean Variance
No 1 10.85 16.11
No 10 8.20 8.12
Yes 1 8.22 2.31

whether the maximal rank of the co-volatility is 8 for all days in the sample period and the days
where ﬁim(g, h)' yields another result is just due to the variance of the estimator (and the low
frequency). To this end, we count the events that ﬁi"t(g, h)" = 8 which is for 700 out of the
1007 trading days in the sample period. For 223 days, the estimator yield 7, and for the rest
of the days, it yields smaller values. If we compare these numbers with the results of model 1
in the simulation study for the overlapping approach (see also Table 2), those numbers are of
comparable size: 72 out of 100 simulations, the estimator yields 8, 25 times the value 7, and 3
times the value 6. Of course, with 2.31 the sample variance of the estimator in the data example
is much bigger than the variance in the simulation study with constant and full rank, which is
0.55. On the other hand, it is plausible that for the real data, there is both a non-vanishing drift
term and a more complex volatility structure than a merely constant volatility. Hence, probably
due to the lower order terms in the expansion of the main statistic, the variance is bigger; see also
the discussion of the simulation study.

Finally, we see different rank regimes in the data. It seems that the rank estimator yields higher
values in the mid-third of the sample period in comparison to the first and last third.

6. Proofs

Before presenting the proofs in detail, let us briefly outline the roadmap of this section. In Sec-
tion 6.1, we introduce some technical results about expansions of determinants. We justify the
asymptotic expansion at (3.2) and also show some more involved results.

In Section 6.2, we show that — using a standard localization procedure — we obtain the stochas-
tic decomposition explained in Remark 4.2. Moreover, we show how the law of the dominating
term in the expansion can be expressed in terms of the notation introduced in Section 4.2.

Section 6.3 is especially concerned with the proof of Proposition 4.9. To this end, we perform
a very detailed analysis of the terms I', and I',. introduced at (4.10) and their dependency on the
weight function g. This mainly relies on an application of the Leibniz rule for the calculation of
the determinants and a repeated use of the Itd isometry to calculate the expectations.

Section 6.4 deals with the proofs of the main Theorem 4.13 and of Proposition 4.14. First, we
show that — thanks to the stochastic expansion established in Section 6.2 — the main approxima-
tion idea motivated in Section 3.1 works in the stochastic setting. The second main step in the
proof of Theorem 4.13 is the application of a stable central limit theorem for semimartingales
(see, e.g., [10], Theorem IX.7.28). Proposition 4.14(i) follows along the lines of parts of the proof
of Theorem 4.13. Proposition 4.14(ii) follows by Theorem 4.13, Theorem 4.8 — which in turn is
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a direct consequence of Theorem 4.13 — and Proposition 4.14(ii) by applying the delta method
for stable convergence. Note that this procedure does only work under a proper choice of the pair
of weight functions which fulfills Proposition 4.9(ii).

The proof of Corollary 4.16 is essentially a consequence of the stable convergence at (4.28)
and is referred to Section 6.5.

6.1. Expansion of determinants

Due to Section 3.1, the key to identifying the unknown rank of a matrix A € M is the matrix
perturbation method which results in the expansion at (3.2). While we could show the law of
large numbers at (4.15) with an expansion like the one at (3.2), we need a higher order expan-
sion of the determinant to derive the central limit theorem at (4.19). Therefore, we shall intro-
duce some additional notation to the one in Section 3.1 which is similar to the one introduced
in [8].

In the sequel, ||A|| denotes the Euclidean norm of a matrix A € M. For any positive integer
m > 1, we denote with P, the set of all multi-integers p = (p1, ..., pm) With p; > 0 and p; +
---+ pm =d, and I, the set of all partitions I = (I3, ..., I;) of {0, ..., d} such that I; contains
whose ith column is the ith column of A; when j € I;.

Due to the multilinearity property of the determinant we have the following identity for all
Al,..., A, eM

det(Aj 4+ Ap)= Y Y det(GY 4 ) (6.1)
pePnlel,

For A, B,C e M and r € {0, ..., d}, recalling (3.1), we recover the identity

y(ABy= Y det(GY p) (6.2)
Iez(r,dfr)
and set
Y/(A.B.C):= Y det(Gl p ). (6.3)
Il a—r—1,1)

with the convention that y_1(A, B) = 0 and yé(A,B,C) =0. Let A,B,C,D € M and
rank(A) < r. Using (6.1), we obtain the asymptotic expansion

det(A + 1B 4+ 2>C + A*D)
=2""y.(A, B) (6.4)
+ 27 (1A, B) + ¥[(A, B,O) + y/(A, B, D)) + O(x* %) asr 0.

This observation gives rise to the following lemma (see also [8], Lemma 6.2).
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Lemma 6.1. There is a constant K > 0 such that for all r € {0, ...,d}, all A € (0, 1] and all
A, B,C, D € M withrank(A) <r we have with A = ||A|| + ||B|| + || Bl + || D||

|det(A +AB +2*C +22D) — 27"y, (A, B) — 2" (y,_1(A, B) + ¥/(A, B, O))|

(6.5)
1
=n det(A 4+ AB +A2C +12D)* — y,(A, B)?
— 24y, (A, B)(yr—1(A, B) + ¥/(A, B, C)) (6.6)

< KAA¥M7Y (A + D).

If further ' € (0,1], A’, B’,C’, D' € M with rank(A") < r and A = |A’|| + |B’|| + |IC’|| +
| D'\, then

1 2 2 1)\2 ’ I/ 12 2 2
6.7)

— 7 (A, By (A B))?| < K(A+1)AN.

Proof. The inequalities at (6.5) and (6.7) essentially follow from the asymptotic expansion at
(6.4) and the fact that there is a K > 0 such that for any p € P4, I € Z;, and A € (0, 1] we have

[det(GYy 5 12ci2p)| = AP0 det(GYy ¢ p)| < KAPHH2PH2PE A=y D,
The inequality at (6.6) follows from (6.5) by taking squares. ([

6.2. The stochastic decomposition

Under Assumption (A) and by a standard localization procedure (see, e.g., [2], Section 3), it is
no restriction to make the following technical assumption.

Assumption (Al). Assumption (A) holds and the processes X;, bs, oy, a;, v, a;, v, a;, v]
defined at (2.1) and (2.2) are uniformly bounded in (w, t).

We make the convention that all constants are denoted by K, or K, if they depend on an addi-
tional parameter p. The constants never depend on T, ¢, n, i, j. To ease notation, we use generic
constants that may change from line to line. We introduce the filtration (#;):c[o0,7] defined as

H; ::.F;VU(E),
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where o (¢) is the o-field generated by the whole process (¢);¢[0,7]. For any process V and for
the filtrations (F;);ef0,71, (Hi)refo,7) and k = 1,2, we will use the simplifying notation

VI = VGite—1duy» F = FGite—1)duy» M =HBitic—1)duy - (6.8)
Note that we have the “nesting property” .7-'1."’1 C .7-';1’2 and H?’l C 7—[?’2, respectively. Now, we
show that under Assumption (A) we can obtain the stochastic decomposition at (4.5) explained
in Remark 4.2. To do so, we notice (see [8], Section 6) that under Assumption (A), and for any

z <t <s, we have the following expansion for the increment X; — X; = f; b,ds + fts o, dWs
(using vector notation):

s
/ bydu=a;+ar + a3+ ay,

t

N
/ oy dWy, =as+ag+a7 +ag +ag +ajg +ai1,
t

N u
ay =b,(s — 1), o =/ </ afudw) du,
t z
N N u
a3=v;/ (W, — W,) du, a4=/ (/ (v,’U—v;)dWw)du,
' t \Jz

S
(XS:UZ(WS_Wt)v a6=az/ (u_z)dWM7
t

where

(X7=/S</u(aw_az)dlU)qu, (XS:UZ/S(Wu—WZ)qu, (6.9)
t z P

N u w
a9=/ (/ (/ aL’dr)dWw)qu,
t z z
S u
0110=U;// (/ (Ww_Wz)dWw> dWy,
t z
N u w
0111:/ </ (/ (v;’—vg)dWr)dWw>qu.
! z z

By the Burkholder—-Gundy inequality (see, e.g., [13]), we have under Assumption (A1) for all
p,t,s >0andfor V=X, o0,b,v that

E[ sup [[Viu = Vi1 ] < K2 (6.10)
uel0,s]
We set
Nts = sup IVigu — ViII?, "t = \/E[n(3i+/<fl)dun,/cdun |F ).

uel0,s],V=a,v' v"
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Using the Burkholder—Gundy inequality and Holder inequality leads to (recall that z <)

K,(s —2)P? if j =5,
Kp(s —2)P if j=1,8,

E[llajlIP1F.] < § Kp(s —2)°P/2 if j =3,6,10, (6.11)
K,y(s —2)* if j=2,9,

Ky(s —2)PPE[nf _|F.] ifj=4,71L

Let g be a weight function (see Section 3.2) and g” its discretization introduced at (4.11). For
k = 1,2, we define the function

kp—1 .
G (x) :=g" (Kupx) = Z g(,%)hx(jnm,xmn](w.
n

j=1
Using (6.9) with z = 3i +« — Ddu,,t = (@i +x — 1)d +k(j — Dup, s =(Bi +k — 1)d +
kju, withi € {0,...,[T/3du,] —1},j €{l,...,d} and x = 1, 2 we then obtain the stochastic
decomposition at (4.5), namely

2 n,K 2 n,K
N mat(z(g)(3i+x—l)dk,,’ SRR Z(g)((3i+:<—l)d+:<(d—l))k,,)

= AQ!" + Vkun(B(1, )" + B2, 9)""" + B3, 9)!"™)
+ ku, C(Q)}™ + ku, D()}™",

where (using vector notation)

oK (@Bi+k—1)d+«kj)uy

ot =2 s (05 DG~ ),
sJ KU . :
n J(Bi+k—Dd+e(G—1)uy

ok b’?s’( (Bi+x—Dd+kj)uy
B(l,g);; = ! / 8n.xc (s — ((31' +r—Dd+«(j— 1))14,,) ds
Kl J(Bitk—DdxG—1))un

VK (Gitk—1)d+k ) )up
i / gnc (s — (Gi 4 1c — d + G — 1))uy)
(

Kin J(@ite—1)d+r(j—1))u,

X (Ws - W(3i+K—1)du,,)dW57

ol (Bi+k—1)d+«kj)u,

B, g = g (s = (Gi 4k = Dd 1] = D)ug) dW,
KUn J(GBi+k—1)d+k(G—1))up

1
nK __ — n,K
B3.8); = @8(8)((31‘“4)d+/<<j71))k,,’

. ai"v’f (@Bi+x—Dd+kj)uy ( (
c(g),nzif Snuls —(Bi+k—=1Dd+«k(j—1)u
DI (kun)3? ) (Gidk—d4r G—1)un e Jin)
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X (s —Q@Bi+k— l)dun)dWs
U/{’!K (@Bi+x—Dd+kj)uy
d / gnac(s = (Gi+x = Dd +k(j — D)uy)

(

+ - v
(kun)3? J(Gitk—1)d-+xG—1)yun

x (Wy — Wi qie—1)du,) ds

/K (Bi+x—1)d+kj)u,
1 . .
/ gn,,((s—((3l +x—Dd+«x(j —1))un)
(

(kun)3? J(Gige—1)dtic(i—1)yun
N
X (/ (W, — W(3i+/(1)du,,)qu) dWs,
Bi+x—1)du,

and D(g)?’]'.( is the remainder term. In the sequel, we will make the convention that B(g)!"* :=

B(1,9)"" + B2, + B(3, g)!"". With the following lemma, we can deduce that under As-
sumption (A1) the R¥*?-valued sequences A(g)!", B(g)!", C(g)!"*, D(g)!"" are tight (see
also equation (6.15) in [8]).

Lemma 6.2. Let the Assumptions (Al) and (E) be satisfied. For p > 1, there is a K, > 0 such
that we have the following estimates

E[fa@ii " + 1860 1” + [ c@qy 1717 ] = Ky,
Kp.

E[| D@5 |71 < Kp(ul? + (nf*)""?) <

1

Proof. To show the estimate for the term B(3, g)?’]'.{, we refer to [9], equation (16.2.3), which

implies that E[||§(g)?"{ 1”1 < K,,k;p/z, such that the claim follows by recalling (3.5). For the
remaining terms, we use (6.11) with z = 3i +« — 1)du,, t = (Bi +« — 1)d+x(j — D)u,, s =

(Bi +k —1)d 4 kj)up plus the fact that g,  is uniformly bounded in n. O
L . [T/3dup]—1 n,k

emma 6.3. Assume Assumptions (A1) and (E). Then u,E[)_;_; n; " 1—0.
Proof. The proof follows along the lines of the proof of Lemma 6.3 in [8]. O

Lemma 6.4. Let the Assumptions (Al) and (E) be satisfied. Fix a weight function g. Then, for
anyref0,...,d},i=0,...,[T/3du,] — 1 and k = 1,2 the .7-"1.”"(-00nditi0nal law of

2
v (A" B(9)]™)
coincides with the ]:l.'"'(-conditional law of

T nK ~ n,K n,K n n
Fr(al 707vi ’bl 72,8 ’K)’

where

= 6° b 6.12)
=am > .
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Proof. The quantity F, (o], 5, v!", b!"*, £", g", k) can be realized on the probability space
(@2, F, (Ft)eeo,11, P) by taking

— W’

/
W Bid+x—1)duy,

(@Bid+k—1)d+t)u,

Then define ® implicitly, such that

= _ WGidre— — Wesid-+x— _
W, = (@Bid+x—1)d+t)u, Bid+x—1)duy, W/—

| 12 d .
()" S oy Pyt s e

m=1

Indeed, we know that B(3, g) f is a centered Gaussian random variable with covariance matrix

kp—1 2
m+1 u Y1(g") 1 ¥1(g") o,
Z(( ) g(a»zﬂzmzzzﬁ e

where Y1 (g") is defined at (4.12). We also remark that due to (3.5) we obtain that X" = (1 +
o(AYS) 3. 0

As a direct consequence of Lemma 6.4, we can deduce that

E[y, (@)™, B(g)™*)*|F™*]

Var[y, (A(9), B(9)") 17

(0,5, 0 b S g k), (6.13)

1

F;(Ji"’K,E,vf" b, E",g",/{). (6.14)

6.3. Proof of Lemma 4.7 and Proposition 4.9

Proof of Lemma 4.7. The proof of Lemma 4.7 follows along the lines of the proof of [8],
Lemma 3.1. (Notice that we can incorporate the additional terms with ®; appearing in (4.9) in
the terms ©; at [8], equation (6.8).) ([l

Proof of Proposition 4.9. We start with the proof of part (i). Let r € {0,....d}, u =
(o, B,v,a,9) €U, k =1,2 and g be any weight function. Using the notation at (4.8) and (4.9),
we define the matrices
d
Au, g, 1) = (W (u, g, k)] ) B(u, g, k) = (¥, g «); +’)

being elements of M. Furthermore, for I € Z,. 4—,) we will use the notation

Gl Bue = (Chuwgo. Bwes)! )i jmt....a
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Then, developing the determinant with the Leibniz rule, we obtain the identity

T g,6) = B[y (A, g, €), B, g,©))’]

[ Y 4Gl gy Bugn) det(G If;(u,g,/(),B(u,g,K)):|
I,I/GI(r‘d_r)

I
&=l

= E|: Z Z sgn(m) sgn (')
I,I’EI(r‘d_r) n,ﬂ/EGd
(6.15)
2 (@) 2 ")
I (i r 7'(j
< [TChwenpus)i [1(Chwen.puso);
i=1 j=1
= Z Z sgn(m) sgn(r’)
LIel;y_rmn'eGy
d @) ")
pre— m(l T
l_[]E GA(u g.k),B(u,g, K)) (GA(u g.),B(u,g, IC)) ]’
where G, denotes the group of all permutations of the set {1, ...,d} and sgn(mw) € {—1, 1} is

the sign of the permutation 7 € G,. The last step in the computation is due to the fact that the
vectors (GA(M 0.0, Bi.g, K)), and (G Al,g.6), B, g, K))j are uncorrelated if i # j. Thus, for fixed
r€{0,...,d} and k = 1, 2, the mapping (u, g) — I',(u, g, k) can be considered as a polynomial

2
in (‘rl) x (d")? x d variables of the form

E[(GA(M g.k),B(u,g, K))n(l)(GA(u g.k),B(u,g, K))” (i)]’ (616)

where LY € Z(y gy, m, 1’ € Sg and i = 1,..., d. Using It6’s isometry, (6.16) takes one of the
following three forms with /,1’ € {1, ..., d}:

q
E[W(u. g. O (u, g, ) ]=v2(9) Zalmal m

m=1

E[W(u, g, 0) W, g, 0 =0,

q
E[W (. g.0)f "W, g. o)™ = y3(9)%d'd" + (Ya(®) + (i — Dya(g)) Y y™my*n
m,k=1

+ V() Z BB + %2(9‘? Z(wl/z)’”’ (o!/2)™
m=1

m=1
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Hence, if we additionally fix u € U/, then there is a polynomial 7.,  : R* — R such that the
mapping g — ', (u, g, k) can be written as

g Truw (V1(2), ¥2(8), ¥3(8), ¥4 (g)).
This shows the first part of (4.16). To show the second part, we use the relationship
I/, 8 6) =E[y, (A 8,0, B, g,6))*] = T, (@, g,1)*.

By a similar calculation as in (6.15), we obtain that

E[yr (Au, g, %), Bu, g,6))"]

Z Z sgn() sgn(r’) sgn(7”) sgn(x"”) l_[ GA(ugK) B(ugl())n(’)

I’I/’I//’I/// JT,HI,ITH,JTW =
€Lya-ry €64

QU

(GA(M 8.x),B(u,g, K))7Z (l)( K(z,g,fc),B(g,g,K))? (1)( If(;u 8.k),B(u,g, K))7Z (1)]

If we fix again r € {0, ..., d}, k = 1,2, the mapping (u, g) — E[y,(A(u, g, k), B(u, g, k))*] can

4
be considered as a polynomial in (‘:) x (d")* x d variables of the form

]E[(GA(M g.£),B(u,g, K))n(l)(Gg(u g.),B(u,g, K))n o

/( ) ///() (617)
i " i
(GA(u g.k),B(u,g, K)) ( g(g,g,f(),B(g,g,K))i ]’

where LY, 1", 1" € Zy gy, m, 7', 5", " € g and i = 1,..., d. By a careful calculation, we
can see that (6.17) takes one of the following five forms with [, ’,1”,1" € {1, ..., d}:

E[‘Ij(gv gs K)f‘lj(ﬂ, gv K)él‘y(% gv K)éﬁ\lj(ﬁs g5 K)iw] = 1/’2(8)21(017
E[Wu, g0l 0w, g, 0! W, g, 0! W, g0 =0,

E[W(u, g. )W, g6t W, g ) W, g, )]
q

q
=va(e) ) aa™ (wg (@ a" + (4(@) + G — Dyn(g) Dyt

m,k=1

d
+2(g) Zﬂ”’ plm ‘”;;g; > (@) " (o) ’"),
m=1

m=1
E[W(u, g, )W, g, )W, g, ) W@, g, 0)f ] =0,

E[W(u, g, 0) W, g, ) W, g, ) W, g,0)7]
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2
= ya(@)'da"a"a" + (ya() + (i — DY2(9)) K, +¥2(0)Kp + (1/;_;&)) K,

+¥3(9)* (Va(g) + (i — D2 (9)) Ka

+¥3(8)*V2(9)Kap + ¥3(8)° wlz(egf ap + (Va(@) + (. = DY2())v2() Ky p

+(¢4<g)+<i—1)¢2(g))‘”12(9g3>,(w+w2( )le(egs) Ny

We remark that the constants do not depend on k. Consequently, if we additionally fix u € U,

there is a polynomial 7/ 1 : R* — R such that the mapping g — I'’ " (u, g, k) can be written as

g T (V1(8). ¥2(8). ¥3(8). ¥4()).

which proves part (i) of Proposition 4.9. By an inspection of the previous calculations, we see

that the only term where k appears is the term '/"(g) . Hence, for any r € {0, ...,d}, u €U, we
have

Tru,1(X1, X2, X3, X4) = Ty 2(4X1, X2, X3, X4),
4
Ty 1 (X1, X2, X3, X4) = T, 5 (4X1, X2, X3, X4), (x1,x2,x3,x4) € R™.

This shows part (ii) of Proposition 4.9. (]

6.4. Proof of Theorem 4.13 and Proposition 4.14

Let g be a weight function. We begin by constructing approximations for the main test statistics

S(g)7" defined at (4.3) and V (g, h)'}’”/ given at (4.21), (4.22) and (4.23). The approximations
are discretized versions of S(r, g)'} (see (4.15)) and the right-hand sides of (4.25) to (4.27)

(T /3duy]
2
St =3du, Y v (AP, B@!"),
i=0
[T/3duy]-1
4 .
9u, Y w(A@PL B ifk=k'=1,
i=0
[T/?»ldu,,]fl
o o9d? AT B, ik =k =2,
Vir g by =170 ; (AU B ne=K (6.18)
[T/3dup]-1
2
9 u, Y v (AP B!
i=0 5
X v (A%, B()?)7, ifk=1,k'=2.

The lemma is based on the asymptotic expansion at (6.4).
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Lemma 6.5. Assume Assumptions (Al), (BE), let r € {0, ...,d}, k,k' = 1,2 and g, h be two
weight functions (not necessarily satisfying the conditions of Proposition 4.9(ii)). Then, on Q3" ,
we have that

1 1 P
\/? (WS(g)’;’K = 8(r, g)’}’K) — 0, (6.19)
n n
1 / N
WV(g, h);lw’KK — V(I", 8, h);lw’KK e O (620)
n

Proof. The proof is an adaption of the proof of [8], Lemma 6.4. Let & (g):'"( denote the ith
summand on the right-hand side of (4.3). We start by showing (6.19). To this end, we use the fact
that rank(A(g);"*) < r for all i to apply the inequality at (6.6) with A = \/ku, to obtain

Wé(é’)?“ =1 (A, B()"*) +2/kunt ()1 + T ()",
where with the Cauchy—Schwarz inequality (using the conventions after (6.3))
(@7 = (A", B(@)T")
X (r-1(A@7", B@™) + ¥/ (@7, B@™, C@)™)),
E[|2(©)]*]] = Kun + K JuzE[n"*].
[T/3dun]—17%

Applying Lemma 6.3, we deduce that /u, Y ;_
[T/3dun]—

C(g )" ok —> 0. Regarding the structure

of S(r, g)'}’( we need to prove that u, Z é‘(g)? o« —> 0. To this end, we consider the
decomposition £ ()!™ =¢'(g)!" + {”(g)" e where ¢”()!" = E[£ ()] |F/"*]. We obtain

[T/3du,]—1 2 [T/3dun]—1
]E|:<Mn Z ;//(g)?”‘> :| = u}% Z E[é.//(g):l,/cé.//(g);},/c]

i=0 i,j=0
[T/3du,]—1 (6.21)
= 3 Bl @)
i=0
<u,KT — 0,

where the second identity follows from the fact that £”(g)™* is .7-"1"_|r'(1 -measurable and the last

estimate is a consequence of Lemma 6.2 and the fact that ¥, and y, are continuous functions.

_ P .. .
Hence, we know that u,, legd"”] ! ¢"(9);" — 0. Soitis sufficient to show that ¢’ ()} =0,

or the even stronger result that

E[¢(e)f ™ H™ va(W)] =0, (6.22)

where o (W’) is the o-field generated by the whole process W’ and ”H?’K was introduced be-

fore and in (6.8). Recalling the definitions at (6.2) and (6.3), equation (6.22) follows by the
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implication
Leliar, I'e Lor—1.d—r+1)> | S Lird—r—1,1)
1 T n,k AN
—  E[det(G, (01 5gy) GGy gy gy ) IV o (W )] =0, (6.23)

E[det(G" ) det(GY,

A B@) Ao B cre ) 1M Ve (W)] =0 (6.24)

Note that due to the conventions after (6.3) the left-hand side of (6.23) is 0 if » = 0, and the
left-hand side of (6.24) is 0 if = d. The d-dimensional variables A(g)ﬁ’l'f, B(g)ﬁ’/'.( and C (g)ﬁ’/'f
can be written in the form

D(w, (W (@) Biti—duntt — W(a))(3i+/c71)dun)t20)a

where @ is a (Hf"( Vv o (W’)) ® C4-measurable function on Q x C(R,,RY). Here, C(R, RY)
is the set of all continuous functions on R with values in R? and C? is its Borel o-field for the
local uniform topology. Notice that for ® = A(g)?’]'.( or® = C(g);”]'.(, the mapping x — ®(w, x)
is odd, meaning that ®(w, —x) = —®(w, x), and for ® = B(g);"’jf‘, it is even, meaning that
P (w, —x) = d(w, x). We set

_ I
W =det(G) e gy

\p/ = det(Gg(g);’t.K’B(g):‘l,K)’

"__ |
| det(GA(g);'t,K’B(g);l,lc’c(g);’l,/( ) 5
where W, &', W are functions similar to ®. Due to the multilinearity of the determinant we can
deduce that if r is even, then W is even and W', W” are odd. If r is odd, ¥ is odd and W', 0"
are even. Thus, in all cases, the products W' and WW” are odd. Now, the (H!"* v o(W"))-
conditional law of (W3, 4« —1)du,+t — W(3i-+k—1)du, >0 1S invariant under the map x — —x on
C (R4, R?), which implies (6.23), and hence (6.22).

The proof of (6.20) is more direct. We apply the estimate at (6.7) with A = \/ku,, A = /«'uy,.
With the previous notation and Lemma 6.2 we obtain

(k! u%)d - ]

E[ Vg, W3 =V, g, b
[T/3dun]—1 {
Wé(g)?’”é(h)?"(

<9d%u, Z E[(
KK

i=0

— /(4@ B ) /(A B )

]

which implies (6.20). ]

<9d*KT . J/u, — 0,
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With respect to Lemma 6.5, Theorem 4.13 follows by showing the following lemma.

Lemma 6.6. Assume Assumptions (A1), (E). Letr € {0, ...,d} and g, h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on Q%r, we have the stable convergence
dy
U'(r,g. )y —> MN(0,V(r.g.Wr),
where MN(0,V (r, g, h)7) is defined after equation (4.20). The two-dimensional statistic
U'(r,g,h)y =U'(r, g, h)’}’l, U'r,g, h)’}’z) is given via

1
U'(r, g, h)k = ﬁ(S(r, O =S o)k, S(r ) — S(r, 3.

We will do the proof of Lemma 6.6 in three steps:

(i) Recall that due to Proposition 4.9(ii) we have that S(r, g)lT = S(r, h)QT. By a Riemann
approximation argument, one can show that

[T /3dup]—1
<3dun Z Fr(ai"’l,g,v;”],b;"l,E,g, 1)

Vin i=0

T P
_/ Fr(Us,g,Us,stzvgyl)dS —)09
0
(6.25)

| [T/3du,]—1
2~ 2 2
- <3dun DI W AR el o W)

i
i=0

T
—/ Fr(as,&’,vs,bs,E,h,Z)ds) 2o
0

More precisely, we use the fact that for a fixed weight function g and x = 1,2, the map
Udur T, (u,g k) is a polynomial (and hence C*) as well as the fact that thanks to As-
sumption (A) the processes o, v and b are Itd semimartingales and hence cadlag (see Section 8
in [2] for more details).

(i) We identify the limit by proving that

[T/3dun]—1

3du, Y (De(of! G 00 b 2 g 1)
i=0

. (6.26)
— Fr(oi"’l,a, v;”l,b?’l, %, 8 l)) —0,
[T/3dun]—1
3du, Y. (De(o]"2.5. 002 b2, 2" 1", 2)
i=0 (6.27)

— (0125, 002 B2 5, h,2)) —> 0.

i
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(iii) We prove the stable convergence
U (r. g b)Yl 25 MN(0, V(. g, b)), (6.28)

for the two-dimensional statistic U”(r, g, h)}. = (U"(r, g, h)'}’l, U’ g, h)'}’z) with compo-
nents
[T/3d’4n]*l
2 ~
U'(rog. 0y =3dun Y (n(A@!" B! =o' 5 00 b 2 6" 1)),
i=0

[T/3dun]—1
U'(r g h)5? =3dun, Y (A2 BO!2)? = Th(of2, 5 02, b2, 5", 1", 2)).
i=0

The following lemma is concerned with the convergence at (6.26) and (6.27), respectively.

Lemma 6.7. Assume Assumptions (Al), (E). Let r € {0, ...,d}, «k = 1,2 and g be a weight
function. Then, on Q%r, it holds that

[T/3du,]—1
Vi (o T 5 g )
i=0
' . (6.29)
=Ty (o" .5, v, b, 2, g,k)) — 0.
Proof. Fixr €{0,...,d}, x =1, 2 and a weight function g. Recall that by Proposition 4.9(i) for

any u € U there is a polynomial 7, , such that we have I'; (1, g, €) = T4« (W1(8), - . ., Y4(g)).
An inspection of the proof of Proposition 4.9(i) yields that the map

U x R4 - Rv (a7 ﬁ9 Y, a, 29 WI(g)s e 1}ﬁﬁl(g)) = Tr,(c{,ﬂ,y,a,z),l( (WI (g)7 L) W4(g))

is a C*-function. Consider the first order partial derivatives in (2, ¥1(g), ..., ¥4(g)). For fixed
Y, g, they are continuous in («, 8, ¥, a). Therefore, by a first order Taylor expansion, we obtain

that for any compact set A ¢ M’ x M x R4 % RY

sup }Fr(a, B,y,a, X", g",K) —Iy(a,B,7,a,%, g, IC)‘
(o, B,y,a)€A

< Kal|(Z", 1(g")s - va(g") = (B ¥1(8)s -+, ¥4(®) [ g2, o

| a2 e is the Euclidean norm on R%" x R*. Combining (6.12) and (3.5) we get that
1/6

()i —Xij=0(Ay), 0, j=1,...,d,and with (4.11), (4.12), we have that ;(g") — ¥(g) =
O(k,,_l), l=1,...,4. Again using (3.5) this implies that

where || -

1/6

1=, 91", - va(8") = (2, ¥1(8)s - ¥4 (@) | a2 e = 0(AA).
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Now, we apply Assumption (A1) to deduce that

s[l(J)p ]EHFr(JS,E, v, by, 2", 8" k) =T (05,5, vy, by, E,g,K)||]-'S] =0(A,l,/6),
sel0,T

and hence

(T /3du,]—1
NZZEED DI [ C AR A T ) B W (AR VAN AR N NI
i=0

AL/
:0(\/’;_) =0(1),

which implies (6.29). U

The next lemma deals with the stable convergence at (6.28).

Lemma 6.8. Assume Assumptions (A1), (E). Letr € {0, ...,d} and g, h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on Q%r, we have the stable convergence

U”(r, g b 25 MN(0, V(. g. h)7).

where MN(0,V (r, g, h)7) is defined after equation (4.20). The two-dimensional statistic
U'(r,g,h)y =U"(r, g, h)';’l, U’ g, h)'}’z) is given after (6.28).

Proof. We apply a simplified version of Theorem IX.7.28 in [10]. To this end, we introduce the
two-dimensional variables £ with components

6 =3dJun (v (4@ B@) = Do G 2 g 1),

3d Jitn (v (A)™2, B(WY™?)? =T, (02,5, 012, b2, 2", 1", 2)).

1

KA
=
o
I

We must prove the following five statements where «, k' = 1, 2:

[T/3du,]—1
> E[EIF] o0, (6.30)
i—0
(T/3dup]—1
> E[EEIF ] Ve g e 631)
i—0
[T /3dun]—1
Z E[&" (W5t 1yau, — Wg?du,l)u:f’l] Lo, (6.32)

i=0
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[T/3du,]—1 P
> E[E P 1e -0 7 ] —0 Y60, (6.33)
i=0
[T/3du,]—1 N
> E[E (N3 tydu, — Naiau)IF ] — 0, (6.34)
i=0

where W™ is any of the components of W and N is a one-dimensional bounded martingale,
orthogonal to (W, W’) in the sense that the covariation between N and W™, as well as the
covariation between N and W' vanishes. We will later specify the conditions on N. If (6.30) to
(6.34) hold, then Theorem IX.7.28 in [10] yields that

U"(r. g b 25 U (r, g, ),

where the random variable /" (r, g, h)7 is defined on an extension (Q, F , ﬁ) of the original
probability space (2, F, PP). It can be realized as

T

T
Z/l”(r,g,h)T:/ ydes/—f--/ s dWs, (6.35)
0

0

where W is a d-dimensional Brownian motion independent of F, and — for fixed &, X, g, h — y
and z are cadlag processes with values in R?*¢ which are adapted to the filtration generated by
o, b, v. Moreover, y and z can be characterized by

[T/3dun]—1

T
Z E[Ez'n’K(WS/V(V;Jrl)dun - W%uﬂ)u:in’l] _>P /o Vs ds,
i=0

and
T
V(r,g,h)rzf (55 +2523) ds.
0

Since W and W’ are independent of G and y, z are G-measurable, (6.35) yields that " (r, g, h)1
is mixed normal with G-conditional mean 0 and G-conditional covariance V (r, g, h)7. Now, we
turn to the proof of (6.30) to (6.34).

(i) We use equation (6.13) to derive that E[§"|F;"*] = 0 for x = 1, 2. Using the nesting
)1 2 . . .
property F; "l C F "< and the tower property, we immediately obtain (6.30).
(i) With equation (6.14) one can show that
E[g & 1 F ] = 9dPu, T (o7 5 o b B g 1),

r

E[& 262 F?] = 9d%u, T} (o]"%, & 2, b2, =", 1", 2).

r\“i
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Now, we have to carefully evaluate the term E[I',(o;" 25, ?’2, b:”z, " b, 2)|_7—'lf“’1]. Recall
(6.10) which implies that

sp B[V = 1] < &
V=o,v

Using the multilinearity property of the determinant and the fact that I',. consists of determinants
to the power four, we end up with

E[T) (o], 3, v"%, b2, =", 1", 2)| ]

r 1 1

=E[) (0" + (0% — o). & o+ (02 =) o (]2 = b, = e, 2) |

l 1 L
—F( nl o nl bnl Zn hn ) 0(142)
Hence,

[T/3dun]~1
S (Bl ] e g 5 ) oo
i=0

Since &l.”’l is }'l."’z-measurable, .7’-'1."’l - ]—'l."’2 and E[slf"2|}"i"’2] =0, we can deduce that

E[g/"'£/2|F'] = 0. It follows along the lines of the proof of Lemma 6.7 that

[T/3dun]—1
0%u, Y (Ti(omF o b 2 g 1) ~ Do v b B g 1)) = 0,
i=0
[T /3dun]—1
0d%u, Y (Cl(o!F o B Tk 2) — T (o v b B, 2)) = 0.

i r\“i
i=0

By a Riemann approximation argument similar to the one used to show (6.25), one can deduce
that

[T/3dun]—1 T ’
9d%u, Z F;(Uin,l’g’ :11 b”l E,g,l)—3d/ ) (05,0,vs,bs, 2,8, 1)ds — 0,
. 0
i=0
[T/3du,]—1
9d%u, Y Ti(of"'.F v b Tk, 2)—3d/ I/ (05,5, v5. by, .1, 2)ds — 0
: 0
i=0

which gives (6.31).
(i) We will show (6.32) by proving that

E[ (Wﬂi+l)du,, W31du,,)|Hn : v U(W,)]

E[g" 2(W3(z+l)dun Wit 1ydu,) v a(W)]

0, (6.36)

0. (6.37)
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Indeed, for « = 1, (6.36) directly implies (6.32). For k = 2, we use the relationship

E[En 1(W3(1+l)dun 3zdu,,)|‘7:” 1]
=E[(Whis1yau, — Witau, JEE" | 2] | 7]
+E[E[(Wl 1w, — W(”3’i+1)du,,)§in’2|7{?’2 v U(W/)]U:in'l]

Since ]E[Ef’2|}'i'"2] = 0, showing (6.37) implies (6.32) in this case. Similar to the proof of
Lemma 6.5 one can write & as function of the form

D (w, (W(®) Giti—1)dun+t — W(w)(3i+x—1)dun),20),

where @ is a (H"’K Vv o (W) ® C?-measurable function on  x C(R,R?). We have already
seen that A(g)" “ and B(g)" ! can also be considered as function of the form (6.4) where
A(g)” ]'.C is an odd function and B(g) © is an even function. Since S consists of squared

determinants, the function @ in (6.4) is always even in the sense that ®(w, (x1,...,%4)) =
®(w, —(x1,...,x4)), no matter if 7 is even or odd. Consequently the map
(X1, ..., xg) > meJ(w, (x1, .. .,xq))

is odd such that (6.36), (6.37) follow by a standard argument.

(iv) Lemma 6.2 implies that E[||£7|*|F"'] < Ku2, such that (6.33) follows by a standard
argument.

(v) The proof of (6.34) is somewhat more involved than the previous steps. First, we in-

troduce two filtrations: (]:t(O))te[O,T] which is generated by all processes appearing in Assump-
tion (A) plus the Brownian motion W’. In contrast, the filtration (]-',(1)) te[0,T] 1s generated by the

noise process ¢ only. Note that due to Assumption (E), ]-',(0) and ]-',(1) are independent. Following
the proof of [7], Lemma 5.7, it is sufficient to show (6.34) for all one-dimensional bounded mar-

tingales in a set N = NOUN!. Here, N0 consists of all (F(*)-martingales which are orthogonal

to (W, W’). The set N1 comprises all (ﬂ(l))-Lévy-maningales N, such that thege exists an in-
teger m > 1, time points 0 <1, < --- < ,, < T and a bounded Borel-function f: (R?)" — R
with the relation

N =E[NaolFP], Neo=F(en,. s 0)- (6.38)
Let N € N°. With a similar argumentation like in point (iii), (6.34) follows by proving that
E[&"" (N3+1)duy — NGiti—1ydu,)H; ] =0. (6.39)

By assumption, N is independent of ¢ so N is also orthogonal to (W, W’) conditionally on
H!"“. The variable £"* can be considered as a H ® C? ® C?-measurable function on Q x

C(R4,RY) x C(R4,RY) of the form
(w0, (W(@) G- Ddup+1 — W(w)(3i+/<—1)dun),20,

(W (@) Gitic—Ddun+1 — W/(U))(3i+/<—l)du,1)t20)'
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By virtue of the representation theorem (see [13], Proposition V.3.2), we can — condition-
ally on ’H?’K — write ® as the sum of a constant and a stochastic integral over the interval
(Bi +« — 1)duy, 3G + 1)duy] with respect to (W, W) for a suitable (¢ + d)-dimensional pre-
dictable integrand. Then, thanks to the It6-isometry and the fact that the covariation of N and
any component of (W, W) vanishes, one ends up with (6.39).

Now, let N € N'! with the representation (6.38). If {1, ..., 1.} N Biduy,, 3G + Ddu,] = @,
then & and (N3(i4+1)du, — N3idu,) are independent conditionally on .7-";1’1, so we obtain that
E[Ein’K(N3(i+1)dun — N3,'dun)|]:in’l] =0.If {1, ...t} N Bidu,,30G + 1)du,] # @, the fact that
f is bounded plus Lemma 6.2 imply that

E[ |/ (N3t 1ydun — N3idu) || ] < K it

Since the intervals (3idu,, 3(i + 1)du,] are disjoint for different i, the number of such intervals

having a non-empty intersection with {z1,...,,} is bounded by m. Consequently, we end up
with
[T/3duy]—1
1
Z E[|&" (N3 +1)dun — Naiau) || F" ] < mK Jun,
i=0

which gives us (6.34). This completes the proof of Lemma 6.8 and therefore the proof of Theo-
rem 4.13. ]

The proof of Proposition 4.14 is somewhat simpler in comparison to the proof of Theo-
rem 4.13. Regarding Lemma 6.5, part (i) of Proposition 4.14 follows by showing the following
lemma.

Lemma 6.9. Assume Assumptions (Al), (E). Let r € {0, ...,d}, k,k' = 1,2 and g, h be any
weight functions. Then, on Q?r, we have that

Vi(r, g hp*"

T
3d/ F;(O'Saa‘a vS’bS’ Za g’ 1) + Fr(qfaga USa bSv E’ gv 1)2d5,
0
ifk=«'=1,
T
P 3d£ F;(O'Sao'avs‘abs’Eah?2)+l—‘r(o‘ﬂ‘aoavsabs’Eah72)2dsv (6.40)
ifk =k'=2,
T
3d/ FV(GSaga Us, bS’ 27 g’ I)FV(U.SWaa vvaS5 E7h’ Z)ds5
0
ifk=1,k'=2.
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Proof. Define the variables
4 .
(A B ite=i'=1,
p(g. )P =1y (A", BUy™2)*, ifc =K' =2,
2 2 .
v(A@! B@I Yy (AW BM!),  ifk=1,4"=2,

which is the ith summand in the right-hand side of (6.18). Define the variables

P (g W =E[p(g, )™ IF T, p (g I = p(g, M = o/ (g, )
Using Lemma 6.4, we get that

P/ (@ =T (o], 5, v, b, T", ¢" k) + Tr (0,5, v, b, 2", ", K)z.
Just as in the proof of (6.31) we can deduce that 9d%u,, Zg{;d""]_l o' (g, h):?’KK/ converges in
probability to the right-hand side of (6.40). By construction, the sequence (p” (g, h)?’”/)izo isa

(F! ’1)—martingale. Hence, we can use Doob’s inequality and a calculation similar to the one in
(6.21) to end up with

[T /3duy]—1 .
9u, Y p'(g. W —0,
i=0
which completes the proof of (6.40). O

Part (ii) of Proposition 4.14 essentially follows by the next lemma.

Lemma 6.10. Assume Assumptions (Al), (E). Letr € {0, ...,d} and g, h be two weight function
satisfying the conditions of Proposition 4.9(ii). Then, on Q'., we have that

Rg.W:—r U g ) —U@, g, h)%>
(o y = Vg i —Urs i v (641
A Un log2S8(r, &)
Proof. Using the fact that S(r, g)lT = S(r, h)2 , we obtain by an elementary calculation that, on
Rig. hyh —p = 108U+ VUG8, W'y /S 9)%) —log(1 + /uyU(r, g. )y /S(r. 9))
s ) —F = .

log?2

Due to (4.19) the sequence U (r, g, h)’ is tight. By a Taylor expansion, one obtains that log(1 +
x) =x 4+ O(x?) for |x| < 1, so we get (for n sufficiently large)

log(1 + unU(r, g, )3 /S(r,)7) = /unU(r, g, h)5* /S(r, ©)F + Op(un).

This readily implies (6.41). ]
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The continuous mapping theorem for stable convergence then implies that, on Q7.,

U, g, ' = U g, W% gy U'(r g, DY —U"(r, g, h)3
—
1og25(r, g)J. log25(r, &)}

, (6.42)

where U” (r, g, h) 7 is the limit in (4.19) (see also equation (6.35)). The right-hand side of (6.42)
is mixed normal with G-conditional mean 0 and G-conditional variance

3d [ T/(05,5, vy, bs, £, 8, 1) ds +3d [ TL(0y,5, vy, b, =, h,2) ds
(S(r, 8)7 log2)?

>

The positivity of the variance is a consequence of (4.13) in Lemma 4.7. At this stage, (4.28)
follows by part (i) of Proposition 4.14, Theorem 4.8 and the delta method for stable convergence.

6.5. Proof of Corollary 4.16

The implication at (4.32) is a direct consequence of the stable convergence at (4.28). To prove
the consistency at (4.33), it is sufficient to show that for any r’ # r we have that

P(CH=" N QY ) — P(Q).
Let @ be the right-hand side of (4.28). Then we have by Proposition 4.14(ii) that

r—r

]P’C"*:’HQ’/ —IF’ b4+ —
(€ r) (H UV, T, 8, )

> Zl—a/Z} N Q;:) — 0.

By Proposition 4.14, Theorem 4.8 and Lemma 4.7, V(n, T, g, h) converges in probability to a

positive-valued limit, such that u,V(n, T, g, h) i) 0 and hence

~ r/ —r ’ ’
Pl{|®+ ———| > 21— naL | — P(Q),
(H ViV g “/2} T) (@)
which shows (4.33). To show (4.34), let A C Q%r with P(A) > 0. Then we obtain
P(CL="|A) =Y P(CL=" nQr|A) < > P(Ch= NQY|A)
r'<r r'<r

- Y P({® > za—a} N Q7 |4) =aP(Q54) =a.

r'<r

We essentially used the convergence at (4.28) as well as the fact that ® is independent of G and
Q’T/ € G. The consistency result at (4.35) follows in the same manner as (4.33).
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